1 //===-- ValueObject.cpp -----------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Core/ValueObject.h" 10 11 #include "lldb/Core/Address.h" 12 #include "lldb/Core/Module.h" 13 #include "lldb/Core/ValueObjectCast.h" 14 #include "lldb/Core/ValueObjectChild.h" 15 #include "lldb/Core/ValueObjectConstResult.h" 16 #include "lldb/Core/ValueObjectDynamicValue.h" 17 #include "lldb/Core/ValueObjectMemory.h" 18 #include "lldb/Core/ValueObjectSyntheticFilter.h" 19 #include "lldb/DataFormatters/DataVisualization.h" 20 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 21 #include "lldb/DataFormatters/FormatManager.h" 22 #include "lldb/DataFormatters/StringPrinter.h" 23 #include "lldb/DataFormatters/TypeFormat.h" 24 #include "lldb/DataFormatters/TypeSummary.h" 25 #include "lldb/DataFormatters/TypeValidator.h" 26 #include "lldb/DataFormatters/ValueObjectPrinter.h" 27 #include "lldb/Expression/ExpressionVariable.h" 28 #include "lldb/Symbol/ClangASTContext.h" 29 #include "lldb/Symbol/CompileUnit.h" 30 #include "lldb/Symbol/CompilerType.h" 31 #include "lldb/Symbol/Declaration.h" 32 #include "lldb/Symbol/SymbolContext.h" 33 #include "lldb/Symbol/Type.h" 34 #include "lldb/Symbol/Variable.h" 35 #include "lldb/Target/ExecutionContext.h" 36 #include "lldb/Target/Language.h" 37 #include "lldb/Target/LanguageRuntime.h" 38 #include "lldb/Target/ObjCLanguageRuntime.h" 39 #include "lldb/Target/Process.h" 40 #include "lldb/Target/StackFrame.h" 41 #include "lldb/Target/Target.h" 42 #include "lldb/Target/Thread.h" 43 #include "lldb/Target/ThreadList.h" 44 #include "lldb/Utility/DataBuffer.h" 45 #include "lldb/Utility/DataBufferHeap.h" 46 #include "lldb/Utility/Flags.h" 47 #include "lldb/Utility/Log.h" 48 #include "lldb/Utility/Logging.h" 49 #include "lldb/Utility/Scalar.h" 50 #include "lldb/Utility/SharingPtr.h" 51 #include "lldb/Utility/Stream.h" 52 #include "lldb/Utility/StreamString.h" 53 #include "lldb/lldb-private-types.h" 54 55 #include "llvm/Support/Compiler.h" 56 57 #include <algorithm> 58 #include <cstdint> 59 #include <cstdlib> 60 #include <memory> 61 #include <tuple> 62 63 #include <assert.h> 64 #include <inttypes.h> 65 #include <stdio.h> 66 #include <string.h> 67 68 namespace lldb_private { 69 class ExecutionContextScope; 70 } 71 namespace lldb_private { 72 class SymbolContextScope; 73 } 74 75 using namespace lldb; 76 using namespace lldb_private; 77 using namespace lldb_utility; 78 79 static user_id_t g_value_obj_uid = 0; 80 81 // ValueObject constructor 82 ValueObject::ValueObject(ValueObject &parent) 83 : UserID(++g_value_obj_uid), // Unique identifier for every value object 84 m_parent(&parent), m_root(nullptr), 85 m_update_point(parent.GetUpdatePoint()), m_name(), m_data(), m_value(), 86 m_error(), m_value_str(), m_old_value_str(), m_location_str(), 87 m_summary_str(), m_object_desc_str(), m_validation_result(), 88 m_manager(parent.GetManager()), m_children(), m_synthetic_children(), 89 m_dynamic_value(nullptr), m_synthetic_value(nullptr), 90 m_deref_valobj(nullptr), m_format(eFormatDefault), 91 m_last_format(eFormatDefault), m_last_format_mgr_revision(0), 92 m_type_summary_sp(), m_type_format_sp(), m_synthetic_children_sp(), 93 m_type_validator_sp(), m_user_id_of_forced_summary(), 94 m_address_type_of_ptr_or_ref_children(eAddressTypeInvalid), 95 m_value_checksum(), 96 m_preferred_display_language(lldb::eLanguageTypeUnknown), 97 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 98 m_children_count_valid(false), m_old_value_valid(false), 99 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 100 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 101 m_is_getting_summary(false), 102 m_did_calculate_complete_objc_class_type(false), 103 m_is_synthetic_children_generated( 104 parent.m_is_synthetic_children_generated) { 105 m_manager->ManageObject(this); 106 } 107 108 // ValueObject constructor 109 ValueObject::ValueObject(ExecutionContextScope *exe_scope, 110 AddressType child_ptr_or_ref_addr_type) 111 : UserID(++g_value_obj_uid), // Unique identifier for every value object 112 m_parent(nullptr), m_root(nullptr), m_update_point(exe_scope), m_name(), 113 m_data(), m_value(), m_error(), m_value_str(), m_old_value_str(), 114 m_location_str(), m_summary_str(), m_object_desc_str(), 115 m_validation_result(), m_manager(), m_children(), m_synthetic_children(), 116 m_dynamic_value(nullptr), m_synthetic_value(nullptr), 117 m_deref_valobj(nullptr), m_format(eFormatDefault), 118 m_last_format(eFormatDefault), m_last_format_mgr_revision(0), 119 m_type_summary_sp(), m_type_format_sp(), m_synthetic_children_sp(), 120 m_type_validator_sp(), m_user_id_of_forced_summary(), 121 m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type), 122 m_value_checksum(), 123 m_preferred_display_language(lldb::eLanguageTypeUnknown), 124 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 125 m_children_count_valid(false), m_old_value_valid(false), 126 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 127 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 128 m_is_getting_summary(false), 129 