1 //===-- ValueObject.cpp -----------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Core/ValueObject.h" 10 11 #include "lldb/Core/Address.h" 12 #include "lldb/Core/Module.h" 13 #include "lldb/Core/ValueObjectCast.h" 14 #include "lldb/Core/ValueObjectChild.h" 15 #include "lldb/Core/ValueObjectConstResult.h" 16 #include "lldb/Core/ValueObjectDynamicValue.h" 17 #include "lldb/Core/ValueObjectMemory.h" 18 #include "lldb/Core/ValueObjectSyntheticFilter.h" 19 #include "lldb/DataFormatters/DataVisualization.h" 20 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 21 #include "lldb/DataFormatters/FormatManager.h" 22 #include "lldb/DataFormatters/StringPrinter.h" 23 #include "lldb/DataFormatters/TypeFormat.h" 24 #include "lldb/DataFormatters/TypeSummary.h" 25 #include "lldb/DataFormatters/TypeValidator.h" 26 #include "lldb/DataFormatters/ValueObjectPrinter.h" 27 #include "lldb/Expression/ExpressionVariable.h" 28 #include "lldb/Symbol/ClangASTContext.h" 29 #include "lldb/Symbol/CompileUnit.h" 30 #include "lldb/Symbol/CompilerType.h" 31 #include "lldb/Symbol/Declaration.h" 32 #include "lldb/Symbol/SymbolContext.h" 33 #include "lldb/Symbol/Type.h" 34 #include "lldb/Symbol/Variable.h" 35 #include "lldb/Target/ExecutionContext.h" 36 #include "lldb/Target/Language.h" 37 #include "lldb/Target/LanguageRuntime.h" 38 #include "lldb/Target/ObjCLanguageRuntime.h" 39 #include "lldb/Target/Process.h" 40 #include "lldb/Target/StackFrame.h" 41 #include "lldb/Target/Target.h" 42 #include "lldb/Target/Thread.h" 43 #include "lldb/Target/ThreadList.h" 44 #include "lldb/Utility/DataBuffer.h" 45 #include "lldb/Utility/DataBufferHeap.h" 46 #include "lldb/Utility/Flags.h" 47 #include "lldb/Utility/Log.h" 48 #include "lldb/Utility/Logging.h" 49 #include "lldb/Utility/Scalar.h" 50 #include "lldb/Utility/SharingPtr.h" 51 #include "lldb/Utility/Stream.h" 52 #include "lldb/Utility/StreamString.h" 53 #include "lldb/lldb-private-types.h" 54 55 #include "llvm/Support/Compiler.h" 56 57 #include <algorithm> 58 #include <cstdint> 59 #include <cstdlib> 60 #include <memory> 61 #include <tuple> 62 63 #include <assert.h> 64 #include <inttypes.h> 65 #include <stdio.h> 66 #include <string.h> 67 68 namespace lldb_private { 69 class ExecutionContextScope; 70 } 71 namespace lldb_private { 72 class SymbolContextScope; 73 } 74 75 using namespace lldb; 76 using namespace lldb_private; 77 using namespace lldb_utility; 78 79 static user_id_t g_value_obj_uid = 0; 80 81 // ValueObject constructor 82 ValueObject::ValueObject(ValueObject &parent) 83 : UserID(++g_value_obj_uid), // Unique identifier for every value object 84 m_parent(&parent), m_root(NULL), m_update_point(parent.GetUpdatePoint()), 85 m_name(), m_data(), m_value(), m_error(), m_value_str(), 86 m_old_value_str(), m_location_str(), m_summary_str(), m_object_desc_str(), 87 m_validation_result(), m_manager(parent.GetManager()), m_children(), 88 m_synthetic_children(), m_dynamic_value(NULL), m_synthetic_value(NULL), 89 m_deref_valobj(NULL), m_format(eFormatDefault), 90 m_last_format(eFormatDefault), m_last_format_mgr_revision(0), 91 m_type_summary_sp(), m_type_format_sp(), m_synthetic_children_sp(), 92 m_type_validator_sp(), m_user_id_of_forced_summary(), 93 m_address_type_of_ptr_or_ref_children(eAddressTypeInvalid), 94 m_value_checksum(), 95 m_preferred_display_language(lldb::eLanguageTypeUnknown), 96 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 97 m_children_count_valid(false), m_old_value_valid(false), 98 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 99 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 100 m_is_getting_summary(false), 101 m_did_calculate_complete_objc_class_type(false), 102 m_is_synthetic_children_generated( 103 parent.m_is_synthetic_children_generated) { 104 m_manager->ManageObject(this); 105 } 106 107 // ValueObject constructor 108 ValueObject::ValueObject(ExecutionContextScope *exe_scope, 109 AddressType child_ptr_or_ref_addr_type) 110 : UserID(++g_value_obj_uid), // Unique identifier for every value object 111 m_parent(NULL), m_root(NULL), m_update_point(exe_scope), m_name(), 112 m_data(), m_value(), m_error(), m_value_str(), m_old_value_str(), 113 m_location_str(), m_summary_str(), m_object_desc_str(), 114 m_validation_result(), m_manager(), m_children(), m_synthetic_children(), 115 m_dynamic_value(NULL), m_synthetic_value(NULL), m_deref_valobj(NULL), 116 m_format(eFormatDefault), m_last_format(eFormatDefault), 117 m_last_format_mgr_revision(0), m_type_summary_sp(), m_type_format_sp(), 118 m_synthetic_children_sp(), m_type_validator_sp(), 119 m_user_id_of_forced_summary(), 120 m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type), 121 m_value_checksum(), 122 m_preferred_display_language(lldb::eLanguageTypeUnknown), 123 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 124 m_children_count_valid(false), m_old_value_valid(false), 125 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 126 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 127 m_is_getting_summary(false), 128 m_did_calculate_complete_objc_class_type(false), 129 m_is_synthetic_children_generated(false) { 130 m_manager = new ValueObjectManager(); 131 m_manager->ManageObject(this); 132 } 133 134 // Destructor 135 ValueObject::~ValueObject() {} 136 137 bool ValueObject::UpdateValueIfNeeded(bool update_format) { 138 139 bool did_change_formats = false; 140 141 if (update_format) 142 did_change_formats = UpdateFormatsIfNeeded(); 143 144 // If this is a constant value, then our success is predicated on whether we 145 // have an error or not 146 if (GetIsConstant()) { 147 // if you are constant, things might still have changed behind your back 148 // (e.g. you are a frozen object and things have changed deeper than you 149 // cared to freeze-dry yourself) in this case, your value has not changed, 150 // but "computed" entries might have, so you might now have a different 151 // summary, or a different object description. clear these so we will 152 // recompute them 153 if (update_format && !did_change_formats) 154 ClearUserVisibleData(eClearUserVisibleDataItemsSummary | 155 eClearUserVisibleDataItemsDescription); 156 return m_error.Success(); 157 } 158 159 bool first_update = IsChecksumEmpty(); 160 161 if (NeedsUpdating()) { 162 m_update_point.SetUpdated(); 163 164 // Save the old value using swap to avoid a string copy which also will 165 // clear our m_value_str 166 if (m_value_str.empty()) { 167 m_old_value_valid = false; 168 } else { 169 m_old_value_valid = true; 170 m_old_value_str.swap(m_value_str); 171 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 172 } 173 174 ClearUserVisibleData(); 175 176 if (IsInScope()) { 177 const bool value_was_valid = GetValueIsValid(); 178 SetValueDidChange(false); 179 180 m_error.Clear(); 181 182 // Call the pure virtual function to update the value 183 184 bool need_compare_checksums = false; 185 llvm::SmallVector<uint8_t, 16> old_checksum; 186 187 if (!first_update && CanProvideValue()) { 188 need_compare_checksums = true; 189 old_checksum.resize(m_value_checksum.size()); 190 std::copy(m_value_checksum.begin(), m_value_checksum.end(), 191 old_checksum.begin()); 192 } 193 194 bool success = UpdateValue(); 195 196 SetValueIsValid(success); 197 198 if (success) { 199 const uint64_t max_checksum_size = 128; 200 m_data.Checksum(m_value_checksum, max_checksum_size); 201 } else { 202 need_compare_checksums = false; 203 m_value_checksum.clear(); 204 } 205 206 assert(!need_compare_checksums || 207 (!old_checksum.empty() && !m_value_checksum.empty())); 208 209 if (first_update) 210 SetValueDidChange(false); 211 else if (!m_value_did_change && !success) { 212 // The value wasn't gotten successfully, so we mark this as changed if 213 // the value used to be valid and now isn't 214 SetValueDidChange(value_was_valid); 215 } else if (need_compare_checksums) { 216 SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0], 217 m_value_checksum.size())); 218 } 219 220 } else { 221 m_error.SetErrorString("out of scope"); 222 } 223 } 224 return m_error.Success(); 225 } 226 227 bool ValueObject::UpdateFormatsIfNeeded() { 228 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_DATAFORMATTERS)); 229 if (log) 230 log->Printf("[%s %p] checking for FormatManager revisions. ValueObject " 231 "rev: %d - Global rev: %d", 232 GetName().GetCString(), static_cast<void *>(this), 233 m_last_format_mgr_revision, 234 DataVisualization::GetCurrentRevision()); 235 236 bool any_change = false; 237 238 if ((m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) { 239 m_last_format_mgr_revision = DataVisualization::GetCurrentRevision(); 240 any_change = true; 241 242 SetValueFormat(DataVisualization::GetFormat(*this, eNoDynamicValues)); 243 SetSummaryFormat( 244 DataVisualization::GetSummaryFormat(*this, GetDynamicValueType())); 245 #ifndef LLDB_DISABLE_PYTHON 246 SetSyntheticChildren( 247 DataVisualization::GetSyntheticChildren(*this, GetDynamicValueType())); 248 #endif 249 SetValidator(DataVisualization::GetValidator(*this, GetDynamicValueType())); 250 } 251 252 return any_change; 253 } 254 255 void ValueObject::SetNeedsUpdate() { 256 m_update_point.SetNeedsUpdate(); 257 // We have to clear the value string here so ConstResult children will notice 258 // if their values are changed by hand (i.e. with SetValueAsCString). 259 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 260 } 261 262 void ValueObject::ClearDynamicTypeInformation() { 263 m_children_count_valid = false; 264 m_did_calculate_complete_objc_class_type = false; 265 m_last_format_mgr_revision = 0; 266 m_override_type = CompilerType(); 267 SetValueFormat(lldb::TypeFormatImplSP()); 268 SetSummaryFormat(lldb::TypeSummaryImplSP()); 269 SetSyntheticChildren(lldb::SyntheticChildrenSP()); 270 } 271 272 CompilerType ValueObject::MaybeCalculateCompleteType() { 273 CompilerType compiler_type(GetCompilerTypeImpl()); 274 275 if (m_did_calculate_complete_objc_class_type) { 276 if (m_override_type.IsValid()) 277 return m_override_type; 278 else 279 return compiler_type; 280 } 281 282 CompilerType class_type; 283 bool is_pointer_type = false; 284 285 if (ClangASTContext::IsObjCObjectPointerType(compiler_type, &class_type)) { 286 is_pointer_type = true; 287 } else if (ClangASTContext::IsObjCObjectOrInterfaceType(compiler_type)) { 288 class_type = compiler_type; 289 } else { 290 return compiler_type; 291 } 292 293 m_did_calculate_complete_objc_class_type = true; 294 295 if (class_type) { 296 ConstString class_name(class_type.GetConstTypeName()); 297 298 if (class_name) { 299 ProcessSP process_sp( 300 GetUpdatePoint().GetExecutionContextRef().GetProcessSP()); 301 302 if (process_sp) { 303 ObjCLanguageRuntime *objc_language_runtime( 304 process_sp->GetObjCLanguageRuntime()); 305 306 if (objc_language_runtime) { 307 TypeSP complete_objc_class_type_sp = 308 objc_language_runtime->LookupInCompleteClassCache(class_name); 309 310 if (complete_objc_class_type_sp) { 311 CompilerType complete_class( 312 complete_objc_class_type_sp->GetFullCompilerType()); 313 314 if (complete_class.GetCompleteType()) { 315 if (is_pointer_type) { 316 m_override_type = complete_class.GetPointerType(); 317 } else { 318 m_override_type = complete_class; 319 } 320 321 if (m_override_type.IsValid()) 322 return m_override_type; 323 } 324 } 325 } 326 } 327 } 328 } 329 return compiler_type; 330 } 331 332 CompilerType ValueObject::GetCompilerType() { 333 return MaybeCalculateCompleteType(); 334 } 335 336 TypeImpl ValueObject::GetTypeImpl() { return TypeImpl(GetCompilerType()); } 337 338 DataExtractor &ValueObject::GetDataExtractor() { 339 UpdateValueIfNeeded(false); 340 return m_data; 341 } 342 343 const Status &ValueObject::GetError() { 344 UpdateValueIfNeeded(false); 345 return m_error; 346 } 347 348 ConstString ValueObject::GetName() const { return m_name; } 349 350 const char *ValueObject::GetLocationAsCString() { 351 return GetLocationAsCStringImpl(m_value, m_data); 352 } 353 354 const char *ValueObject::GetLocationAsCStringImpl(const Value &value, 355 const DataExtractor &data) { 356 if (UpdateValueIfNeeded(false)) { 357 if (m_location_str.empty()) { 358 StreamString sstr; 359 360 Value::ValueType value_type = value.GetValueType(); 361 362 switch (value_type) { 363 case Value::eValueTypeScalar: 364 case Value::eValueTypeVector: 365 if (value.GetContextType() == Value::eContextTypeRegisterInfo) { 366 RegisterInfo *reg_info = value.GetRegisterInfo(); 367 if (reg_info) { 368 if (reg_info->name) 369 m_location_str = reg_info->name; 370 else if (reg_info->alt_name) 371 m_location_str = reg_info->alt_name; 372 if (m_location_str.empty()) 373 m_location_str = (reg_info->encoding == lldb::eEncodingVector) 374 ? "vector" 375 : "scalar"; 376 } 377 } 378 if (m_location_str.empty()) 379 m_location_str = 380 (value_type == Value::eValueTypeVector) ? "vector" : "scalar"; 381 break; 382 383 case Value::eValueTypeLoadAddress: 384 case Value::eValueTypeFileAddress: 385 case Value::eValueTypeHostAddress: { 386 uint32_t addr_nibble_size = data.GetAddressByteSize() * 2; 387 sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, 388 value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS)); 389 m_location_str = sstr.GetString(); 390 } break; 391 } 392 } 393 } 394 return m_location_str.c_str(); 395 } 396 397 Value &ValueObject::GetValue() { return m_value; } 398 399 const Value &ValueObject::GetValue() const { return m_value; } 400 401 bool ValueObject::ResolveValue(Scalar &scalar) { 402 if (UpdateValueIfNeeded( 403 false)) // make sure that you are up to date before returning anything 404 { 405 ExecutionContext exe_ctx(GetExecutionContextRef()); 406 Value tmp_value(m_value); 407 scalar = tmp_value.ResolveValue(&exe_ctx); 408 if (scalar.IsValid()) { 409 const uint32_t bitfield_bit_size = GetBitfieldBitSize(); 410 if (bitfield_bit_size) 411 return scalar.ExtractBitfield(bitfield_bit_size, 412 GetBitfieldBitOffset()); 413 return true; 414 } 415 } 416 return false; 417 } 418 419 bool ValueObject::IsLogicalTrue(Status &error) { 420 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 421 LazyBool is_logical_true = language->IsLogicalTrue(*this, error); 422 switch (is_logical_true) { 423 case eLazyBoolYes: 424 case eLazyBoolNo: 425 return (is_logical_true == true); 426 case eLazyBoolCalculate: 427 break; 428 } 429 } 430 431 Scalar scalar_value; 432 433 if (!ResolveValue(scalar_value)) { 434 error.SetErrorString("failed to get a scalar result"); 435 return false; 436 } 437 438 bool ret; 439 ret = scalar_value.ULongLong(1) != 0; 440 error.Clear(); 441 return ret; 442 } 443 444 bool ValueObject::GetValueIsValid() const { return m_value_is_valid; } 445 446 void ValueObject::SetValueIsValid(bool b) { m_value_is_valid = b; } 447 448 bool ValueObject::GetValueDidChange() { return m_value_did_change; } 449 450 void ValueObject::SetValueDidChange(bool value_changed) { 451 m_value_did_change = value_changed; 452 } 453 454 ValueObjectSP ValueObject::GetChildAtIndex(size_t idx, bool can_create) { 455 ValueObjectSP child_sp; 456 // We may need to update our value if we are dynamic 457 if (IsPossibleDynamicType()) 458 UpdateValueIfNeeded(false); 459 if (idx < GetNumChildren()) { 460 // Check if we have already made the child value object? 