m_did_calculate_complete_objc_class_type(false), 130 m_is_synthetic_children_generated(false) { 131 m_manager = new ValueObjectManager(); 132 m_manager->ManageObject(this); 133 } 134 135 // Destructor 136 ValueObject::~ValueObject() {} 137 138 bool ValueObject::UpdateValueIfNeeded(bool update_format) { 139 140 bool did_change_formats = false; 141 142 if (update_format) 143 did_change_formats = UpdateFormatsIfNeeded(); 144 145 // If this is a constant value, then our success is predicated on whether we 146 // have an error or not 147 if (GetIsConstant()) { 148 // if you are constant, things might still have changed behind your back 149 // (e.g. you are a frozen object and things have changed deeper than you 150 // cared to freeze-dry yourself) in this case, your value has not changed, 151 // but "computed" entries might have, so you might now have a different 152 // summary, or a different object description. clear these so we will 153 // recompute them 154 if (update_format && !did_change_formats) 155 ClearUserVisibleData(eClearUserVisibleDataItemsSummary | 156 eClearUserVisibleDataItemsDescription); 157 return m_error.Success(); 158 } 159 160 bool first_update = IsChecksumEmpty(); 161 162 if (NeedsUpdating()) { 163 m_update_point.SetUpdated(); 164 165 // Save the old value using swap to avoid a string copy which also will 166 // clear our m_value_str 167 if (m_value_str.empty()) { 168 m_old_value_valid = false; 169 } else { 170 m_old_value_valid = true; 171 m_old_value_str.swap(m_value_str); 172 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 173 } 174 175 ClearUserVisibleData(); 176 177 if (IsInScope()) { 178 const bool value_was_valid = GetValueIsValid(); 179 SetValueDidChange(false); 180 181 m_error.Clear(); 182 183 // Call the pure virtual function to update the value 184 185 bool need_compare_checksums = false; 186 llvm::SmallVector<uint8_t, 16> old_checksum; 187 188 if (!first_update && CanProvideValue()) { 189 need_compare_checksums = true; 190 old_checksum.resize(m_value_checksum.size()); 191 std::copy(m_value_checksum.begin(), m_value_checksum.end(), 192 old_checksum.begin()); 193 } 194 195 bool success = UpdateValue(); 196 197 SetValueIsValid(success); 198 199 if (success) { 200 const uint64_t max_checksum_size = 128; 201 m_data.Checksum(m_value_checksum, max_checksum_size); 202 } else { 203 need_compare_checksums = false; 204 m_value_checksum.clear(); 205 } 206 207 assert(!need_compare_checksums || 208 (!old_checksum.empty() && !m_value_checksum.empty())); 209 210 if (first_update) 211 SetValueDidChange(false); 212 else if (!m_value_did_change && !success) { 213 // The value wasn't gotten successfully, so we mark this as changed if 214 // the value used to be valid and now isn't 215 SetValueDidChange(value_was_valid); 216 } else if (need_compare_checksums) { 217 SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0], 218 m_value_checksum.size())); 219 } 220 221 } else { 222 m_error.SetErrorString("out of scope"); 223 } 224 } 225 return m_error.Success(); 226 } 227 228 bool ValueObject::UpdateFormatsIfNeeded() { 229 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_DATAFORMATTERS)); 230 if (log) 231 log->Printf("[%s %p] checking for FormatManager revisions. ValueObject " 232 "rev: %d - Global rev: %d", 233 GetName().GetCString(), static_cast<void *>(this), 234 m_last_format_mgr_revision, 235 DataVisualization::GetCurrentRevision()); 236 237 bool any_change = false; 238 239 if ((m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) { 240 m_last_format_mgr_revision = DataVisualization::GetCurrentRevision(); 241 any_change = true; 242 243 SetValueFormat(DataVisualization::GetFormat(*this, eNoDynamicValues)); 244 SetSummaryFormat( 245 DataVisualization::GetSummaryFormat(*this, GetDynamicValueType())); 246 #ifndef LLDB_DISABLE_PYTHON 247 SetSyntheticChildren( 248 DataVisualization::GetSyntheticChildren(*this, GetDynamicValueType())); 249 #endif 250 SetValidator(DataVisualization::GetValidator(*this, GetDynamicValueType())); 251 } 252 253 return any_change; 254 } 255 256 void ValueObject::SetNeedsUpdate() { 257 m_update_point.SetNeedsUpdate(); 258 // We have to clear the value string here so ConstResult children will notice 259 // if their values are changed by hand (i.e. with SetValueAsCString). 260 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 261 } 262 263 void ValueObject::ClearDynamicTypeInformation() { 264 m_children_count_valid = false; 265 m_did_calculate_complete_objc_class_type = false; 266 m_last_format_mgr_revision = 0; 267 m_override_type = CompilerType(); 268 SetValueFormat(lldb::TypeFormatImplSP()); 269 SetSummaryFormat(lldb::TypeSummaryImplSP()); 270 SetSyntheticChildren(lldb::SyntheticChildrenSP()); 271 } 272 273 CompilerType ValueObject::MaybeCalculateCompleteType() { 274 CompilerType compiler_type(GetCompilerTypeImpl()); 275 276 if (m_did_calculate_complete_objc_class_type) { 277 if (m_override_type.IsValid()) 278 return m_override_type; 279 else 280 return compiler_type; 281 } 282 283 CompilerType class_type; 284 bool is_pointer_type = false; 285 