461 if (can_create && !m_children.HasChildAtIndex(idx)) { 462 // No we haven't created the child at this index, so lets have our 463 // subclass do it and cache the result for quick future access. 464 m_children.SetChildAtIndex(idx, CreateChildAtIndex(idx, false, 0)); 465 } 466 467 ValueObject *child = m_children.GetChildAtIndex(idx); 468 if (child != NULL) 469 return child->GetSP(); 470 } 471 return child_sp; 472 } 473 474 lldb::ValueObjectSP 475 ValueObject::GetChildAtIndexPath(llvm::ArrayRef<size_t> idxs, 476 size_t *index_of_error) { 477 if (idxs.size() == 0) 478 return GetSP(); 479 ValueObjectSP root(GetSP()); 480 for (size_t idx : idxs) { 481 root = root->GetChildAtIndex(idx, true); 482 if (!root) { 483 if (index_of_error) 484 *index_of_error = idx; 485 return root; 486 } 487 } 488 return root; 489 } 490 491 lldb::ValueObjectSP ValueObject::GetChildAtIndexPath( 492 llvm::ArrayRef<std::pair<size_t, bool>> idxs, size_t *index_of_error) { 493 if (idxs.size() == 0) 494 return GetSP(); 495 ValueObjectSP root(GetSP()); 496 for (std::pair<size_t, bool> idx : idxs) { 497 root = root->GetChildAtIndex(idx.first, idx.second); 498 if (!root) { 499 if (index_of_error) 500 *index_of_error = idx.first; 501 return root; 502 } 503 } 504 return root; 505 } 506 507 lldb::ValueObjectSP 508 ValueObject::GetChildAtNamePath(llvm::ArrayRef<ConstString> names, 509 ConstString *name_of_error) { 510 if (names.size() == 0) 511 return GetSP(); 512 ValueObjectSP root(GetSP()); 513 for (ConstString name : names) { 514 root = root->GetChildMemberWithName(name, true); 515 if (!root) { 516 if (name_of_error) 517 *name_of_error = name; 518 return root; 519 } 520 } 521 return root; 522 } 523 524 lldb::ValueObjectSP ValueObject::GetChildAtNamePath( 525 llvm::ArrayRef<std::pair<ConstString, bool>> names, 526 ConstString *name_of_error) { 527 if (names.size() == 0) 528 return GetSP(); 529 ValueObjectSP root(GetSP()); 530 for (std::pair<ConstString, bool> name : names) { 531 root = root->GetChildMemberWithName(name.first, name.second); 532 if (!root) { 533 if (name_of_error) 534 *name_of_error = name.first; 535 return root; 536 } 537 } 538 return root; 539 } 540 541 size_t ValueObject::GetIndexOfChildWithName(ConstString name) { 542 bool omit_empty_base_classes = true; 543 return GetCompilerType().GetIndexOfChildWithName(name.GetCString(), 544 omit_empty_base_classes); 545 } 546 547 ValueObjectSP ValueObject::GetChildMemberWithName(ConstString name, 548 bool can_create) { 549 // when getting a child by name, it could be buried inside some base classes 550 // (which really aren't part of the expression path), so we need a vector of 551 // indexes that can get us down to the correct child 552 ValueObjectSP child_sp; 553 554 // We may need to update our value if we are dynamic 555 if (IsPossibleDynamicType()) 556 UpdateValueIfNeeded(false); 557 558 std::vector<uint32_t> child_indexes; 559 bool omit_empty_base_classes = true; 560 const size_t num_child_indexes = 561 GetCompilerType().GetIndexOfChildMemberWithName( 562 name.GetCString(), omit_empty_base_classes, child_indexes); 563 if (num_child_indexes > 0) { 564 std::vector<uint32_t>::const_iterator pos = child_indexes.begin(); 565 std::vector<uint32_t>::const_iterator end = child_indexes.end(); 566 567 child_sp = GetChildAtIndex(*pos, can_create); 568 for (++pos; pos != end; ++pos) { 569 if (child_sp) { 570 ValueObjectSP new_child_sp(child_sp->GetChildAtIndex(*pos, can_create)); 571 child_sp = new_child_sp; 572 } else { 573 child_sp.reset(); 574 } 575 } 576 } 577 return child_sp; 578 } 579 580 size_t ValueObject::GetNumChildren(uint32_t max) { 581 UpdateValueIfNeeded(); 582 583 if (max < UINT32_MAX) { 584 if (m_children_count_valid) { 585 size_t children_count = m_children.GetChildrenCount(); 586 return children_count <= max ? children_count : max; 587 } else 588 return CalculateNumChildren(max); 589 } 590 591 if (!m_children_count_valid) { 592 SetNumChildren(CalculateNumChildren()); 593 } 594 return m_children.GetChildrenCount(); 595 } 596 597 bool ValueObject::MightHaveChildren() { 598 bool has_children = false; 599 const uint32_t type_info = GetTypeInfo(); 600 if (type_info) { 601 if (type_info & (eTypeHasChildren | eTypeIsPointer | eTypeIsReference)) 602 has_children = true; 603 } else { 604 has_children = GetNumChildren() > 0; 605 } 606 return has_children; 607 } 608 609 // Should only be called by ValueObject::GetNumChildren() 610 void ValueObject::SetNumChildren(size_t num_children) { 611 m_children_count_valid = true; 612 m_children.SetChildrenCount(num_children); 613 } 614 615 void ValueObject::SetName(ConstString name) { m_name = name; } 616 617 ValueObject *ValueObject::CreateChildAtIndex(size_t idx, 618 bool synthetic_array_member, 619 int32_t synthetic_index) { 620 ValueObject *valobj = NULL; 621 622 bool omit_empty_base_classes = true; 623 bool ignore_array_bounds = synthetic_array_member; 624 std::string child_name_str; 625 uint32_t child_byte_size = 0; 626 int32_t child_byte_offset = 0; 627 uint32_t child_bitfield_bit_size = 0; 628 uint32_t child_bitfield_bit_offset = 0; 629 bool child_is_base_class = false; 630 bool child_is_deref_of_parent = false; 631 uint64_t language_flags = 0; 632 633 const bool transparent_pointers = !synthetic_array_member; 634 CompilerType child_compiler_type; 635 636 ExecutionContext exe_ctx(GetExecutionContextRef()); 637 638 child_compiler_type = GetCompilerType().GetChildCompilerTypeAtIndex( 639 &exe_ctx, idx, transparent_pointers, omit_empty_base_classes, 640 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 641 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 642 child_is_deref_of_parent, this, language_flags); 643 if (child_compiler_type) { 644 if (synthetic_index) 645 child_byte_offset += child_byte_size * synthetic_index; 646 647 ConstString child_name; 648 if (!child_name_str.empty()) 649 child_name.SetCString(child_name_str.c_str()); 650 651 valobj = new ValueObjectChild( 652 *this, child_compiler_type, child_name, child_byte_size, 653 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 654 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 655 language_flags); 656 } 657 658 return valobj; 659 } 660 661 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 662 std::string &destination, 663 lldb::LanguageType lang) { 664 return GetSummaryAsCString(summary_ptr, destination, 665 TypeSummaryOptions().SetLanguage(lang)); 666 } 667 668 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 669 std::string &destination, 670 const TypeSummaryOptions &options) { 671 destination.clear(); 672 673 // ideally we would like to bail out if passing NULL, but if we do so we end 674 // up not providing the summary for function pointers anymore 675 if (/*summary_ptr == NULL ||*/ m_is_getting_summary) 676 return false; 677 678 m_is_getting_summary = true; 679 680 TypeSummaryOptions actual_options(options); 681 682 if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown) 683 actual_options.SetLanguage(GetPreferredDisplayLanguage()); 684 685 // this is a hot path in code and we prefer to avoid setting this string all 686 // too often also clearing out other information that we might care to see in 687 // a crash log. might be useful in very specific situations though. 688 /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. 689 Summary provider's description is %s", 690 GetTypeName().GetCString(), 691 GetName().GetCString(), 692 summary_ptr->GetDescription().c_str());*/ 693 694 if (UpdateValueIfNeeded(false) && summary_ptr) { 695 if (HasSyntheticValue()) 696 m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on 697 // the synthetic children being 698 // up-to-date (e.g. ${svar%#}) 699 summary_ptr->FormatObject(this, destination, actual_options); 700 } 701 m_is_getting_summary = false; 702 return !destination.empty(); 703 } 704 705 const char *ValueObject::GetSummaryAsCString(lldb::LanguageType lang) { 706 if (UpdateValueIfNeeded(true) && m_summary_str.empty()) { 707 TypeSummaryOptions summary_options; 708 summary_options.SetLanguage(lang); 709 GetSummaryAsCString(GetSummaryFormat().get(), m_summary_str, 710 summary_options); 711 } 712 if (m_summary_str.empty()) 713 return NULL; 714 return m_summary_str.c_str(); 715 } 716 717 bool ValueObject::GetSummaryAsCString(std::string &destination, 718 const TypeSummaryOptions &options) { 719 return GetSummaryAsCString(GetSummaryFormat().get(), destination, options); 720 } 721 722 bool ValueObject::IsCStringContainer(bool check_pointer) { 723 CompilerType pointee_or_element_compiler_type; 724 const Flags type_flags(GetTypeInfo(&pointee_or_element_compiler_type)); 725 bool is_char_arr_ptr(type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 726 pointee_or_element_compiler_type.IsCharType()); 727 if (!is_char_arr_ptr) 728 return false; 729 if (!check_pointer) 730 return true; 731 if (type_flags.Test(eTypeIsArray)) 732 return true; 733 addr_t cstr_address = LLDB_INVALID_ADDRESS; 734 AddressType cstr_address_type = eAddressTypeInvalid; 735 cstr_address = GetAddressOf(true, &cstr_address_type); 736 return (cstr_address != LLDB_INVALID_ADDRESS); 737 } 738 739 size_t ValueObject::GetPointeeData(DataExtractor &data, uint32_t item_idx, 740 uint32_t item_count) { 741 CompilerType pointee_or_element_compiler_type; 742 const uint32_t type_info = GetTypeInfo(&pointee_or_element_compiler_type); 743 const bool is_pointer_type = type_info & eTypeIsPointer; 744 const bool is_array_type = type_info & eTypeIsArray; 745 if (!(is_pointer_type || is_array_type)) 746 return 0; 747 748 if (item_count == 0) 749 return 0; 750 751 ExecutionContext exe_ctx(GetExecutionContextRef()); 752 753 llvm::Optional<uint64_t> item_type_size = 754 pointee_or_element_compiler_type.GetByteSize( 755 exe_ctx.GetBestExecutionContextScope()); 756 if (!item_type_size) 757 return 0; 758 const uint64_t bytes = item_count * *item_type_size; 759 const uint64_t offset = item_idx * *item_type_size; 760 761 if (item_idx == 0 && item_count == 1) // simply a deref 762 { 763 if (is_pointer_type) { 764 Status error; 765 ValueObjectSP pointee_sp = Dereference(error); 766 if (error.Fail() || pointee_sp.get() == NULL) 767 return 0; 768 return pointee_sp->GetData(data, error); 769 } else { 770 ValueObjectSP child_sp = GetChildAtIndex(0, true); 771 if (child_sp.get() == NULL) 772 return 0; 773 Status error; 774 return child_sp->GetData(data, error); 775 } 776 return true; 777 } else /* (items > 1) */ 778 { 779 Status error; 780 lldb_private::DataBufferHeap *heap_buf_ptr = NULL; 781 lldb::DataBufferSP data_sp(heap_buf_ptr = 782 new lldb_private::DataBufferHeap()); 783 784 AddressType addr_type; 785 lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type) 786 : GetAddressOf(true, &addr_type); 787 788 switch (addr_type) { 789 case eAddressTypeFile: { 790 ModuleSP module_sp(GetModule()); 791 if (module_sp) { 792 addr = addr + offset; 793 Address so_addr; 794 module_sp->ResolveFileAddress(addr, so_addr); 795 ExecutionContext exe_ctx(GetExecutionContextRef()); 796 Target *target = exe_ctx.GetTargetPtr(); 797 if (target) { 798 heap_buf_ptr->SetByteSize(bytes); 799 size_t bytes_read = target->ReadMemory( 800 so_addr, false, heap_buf_ptr->GetBytes(), bytes, error); 801 if (error.Success()) { 802 data.SetData(data_sp); 803 return bytes_read; 804 } 805 } 806 } 807 } break; 808 case eAddressTypeLoad: { 809 ExecutionContext exe_ctx(GetExecutionContextRef()); 810 Process *process = exe_ctx.GetProcessPtr(); 811 if (process) { 812 heap_buf_ptr->SetByteSize(bytes); 813 size_t bytes_read = process->ReadMemory( 814 addr + offset, heap_buf_ptr->GetBytes(), bytes, error); 815 if (error.Success() || bytes_read > 0) { 816 data.SetData(data_sp); 817 return bytes_read; 818 } 819 } 820 } break; 821 case eAddressTypeHost: { 822 auto max_bytes = 823 GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope()); 824 if (max_bytes && *max_bytes > offset) { 825 size_t bytes_read = std::min<uint64_t>(*max_bytes - offset, bytes); 826 addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 827 if (addr == 0 || addr == LLDB_INVALID_ADDRESS) 828 break; 829 heap_buf_ptr->CopyData((uint8_t *)(addr + offset), bytes_read); 830 data.SetData(data_sp); 831 return bytes_read; 832 } 833 } break; 834 case eAddressTypeInvalid: 835 break; 836 } 837 } 838 return 0; 839 } 840 841 uint64_t ValueObject::GetData(DataExtractor &data, Status &error) { 842 UpdateValueIfNeeded(false); 843 ExecutionContext exe_ctx(GetExecutionContextRef()); 844 error = m_value.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 845 if (error.Fail()) { 846 if (m_data.GetByteSize()) { 847 data = m_data; 848 error.Clear(); 849 return data.GetByteSize(); 850 } else { 851 return 0; 852 } 853 } 854 data.SetAddressByteSize(m_data.GetAddressByteSize()); 855 data.SetByteOrder(m_data.GetByteOrder()); 856 return data.GetByteSize(); 857 } 858 859 bool ValueObject::SetData(DataExtractor &data, Status &error) { 860 error.Clear(); 861 // Make sure our value is up to date first so that our location and location 862 // type is valid. 