286 if (ClangASTContext::IsObjCObjectPointerType(compiler_type, &class_type)) { 287 is_pointer_type = true; 288 } else if (ClangASTContext::IsObjCObjectOrInterfaceType(compiler_type)) { 289 class_type = compiler_type; 290 } else { 291 return compiler_type; 292 } 293 294 m_did_calculate_complete_objc_class_type = true; 295 296 if (class_type) { 297 ConstString class_name(class_type.GetConstTypeName()); 298 299 if (class_name) { 300 ProcessSP process_sp( 301 GetUpdatePoint().GetExecutionContextRef().GetProcessSP()); 302 303 if (process_sp) { 304 ObjCLanguageRuntime *objc_language_runtime( 305 ObjCLanguageRuntime::Get(*process_sp)); 306 307 if (objc_language_runtime) { 308 TypeSP complete_objc_class_type_sp = 309 objc_language_runtime->LookupInCompleteClassCache(class_name); 310 311 if (complete_objc_class_type_sp) { 312 CompilerType complete_class( 313 complete_objc_class_type_sp->GetFullCompilerType()); 314 315 if (complete_class.GetCompleteType()) { 316 if (is_pointer_type) { 317 m_override_type = complete_class.GetPointerType(); 318 } else { 319 m_override_type = complete_class; 320 } 321 322 if (m_override_type.IsValid()) 323 return m_override_type; 324 } 325 } 326 } 327 } 328 } 329 } 330 return compiler_type; 331 } 332 333 CompilerType ValueObject::GetCompilerType() { 334 return MaybeCalculateCompleteType(); 335 } 336 337 TypeImpl ValueObject::GetTypeImpl() { return TypeImpl(GetCompilerType()); } 338 339 DataExtractor &ValueObject::GetDataExtractor() { 340 UpdateValueIfNeeded(false); 341 return m_data; 342 } 343 344 const Status &ValueObject::GetError() { 345 UpdateValueIfNeeded(false); 346 return m_error; 347 } 348 349 ConstString ValueObject::GetName() const { return m_name; } 350 351 const char *ValueObject::GetLocationAsCString() { 352 return GetLocationAsCStringImpl(m_value, m_data); 353 } 354 355 const char *ValueObject::GetLocationAsCStringImpl(const Value &value, 356 const DataExtractor &data) { 357 if (UpdateValueIfNeeded(false)) { 358 if (m_location_str.empty()) { 359 StreamString sstr; 360 361 Value::ValueType value_type = value.GetValueType(); 362 363 switch (value_type) { 364 case Value::eValueTypeScalar: 365 case Value::eValueTypeVector: 366 if (value.GetContextType() == Value::eContextTypeRegisterInfo) { 367 RegisterInfo *reg_info = value.GetRegisterInfo(); 368 if (reg_info) { 369 if (reg_info->name) 370 m_location_str = reg_info->name; 371 else if (reg_info->alt_name) 372 m_location_str = reg_info->alt_name; 373 if (m_location_str.empty()) 374 m_location_str = (reg_info->encoding == lldb::eEncodingVector) 375 ? "vector" 376 : "scalar"; 377 } 378 } 379 if (m_location_str.empty()) 380 m_location_str = 381 (value_type == Value::eValueTypeVector) ? "vector" : "scalar"; 382 break; 383 384 case Value::eValueTypeLoadAddress: 385 case Value::eValueTypeFileAddress: 386 case Value::eValueTypeHostAddress: { 387 uint32_t addr_nibble_size = data.GetAddressByteSize() * 2; 388 sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, 389 value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS)); 390 m_location_str = sstr.GetString(); 391 } break; 392 } 393 } 394 } 395 return m_location_str.c_str(); 396 } 397 398 Value &ValueObject::GetValue() { return m_value; } 399 400 const Value &ValueObject::GetValue() const { return m_value; } 401 402 bool ValueObject::ResolveValue(Scalar &scalar) { 403 if (UpdateValueIfNeeded( 404 false)) // make sure that you are up to date before returning anything 405 { 406 ExecutionContext exe_ctx(GetExecutionContextRef()); 407 Value tmp_value(m_value); 408 scalar = tmp_value.ResolveValue(&exe_ctx); 409 if (scalar.IsValid()) { 410 const uint32_t bitfield_bit_size = GetBitfieldBitSize(); 411 if (bitfield_bit_size) 412 return scalar.ExtractBitfield(bitfield_bit_size, 413 GetBitfieldBitOffset()); 414 return true; 415 } 416 } 417 return false; 418 } 419 420 bool ValueObject::IsLogicalTrue(Status &error) { 421 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 422 LazyBool is_logical_true = language->IsLogicalTrue(*this, error); 423 switch (is_logical_true) { 424 case eLazyBoolYes: 425 case eLazyBoolNo: 426 return (is_logical_true == true); 427 case eLazyBoolCalculate: 428 break; 429 } 430 } 431 432 Scalar scalar_value; 433 434 if (!ResolveValue(scalar_value)) { 435 error.SetErrorString("failed to get a scalar result"); 436 return false; 437 } 438 439 bool ret; 440 ret = scalar_value.ULongLong(1) != 0; 441 error.Clear(); 442 return ret; 443 } 444 445 bool ValueObject::GetValueIsValid() const { return m_value_is_valid; } 446 447 void ValueObject::SetValueIsValid(bool b) { m_value_is_valid = b; } 448 449 bool ValueObject::GetValueDidChange() { return m_value_did_change; } 450 451 void ValueObject::SetValueDidChange(bool value_changed) { 452 m_value_did_change = value_changed; 453 } 454 455 ValueObjectSP ValueObject::GetChildAtIndex(size_t idx, bool can_create) { 456 ValueObjectSP child_sp; 457 // We may need to update our value if we are dynamic 458 if (IsPossibleDynamicType()) 459 UpdateValueIfNeeded(false); 460 if (idx < GetNumChildren()) { 461 // Check if we have already made the child value object? 