863 if (!UpdateValueIfNeeded(false)) { 864 error.SetErrorString("unable to read value"); 865 return false; 866 } 867 868 uint64_t count = 0; 869 const Encoding encoding = GetCompilerType().GetEncoding(count); 870 871 const size_t byte_size = GetByteSize(); 872 873 Value::ValueType value_type = m_value.GetValueType(); 874 875 switch (value_type) { 876 case Value::eValueTypeScalar: { 877 Status set_error = 878 m_value.GetScalar().SetValueFromData(data, encoding, byte_size); 879 880 if (!set_error.Success()) { 881 error.SetErrorStringWithFormat("unable to set scalar value: %s", 882 set_error.AsCString()); 883 return false; 884 } 885 } break; 886 case Value::eValueTypeLoadAddress: { 887 // If it is a load address, then the scalar value is the storage location 888 // of the data, and we have to shove this value down to that load location. 889 ExecutionContext exe_ctx(GetExecutionContextRef()); 890 Process *process = exe_ctx.GetProcessPtr(); 891 if (process) { 892 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 893 size_t bytes_written = process->WriteMemory( 894 target_addr, data.GetDataStart(), byte_size, error); 895 if (!error.Success()) 896 return false; 897 if (bytes_written != byte_size) { 898 error.SetErrorString("unable to write value to memory"); 899 return false; 900 } 901 } 902 } break; 903 case Value::eValueTypeHostAddress: { 904 // If it is a host address, then we stuff the scalar as a DataBuffer into 905 // the Value's data. 906 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 907 m_data.SetData(buffer_sp, 0); 908 data.CopyByteOrderedData(0, byte_size, 909 const_cast<uint8_t *>(m_data.GetDataStart()), 910 byte_size, m_data.GetByteOrder()); 911 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 912 } break; 913 case Value::eValueTypeFileAddress: 914 case Value::eValueTypeVector: 915 break; 916 } 917 918 // If we have reached this point, then we have successfully changed the 919 // value. 920 SetNeedsUpdate(); 921 return true; 922 } 923 924 static bool CopyStringDataToBufferSP(const StreamString &source, 925 lldb::DataBufferSP &destination) { 926 destination = std::make_shared<DataBufferHeap>(source.GetSize() + 1, 0); 927 memcpy(destination->GetBytes(), source.GetString().data(), source.GetSize()); 928 return true; 929 } 930 931 std::pair<size_t, bool> 932 ValueObject::ReadPointedString(lldb::DataBufferSP &buffer_sp, Status &error, 933 uint32_t max_length, bool honor_array, 934 Format item_format) { 935 bool was_capped = false; 936 StreamString s; 937 ExecutionContext exe_ctx(GetExecutionContextRef()); 938 Target *target = exe_ctx.GetTargetPtr(); 939 940 if (!target) { 941 s << "<no target to read from>"; 942 error.SetErrorString("no target to read from"); 943 CopyStringDataToBufferSP(s, buffer_sp); 944 return {0, was_capped}; 945 } 946 947 if (max_length == 0) 948 max_length = target->GetMaximumSizeOfStringSummary(); 949 950 size_t bytes_read = 0; 951 size_t total_bytes_read = 0; 952 953 CompilerType compiler_type = GetCompilerType(); 954 CompilerType elem_or_pointee_compiler_type; 955 const Flags type_flags(GetTypeInfo(&elem_or_pointee_compiler_type)); 956 if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 957 elem_or_pointee_compiler_type.IsCharType()) { 958 addr_t cstr_address = LLDB_INVALID_ADDRESS; 959 AddressType cstr_address_type = eAddressTypeInvalid; 960 961 size_t cstr_len = 0; 962 bool capped_data = false; 963 const bool is_array = type_flags.Test(eTypeIsArray); 964 if (is_array) { 965 // We have an array 966 uint64_t array_size = 0; 967 if (compiler_type.IsArrayType(NULL, &array_size, NULL)) { 968 cstr_len = array_size; 969 if (cstr_len > max_length) { 970 capped_data = true; 971 cstr_len = max_length; 972 } 973 } 974 cstr_address = GetAddressOf(true, &cstr_address_type); 975 } else { 976 // We have a pointer 977 cstr_address = GetPointerValue(&cstr_address_type); 978 } 979 980 if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) { 981 if (cstr_address_type == eAddressTypeHost && is_array) { 982 const char *cstr = GetDataExtractor().PeekCStr(0); 983 if (cstr == nullptr) { 984 s << "<invalid address>"; 985 error.SetErrorString("invalid address"); 986 CopyStringDataToBufferSP(s, buffer_sp); 987 return {0, was_capped}; 988 } 989 buffer_sp = std::make_shared<DataBufferHeap>(cstr_len, 0); 990 memcpy(buffer_sp->GetBytes(), cstr, cstr_len); 991 return {cstr_len, was_capped}; 992 } else { 993 s << "<invalid address>"; 994 error.SetErrorString("invalid address"); 995 CopyStringDataToBufferSP(s, buffer_sp); 996 return {0, was_capped}; 997 } 998 } 999 1000 Address cstr_so_addr(cstr_address); 1001 DataExtractor data; 1002 if (cstr_len > 0 && honor_array) { 1003 // I am using GetPointeeData() here to abstract the fact that some 1004 // ValueObjects are actually frozen pointers in the host but the pointed- 1005 // to data lives in the debuggee, and GetPointeeData() automatically 1006 // takes care of this 1007 GetPointeeData(data, 0, cstr_len); 1008 1009 if ((bytes_read = data.GetByteSize()) > 0) { 1010 total_bytes_read = bytes_read; 1011 for (size_t offset = 0; offset < bytes_read; offset++) 1012 s.Printf("%c", *data.PeekData(offset, 1)); 1013 if (capped_data) 1014 was_capped = true; 1015 } 1016 } else { 1017 cstr_len = max_length; 1018 const size_t k_max_buf_size = 64; 1019 1020 size_t offset = 0; 1021 1022 int cstr_len_displayed = -1; 1023 bool capped_cstr = false; 1024 // I am using GetPointeeData() here to abstract the fact that some 1025 // ValueObjects are actually frozen pointers in the host but the pointed- 1026 // to data lives in the debuggee, and GetPointeeData() automatically 1027 // takes care of this 1028 while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) { 1029 total_bytes_read += bytes_read; 1030 const char *cstr = data.PeekCStr(0); 1031 size_t len = strnlen(cstr, k_max_buf_size); 1032 if (cstr_len_displayed < 0) 1033 cstr_len_displayed = len; 1034 1035 if (len == 0) 1036 break; 1037 cstr_len_displayed += len; 1038 if (len > bytes_read) 1039 len = bytes_read; 1040 if (len > cstr_len) 1041 len = cstr_len; 1042 1043 for (size_t offset = 0; offset < bytes_read; offset++) 1044 s.Printf("%c", *data.PeekData(offset, 1)); 1045 1046 if (len < k_max_buf_size) 1047 break; 1048 1049 if (len >= cstr_len) { 1050 capped_cstr = true; 1051 break; 1052 } 1053 1054 cstr_len -= len; 1055 offset += len; 1056 } 1057 1058 if (cstr_len_displayed >= 0) { 1059 if (capped_cstr) 1060 was_capped = true; 1061 } 1062 } 1063 } else { 1064 error.SetErrorString("not a string object"); 1065 s << "<not a string object>"; 1066 } 1067 CopyStringDataToBufferSP(s, buffer_sp); 1068 return {total_bytes_read, was_capped}; 1069 } 1070 1071 std::pair<TypeValidatorResult, std::string> ValueObject::GetValidationStatus() { 1072 if (!UpdateValueIfNeeded(true)) 1073 return {TypeValidatorResult::Success, 1074 ""}; // not the validator's job to discuss update problems 1075 1076 if (m_validation_result.hasValue()) 1077 return m_validation_result.getValue(); 1078 1079 if (!m_type_validator_sp) 1080 return {TypeValidatorResult::Success, ""}; // no validator no failure 1081 1082 auto outcome = m_type_validator_sp->FormatObject(this); 1083 1084 return (m_validation_result = {outcome.m_result, outcome.m_message}) 1085 .getValue(); 1086 } 1087 1088 const char *ValueObject::GetObjectDescription() { 1089 if (!UpdateValueIfNeeded(true)) 1090 return nullptr; 1091 1092 // Return cached value. 1093 if (!m_object_desc_str.empty()) 1094 return m_object_desc_str.c_str(); 1095 1096 ExecutionContext exe_ctx(GetExecutionContextRef()); 1097 Process *process = exe_ctx.GetProcessPtr(); 1098 if (!process) 1099 return nullptr; 1100 1101 // Returns the object description produced by one language runtime. 1102 auto get_object_description = [&](LanguageType language) -> const char * { 1103 if (LanguageRuntime *runtime = process->GetLanguageRuntime(language)) { 1104 StreamString s; 1105 if (runtime->GetObjectDescription(s, *this)) { 1106 m_object_desc_str.append(s.GetString()); 1107 return m_object_desc_str.c_str(); 1108 } 1109 } 1110 return nullptr; 1111 }; 1112 1113 // Try the native language runtime first. 1114 LanguageType native_language = GetObjectRuntimeLanguage(); 1115 if (const char *desc = get_object_description(native_language)) 1116 return desc; 1117 1118 // Try the Objective-C language runtime. This fallback is necessary 1119 // for Objective-C++ and mixed Objective-C / C++ programs. 1120 if (Language::LanguageIsCFamily(native_language)) 1121 return get_object_description(eLanguageTypeObjC); 1122 return nullptr; 1123 } 1124 1125 bool ValueObject::GetValueAsCString(const lldb_private::TypeFormatImpl &format, 1126 std::string &destination) { 1127 if (UpdateValueIfNeeded(false)) 1128 return format.FormatObject(this, destination); 1129 else 1130 return false; 1131 } 1132 1133 bool ValueObject::GetValueAsCString(lldb::Format format, 1134 std::string &destination) { 1135 return GetValueAsCString(TypeFormatImpl_Format(format), destination); 1136 } 1137 1138 const char *ValueObject::GetValueAsCString() { 1139 if (UpdateValueIfNeeded(true)) { 1140 lldb::TypeFormatImplSP format_sp; 1141 lldb::Format my_format = GetFormat(); 1142 if (my_format == lldb::eFormatDefault) { 1143 if (m_type_format_sp) 1144 format_sp = m_type_format_sp; 1145 else { 1146 if (m_is_bitfield_for_scalar) 1147 my_format = eFormatUnsigned; 1148 else { 1149 if (m_value.GetContextType() == Value::eContextTypeRegisterInfo) { 1150 const RegisterInfo *reg_info = m_value.GetRegisterInfo(); 1151 if (reg_info) 1152 my_format = reg_info->format; 1153 } else { 1154 my_format = GetValue().GetCompilerType().GetFormat(); 1155 } 1156 } 1157 } 1158 } 1159 if (my_format != m_last_format || m_value_str.empty()) { 1160 m_last_format = my_format; 1161 if (!format_sp) 1162 format_sp = std::make_shared<TypeFormatImpl_Format>(my_format); 1163 if (GetValueAsCString(*format_sp.get(), m_value_str)) { 1164 if (!m_value_did_change && m_old_value_valid) { 1165 // The value was gotten successfully, so we consider the value as 1166 // changed if the value string differs 1167 SetValueDidChange(m_old_value_str != m_value_str); 1168 } 1169 } 1170 } 1171 } 1172 if (m_value_str.empty()) 1173 return NULL; 1174 return m_value_str.c_str(); 1175 } 1176 1177 // if > 8bytes, 0 is returned. this method should mostly be used to read 1178 // address values out of pointers 1179 uint64_t ValueObject::GetValueAsUnsigned(uint64_t fail_value, bool *success) { 1180 // If our byte size is zero this is an aggregate type that has children 1181 if (CanProvideValue()) { 1182 Scalar scalar; 1183 if (ResolveValue(scalar)) { 1184 if (success) 1185 *success = true; 1186 return scalar.ULongLong(fail_value); 1187 } 1188 // fallthrough, otherwise... 1189 } 1190 1191 if (success) 1192 *success = false; 1193 return fail_value; 1194 } 1195 1196 int64_t ValueObject::GetValueAsSigned(int64_t fail_value, bool *success) { 1197 // If our byte size is zero this is an aggregate type that has children 1198 if (CanProvideValue()) { 1199 Scalar scalar; 1200 if (ResolveValue(scalar)) { 1201 if (success) 1202 *success = true; 1203 return scalar.SLongLong(fail_value); 1204 } 1205 // fallthrough, otherwise... 1206 } 1207 1208 if (success) 1209 *success = false; 1210 return fail_value; 1211 } 1212 1213 // if any more "special cases" are added to 1214 // ValueObject::DumpPrintableRepresentation() please keep this call up to date 1215 // by returning true for your new special cases. We will eventually move to 1216 // checking this call result before trying to display special cases 1217 bool ValueObject::HasSpecialPrintableRepresentation( 1218 ValueObjectRepresentationStyle val_obj_display, Format custom_format) { 1219 Flags flags(GetTypeInfo()); 1220 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1221 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1222 if (IsCStringContainer(true) && 1223 (custom_format == eFormatCString || custom_format == eFormatCharArray || 1224 custom_format == eFormatChar || custom_format == eFormatVectorOfChar)) 1225 return true; 1226 1227 if (flags.Test(eTypeIsArray)) { 1228 if ((custom_format == eFormatBytes) || 1229 (custom_format == eFormatBytesWithASCII)) 1230 return true; 1231 1232 if ((custom_format == eFormatVectorOfChar) || 1233 (custom_format == eFormatVectorOfFloat32) || 1234 (custom_format == eFormatVectorOfFloat64) || 1235 (custom_format == eFormatVectorOfSInt16) || 1236 (custom_format == eFormatVectorOfSInt32) || 1237 (custom_format == eFormatVectorOfSInt64) || 1238 (custom_format == eFormatVectorOfSInt8) || 1239 (custom_format == eFormatVectorOfUInt128) || 1240 (custom_format == eFormatVectorOfUInt16) || 1241 (custom_format == eFormatVectorOfUInt32) || 1242 (custom_format == eFormatVectorOfUInt64) || 1243 (custom_format == eFormatVectorOfUInt8)) 1244 return true; 1245 } 1246 } 1247 return false; 1248 } 1249 1250 bool ValueObject::DumpPrintableRepresentation( 1251 Stream &s, ValueObjectRepresentationStyle val_obj_display, 1252 Format custom_format, PrintableRepresentationSpecialCases special, 1253 bool do_dump_error) { 1254 1255 Flags flags(GetTypeInfo()); 1256 1257 bool allow_special = 1258 (special == ValueObject::PrintableRepresentationSpecialCases::eAllow); 1259 const bool only_special = false; 1260 1261 if (allow_special) { 1262 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1263 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1264 // when being asked to get a printable display an array or pointer type 1265 // directly, try to "do the right thing" 1266 1267 if (IsCStringContainer(true) && 1268 (custom_format == eFormatCString || 1269 custom_format == eFormatCharArray || custom_format == eFormatChar || 1270 custom_format == 1271 eFormatVectorOfChar)) // print char[] & char* directly 1272 { 1273 Status error; 1274 lldb::DataBufferSP buffer_sp; 1275 std::pair<size_t, bool> read_string = ReadPointedString( 1276 buffer_sp, error, 0, (custom_format == eFormatVectorOfChar) || 1277 (custom_format == eFormatCharArray)); 1278 lldb_private::formatters::StringPrinter:: 1279 ReadBufferAndDumpToStreamOptions options(*this); 1280 options.SetData(DataExtractor( 1281 buffer_sp, lldb::eByteOrderInvalid, 1282 8)); // none of this matters for a string - pass some defaults 1283 options.SetStream(&s); 1284 options.SetPrefixToken(0); 1285 options.SetQuote('"'); 1286 options.SetSourceSize(buffer_sp->GetByteSize()); 1287 options.SetIsTruncated(read_string.second); 1288 formatters::StringPrinter::ReadBufferAndDumpToStream< 1289 lldb_private::formatters::StringPrinter::StringElementType::ASCII>( 1290 options); 1291 return !error.Fail(); 1292 } 1293 1294 if (custom_format == eFormatEnum) 1295 return false; 1296 1297 // this only works for arrays, because I have no way to know when the 1298 // pointed memory ends, and no special \0 end of data marker 1299 if (flags.Test(eTypeIsArray)) { 1300 if ((custom_format == eFormatBytes) || 1301 (custom_format == eFormatBytesWithASCII)) { 1302 const size_t count = GetNumChildren(); 1303 1304 s << '['; 1305 for (size_t low = 0; low < count; low++) { 1306 1307 if (low) 1308 s << ','; 1309 1310 ValueObjectSP child = GetChildAtIndex(low, true); 1311 if (!child.get()) { 1312 s << "<invalid child>"; 1313 continue; 1314 } 1315 child->DumpPrintableRepresentation( 1316 s, ValueObject::eValueObjectRepresentationStyleValue, 1317 custom_format); 1318 } 1319 1320 s << ']'; 1321 1322 return true; 1323 } 1324 1325 if ((custom_format == eFormatVectorOfChar) || 1326 (custom_format == eFormatVectorOfFloat32) || 1327 (custom_format == eFormatVectorOfFloat64) || 1328 (custom_format == eFormatVectorOfSInt16) || 1329 (custom_format == eFormatVectorOfSInt32) || 1330 (custom_format == eFormatVectorOfSInt64) || 1331 (custom_format == eFormatVectorOfSInt8) || 1332 (custom_format == eFormatVectorOfUInt128) || 1333 (custom_format == eFormatVectorOfUInt16) || 1334 (custom_format == eFormatVectorOfUInt32) || 1335 (custom_format == eFormatVectorOfUInt64) || 1336 (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes 1337 // with ASCII or any vector 1338 // format should be printed 1339 // directly 1340 { 1341 const size_t count = GetNumChildren(); 1342 1343 Format format = FormatManager::GetSingleItemFormat(custom_format); 1344 1345 s << '['; 1346 for (size_t low = 0; low < count; low++) { 1347 1348 if (low) 1349 s << ','; 1350 1351 ValueObjectSP child = GetChildAtIndex(low, true); 1352 if (!child.get()) { 1353 s << "<invalid child>"; 1354 continue; 1355 } 1356 child->DumpPrintableRepresentation( 1357 s, ValueObject::eValueObjectRepresentationStyleValue, format); 1358 } 1359 1360 s << ']'; 1361 1362 return true; 1363 } 1364 } 1365 1366 if ((custom_format == eFormatBoolean) || 1367 (custom_format == eFormatBinary) || (custom_format == eFormatChar) || 1368 (custom_format == eFormatCharPrintable) || 1369 (custom_format == eFormatComplexFloat) || 1370 (custom_format == eFormatDecimal) || (custom_format == eFormatHex) || 1371 (custom_format == eFormatHexUppercase) || 1372 (custom_format == eFormatFloat) || (custom_format == eFormatOctal) || 1373 (custom_format == eFormatOSType) || 1374 (custom_format == eFormatUnicode16) || 1375 (custom_format == eFormatUnicode32) || 1376 (custom_format == eFormatUnsigned) || 1377 (custom_format == eFormatPointer) || 1378 (custom_format == eFormatComplexInteger) || 1379 (custom_format == eFormatComplex) || 1380 (custom_format == eFormatDefault)) // use the [] operator 1381 return false; 1382 } 1383 } 1384 1385 if (only_special) 1386 return false; 1387 1388 bool var_success = false; 1389 1390 { 1391 llvm::StringRef str; 1392 1393 // this is a local stream that we are using to ensure that the data pointed 1394 // to by cstr survives long enough for us to copy it to its destination - 1395 // it is necessary to have this temporary storage area for cases where our 1396 // desired output is not backed by some other longer-term storage 1397 StreamString strm; 1398 1399 if (custom_format != eFormatInvalid) 1400 SetFormat(custom_format); 1401 1402 switch (val_obj_display) { 1403 case eValueObjectRepresentationStyleValue: 1404 str = GetValueAsCString(); 1405 break; 1406 1407 case eValueObjectRepresentationStyleSummary: 1408 str = GetSummaryAsCString(); 1409 break; 1410 1411 case eValueObjectRepresentationStyleLanguageSpecific: 1412 str = GetObjectDescription(); 1413 break; 1414 1415 case eValueObjectRepresentationStyleLocation: 1416 str = GetLocationAsCString(); 1417 break; 1418 1419 case eValueObjectRepresentationStyleChildrenCount: 1420 strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren()); 1421 str = strm.GetString(); 1422 break; 1423 1424 case eValueObjectRepresentationStyleType: 1425 str = GetTypeName().GetStringRef(); 1426 break; 1427 1428 case eValueObjectRepresentationStyleName: 1429 str = GetName().GetStringRef(); 1430 break; 1431 1432 case eValueObjectRepresentationStyleExpressionPath: 1433 GetExpressionPath(strm, false); 1434 str = strm.GetString(); 1435 break; 1436 } 1437 1438 if (str.empty()) { 1439 if (val_obj_display == eValueObjectRepresentationStyleValue) 1440 str = GetSummaryAsCString(); 1441 else if (val_obj_display == eValueObjectRepresentationStyleSummary) { 1442 if (!CanProvideValue()) { 1443 strm.Printf("%s @ %s", GetTypeName().AsCString(), 1444 GetLocationAsCString()); 1445 str = strm.GetString(); 1446 } else 1447 str = GetValueAsCString(); 1448 } 1449 } 1450 1451 if (!str.empty()) 1452 s << str; 1453 else { 1454 if (m_error.Fail()) { 1455 if (do_dump_error) 1456 s.Printf("<%s>", m_error.AsCString()); 1457 else 1458 return false; 1459 } else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1460 s.PutCString("<no summary available>"); 1461 else if (val_obj_display == eValueObjectRepresentationStyleValue) 1462 s.PutCString("<no value available>"); 1463 else if (val_obj_display == 1464 eValueObjectRepresentationStyleLanguageSpecific) 1465 s.PutCString("<not a valid Objective-C object>"); // edit this if we 1466 // have other runtimes 1467 // that support a 1468 // description 1469 else 1470 s.PutCString("<no printable representation>"); 1471 } 1472 1473 // we should only return false here if we could not do *anything* even if 1474 // we have an error message as output, that's a success from our callers' 1475 // perspective, so return true 1476 var_success = true; 1477 1478 if (custom_format != eFormatInvalid) 1479 SetFormat(eFormatDefault); 1480 } 1481 1482 return var_success; 1483 } 1484 1485 addr_t ValueObject::GetAddressOf(bool scalar_is_load_address, 1486 AddressType *address_type) { 1487 // Can't take address of a bitfield 1488 if (IsBitfield()) 1489 return LLDB_INVALID_ADDRESS; 1490 1491 if (!UpdateValueIfNeeded(false)) 1492 return LLDB_INVALID_ADDRESS; 1493 1494 switch (m_value.GetValueType()) { 1495 case Value::eValueTypeScalar: 1496 case Value::eValueTypeVector: 1497 if (scalar_is_load_address) { 1498 if (address_type) 1499 *address_type = eAddressTypeLoad; 1500 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1501 } 1502 break; 1503 1504 case Value::eValueTypeLoadAddress: 1505 case Value::eValueTypeFileAddress: { 1506 if (address_type) 1507 *address_type = m_value.GetValueAddressType(); 1508 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1509 } break; 1510 case Value::eValueTypeHostAddress: { 1511 if (address_type) 1512 *address_type = m_value.GetValueAddressType(); 1513 return LLDB_INVALID_ADDRESS; 1514 } break; 1515 } 1516 if (address_type) 1517 *address_type = eAddressTypeInvalid; 1518 return LLDB_INVALID_ADDRESS; 1519 } 1520 1521 addr_t ValueObject::GetPointerValue(AddressType *address_type) { 1522 addr_t address = LLDB_INVALID_ADDRESS; 1523 if (address_type) 1524 *address_type = eAddressTypeInvalid; 1525 1526 if (!UpdateValueIfNeeded(false)) 1527 return address; 1528 1529 switch (m_value.GetValueType()) { 1530 case Value::eValueTypeScalar: 1531 case Value::eValueTypeVector: 1532 address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1533 break; 1534 1535 case Value::eValueTypeHostAddress: 1536 case Value::eValueTypeLoadAddress: 1537 case Value::eValueTypeFileAddress: { 1538 lldb::offset_t data_offset = 0; 1539 address = m_data.GetPointer(&data_offset); 1540 } break; 1541 } 1542 1543 if (address_type) 1544 *address_type = GetAddressTypeOfChildren(); 1545 1546 return address; 1547 } 1548 1549 bool ValueObject::SetValueFromCString(const char *value_str, Status &error) { 1550 error.Clear(); 1551 // Make sure our value is up to date first so that our location and location 1552 // type is valid. 1553 if (!UpdateValueIfNeeded(false)) { 1554 error.SetErrorString("unable to read value"); 1555 return false; 1556 } 1557 1558 uint64_t count = 0; 1559 const Encoding encoding = GetCompilerType().GetEncoding(count); 1560 1561 const size_t byte_size = GetByteSize(); 1562 1563 Value::ValueType value_type = m_value.GetValueType(); 1564 1565 if (value_type == Value::eValueTypeScalar) { 1566 // If the value is already a scalar, then let the scalar change itself: 1567 m_value.GetScalar().SetValueFromCString(value_str, encoding, byte_size); 1568 } else if (byte_size <= 16) { 1569 // If the value fits in a scalar, then make a new scalar and again let the 1570 // scalar code do the conversion, then figure out where to put the new 1571 // value. 1572 Scalar new_scalar; 1573 error = new_scalar.SetValueFromCString(value_str, encoding, byte_size); 1574 if (error.Success()) { 1575 switch (value_type) { 1576 case Value::eValueTypeLoadAddress: { 1577 // If it is a load address, then the scalar value is the storage 1578 // location of the data, and we have to shove this value down to that 1579 // load location. 1580 ExecutionContext exe_ctx(GetExecutionContextRef()); 1581 Process *process = exe_ctx.GetProcessPtr(); 1582 if (process) { 1583 addr_t target_addr = 1584 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1585 size_t bytes_written = process->WriteScalarToMemory( 1586 target_addr, new_scalar, byte_size, error); 1587 if (!error.Success()) 1588 return false; 1589 if (bytes_written != byte_size) { 1590 error.SetErrorString("unable to write value to memory"); 1591 return false; 1592 } 1593 } 1594 } break; 1595 case Value::eValueTypeHostAddress: { 1596 // If it is a host address, then we stuff the scalar as a DataBuffer 1597 // into the Value's data. 1598 DataExtractor new_data; 1599 new_data.SetByteOrder(m_data.GetByteOrder()); 1600 1601 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 1602 m_data.SetData(buffer_sp, 0); 1603 bool success = new_scalar.GetData(new_data); 1604 if (success) { 1605 new_data.CopyByteOrderedData( 1606 0, byte_size, const_cast<uint8_t *>(m_data.GetDataStart()), 1607 byte_size, m_data.GetByteOrder()); 1608 } 1609 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1610 1611 } break; 1612 case Value::eValueTypeFileAddress: 1613 case Value::eValueTypeScalar: 1614 case Value::eValueTypeVector: 1615 break; 1616 } 1617 } else { 1618 return false; 1619 } 1620 } else { 1621 // We don't support setting things bigger than a scalar at present. 1622 error.SetErrorString("unable to write aggregate data type"); 1623 return false; 1624 } 1625 1626 // If we have reached this point, then we have successfully changed the 1627 // value. 1628 SetNeedsUpdate(); 1629 return true; 1630 } 1631 1632 bool ValueObject::GetDeclaration(Declaration &decl) { 1633 decl.Clear(); 1634 return false; 1635 } 1636 1637 ConstString ValueObject::GetTypeName() { 1638 return GetCompilerType().GetConstTypeName(); 1639 } 1640 1641 ConstString ValueObject::GetDisplayTypeName() { return GetTypeName(); } 1642 1643 ConstString ValueObject::GetQualifiedTypeName() { 1644 return GetCompilerType().GetConstQualifiedTypeName(); 1645 } 1646 1647 LanguageType ValueObject::GetObjectRuntimeLanguage() { 1648 return GetCompilerType().GetMinimumLanguage(); 1649 } 1650 1651 void ValueObject::AddSyntheticChild(ConstString key, 1652 ValueObject *valobj) { 1653 m_synthetic_children[key] = valobj; 1654 } 1655 1656 ValueObjectSP ValueObject::GetSyntheticChild(ConstString key) const { 1657 ValueObjectSP synthetic_child_sp; 1658 std::map<ConstString, ValueObject *>::const_iterator pos = 1659 m_synthetic_children.find(key); 1660 if (pos != m_synthetic_children.end()) 1661 synthetic_child_sp = pos->second->GetSP(); 1662 return synthetic_child_sp; 1663 } 1664 1665 uint32_t 1666 ValueObject::GetTypeInfo(CompilerType *pointee_or_element_compiler_type) { 1667 return GetCompilerType().GetTypeInfo(pointee_or_element_compiler_type); 1668 } 1669 1670 bool ValueObject::IsPointerType() { return GetCompilerType().IsPointerType(); } 1671 1672 bool ValueObject::IsArrayType() { 1673 return GetCompilerType().IsArrayType(NULL, NULL, NULL); 1674 } 1675 1676 bool ValueObject::IsScalarType() { return GetCompilerType().IsScalarType(); } 1677 1678 bool ValueObject::IsIntegerType(bool &is_signed) { 1679 return GetCompilerType().IsIntegerType(is_signed); 1680 } 1681 1682 bool ValueObject::IsPointerOrReferenceType() { 1683 return GetCompilerType().IsPointerOrReferenceType(); 1684 } 1685 1686 bool ValueObject::IsPossibleDynamicType() { 1687 ExecutionContext exe_ctx(GetExecutionContextRef()); 1688 Process *process = exe_ctx.GetProcessPtr(); 1689 if (process) 1690 return process->IsPossibleDynamicValue(*this); 1691 else 1692 return GetCompilerType().IsPossibleDynamicType(NULL, true, true); 1693 } 1694 1695 bool ValueObject::IsRuntimeSupportValue() { 1696 Process *process(GetProcessSP().get()); 1697 if (process) { 1698 LanguageRuntime *runtime = 1699 process->GetLanguageRuntime(GetObjectRuntimeLanguage()); 1700 if (!runtime) 1701 runtime = process->GetObjCLanguageRuntime(); 1702 if (runtime) 1703 return runtime->IsRuntimeSupportValue(*this); 1704 // If there is no language runtime, trust the compiler to mark all 1705 // runtime support variables as artificial. 1706 return GetVariable() && GetVariable()->IsArtificial(); 1707 } 1708 return false; 1709 } 1710 1711 bool ValueObject::IsNilReference() { 1712 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1713 return language->IsNilReference(*this); 1714 } 1715 return false; 1716 } 1717 1718 bool ValueObject::IsUninitializedReference() { 1719 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1720 return language->IsUninitializedReference(*this); 1721 } 1722 return false; 1723 } 1724 1725 // This allows you to create an array member using and index that doesn't not 1726 // fall in the normal bounds of the array. Many times structure can be defined 1727 // as: struct Collection { 1728 // uint32_t item_count; 1729 // Item item_array[0]; 1730 // }; 1731 // The size of the "item_array" is 1, but many times in practice there are more 1732 // items in "item_array". 