462 if (can_create && !m_children.HasChildAtIndex(idx)) { 463 // No we haven't created the child at this index, so lets have our 464 // subclass do it and cache the result for quick future access. 465 m_children.SetChildAtIndex(idx, CreateChildAtIndex(idx, false, 0)); 466 } 467 468 ValueObject *child = m_children.GetChildAtIndex(idx); 469 if (child != nullptr) 470 return child->GetSP(); 471 } 472 return child_sp; 473 } 474 475 lldb::ValueObjectSP 476 ValueObject::GetChildAtIndexPath(llvm::ArrayRef<size_t> idxs, 477 size_t *index_of_error) { 478 if (idxs.size() == 0) 479 return GetSP(); 480 ValueObjectSP root(GetSP()); 481 for (size_t idx : idxs) { 482 root = root->GetChildAtIndex(idx, true); 483 if (!root) { 484 if (index_of_error) 485 *index_of_error = idx; 486 return root; 487 } 488 } 489 return root; 490 } 491 492 lldb::ValueObjectSP ValueObject::GetChildAtIndexPath( 493 llvm::ArrayRef<std::pair<size_t, bool>> idxs, size_t *index_of_error) { 494 if (idxs.size() == 0) 495 return GetSP(); 496 ValueObjectSP root(GetSP()); 497 for (std::pair<size_t, bool> idx : idxs) { 498 root = root->GetChildAtIndex(idx.first, idx.second); 499 if (!root) { 500 if (index_of_error) 501 *index_of_error = idx.first; 502 return root; 503 } 504 } 505 return root; 506 } 507 508 lldb::ValueObjectSP 509 ValueObject::GetChildAtNamePath(llvm::ArrayRef<ConstString> names, 510 ConstString *name_of_error) { 511 if (names.size() == 0) 512 return GetSP(); 513 ValueObjectSP root(GetSP()); 514 for (ConstString name : names) { 515 root = root->GetChildMemberWithName(name, true); 516 if (!root) { 517 if (name_of_error) 518 *name_of_error = name; 519 return root; 520 } 521 } 522 return root; 523 } 524 525 lldb::ValueObjectSP ValueObject::GetChildAtNamePath( 526 llvm::ArrayRef<std::pair<ConstString, bool>> names, 527 ConstString *name_of_error) { 528 if (names.size() == 0) 529 return GetSP(); 530 ValueObjectSP root(GetSP()); 531 for (std::pair<ConstString, bool> name : names) { 532 root = root->GetChildMemberWithName(name.first, name.second); 533 if (!root) { 534 if (name_of_error) 535 *name_of_error = name.first; 536 return root; 537 } 538 } 539 return root; 540 } 541 542 size_t ValueObject::GetIndexOfChildWithName(ConstString name) { 543 bool omit_empty_base_classes = true; 544 return GetCompilerType().GetIndexOfChildWithName(name.GetCString(), 545 omit_empty_base_classes); 546 } 547 548 ValueObjectSP ValueObject::GetChildMemberWithName(ConstString name, 549 bool can_create) { 550 // when getting a child by name, it could be buried inside some base classes 551 // (which really aren't part of the expression path), so we need a vector of 552 // indexes that can get us down to the correct child 553 ValueObjectSP child_sp; 554 555 // We may need to update our value if we are dynamic 556 if (IsPossibleDynamicType()) 557 UpdateValueIfNeeded(false); 558 559 std::vector<uint32_t> child_indexes; 560 bool omit_empty_base_classes = true; 561 const size_t num_child_indexes = 562 GetCompilerType().GetIndexOfChildMemberWithName( 563 name.GetCString(), omit_empty_base_classes, child_indexes); 564 if (num_child_indexes > 0) { 565 std::vector<uint32_t>::const_iterator pos = child_indexes.begin(); 566 std::vector<uint32_t>::const_iterator end = child_indexes.end(); 567 568 child_sp = GetChildAtIndex(*pos, can_create); 569 for (++pos; pos != end; ++pos) { 570 if (child_sp) { 571 ValueObjectSP new_child_sp(child_sp->GetChildAtIndex(*pos, can_create)); 572 child_sp = new_child_sp; 573 } else { 574 child_sp.reset(); 575 } 576 } 577 } 578 return child_sp; 579 } 580 581 size_t ValueObject::GetNumChildren(uint32_t max) { 582 UpdateValueIfNeeded(); 583 584 if (max < UINT32_MAX) { 585 if (m_children_count_valid) { 586 size_t children_count = m_children.GetChildrenCount(); 587 return children_count <= max ? children_count : max; 588 } else 589 return CalculateNumChildren(max); 590 } 591 592 if (!m_children_count_valid) { 593 SetNumChildren(CalculateNumChildren()); 594 } 595 return m_children.GetChildrenCount(); 596 } 597 598 bool ValueObject::MightHaveChildren() { 599 bool has_children = false; 600 const uint32_t type_info = GetTypeInfo(); 601 if (type_info) { 602 if (type_info & (eTypeHasChildren | eTypeIsPointer | eTypeIsReference)) 603 has_children = true; 604 } else { 605 has_children = GetNumChildren() > 0; 606 } 607 return has_children; 608 } 609 610 // Should only be called by ValueObject::GetNumChildren() 611 void ValueObject::SetNumChildren(size_t num_children) { 612 m_children_count_valid = true; 613 m_children.SetChildrenCount(num_children); 614 } 615 616 void ValueObject::SetName(ConstString name) { m_name = name; } 617 618 ValueObject *ValueObject::CreateChildAtIndex(size_t idx, 619 bool synthetic_array_member, 620 int32_t synthetic_index) { 621 ValueObject *valobj = nullptr; 622 623 bool omit_empty_base_classes = true; 624 bool ignore_array_bounds = synthetic_array_member; 625 std::string child_name_str; 626 uint32_t child_byte_size = 0; 627 int32_t child_byte_offset = 0; 628 uint32_t