1733 1734 ValueObjectSP ValueObject::GetSyntheticArrayMember(size_t index, 1735 bool can_create) { 1736 ValueObjectSP synthetic_child_sp; 1737 if (IsPointerType() || IsArrayType()) { 1738 char index_str[64]; 1739 snprintf(index_str, sizeof(index_str), "[%" PRIu64 "]", (uint64_t)index); 1740 ConstString index_const_str(index_str); 1741 // Check if we have already created a synthetic array member in this valid 1742 // object. If we have we will re-use it. 1743 synthetic_child_sp = GetSyntheticChild(index_const_str); 1744 if (!synthetic_child_sp) { 1745 ValueObject *synthetic_child; 1746 // We haven't made a synthetic array member for INDEX yet, so lets make 1747 // one and cache it for any future reference. 1748 synthetic_child = CreateChildAtIndex(0, true, index); 1749 1750 // Cache the value if we got one back... 1751 if (synthetic_child) { 1752 AddSyntheticChild(index_const_str, synthetic_child); 1753 synthetic_child_sp = synthetic_child->GetSP(); 1754 synthetic_child_sp->SetName(ConstString(index_str)); 1755 synthetic_child_sp->m_is_array_item_for_pointer = true; 1756 } 1757 } 1758 } 1759 return synthetic_child_sp; 1760 } 1761 1762 ValueObjectSP ValueObject::GetSyntheticBitFieldChild(uint32_t from, uint32_t to, 1763 bool can_create) { 1764 ValueObjectSP synthetic_child_sp; 1765 if (IsScalarType()) { 1766 char index_str[64]; 1767 snprintf(index_str, sizeof(index_str), "[%i-%i]", from, to); 1768 ConstString index_const_str(index_str); 1769 // Check if we have already created a synthetic array member in this valid 1770 // object. If we have we will re-use it. 1771 synthetic_child_sp = GetSyntheticChild(index_const_str); 1772 if (!synthetic_child_sp) { 1773 uint32_t bit_field_size = to - from + 1; 1774 uint32_t bit_field_offset = from; 1775 if (GetDataExtractor().GetByteOrder() == eByteOrderBig) 1776 bit_field_offset = 1777 GetByteSize() * 8 - bit_field_size - bit_field_offset; 1778 // We haven't made a synthetic array member for INDEX yet, so lets make 1779 // one and cache it for any future reference. 1780 ValueObjectChild *synthetic_child = new ValueObjectChild( 1781 *this, GetCompilerType(), index_const_str, GetByteSize(), 0, 1782 bit_field_size, bit_field_offset, false, false, eAddressTypeInvalid, 1783 0); 1784 1785 // Cache the value if we got one back... 1786 if (synthetic_child) { 1787 AddSyntheticChild(index_const_str, synthetic_child); 1788 synthetic_child_sp = synthetic_child->GetSP(); 1789 synthetic_child_sp->SetName(ConstString(index_str)); 1790 synthetic_child_sp->m_is_bitfield_for_scalar = true; 1791 } 1792 } 1793 } 1794 return synthetic_child_sp; 1795 } 1796 1797 ValueObjectSP ValueObject::GetSyntheticChildAtOffset( 1798 uint32_t offset, const CompilerType &type, bool can_create, 1799 ConstString name_const_str) { 1800 1801 ValueObjectSP synthetic_child_sp; 1802 1803 if (name_const_str.IsEmpty()) { 1804 char name_str[64]; 1805 snprintf(name_str, sizeof(name_str), "@%i", offset); 1806 name_const_str.SetCString(name_str); 1807 } 1808 1809 // Check if we have already created a synthetic array member in this valid 1810 // object. If we have we will re-use it. 1811 synthetic_child_sp = GetSyntheticChild(name_const_str); 1812 1813 if (synthetic_child_sp.get()) 1814 return synthetic_child_sp; 1815 1816 if (!can_create) 1817 return {}; 1818 1819 ExecutionContext exe_ctx(GetExecutionContextRef()); 1820 llvm::Optional<uint64_t> size = 1821 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1822 if (!size) 1823 return {}; 1824 ValueObjectChild *synthetic_child = 1825 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1826 false, false, eAddressTypeInvalid, 0); 1827 if (synthetic_child) { 1828 AddSyntheticChild(name_const_str, synthetic_child); 1829 synthetic_child_sp = synthetic_child->GetSP(); 1830 synthetic_child_sp->SetName(name_const_str); 1831 synthetic_child_sp->m_is_child_at_offset = true; 1832 } 1833 return synthetic_child_sp; 1834 } 1835 1836 ValueObjectSP ValueObject::GetSyntheticBase(uint32_t offset, 1837 const CompilerType &type, 1838 bool can_create, 1839 ConstString name_const_str) { 1840 ValueObjectSP synthetic_child_sp; 1841 1842 if (name_const_str.IsEmpty()) { 1843 char name_str[128]; 1844 snprintf(name_str, sizeof(name_str), "base%s@%i", 1845 type.GetTypeName().AsCString("<unknown>"), offset); 1846 name_const_str.SetCString(name_str); 1847 } 1848 1849 // Check if we have already created a synthetic array member in this valid 1850 // object. If we have we will re-use it. 1851 synthetic_child_sp = GetSyntheticChild(name_const_str); 1852 1853 if (synthetic_child_sp.get()) 1854 return synthetic_child_sp; 1855 1856 if (!can_create) 1857 return {}; 1858 1859 const bool is_base_class = true; 1860 1861 ExecutionContext exe_ctx(GetExecutionContextRef()); 1862 llvm::Optional<uint64_t> size = 1863 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1864 if (!size) 1865 return {}; 1866 ValueObjectChild *synthetic_child = 1867 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1868 is_base_class, false, eAddressTypeInvalid, 0); 1869 if (synthetic_child) { 1870 AddSyntheticChild(name_const_str, synthetic_child); 1871 synthetic_child_sp = synthetic_child->GetSP(); 1872 synthetic_child_sp->SetName(name_const_str); 1873 } 1874 return synthetic_child_sp; 1875 } 1876 1877 // your expression path needs to have a leading . or -> (unless it somehow 1878 // "looks like" an array, in which case it has a leading [ symbol). while the [ 1879 // is meaningful and should be shown to the user, . and -> are just parser 1880 // design, but by no means added information for the user.. strip them off 1881 static const char *SkipLeadingExpressionPathSeparators(const char *expression) { 1882 if (!expression || !expression[0]) 1883 return expression; 1884 if (expression[0] == '.') 1885 return expression + 1; 1886 if (expression[0] == '-' && expression[1] == '>') 1887 return expression + 2; 1888 return expression; 1889 } 1890 1891 ValueObjectSP 1892 ValueObject::GetSyntheticExpressionPathChild(const char *expression, 1893 bool can_create) { 1894 ValueObjectSP synthetic_child_sp; 1895 ConstString name_const_string(expression); 1896 // Check if we have already created a synthetic array member in this valid 1897 // object. If we have we will re-use it. 1898 synthetic_child_sp = GetSyntheticChild(name_const_string); 1899 if (!synthetic_child_sp) { 1900 // We haven't made a synthetic array member for expression yet, so lets 1901 // make one and cache it for any future reference. 1902 synthetic_child_sp = GetValueForExpressionPath( 1903 expression, NULL, NULL, 1904 GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal( 1905 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 1906 None)); 1907 1908 // Cache the value if we got one back... 1909 if (synthetic_child_sp.get()) { 1910 // FIXME: this causes a "real" child to end up with its name changed to 1911 // the contents of expression 1912 AddSyntheticChild(name_const_string, synthetic_child_sp.get()); 1913 synthetic_child_sp->SetName( 1914 ConstString(SkipLeadingExpressionPathSeparators(expression))); 1915 } 1916 } 1917 return synthetic_child_sp; 1918 } 1919 1920 void ValueObject::CalculateSyntheticValue(bool use_synthetic) { 1921 if (!use_synthetic) 1922 return; 1923 1924 TargetSP target_sp(GetTargetSP()); 1925 if (target_sp && !target_sp->GetEnableSyntheticValue()) { 1926 m_synthetic_value = NULL; 1927 return; 1928 } 1929 1930 lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp); 1931 1932 if (!UpdateFormatsIfNeeded() && m_synthetic_value) 1933 return; 1934 1935 if (m_synthetic_children_sp.get() == NULL) 1936 return; 1937 1938 if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value) 1939 return; 1940 1941 m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp); 1942 } 1943 1944 void ValueObject::CalculateDynamicValue(DynamicValueType use_dynamic) { 1945 if (use_dynamic == eNoDynamicValues) 1946 return; 1947 1948 if (!m_dynamic_value && !IsDynamic()) { 1949 ExecutionContext exe_ctx(GetExecutionContextRef()); 1950 Process *process = exe_ctx.GetProcessPtr(); 1951 if (process && process->IsPossibleDynamicValue(*this)) { 1952 ClearDynamicTypeInformation(); 1953 m_dynamic_value = new ValueObjectDynamicValue(*this, use_dynamic); 1954 } 1955 } 1956 } 1957 1958 ValueObjectSP ValueObject::GetDynamicValue(DynamicValueType use_dynamic) { 1959 if (use_dynamic == eNoDynamicValues) 1960 return ValueObjectSP(); 1961 1962 if (!IsDynamic() && m_dynamic_value == NULL) { 1963 CalculateDynamicValue(use_dynamic); 1964 } 1965 if (m_dynamic_value) 1966 return m_dynamic_value->GetSP(); 1967 else 1968 return ValueObjectSP(); 1969 } 1970 1971 ValueObjectSP ValueObject::GetStaticValue() { return GetSP(); } 1972 1973 lldb::ValueObjectSP ValueObject::GetNonSyntheticValue() { return GetSP(); } 1974 1975 ValueObjectSP ValueObject::GetSyntheticValue(bool use_synthetic) { 1976 if (!use_synthetic) 1977 return ValueObjectSP(); 1978 1979 CalculateSyntheticValue(use_synthetic); 1980 1981 if (m_synthetic_value) 1982 return m_synthetic_value->GetSP(); 1983 else 1984 return ValueObjectSP(); 1985 } 1986 1987 bool ValueObject::HasSyntheticValue() { 1988 UpdateFormatsIfNeeded(); 1989 1990 if (m_synthetic_children_sp.get() == NULL) 1991 return false; 1992 1993 CalculateSyntheticValue(true); 1994 1995 return m_synthetic_value != nullptr; 1996 } 1997 1998 bool ValueObject::GetBaseClassPath(Stream &s) { 1999 if (IsBaseClass()) { 2000 bool parent_had_base_class = 2001 GetParent() && GetParent()->GetBaseClassPath(s); 2002 CompilerType compiler_type = GetCompilerType(); 2003 std::string cxx_class_name; 2004 bool this_had_base_class = 2005 ClangASTContext::GetCXXClassName(compiler_type, cxx_class_name); 2006 if (this_had_base_class) { 2007 if (parent_had_base_class) 2008 s.PutCString("::"); 2009 s.PutCString(cxx_class_name); 2010 } 2011 return parent_had_base_class || this_had_base_class; 2012 } 2013 return false; 2014 } 2015 2016 ValueObject *ValueObject::GetNonBaseClassParent() { 2017 if (GetParent()) { 2018 if (GetParent()->IsBaseClass()) 2019 return GetParent()->GetNonBaseClassParent(); 2020 else 2021 return GetParent(); 2022 } 2023 return NULL; 2024 } 2025 2026 bool ValueObject::IsBaseClass(uint32_t &depth) { 2027 if (!IsBaseClass()) { 2028 depth = 0; 2029 return false; 2030 } 2031 if (GetParent()) { 2032 GetParent()->IsBaseClass(depth); 2033 depth = depth + 1; 2034 return true; 2035 } 2036 // TODO: a base of no parent? weird.. 2037 depth = 1; 2038 return true; 2039 } 2040 2041 void ValueObject::GetExpressionPath(Stream &s, bool qualify_cxx_base_classes, 2042 GetExpressionPathFormat epformat) { 2043 // synthetic children do not actually "exist" as part of the hierarchy, and 2044 // sometimes they are consed up in ways that don't make sense from an 2045 // underlying language/API standpoint. So, use a special code path here to 2046 // return something that can hopefully be used in expression 2047 if (m_is_synthetic_children_generated) { 2048 UpdateValueIfNeeded(); 2049 2050 if (m_value.GetValueType() == Value::eValueTypeLoadAddress) { 2051 if (IsPointerOrReferenceType()) { 2052 s.Printf("((%s)0x%" PRIx64 ")", GetTypeName().AsCString("void"), 2053 GetValueAsUnsigned(0)); 2054 return; 2055 } else { 2056 uint64_t load_addr = 2057 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2058 if (load_addr != LLDB_INVALID_ADDRESS) { 2059 s.Printf("(*( (%s *)0x%" PRIx64 "))", GetTypeName().AsCString("void"), 2060 load_addr); 2061 return; 2062 } 2063 } 2064 } 2065 2066 if (CanProvideValue()) { 2067 s.Printf("((%s)%s)", GetTypeName().AsCString("void"), 2068 GetValueAsCString()); 2069 return; 2070 } 2071 2072 return; 2073 } 2074 2075 const bool is_deref_of_parent = IsDereferenceOfParent(); 2076 2077 if (is_deref_of_parent && 2078 epformat == eGetExpressionPathFormatDereferencePointers) { 2079 // this is the original format of GetExpressionPath() producing code like 2080 // *(a_ptr).memberName, which is entirely fine, until you put this into 2081 // StackFrame::GetValueForVariableExpressionPath() which prefers to see 2082 // a_ptr->memberName. the eHonorPointers mode is meant to produce strings 2083 // in this latter format 2084 s.PutCString("*("); 2085 } 2086 2087 ValueObject *parent = GetParent(); 2088 2089 if (parent) 2090 parent->GetExpressionPath(s, qualify_cxx_base_classes, epformat); 2091 2092 // if we are a deref_of_parent just because we are synthetic array members 2093 // made up to allow ptr[%d] syntax to work in variable printing, then add our 2094 // name ([%d]) to the expression path 2095 if (m_is_array_item_for_pointer && 2096 epformat == eGetExpressionPathFormatHonorPointers) 2097 s.PutCString(m_name.AsCString()); 2098 2099 if (!IsBaseClass()) { 2100 if (!is_deref_of_parent) { 2101 ValueObject *non_base_class_parent = GetNonBaseClassParent(); 2102 if (non_base_class_parent && 2103 !non_base_class_parent->GetName().IsEmpty()) { 2104 CompilerType non_base_class_parent_compiler_type = 2105 non_base_class_parent->GetCompilerType(); 2106 if (non_base_class_parent_compiler_type) { 2107 if (parent && parent->IsDereferenceOfParent() && 2108 epformat == eGetExpressionPathFormatHonorPointers) { 2109 s.PutCString("->"); 2110 } else { 2111 const uint32_t non_base_class_parent_type_info = 2112 non_base_class_parent_compiler_type.GetTypeInfo(); 2113 2114 if (non_base_class_parent_type_info & eTypeIsPointer) { 2115 s.PutCString("->"); 2116 } else if ((non_base_class_parent_type_info & eTypeHasChildren) && 2117 !(non_base_class_parent_type_info & eTypeIsArray)) { 2118 s.PutChar('.'); 2119 } 2120 } 2121 } 2122 } 2123 2124 const char *name = GetName().GetCString(); 2125 if (name) { 2126 if (qualify_cxx_base_classes) { 2127 if (GetBaseClassPath(s)) 2128 s.PutCString("::"); 2129 } 2130 s.PutCString(name); 2131 } 2132 } 2133 } 2134 2135 if (is_deref_of_parent && 2136 epformat == eGetExpressionPathFormatDereferencePointers) { 2137 s.PutChar(')'); 2138 } 2139 } 2140 2141 ValueObjectSP ValueObject::GetValueForExpressionPath( 2142 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2143 ExpressionPathEndResultType *final_value_type, 2144 const GetValueForExpressionPathOptions &options, 2145 ExpressionPathAftermath *final_task_on_target) { 2146 2147 ExpressionPathScanEndReason dummy_reason_to_stop = 2148 ValueObject::eExpressionPathScanEndReasonUnknown; 2149 ExpressionPathEndResultType dummy_final_value_type = 2150 ValueObject::eExpressionPathEndResultTypeInvalid; 2151 ExpressionPathAftermath dummy_final_task_on_target = 2152 ValueObject::eExpressionPathAftermathNothing; 2153 2154 ValueObjectSP ret_val = GetValueForExpressionPath_Impl( 2155 expression, reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2156 final_value_type ? final_value_type : &dummy_final_value_type, options, 2157 final_task_on_target ? final_task_on_target 2158 : &dummy_final_task_on_target); 2159 2160 if (!final_task_on_target || 2161 *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2162 return ret_val; 2163 2164 if (ret_val.get() && 2165 ((final_value_type ? *final_value_type : dummy_final_value_type) == 2166 eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress 2167 // of plain objects 2168 { 2169 if ((final_task_on_target ? *final_task_on_target 2170 : dummy_final_task_on_target) == 2171 ValueObject::eExpressionPathAftermathDereference) { 2172 Status error; 2173 ValueObjectSP final_value = ret_val->Dereference(error); 2174 if (error.Fail() || !final_value.get()) { 2175 if (reason_to_stop) 2176 *reason_to_stop = 2177 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2178 if (final_value_type) 2179 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2180 return ValueObjectSP(); 2181 } else { 2182 if (final_task_on_target) 2183 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2184 return final_value; 2185 } 2186 } 2187 if (*final_task_on_target == 2188 ValueObject::eExpressionPathAftermathTakeAddress) { 2189 Status error; 2190 ValueObjectSP final_value = ret_val->AddressOf(error); 2191 if (error.Fail() || !final_value.get()) { 2192 if (reason_to_stop) 2193 *reason_to_stop = 2194 ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2195 if (final_value_type) 2196 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2197 return ValueObjectSP(); 2198 } else { 2199 if (final_task_on_target) 2200 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2201 return final_value; 2202 } 2203 } 2204 } 2205 return ret_val; // final_task_on_target will still have its original value, so 2206 // you know I did not do it 2207 } 2208 2209 ValueObjectSP ValueObject::GetValueForExpressionPath_Impl( 2210 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2211 ExpressionPathEndResultType *final_result, 2212 const GetValueForExpressionPathOptions &options, 2213 ExpressionPathAftermath *what_next) { 2214 ValueObjectSP root = GetSP(); 2215 2216 if (!root) 2217 return nullptr; 2218 2219 llvm::StringRef remainder = expression; 2220 2221 while (true) { 2222 llvm::StringRef temp_expression = remainder; 2223 2224 CompilerType root_compiler_type = root->GetCompilerType(); 2225 CompilerType pointee_compiler_type; 2226 Flags pointee_compiler_type_info; 2227 2228 Flags root_compiler_type_info( 2229 root_compiler_type.GetTypeInfo(&pointee_compiler_type)); 2230 if (pointee_compiler_type) 2231 pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo()); 2232 2233 if (temp_expression.empty()) { 2234 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2235 return root; 2236 } 2237 2238 switch (temp_expression.front()) { 2239 case '-': { 2240 temp_expression = temp_expression.drop_front(); 2241 if (options.m_check_dot_vs_arrow_syntax && 2242 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2243 // use -> on a 2244 // non-pointer and I 2245 // must catch the error 2246 { 2247 *reason_to_stop = 2248 ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot; 2249 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2250 return ValueObjectSP(); 2251 } 2252 if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to 2253 // extract an ObjC IVar 2254 // when this is forbidden 2255 root_compiler_type_info.Test(eTypeIsPointer) && 2256 options.m_no_fragile_ivar) { 2257 *reason_to_stop = 2258 ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed; 2259 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2260 return ValueObjectSP(); 2261 } 2262 if (!temp_expression.startswith(">")) { 2263 *reason_to_stop = 2264 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2265 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2266 return ValueObjectSP(); 2267 } 2268 } 2269 LLVM_FALLTHROUGH; 2270 case '.': // or fallthrough from -> 2271 { 2272 if (options.m_check_dot_vs_arrow_syntax && 2273 temp_expression.front() == '.' && 2274 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2275 // use . on a pointer 2276 // and I must catch the 2277 // error 2278 { 2279 *reason_to_stop = 2280 ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow; 2281 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2282 return nullptr; 2283 } 2284 temp_expression = temp_expression.drop_front(); // skip . or > 2285 2286 size_t next_sep_pos = temp_expression.find_first_of("-.[", 1); 2287 ConstString child_name; 2288 if (next_sep_pos == llvm::StringRef::npos) // if no other separator just 2289 // expand this last layer 2290 { 2291 child_name.SetString(temp_expression); 2292 ValueObjectSP child_valobj_sp = 2293 root->GetChildMemberWithName(child_name, true); 2294 2295 if (child_valobj_sp.get()) // we know we are done, so just return 2296 { 2297 *reason_to_stop = 2298 ValueObject::eExpressionPathScanEndReasonEndOfString; 2299 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2300 return child_valobj_sp; 2301 } else { 2302 switch (options.m_synthetic_children_traversal) { 2303 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2304 None: 2305 break; 2306 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2307 FromSynthetic: 2308 if (root->IsSynthetic()) { 2309 child_valobj_sp = root->GetNonSyntheticValue(); 2310 if (child_valobj_sp.get()) 2311 child_valobj_sp = 2312 child_valobj_sp->GetChildMemberWithName(child_name, true); 2313 } 2314 break; 2315 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2316 ToSynthetic: 2317 if (!root->IsSynthetic()) { 2318 child_valobj_sp = root->GetSyntheticValue(); 2319 if (child_valobj_sp.get()) 2320 child_valobj_sp = 2321 child_valobj_sp->GetChildMemberWithName(child_name, true); 2322 } 2323 break; 2324 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2325 Both: 2326 if (root->IsSynthetic()) { 2327 child_valobj_sp = root->GetNonSyntheticValue(); 2328 if (child_valobj_sp.get()) 2329 child_valobj_sp = 2330 child_valobj_sp->GetChildMemberWithName(child_name, true); 2331 } else { 2332 child_valobj_sp = root->GetSyntheticValue(); 2333 if (child_valobj_sp.get()) 2334 child_valobj_sp = 2335 child_valobj_sp->GetChildMemberWithName(child_name, true); 2336 } 2337 break; 2338 } 2339 } 2340 2341 // if we are here and options.m_no_synthetic_children is true, 2342 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2343 // branch, and return an error 2344 if (child_valobj_sp.get()) // if it worked, just return 2345 { 2346 *reason_to_stop = 2347 ValueObject::eExpressionPathScanEndReasonEndOfString; 2348 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2349 return child_valobj_sp; 2350 } else { 2351 *reason_to_stop = 2352 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2353 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2354 return nullptr; 2355 } 2356 } else // other layers do expand 2357 { 2358 llvm::StringRef next_separator = temp_expression.substr(next_sep_pos); 2359 2360 child_name.SetString(temp_expression.slice(0, next_sep_pos)); 2361 2362 ValueObjectSP child_valobj_sp = 2363 root->GetChildMemberWithName(child_name, true); 2364 if (child_valobj_sp.get()) // store the new root and move on 2365 { 2366 root = child_valobj_sp; 2367 remainder = next_separator; 2368 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2369 continue; 2370 } else { 2371 switch (options.m_synthetic_children_traversal) { 2372 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2373 None: 2374 break; 2375 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2376 FromSynthetic: 2377 if (root->IsSynthetic()) { 2378 child_valobj_sp = root->GetNonSyntheticValue(); 2379 if (child_valobj_sp.get()) 2380 child_valobj_sp = 2381 child_valobj_sp->GetChildMemberWithName(child_name, true); 2382 } 2383 break; 2384 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2385 ToSynthetic: 2386 if (!root->IsSynthetic()) { 2387 child_valobj_sp = root->GetSyntheticValue(); 2388 if (child_valobj_sp.get()) 2389 child_valobj_sp = 2390 child_valobj_sp->GetChildMemberWithName(child_name, true); 2391 } 2392 break; 2393 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2394 Both: 2395 if (root->IsSynthetic()) { 2396 child_valobj_sp = root->GetNonSyntheticValue(); 2397 if (child_valobj_sp.get()) 2398 child_valobj_sp = 2399 child_valobj_sp->GetChildMemberWithName(child_name, true); 2400 } else { 2401 child_valobj_sp = root->GetSyntheticValue(); 2402 if (child_valobj_sp.get()) 2403 child_valobj_sp = 2404 child_valobj_sp->GetChildMemberWithName(child_name, true); 2405 } 2406 break; 2407 } 2408 } 2409 2410 // if we are here and options.m_no_synthetic_children is true, 2411 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2412 // branch, and return an error 2413 if (child_valobj_sp.get()) // if it worked, move on 2414 { 2415 root = child_valobj_sp; 2416 remainder = next_separator; 2417 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2418 continue; 2419 } else { 2420 *reason_to_stop = 2421 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2422 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2423 return nullptr; 2424 } 2425 } 2426 break; 2427 } 2428 case '[': { 2429 if (!root_compiler_type_info.Test(eTypeIsArray) && 2430 !root_compiler_type_info.Test(eTypeIsPointer) && 2431 !root_compiler_type_info.Test( 2432 eTypeIsVector)) // if this is not a T[] nor a T* 2433 { 2434 if (!root_compiler_type_info.Test( 2435 eTypeIsScalar)) // if this is not even a scalar... 2436 { 2437 if (options.m_synthetic_children_traversal == 2438 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2439 None) // ...only chance left is synthetic 2440 { 2441 *reason_to_stop = 2442 ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 2443 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2444 return ValueObjectSP(); 2445 } 2446 } else if (!options.m_allow_bitfields_syntax) // if this is a scalar, 2447 // check that we can 2448 // expand bitfields 2449 { 2450 *reason_to_stop = 2451 ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 2452 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2453 return ValueObjectSP(); 2454 } 2455 } 2456 if (temp_expression[1] == 2457 ']') // if this is an unbounded range it only works for arrays 2458 { 2459 if (!root_compiler_type_info.Test(eTypeIsArray)) { 2460 *reason_to_stop = 2461 ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 2462 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2463 return nullptr; 2464 } else // even if something follows, we cannot expand unbounded ranges, 2465 // just let the caller do it 2466 { 2467 *reason_to_stop = 2468 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2469 *final_result = 2470 ValueObject::eExpressionPathEndResultTypeUnboundedRange; 2471 return root; 2472 } 2473 } 2474 2475 size_t close_bracket_position = temp_expression.find(']', 1); 2476 if (close_bracket_position == 2477 llvm::StringRef::npos) // if there is no ], this is a syntax error 2478 { 2479 *reason_to_stop = 2480 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2481 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2482 return nullptr; 2483 } 2484 2485 llvm::StringRef bracket_expr = 2486 temp_expression.slice(1, close_bracket_position); 2487 2488 // If this was an empty expression it would have been caught by the if 2489 // above. 2490 assert(!bracket_expr.empty()); 2491 2492 if (!bracket_expr.contains('-')) { 2493 // if no separator, this is of the form [N]. Note that this cannot be 2494 // an unbounded range of the form [], because that case was handled 2495 // above with an unconditional return. 2496 unsigned long index = 0; 2497 if (bracket_expr.getAsInteger(0, index)) { 2498 *reason_to_stop = 2499 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2500 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2501 return nullptr; 2502 } 2503 2504 // from here on we do have a valid index 2505 if (root_compiler_type_info.Test(eTypeIsArray)) { 2506 ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true); 2507 if (!child_valobj_sp) 2508 child_valobj_sp = root->GetSyntheticArrayMember(index, true); 2509 if (!child_valobj_sp) 2510 if (root->HasSyntheticValue() && 2511 root->GetSyntheticValue()->GetNumChildren() > index) 2512 child_valobj_sp = 2513 root->GetSyntheticValue()->GetChildAtIndex(index, true); 2514 if (child_valobj_sp) { 2515 root = child_valobj_sp; 2516 remainder = 2517 temp_expression.substr(close_bracket_position + 1); // skip ] 2518 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2519 continue; 2520 } else { 2521 *reason_to_stop = 2522 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2523 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2524 return nullptr; 2525 } 2526 } else if (root_compiler_type_info.Test(eTypeIsPointer)) { 2527 if (*what_next == 2528 ValueObject:: 2529 eExpressionPathAftermathDereference && // if this is a 2530 // ptr-to-scalar, I 2531 // am accessing it 2532 // by index and I 2533 // would have 2534 // deref'ed anyway, 2535 // then do it now 2536 // and use this as 2537 // a bitfield 2538 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2539 Status error; 2540 root = root->Dereference(error); 2541 if (error.Fail() || !root) { 2542 *reason_to_stop = 2543 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2544 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2545 return nullptr; 2546 } else { 2547 *what_next = eExpressionPathAftermathNothing; 2548 continue; 2549 } 2550 } else { 2551 if (root->GetCompilerType().GetMinimumLanguage() == 2552 eLanguageTypeObjC && 2553 pointee_compiler_type_info.AllClear(eTypeIsPointer) && 2554 root->HasSyntheticValue() && 2555 (options.m_synthetic_children_traversal == 2556 GetValueForExpressionPathOptions:: 