child_bitfield_bit_size = 0; 629 uint32_t child_bitfield_bit_offset = 0; 630 bool child_is_base_class = false; 631 bool child_is_deref_of_parent = false; 632 uint64_t language_flags = 0; 633 634 const bool transparent_pointers = !synthetic_array_member; 635 CompilerType child_compiler_type; 636 637 ExecutionContext exe_ctx(GetExecutionContextRef()); 638 639 child_compiler_type = GetCompilerType().GetChildCompilerTypeAtIndex( 640 &exe_ctx, idx, transparent_pointers, omit_empty_base_classes, 641 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 642 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 643 child_is_deref_of_parent, this, language_flags); 644 if (child_compiler_type) { 645 if (synthetic_index) 646 child_byte_offset += child_byte_size * synthetic_index; 647 648 ConstString child_name; 649 if (!child_name_str.empty()) 650 child_name.SetCString(child_name_str.c_str()); 651 652 valobj = new ValueObjectChild( 653 *this, child_compiler_type, child_name, child_byte_size, 654 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 655 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 656 language_flags); 657 } 658 659 return valobj; 660 } 661 662 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 663 std::string &destination, 664 lldb::LanguageType lang) { 665 return GetSummaryAsCString(summary_ptr, destination, 666 TypeSummaryOptions().SetLanguage(lang)); 667 } 668 669 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 670 std::string &destination, 671 const TypeSummaryOptions &options) { 672 destination.clear(); 673 674 // ideally we would like to bail out if passing NULL, but if we do so we end 675 // up not providing the summary for function pointers anymore 676 if (/*summary_ptr == NULL ||*/ m_is_getting_summary) 677 return false; 678 679 m_is_getting_summary = true; 680 681 TypeSummaryOptions actual_options(options); 682 683 if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown) 684 actual_options.SetLanguage(GetPreferredDisplayLanguage()); 685 686 // this is a hot path in code and we prefer to avoid setting this string all 687 // too often also clearing out other information that we might care to see in 688 // a crash log. might be useful in very specific situations though. 689 /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. 690 Summary provider's description is %s", 691 GetTypeName().GetCString(), 692 GetName().GetCString(), 693 summary_ptr->GetDescription().c_str());*/ 694 695 if (UpdateValueIfNeeded(false) && summary_ptr) { 696 if (HasSyntheticValue()) 697 m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on 698 // the synthetic children being 699 // up-to-date (e.g. ${svar%#}) 700 summary_ptr->FormatObject(this, destination, actual_options); 701 } 702 m_is_getting_summary = false; 703 return !destination.empty(); 704 } 705 706 const char *ValueObject::GetSummaryAsCString(lldb::LanguageType lang) { 707 if (UpdateValueIfNeeded(true) && m_summary_str.empty()) { 708 TypeSummaryOptions summary_options; 709 summary_options.SetLanguage(lang); 710 GetSummaryAsCString(GetSummaryFormat().get(), m_summary_str, 711 summary_options); 712 } 713 if (m_summary_str.empty()) 714 return nullptr; 715 return m_summary_str.c_str(); 716 } 717 718 bool ValueObject::GetSummaryAsCString(std::string &destination, 719 const TypeSummaryOptions &options) { 720 return GetSummaryAsCString(GetSummaryFormat().get(), destination, options); 721 } 722 723 bool ValueObject::IsCStringContainer(bool check_pointer) { 724 CompilerType pointee_or_element_compiler_type; 725 const Flags type_flags(GetTypeInfo(&pointee_or_element_compiler_type)); 726 bool is_char_arr_ptr(type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 727 pointee_or_element_compiler_type.IsCharType()); 728 if (!is_char_arr_ptr) 729 return false; 730 if (!check_pointer) 731 return true; 732 if (type_flags.Test(eTypeIsArray)) 733 return true; 734 addr_t cstr_address = LLDB_INVALID_ADDRESS; 735 AddressType cstr_address_type = eAddressTypeInvalid; 736 cstr_address = GetAddressOf(true, &cstr_address_type); 737 return (cstr_address != LLDB_INVALID_ADDRESS); 738 } 739 740 size_t ValueObject::GetPointeeData(DataExtractor &data, uint32_t item_idx, 741 uint32_t item_count) { 742 CompilerType pointee_or_element_compiler_type; 743 const uint32_t type_info = GetTypeInfo(&pointee_or_element_compiler_type); 744 const bool is_pointer_type = type_info & eTypeIsPointer; 745 const bool is_array_type = type_info & eTypeIsArray; 746 if (!