2557 SyntheticChildrenTraversal::ToSynthetic || 2558 options.m_synthetic_children_traversal == 2559 GetValueForExpressionPathOptions:: 2560 SyntheticChildrenTraversal::Both)) { 2561 root = root->GetSyntheticValue()->GetChildAtIndex(index, true); 2562 } else 2563 root = root->GetSyntheticArrayMember(index, true); 2564 if (!root) { 2565 *reason_to_stop = 2566 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2567 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2568 return nullptr; 2569 } else { 2570 remainder = 2571 temp_expression.substr(close_bracket_position + 1); // skip ] 2572 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2573 continue; 2574 } 2575 } 2576 } else if (root_compiler_type_info.Test(eTypeIsScalar)) { 2577 root = root->GetSyntheticBitFieldChild(index, index, true); 2578 if (!root) { 2579 *reason_to_stop = 2580 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2581 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2582 return nullptr; 2583 } else // we do not know how to expand members of bitfields, so we 2584 // just return and let the caller do any further processing 2585 { 2586 *reason_to_stop = ValueObject:: 2587 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2588 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2589 return root; 2590 } 2591 } else if (root_compiler_type_info.Test(eTypeIsVector)) { 2592 root = root->GetChildAtIndex(index, true); 2593 if (!root) { 2594 *reason_to_stop = 2595 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2596 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2597 return ValueObjectSP(); 2598 } else { 2599 remainder = 2600 temp_expression.substr(close_bracket_position + 1); // skip ] 2601 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2602 continue; 2603 } 2604 } else if (options.m_synthetic_children_traversal == 2605 GetValueForExpressionPathOptions:: 2606 SyntheticChildrenTraversal::ToSynthetic || 2607 options.m_synthetic_children_traversal == 2608 GetValueForExpressionPathOptions:: 2609 SyntheticChildrenTraversal::Both) { 2610 if (root->HasSyntheticValue()) 2611 root = root->GetSyntheticValue(); 2612 else if (!root->IsSynthetic()) { 2613 *reason_to_stop = 2614 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2615 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2616 return nullptr; 2617 } 2618 // if we are here, then root itself is a synthetic VO.. should be 2619 // good to go 2620 2621 if (!root) { 2622 *reason_to_stop = 2623 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2624 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2625 return nullptr; 2626 } 2627 root = root->GetChildAtIndex(index, true); 2628 if (!root) { 2629 *reason_to_stop = 2630 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2631 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2632 return nullptr; 2633 } else { 2634 remainder = 2635 temp_expression.substr(close_bracket_position + 1); // skip ] 2636 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2637 continue; 2638 } 2639 } else { 2640 *reason_to_stop = 2641 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2642 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2643 return nullptr; 2644 } 2645 } else { 2646 // we have a low and a high index 2647 llvm::StringRef sleft, sright; 2648 unsigned long low_index, high_index; 2649 std::tie(sleft, sright) = bracket_expr.split('-'); 2650 if (sleft.getAsInteger(0, low_index) || 2651 sright.getAsInteger(0, high_index)) { 2652 *reason_to_stop = 2653 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2654 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2655 return nullptr; 2656 } 2657 2658 if (low_index > high_index) // swap indices if required 2659 std::swap(low_index, high_index); 2660 2661 if (root_compiler_type_info.Test( 2662 eTypeIsScalar)) // expansion only works for scalars 2663 { 2664 root = root->GetSyntheticBitFieldChild(low_index, high_index, true); 2665 if (!root) { 2666 *reason_to_stop = 2667 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2668 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2669 return nullptr; 2670 } else { 2671 *reason_to_stop = ValueObject:: 2672 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2673 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2674 return root; 2675 } 2676 } else if (root_compiler_type_info.Test( 2677 eTypeIsPointer) && // if this is a ptr-to-scalar, I am 2678 // accessing it by index and I would 2679 // have deref'ed anyway, then do it 2680 // now and use this as a bitfield 2681 *what_next == 2682 ValueObject::eExpressionPathAftermathDereference && 2683 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2684 Status error; 2685 root = root->Dereference(error); 2686 if (error.Fail() || !root) { 2687 *reason_to_stop = 2688 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2689 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2690 return nullptr; 2691 } else { 2692 *what_next = ValueObject::eExpressionPathAftermathNothing; 2693 continue; 2694 } 2695 } else { 2696 *reason_to_stop = 2697 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2698 *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange; 2699 return root; 2700 } 2701 } 2702 break; 2703 } 2704 default: // some non-separator is in the way 2705 { 2706 *reason_to_stop = 2707 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2708 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2709 return nullptr; 2710 } 2711 } 2712 } 2713 } 2714 2715 void ValueObject::LogValueObject(Log *log) { 2716 if (log) 2717 return LogValueObject(log, DumpValueObjectOptions(*this)); 2718 } 2719 2720 void ValueObject::LogValueObject(Log *log, 2721 const DumpValueObjectOptions &options) { 2722 if (log) { 2723 StreamString s; 2724 Dump(s, options); 2725 if (s.GetSize()) 2726 log->PutCString(s.GetData()); 2727 } 2728 } 2729 2730 void ValueObject::Dump(Stream &s) { Dump(s, DumpValueObjectOptions(*this)); } 2731 2732 void ValueObject::Dump(Stream &s, const DumpValueObjectOptions &options) { 2733 ValueObjectPrinter printer(this, &s, options); 2734 printer.PrintValueObject(); 2735 } 2736 2737 ValueObjectSP ValueObject::CreateConstantValue(ConstString name) { 2738 ValueObjectSP valobj_sp; 2739 2740 if (UpdateValueIfNeeded(false) && m_error.Success()) { 2741 ExecutionContext exe_ctx(GetExecutionContextRef()); 2742 2743 DataExtractor data; 2744 data.SetByteOrder(m_data.GetByteOrder()); 2745 data.SetAddressByteSize(m_data.GetAddressByteSize()); 2746 2747 if (IsBitfield()) { 2748 Value v(Scalar(GetValueAsUnsigned(UINT64_MAX))); 2749 m_error = v.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 2750 } else 2751 m_error = m_value.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 2752 2753 valobj_sp = ValueObjectConstResult::Create( 2754 exe_ctx.GetBestExecutionContextScope(), GetCompilerType(), name, data, 2755 GetAddressOf()); 2756 } 2757 2758 if (!valobj_sp) { 2759 ExecutionContext exe_ctx(GetExecutionContextRef()); 2760 valobj_sp = ValueObjectConstResult::Create( 2761 exe_ctx.GetBestExecutionContextScope(), m_error); 2762 } 2763 return valobj_sp; 2764 } 2765 2766 ValueObjectSP ValueObject::GetQualifiedRepresentationIfAvailable( 2767 lldb::DynamicValueType dynValue, bool synthValue) { 2768 ValueObjectSP result_sp(GetSP()); 2769 2770 switch (dynValue) { 2771 case lldb::eDynamicCanRunTarget: 2772 case lldb::eDynamicDontRunTarget: { 2773 if (!result_sp->IsDynamic()) { 2774 if (result_sp->GetDynamicValue(dynValue)) 2775 result_sp = result_sp->GetDynamicValue(dynValue); 2776 } 2777 } break; 2778 case lldb::eNoDynamicValues: { 2779 if (result_sp->IsDynamic()) { 2780 if (result_sp->GetStaticValue()) 2781 result_sp = result_sp->GetStaticValue(); 2782 } 2783 } break; 2784 } 2785 2786 if (synthValue) { 2787 if (!result_sp->IsSynthetic()) { 2788 if (result_sp->GetSyntheticValue()) 2789 result_sp = result_sp->GetSyntheticValue(); 2790 } 2791 } else { 2792 if (result_sp->IsSynthetic()) { 2793 if (result_sp->GetNonSyntheticValue()) 2794 result_sp = result_sp->GetNonSyntheticValue(); 2795 } 2796 } 2797 2798 return result_sp; 2799 } 2800 2801 ValueObjectSP ValueObject::Dereference(Status &error) { 2802 if (m_deref_valobj) 2803 return m_deref_valobj->GetSP(); 2804 2805 const bool is_pointer_or_reference_type = IsPointerOrReferenceType(); 2806 if (is_pointer_or_reference_type) { 2807 bool omit_empty_base_classes = true; 2808 bool ignore_array_bounds = false; 2809 2810 std::string child_name_str; 2811 uint32_t child_byte_size = 0; 2812 int32_t child_byte_offset = 0; 2813 uint32_t child_bitfield_bit_size = 0; 2814 uint32_t child_bitfield_bit_offset = 0; 2815 bool child_is_base_class = false; 2816 bool child_is_deref_of_parent = false; 2817 const bool transparent_pointers = false; 2818 CompilerType compiler_type = GetCompilerType(); 2819 CompilerType child_compiler_type; 2820 uint64_t language_flags; 2821 2822 ExecutionContext exe_ctx(GetExecutionContextRef()); 2823 2824 child_compiler_type = compiler_type.GetChildCompilerTypeAtIndex( 2825 &exe_ctx, 0, transparent_pointers, omit_empty_base_classes, 2826 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 2827 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 2828 child_is_deref_of_parent, this, language_flags); 2829 if (child_compiler_type && child_byte_size) { 2830 ConstString child_name; 2831 if (!child_name_str.empty()) 2832 child_name.SetCString(child_name_str.c_str()); 2833 2834 m_deref_valobj = new ValueObjectChild( 2835 *this, child_compiler_type, child_name, child_byte_size, 2836 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 2837 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 2838 language_flags); 2839 } 2840 } else if (HasSyntheticValue()) { 2841 m_deref_valobj = 2842 GetSyntheticValue() 2843 ->GetChildMemberWithName(ConstString("$$dereference$$"), true) 2844 .get(); 2845 } 2846 2847 if (m_deref_valobj) { 2848 error.Clear(); 2849 return m_deref_valobj->GetSP(); 2850 } else { 2851 StreamString strm; 2852 GetExpressionPath(strm, true); 2853 2854 if (is_pointer_or_reference_type) 2855 error.SetErrorStringWithFormat("dereference failed: (%s) %s", 2856 GetTypeName().AsCString("<invalid type>"), 2857 strm.GetData()); 2858 else 2859 error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s", 2860 GetTypeName().AsCString("<invalid type>"), 2861 strm.GetData()); 2862 return ValueObjectSP(); 2863 } 2864 } 2865 2866 ValueObjectSP ValueObject::AddressOf(Status &error) { 2867 if (m_addr_of_valobj_sp) 2868 return m_addr_of_valobj_sp; 2869 2870 AddressType address_type = eAddressTypeInvalid; 2871 const bool scalar_is_load_address = false; 2872 addr_t addr = GetAddressOf(scalar_is_load_address, &address_type); 2873 error.Clear(); 2874 if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) { 2875 switch (address_type) { 2876 case eAddressTypeInvalid: { 2877 StreamString expr_path_strm; 2878 GetExpressionPath(expr_path_strm, true); 2879 error.SetErrorStringWithFormat("'%s' is not in memory", 2880 expr_path_strm.GetData()); 2881 } break; 2882 2883 case eAddressTypeFile: 2884 case eAddressTypeLoad: { 2885 CompilerType compiler_type = GetCompilerType(); 2886 if (compiler_type) { 2887 std::string name(1, '&'); 2888 name.append(m_name.AsCString("")); 2889 ExecutionContext exe_ctx(GetExecutionContextRef()); 2890 m_addr_of_valobj_sp = ValueObjectConstResult::Create( 2891 exe_ctx.GetBestExecutionContextScope(), 2892 compiler_type.GetPointerType(), ConstString(name.c_str()), addr, 2893 eAddressTypeInvalid, m_data.GetAddressByteSize()); 2894 } 2895 } break; 2896 default: 2897 break; 2898 } 2899 } else { 2900 StreamString expr_path_strm; 2901 GetExpressionPath(expr_path_strm, true); 2902 error.SetErrorStringWithFormat("'%s' doesn't have a valid address", 2903 expr_path_strm.GetData()); 2904 } 2905 2906 return m_addr_of_valobj_sp; 2907 } 2908 2909 ValueObjectSP ValueObject::Cast(const CompilerType &compiler_type) { 2910 return ValueObjectCast::Create(*this, GetName(), compiler_type); 2911 } 2912 2913 lldb::ValueObjectSP ValueObject::Clone(ConstString new_name) { 2914 return ValueObjectCast::Create(*this, new_name, GetCompilerType()); 2915 } 2916 2917 ValueObjectSP ValueObject::CastPointerType(const char *name, 2918 CompilerType &compiler_type) { 2919 ValueObjectSP valobj_sp; 2920 AddressType address_type; 2921 addr_t ptr_value = GetPointerValue(&address_type); 2922 2923 if (ptr_value != LLDB_INVALID_ADDRESS) { 2924 Address ptr_addr(ptr_value); 2925 ExecutionContext exe_ctx(GetExecutionContextRef()); 2926 valobj_sp = ValueObjectMemory::Create( 2927 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, compiler_type); 2928 } 2929 return valobj_sp; 2930 } 2931 2932 ValueObjectSP ValueObject::CastPointerType(const char *name, TypeSP &type_sp) { 2933 ValueObjectSP valobj_sp; 2934 AddressType address_type; 2935 addr_t ptr_value = GetPointerValue(&address_type); 2936 2937 if (ptr_value != LLDB_INVALID_ADDRESS) { 2938 Address ptr_addr(ptr_value); 2939 ExecutionContext exe_ctx(GetExecutionContextRef()); 2940 valobj_sp = ValueObjectMemory::Create( 2941 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, type_sp); 2942 } 2943 return valobj_sp; 2944 } 2945 2946 ValueObject::EvaluationPoint::EvaluationPoint() 2947 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) {} 2948 2949 ValueObject::EvaluationPoint::EvaluationPoint(ExecutionContextScope *exe_scope, 2950 bool use_selected) 2951 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) { 2952 ExecutionContext exe_ctx(exe_scope); 2953 TargetSP target_sp(exe_ctx.GetTargetSP()); 2954 if (target_sp) { 2955 m_exe_ctx_ref.SetTargetSP(target_sp); 2956 ProcessSP process_sp(exe_ctx.GetProcessSP()); 2957 if (!process_sp) 2958 process_sp = target_sp->GetProcessSP(); 2959 2960 if (process_sp) { 2961 m_mod_id = process_sp->GetModID(); 2962 m_exe_ctx_ref.SetProcessSP(process_sp); 2963 2964 ThreadSP thread_sp(exe_ctx.GetThreadSP()); 2965 2966 if (!thread_sp) { 2967 if (use_selected) 2968 thread_sp = process_sp->GetThreadList().GetSelectedThread(); 2969 } 2970 2971 if (thread_sp) { 2972 m_exe_ctx_ref.SetThreadSP(thread_sp); 2973 2974 StackFrameSP frame_sp(exe_ctx.GetFrameSP()); 2975 if (!frame_sp) { 2976 if (use_selected) 2977 frame_sp = thread_sp->GetSelectedFrame(); 2978 } 2979 if (frame_sp) 2980 m_exe_ctx_ref.SetFrameSP(frame_sp); 2981 } 2982 } 2983 } 2984 } 2985 2986 ValueObject::EvaluationPoint::EvaluationPoint( 2987 const ValueObject::EvaluationPoint &rhs) 2988 : m_mod_id(), m_exe_ctx_ref(rhs.m_exe_ctx_ref), m_needs_update(true) {} 2989 2990 ValueObject::EvaluationPoint::~EvaluationPoint() {} 2991 2992 // This function checks the EvaluationPoint against the current process state. 