(is_pointer_type || is_array_type)) 747 return 0; 748 749 if (item_count == 0) 750 return 0; 751 752 ExecutionContext exe_ctx(GetExecutionContextRef()); 753 754 llvm::Optional<uint64_t> item_type_size = 755 pointee_or_element_compiler_type.GetByteSize( 756 exe_ctx.GetBestExecutionContextScope()); 757 if (!item_type_size) 758 return 0; 759 const uint64_t bytes = item_count * *item_type_size; 760 const uint64_t offset = item_idx * *item_type_size; 761 762 if (item_idx == 0 && item_count == 1) // simply a deref 763 { 764 if (is_pointer_type) { 765 Status error; 766 ValueObjectSP pointee_sp = Dereference(error); 767 if (error.Fail() || pointee_sp.get() == nullptr) 768 return 0; 769 return pointee_sp->GetData(data, error); 770 } else { 771 ValueObjectSP child_sp = GetChildAtIndex(0, true); 772 if (child_sp.get() == nullptr) 773 return 0; 774 Status error; 775 return child_sp->GetData(data, error); 776 } 777 return true; 778 } else /* (items > 1) */ 779 { 780 Status error; 781 lldb_private::DataBufferHeap *heap_buf_ptr = nullptr; 782 lldb::DataBufferSP data_sp(heap_buf_ptr = 783 new lldb_private::DataBufferHeap()); 784 785 AddressType addr_type; 786 lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type) 787 : GetAddressOf(true, &addr_type); 788 789 switch (addr_type) { 790 case eAddressTypeFile: { 791 ModuleSP module_sp(GetModule()); 792 if (module_sp) { 793 addr = addr + offset; 794 Address so_addr; 795 module_sp->ResolveFileAddress(addr, so_addr); 796 ExecutionContext exe_ctx(GetExecutionContextRef()); 797 Target *target = exe_ctx.GetTargetPtr(); 798 if (target) { 799 heap_buf_ptr->SetByteSize(bytes); 800 size_t bytes_read = target->ReadMemory( 801 so_addr, false, heap_buf_ptr->GetBytes(), bytes, error); 802 if (error.Success()) { 803 data.SetData(data_sp); 804 return bytes_read; 805 } 806 } 807 } 808 } break; 809 case eAddressTypeLoad: { 810 ExecutionContext exe_ctx(GetExecutionContextRef()); 811 Process *process = exe_ctx.GetProcessPtr(); 812 if (process) { 813 heap_buf_ptr->SetByteSize(bytes); 814 size_t bytes_read = process->ReadMemory( 815 addr + offset, heap_buf_ptr->GetBytes(), bytes, error); 816 if (error.Success() || bytes_read > 0) { 817 data.SetData(data_sp); 818 return bytes_read; 819 } 820 } 821 } break; 822 case eAddressTypeHost: { 823 auto max_bytes = 824 GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope()); 825 if (max_bytes && *max_bytes > offset) { 826 size_t bytes_read = std::min<uint64_t>(*max_bytes - offset, bytes); 827 addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 828 if (addr == 0 || addr == LLDB_INVALID_ADDRESS) 829 break; 830 heap_buf_ptr->CopyData((uint8_t *)(addr + offset), bytes_read); 831 data.SetData(data_sp); 832 return bytes_read; 833 } 834 } break; 835 case eAddressTypeInvalid: 836 break; 837 } 838 } 839 return 0; 840 } 841 842 uint64_t ValueObject::GetData(DataExtractor &data, Status &error) { 843 UpdateValueIfNeeded(false); 844 ExecutionContext exe_ctx(GetExecutionContextRef()); 845 error = m_value.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 846 if (error.Fail()) { 847 if (m_data.GetByteSize()) { 848 data = m_data; 849 error.Clear(); 850 return data.GetByteSize(); 851 } else { 852 return 0; 853 } 854 } 855 data.SetAddressByteSize(m_data.GetAddressByteSize()); 856 data.SetByteOrder(m_data.GetByteOrder()); 857 return data.GetByteSize(); 858 } 859 860 bool ValueObject::SetData(DataExtractor &data, Status &error) { 861 error.Clear(); 862 // Make sure our value is up to date first so that our location and location 863 // type is valid. 864 if (!UpdateValueIfNeeded(false)) { 865 error.SetErrorString("unable to read value"); 866 return false; 867 } 868 869 uint64_t count = 0; 870 const Encoding encoding = GetCompilerType().GetEncoding(count); 871 872 const size_t byte_size = GetByteSize(); 873 874 Value::ValueType value_type = m_value.GetValueType(); 875 876 switch (value_type) { 877 case Value::eValueTypeScalar: { 878 Status set_error = 879 m_value.GetScalar().SetValueFromData(data, encoding, byte_size); 880 881 if (!set_error.Success()) { 882 error.SetErrorStringWithFormat("unable to set scalar value: %s", 883 set_error.AsCString()); 884 return false; 885 } 886 } break; 887 case Value::eValueTypeLoadAddress: { 888 // If it is a load address, then the scalar value is the storage location 889 // of the data, and we have to shove this value down to that load location. 890 ExecutionContext exe_ctx(GetExecutionContextRef()); 891 Process *process = exe_ctx.GetProcessPtr(); 892 if (process) { 893 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 894 size_t bytes_written = process->WriteMemory( 895 target_addr, data.GetDataStart(), byte_size, error); 896 if (!error.Success()) 897 return false; 898 if (bytes_written != byte_size) { 899 error.SetErrorString("unable to write value to memory"); 900 return false; 901 } 902 } 903 } break; 904 case Value::eValueTypeHostAddress: { 905 // If it is a host address, then we stuff the scalar as a DataBuffer into 906 // the Value's data. 907 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 908 m_data.SetData(buffer_sp, 0); 909 data.CopyByteOrderedData(0, byte_size, 910 const_cast<uint8_t *>(m_data.GetDataStart()), 911 byte_size, m_data.GetByteOrder()); 912 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 913 } break; 914 case Value::eValueTypeFileAddress: 915 case Value::eValueTypeVector: 916 break; 917 } 918 919 // If we have reached this point, then we have successfully changed the 920 // value. 921 SetNeedsUpdate(); 922 return true; 923 } 924 925 static bool CopyStringDataToBufferSP(const StreamString &source, 926 lldb::DataBufferSP &destination) { 927 destination = std::make_shared<DataBufferHeap>(source.GetSize() + 1, 0); 928 memcpy(destination->GetBytes(), source.GetString().data(), source.GetSize()); 929 return true; 930 } 931 932 std::pair<size_t, bool> 933 ValueObject::ReadPointedString(lldb::DataBufferSP &buffer_sp, Status &error, 934 uint32_t max_length, bool honor_array, 935 Format item_format) { 936 bool was_capped = false; 937 StreamString s; 938 ExecutionContext exe_ctx(GetExecutionContextRef()); 939 Target *target = exe_ctx.GetTargetPtr(); 940 941 if (!target) { 942 s << "<no target to read from>"; 943 error.SetErrorString("no target to read from"); 944 CopyStringDataToBufferSP(s, buffer_sp); 945 return {0, was_capped}; 946 } 947 948 if (max_length == 0) 949 max_length = target->GetMaximumSizeOfStringSummary(); 950 951 size_t bytes_read = 0; 952 size_t total_bytes_read = 0; 953 954 CompilerType compiler_type = GetCompilerType(); 955 CompilerType elem_or_pointee_compiler_type; 956 const Flags type_flags(GetTypeInfo(&elem_or_pointee_compiler_type)); 957 if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 958 elem_or_pointee_compiler_type.IsCharType()) { 959 addr_t cstr_address = LLDB_INVALID_ADDRESS; 960 AddressType cstr_address_type = eAddressTypeInvalid; 961 962 size_t cstr_len = 0; 963 bool capped_data = false; 964 const bool is_array = type_flags.Test(eTypeIsArray); 965 if (is_array) { 966 // We have an array 967 uint64_t array_size = 0; 968 if (compiler_type.IsArrayType(nullptr, &array_size, nullptr)) { 969 cstr_len = array_size; 970 if (cstr_len > max_length) { 971 capped_data = true; 972 cstr_len = max_length; 973 } 974 } 975 cstr_address = GetAddressOf(true, &cstr_address_type); 976 } else { 977 // We have a pointer 978 cstr_address = GetPointerValue(&cstr_address_type); 979 } 980 981 if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) { 982 if (cstr_address_type == eAddressTypeHost && is_array) { 983 const char *cstr = GetDataExtractor().PeekCStr(0); 984 if (cstr == nullptr) { 985 s << "<invalid address>"; 986 error.SetErrorString("invalid address"); 987 CopyStringDataToBufferSP(s, buffer_sp); 988 return {0, was_capped}; 989 } 990 buffer_sp = std::make_shared<DataBufferHeap>(cstr_len, 0); 991 memcpy(buffer_sp->GetBytes(), cstr, cstr_len); 992 return {cstr_len, was_capped}; 993 } else { 994 s << "<invalid address>"; 995 error.SetErrorString("invalid address"); 996 CopyStringDataToBufferSP(s, buffer_sp); 997 return {0, was_capped}; 998 } 999 } 1000 1001 Address cstr_so_addr(cstr_address); 1002 DataExtractor data; 1003 if (cstr_len > 0 && honor_array) { 1004 // I am using GetPointeeData() here to abstract the fact that some 1005 // ValueObjects are actually frozen pointers in the host but the pointed- 1006 // to data lives in the debuggee, and GetPointeeData() automatically 1007 // takes care of this 1008 GetPointeeData(data, 0, cstr_len); 1009 1010 if ((bytes_read = data.GetByteSize()) > 0) { 1011 total_bytes_read = bytes_read; 1012 for (size_t offset = 0; offset < bytes_read; offset++) 1013 s.Printf("%c", *data.PeekData(offset, 1)); 1014 if (capped_data) 1015 was_capped = true; 1016 } 1017 } else { 1018 cstr_len = max_length; 1019 const size_t k_max_buf_size = 64; 1020 1021 size_t offset = 0; 1022 1023 int cstr_len_displayed = -1; 1024 bool capped_cstr = false; 1025 // I am using GetPointeeData() here to abstract the fact that some 1026 // ValueObjects are actually frozen pointers in the host but the pointed- 1027 // to data lives in the debuggee, and GetPointeeData() automatically 1028 // takes care of this 1029 while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) { 1030 total_bytes_read += bytes_read; 1031 const char *cstr = data.PeekCStr(0); 1032 size_t len = strnlen(cstr, k_max_buf_size); 1033 if (cstr_len_displayed < 0) 1034 cstr_len_displayed = len; 1035 1036 if (len == 0) 1037 break; 1038 cstr_len_displayed += len; 1039 if (len > bytes_read) 1040 len = bytes_read; 1041 if (len > cstr_len) 1042 len = cstr_len; 1043 1044 for (size_t offset = 0; offset < bytes_read; offset++) 1045 s.Printf("%c", *data.PeekData(offset, 1)); 1046 1047 if (len < k_max_buf_size) 1048 break; 1049 1050 if (len >= cstr_len) { 1051 capped_cstr = true; 1052 break; 1053 } 1054 1055 cstr_len -= len; 1056 offset += len; 1057 } 1058 1059 if (cstr_len_displayed >= 0) { 1060 if (capped_cstr) 1061 was_capped = true; 1062 } 1063 } 1064 } else { 1065 error.SetErrorString("not a string object"); 1066 s << "<not a string object>"; 1067 } 1068 CopyStringDataToBufferSP(s, buffer_sp); 1069 return {total_bytes_read, was_capped}; 1070 } 1071 1072 std::pair<TypeValidatorResult, std::string> ValueObject::GetValidationStatus() { 1073 if (!UpdateValueIfNeeded(true)) 1074 return {TypeValidatorResult::Success, 1075 ""}; // not the validator's job to discuss update problems 1076 1077 if (m_validation_result.hasValue()) 1078 return m_validation_result.getValue(); 1079 1080 if (!m_type_validator_sp) 1081 return {TypeValidatorResult::Success, ""}; // no validator no failure 1082 1083 auto outcome = m_type_validator_sp->FormatObject(this); 1084 1085 return (m_validation_result = {outcome.m_result, outcome.m_message}) 1086 .getValue(); 1087 } 1088 1089 const char *ValueObject::GetObjectDescription() { 1090 if (!UpdateValueIfNeeded(true)) 1091 return nullptr; 1092 1093 // Return cached value. 