2993 // If the current state matches the evaluation point, or the evaluation point 2994 // is already invalid, then we return false, meaning "no change". If the 2995 // current state is different, we update our state, and return true meaning 2996 // "yes, change". If we did see a change, we also set m_needs_update to true, 2997 // so future calls to NeedsUpdate will return true. exe_scope will be set to 2998 // the current execution context scope. 2999 3000 bool ValueObject::EvaluationPoint::SyncWithProcessState( 3001 bool accept_invalid_exe_ctx) { 3002 // Start with the target, if it is NULL, then we're obviously not going to 3003 // get any further: 3004 const bool thread_and_frame_only_if_stopped = true; 3005 ExecutionContext exe_ctx( 3006 m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped)); 3007 3008 if (exe_ctx.GetTargetPtr() == NULL) 3009 return false; 3010 3011 // If we don't have a process nothing can change. 3012 Process *process = exe_ctx.GetProcessPtr(); 3013 if (process == NULL) 3014 return false; 3015 3016 // If our stop id is the current stop ID, nothing has changed: 3017 ProcessModID current_mod_id = process->GetModID(); 3018 3019 // If the current stop id is 0, either we haven't run yet, or the process 3020 // state has been cleared. In either case, we aren't going to be able to sync 3021 // with the process state. 3022 if (current_mod_id.GetStopID() == 0) 3023 return false; 3024 3025 bool changed = false; 3026 const bool was_valid = m_mod_id.IsValid(); 3027 if (was_valid) { 3028 if (m_mod_id == current_mod_id) { 3029 // Everything is already up to date in this object, no need to update the 3030 // execution context scope. 3031 changed = false; 3032 } else { 3033 m_mod_id = current_mod_id; 3034 m_needs_update = true; 3035 changed = true; 3036 } 3037 } 3038 3039 // Now re-look up the thread and frame in case the underlying objects have 3040 // gone away & been recreated. That way we'll be sure to return a valid 3041 // exe_scope. If we used to have a thread or a frame but can't find it 3042 // anymore, then mark ourselves as invalid. 3043 3044 if (!accept_invalid_exe_ctx) { 3045 if (m_exe_ctx_ref.HasThreadRef()) { 3046 ThreadSP thread_sp(m_exe_ctx_ref.GetThreadSP()); 3047 if (thread_sp) { 3048 if (m_exe_ctx_ref.HasFrameRef()) { 3049 StackFrameSP frame_sp(m_exe_ctx_ref.GetFrameSP()); 3050 if (!frame_sp) { 3051 // We used to have a frame, but now it is gone 3052 SetInvalid(); 3053 changed = was_valid; 3054 } 3055 } 3056 } else { 3057 // We used to have a thread, but now it is gone 3058 SetInvalid(); 3059 changed = was_valid; 3060 } 3061 } 3062 } 3063 3064 return changed; 3065 } 3066 3067 void ValueObject::EvaluationPoint::SetUpdated() { 3068 ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP()); 3069 if (process_sp) 3070 m_mod_id = process_sp->GetModID(); 3071 m_needs_update = false; 3072 } 3073 3074 void ValueObject::ClearUserVisibleData(uint32_t clear_mask) { 3075 if ((clear_mask & eClearUserVisibleDataItemsValue) == 3076 eClearUserVisibleDataItemsValue) 3077 m_value_str.clear(); 3078 3079 if ((clear_mask & eClearUserVisibleDataItemsLocation) == 3080 eClearUserVisibleDataItemsLocation) 3081 m_location_str.clear(); 3082 3083 if ((clear_mask & eClearUserVisibleDataItemsSummary) == 3084 eClearUserVisibleDataItemsSummary) 3085 m_summary_str.clear(); 3086 3087 if ((clear_mask & eClearUserVisibleDataItemsDescription) == 3088 eClearUserVisibleDataItemsDescription) 3089 m_object_desc_str.clear(); 3090 3091 if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == 3092 eClearUserVisibleDataItemsSyntheticChildren) { 3093 if (m_synthetic_value) 3094 m_synthetic_value = NULL; 3095 } 3096 3097 if ((clear_mask & eClearUserVisibleDataItemsValidator) == 3098 eClearUserVisibleDataItemsValidator) 3099 m_validation_result.reset(); 3100 } 3101 3102 SymbolContextScope *ValueObject::GetSymbolContextScope() { 3103 if (m_parent) { 3104 if (!m_parent->IsPointerOrReferenceType()) 3105 return m_parent->GetSymbolContextScope(); 3106 } 3107 return NULL; 3108 } 3109 3110 lldb::ValueObjectSP 3111 ValueObject::CreateValueObjectFromExpression(llvm::StringRef name, 3112 llvm::StringRef expression, 3113 const ExecutionContext &exe_ctx) { 3114 return CreateValueObjectFromExpression(name, expression, exe_ctx, 3115 EvaluateExpressionOptions()); 3116 } 3117 3118 lldb::ValueObjectSP ValueObject::CreateValueObjectFromExpression( 3119 llvm::StringRef name, llvm::StringRef expression, 3120 const ExecutionContext &exe_ctx, const EvaluateExpressionOptions &options) { 3121 lldb::ValueObjectSP retval_sp; 3122 lldb::TargetSP target_sp(exe_ctx.GetTargetSP()); 3123 if (!target_sp) 3124 return retval_sp; 3125 if (expression.empty()) 3126 return retval_sp; 3127 target_sp->EvaluateExpression(expression, exe_ctx.GetFrameSP().get(), 3128 retval_sp, options); 3129 if (retval_sp && !name.empty()) 3130 retval_sp->SetName(ConstString(name)); 3131 return retval_sp; 3132 } 3133 3134 lldb::ValueObjectSP ValueObject::CreateValueObjectFromAddress( 3135 llvm::StringRef name, uint64_t address, const ExecutionContext &exe_ctx, 3136 CompilerType type) { 3137 if (type) { 3138 CompilerType pointer_type(type.GetPointerType()); 3139 if (pointer_type) { 3140 lldb::DataBufferSP buffer( 3141 new lldb_private::DataBufferHeap(&address, sizeof(lldb::addr_t))); 3142 lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create( 3143 exe_ctx.GetBestExecutionContextScope(), pointer_type, 3144 ConstString(name), buffer, exe_ctx.GetByteOrder(), 3145 exe_ctx.GetAddressByteSize())); 3146 if (ptr_result_valobj_sp) { 3147 ptr_result_valobj_sp->GetValue().SetValueType( 3148 Value::eValueTypeLoadAddress); 3149 Status err; 3150 ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err); 3151 if (ptr_result_valobj_sp && !name.empty()) 3152 ptr_result_valobj_sp->SetName(ConstString(name)); 3153 } 3154 return ptr_result_valobj_sp; 3155 } 3156 } 3157 return lldb::ValueObjectSP(); 3158 } 3159 3160 lldb::ValueObjectSP ValueObject::CreateValueObjectFromData( 3161 llvm::StringRef name, const DataExtractor &data, 3162 const ExecutionContext &exe_ctx, CompilerType type) { 3163 lldb::ValueObjectSP new_value_sp; 3164 new_value_sp = ValueObjectConstResult::Create( 3165 exe_ctx.GetBestExecutionContextScope(), type, ConstString(name), data, 3166 LLDB_INVALID_ADDRESS); 3167 new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad); 3168 if (new_value_sp && !name.empty()) 3169 new_value_sp->SetName(ConstString(name)); 3170 return new_value_sp; 3171 } 3172 3173 ModuleSP ValueObject::GetModule() { 3174 ValueObject *root(GetRoot()); 3175 if (root != this) 3176 return root->GetModule(); 3177 return lldb::ModuleSP(); 3178 } 3179 3180 ValueObject *ValueObject::GetRoot() { 3181 if (m_root) 3182 return m_root; 3183 return (m_root = FollowParentChain([](ValueObject *vo) -> bool { 3184 return (vo->m_parent != nullptr); 3185 })); 3186 } 3187 3188 ValueObject * 3189 ValueObject::FollowParentChain(std::function<bool(ValueObject *)> f) { 3190 ValueObject *vo = this; 3191 while (vo) { 3192 if (!f(vo)) 3193 break; 3194 vo = vo->m_parent; 3195 } 3196 return vo; 3197 } 3198 3199 AddressType ValueObject::GetAddressTypeOfChildren() { 3200 if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) { 3201 ValueObject *root(GetRoot()); 3202 if (root != this) 3203 return root->GetAddressTypeOfChildren(); 3204 } 3205 return m_address_type_of_ptr_or_ref_children; 3206 } 3207 3208 lldb::DynamicValueType ValueObject::GetDynamicValueType() { 3209 ValueObject *with_dv_info = this; 3210 while (with_dv_info) { 3211 if (with_dv_info->HasDynamicValueTypeInfo()) 3212 return with_dv_info->GetDynamicValueTypeImpl(); 3213 with_dv_info = with_dv_info->m_parent; 3214 } 3215 return lldb::eNoDynamicValues; 3216 } 3217 3218 lldb::Format ValueObject::GetFormat() const { 3219 const ValueObject *with_fmt_info = this; 3220 while (with_fmt_info) { 3221 if (with_fmt_info->m_format != lldb::eFormatDefault) 3222 return with_fmt_info->m_format; 3223 with_fmt_info = with_fmt_info->m_parent; 3224 } 3225 return m_format; 3226 } 3227 3228 lldb::LanguageType ValueObject::GetPreferredDisplayLanguage() { 3229 lldb::LanguageType type = m_preferred_display_language; 3230 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) { 3231 if (GetRoot()) { 3232 if (GetRoot() == this) { 3233 if (StackFrameSP frame_sp = GetFrameSP()) { 3234 const SymbolContext &sc( 3235 frame_sp->GetSymbolContext(eSymbolContextCompUnit)); 3236 if (CompileUnit *cu = sc.comp_unit) 3237 type = cu->GetLanguage(); 3238 } 3239 } else { 3240 type = GetRoot()->GetPreferredDisplayLanguage(); 3241 } 3242 } 3243 } 3244 return (m_preferred_display_language = type); // only compute it once 3245 } 3246 3247 void ValueObject::SetPreferredDisplayLanguage(lldb::LanguageType lt) { 3248 m_preferred_display_language = lt; 3249 } 3250 3251 void ValueObject::SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType lt) { 3252 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 3253 SetPreferredDisplayLanguage(lt); 3254 } 3255 3256 bool ValueObject::CanProvideValue() { 3257 // we need to support invalid types as providers of values because some bare- 3258 // board debugging scenarios have no notion of types, but still manage to 3259 // have raw numeric values for things like registers. sigh. 3260 const CompilerType &type(GetCompilerType()); 3261 return (!type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue)); 3262 } 3263 3264 bool ValueObject::IsChecksumEmpty() { return m_value_checksum.empty(); } 3265 3266 ValueObjectSP ValueObject::Persist() { 3267 if (!UpdateValueIfNeeded()) 3268 return nullptr; 3269 3270 TargetSP target_sp(GetTargetSP()); 3271 if (!target_sp) 3272 return nullptr; 3273 3274 PersistentExpressionState *persistent_state = 3275 target_sp->GetPersistentExpressionStateForLanguage( 3276 GetPreferredDisplayLanguage()); 3277 3278 if (!persistent_state) 3279 return nullptr; 3280 3281 auto prefix = persistent_state->GetPersistentVariablePrefix(); 3282 ConstString name = 3283 persistent_state->GetNextPersistentVariableName(*target_sp, prefix); 3284 3285 ValueObjectSP const_result_sp = 3286 ValueObjectConstResult::Create(target_sp.get(), GetValue(), name); 3287 3288 ExpressionVariableSP clang_var_sp = 3289 persistent_state->CreatePersistentVariable(const_result_sp); 3290 clang_var_sp->m_live_sp = clang_var_sp->m_frozen_sp; 3291 clang_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference; 3292 3293 return clang_var_sp->GetValueObject(); 3294 } 3295 3296 bool ValueObject::IsSyntheticChildrenGenerated() { 3297 return m_is_synthetic_children_generated; 3298 } 3299 3300 void ValueObject::SetSyntheticChildrenGenerated(bool b) { 3301 m_is_synthetic_children_generated = b; 3302 } 3303 3304 uint64_t ValueObject::GetLanguageFlags() { return m_language_flags; } 3305 3306 void ValueObject::SetLanguageFlags(uint64_t flags) { m_language_flags = flags; } 3307 3308 ValueObjectManager::ValueObjectManager(lldb::ValueObjectSP in_valobj_sp, 3309 lldb::DynamicValueType use_dynamic, 3310 bool use_synthetic) : m_root_valobj_sp(), 3311 m_user_valobj_sp(), m_use_dynamic(use_dynamic), m_stop_id(UINT32_MAX), 3312 m_use_synthetic(use_synthetic) { 3313 if (!in_valobj_sp) 3314 return; 3315 // If the user passes in a value object that is dynamic or synthetic, then 3316 // water it down to the static type. 3317 m_root_valobj_sp = in_valobj_sp->GetQualifiedRepresentationIfAvailable(lldb::eNoDynamicValues, false); 3318 } 3319 3320 bool ValueObjectManager::IsValid() const { 3321 if (!m_root_valobj_sp) 3322 return false; 3323 lldb::TargetSP target_sp = GetTargetSP(); 3324 if (target_sp) 3325 return target_sp->IsValid(); 3326 return false; 3327 } 3328 3329 lldb::ValueObjectSP ValueObjectManager::GetSP() { 3330 lldb::ProcessSP process_sp = GetProcessSP(); 3331 if (!process_sp) 3332 return lldb::ValueObjectSP(); 3333 3334 const uint32_t current_stop_id = process_sp->GetLastNaturalStopID(); 3335 if (current_stop_id == m_stop_id) 3336 return m_user_valobj_sp; 3337 3338 m_stop_id = current_stop_id; 3339 3340 if (!m_root_valobj_sp) { 3341 m_user_valobj_sp.reset(); 3342 return m_root_valobj_sp; 3343 } 3344 3345 m_user_valobj_sp = m_root_valobj_sp; 3346 3347 if (m_use_dynamic != lldb::eNoDynamicValues) { 3348 lldb::ValueObjectSP dynamic_sp = m_user_valobj_sp->GetDynamicValue(m_use_dynamic); 3349 if (dynamic_sp) 3350 m_user_valobj_sp = dynamic_sp; 3351 } 3352 3353 if (m_use_synthetic) { 3354 lldb::ValueObjectSP synthetic_sp = m_user_valobj_sp->GetSyntheticValue(m_use_synthetic); 3355 if (synthetic_sp) 3356 m_user_valobj_sp = synthetic_sp; 3357 } 3358 3359 return m_user_valobj_sp; 3360 } 3361 3362 void ValueObjectManager::SetUseDynamic(lldb::DynamicValueType use_dynamic) { 3363 if (use_dynamic != m_use_dynamic) { 3364 m_use_dynamic = use_dynamic; 3365 m_user_valobj_sp.reset(); 3366 m_stop_id = UINT32_MAX; 3367 } 3368 } 3369 3370 void ValueObjectManager::SetUseSynthetic(bool use_synthetic) { 3371 if (m_use_synthetic != use_synthetic) { 3372 m_use_synthetic = use_synthetic; 3373 m_user_valobj_sp.reset(); 3374 m_stop_id = UINT32_MAX; 3375 } 3376 } 3377 3378 lldb::TargetSP ValueObjectManager::GetTargetSP() const { 3379 if (!m_root_valobj_sp) 3380 return m_root_valobj_sp->GetTargetSP(); 3381 return lldb::TargetSP(); 3382 } 3383 3384 lldb::ProcessSP ValueObjectManager::GetProcessSP() const { 3385 if (m_root_valobj_sp) 3386 return m_root_valobj_sp->GetProcessSP(); 3387 return lldb::ProcessSP(); 3388 } 3389 3390 lldb::ThreadSP ValueObjectManager::GetThreadSP() const { 3391 if (m_root_valobj_sp) 3392 return m_root_valobj_sp->GetThreadSP(); 3393 return lldb::ThreadSP(); 3394 } 3395 3396 lldb::StackFrameSP ValueObjectManager::GetFrameSP() const { 3397 if (m_root_valobj_sp) 3398 return m_root_valobj_sp->GetFrameSP(); 3399 return lldb::StackFrameSP(); 3400 } 3401 3402