1094 if (!m_object_desc_str.empty()) 1095 return m_object_desc_str.c_str(); 1096 1097 ExecutionContext exe_ctx(GetExecutionContextRef()); 1098 Process *process = exe_ctx.GetProcessPtr(); 1099 if (!process) 1100 return nullptr; 1101 1102 // Returns the object description produced by one language runtime. 1103 auto get_object_description = [&](LanguageType language) -> const char * { 1104 if (LanguageRuntime *runtime = process->GetLanguageRuntime(language)) { 1105 StreamString s; 1106 if (runtime->GetObjectDescription(s, *this)) { 1107 m_object_desc_str.append(s.GetString()); 1108 return m_object_desc_str.c_str(); 1109 } 1110 } 1111 return nullptr; 1112 }; 1113 1114 // Try the native language runtime first. 1115 LanguageType native_language = GetObjectRuntimeLanguage(); 1116 if (const char *desc = get_object_description(native_language)) 1117 return desc; 1118 1119 // Try the Objective-C language runtime. This fallback is necessary 1120 // for Objective-C++ and mixed Objective-C / C++ programs. 1121 if (Language::LanguageIsCFamily(native_language)) 1122 return get_object_description(eLanguageTypeObjC); 1123 return nullptr; 1124 } 1125 1126 bool ValueObject::GetValueAsCString(const lldb_private::TypeFormatImpl &format, 1127 std::string &destination) { 1128 if (UpdateValueIfNeeded(false)) 1129 return format.FormatObject(this, destination); 1130 else 1131 return false; 1132 } 1133 1134 bool ValueObject::GetValueAsCString(lldb::Format format, 1135 std::string &destination) { 1136 return GetValueAsCString(TypeFormatImpl_Format(format), destination); 1137 } 1138 1139 const char *ValueObject::GetValueAsCString() { 1140 if (UpdateValueIfNeeded(true)) { 1141 lldb::TypeFormatImplSP format_sp; 1142 lldb::Format my_format = GetFormat(); 1143 if (my_format == lldb::eFormatDefault) { 1144 if (m_type_format_sp) 1145 format_sp = m_type_format_sp; 1146 else { 1147 if (m_is_bitfield_for_scalar) 1148 my_format = eFormatUnsigned; 1149 else { 1150 if (m_value.GetContextType() == Value::eContextTypeRegisterInfo) { 1151 const RegisterInfo *reg_info = m_value.GetRegisterInfo(); 1152 if (reg_info) 1153 my_format = reg_info->format; 1154 } else { 1155 my_format = GetValue().GetCompilerType().GetFormat(); 1156 } 1157 } 1158 } 1159 } 1160 if (my_format != m_last_format || m_value_str.empty()) { 1161 m_last_format = my_format; 1162 if (!format_sp) 1163 format_sp = std::make_shared<TypeFormatImpl_Format>(my_format); 1164 if (GetValueAsCString(*format_sp.get(), m_value_str)) { 1165 if (!m_value_did_change && m_old_value_valid) { 1166 // The value was gotten successfully, so we consider the value as 1167 // changed if the value string differs 1168 SetValueDidChange(m_old_value_str != m_value_str); 1169 } 1170 } 1171 } 1172 } 1173 if (m_value_str.empty()) 1174 return nullptr; 1175 return m_value_str.c_str(); 1176 } 1177 1178 // if > 8bytes, 0 is returned. this method should mostly be used to read 1179 // address values out of pointers 1180 uint64_t ValueObject::GetValueAsUnsigned(uint64_t fail_value, bool *success) { 1181 // If our byte size is zero this is an aggregate type that has children 1182 if (CanProvideValue()) { 1183 Scalar scalar; 1184 if (ResolveValue(scalar)) { 1185 if (success) 1186 *success = true; 1187 return scalar.ULongLong(fail_value); 1188 } 1189 // fallthrough, otherwise... 1190 } 1191 1192 if (success) 1193 *success = false; 1194 return fail_value; 1195 } 1196 1197 int64_t ValueObject::GetValueAsSigned(int64_t fail_value, bool *success) { 1198 // If our byte size is zero this is an aggregate type that has children 1199 if (CanProvideValue()) { 1200 Scalar scalar; 1201 if (ResolveValue(scalar)) { 1202 if (success) 1203 *success = true; 1204 return scalar.SLongLong(fail_value); 1205 } 1206 // fallthrough, otherwise... 1207 } 1208 1209 if (success) 1210 *success = false; 1211 return fail_value; 1212 } 1213 1214 // if any more "special cases" are added to 1215 // ValueObject::DumpPrintableRepresentation() please keep this call up to date 1216 // by returning true for your new special cases. We will eventually move to 1217 // checking this call result before trying to display special cases 1218 bool ValueObject::HasSpecialPrintableRepresentation( 1219 ValueObjectRepresentationStyle val_obj_display, Format custom_format) { 1220 Flags flags(GetTypeInfo()); 1221 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1222 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1223 if (IsCStringContainer(true) && 1224 (custom_format == eFormatCString || custom_format == eFormatCharArray || 1225 custom_format == eFormatChar || custom_format == eFormatVectorOfChar)) 1226 return true; 1227 1228 if (flags.Test(eTypeIsArray)) { 1229 if ((custom_format == eFormatBytes) || 1230 (custom_format == eFormatBytesWithASCII)) 1231 return true; 1232 1233 if ((custom_format == eFormatVectorOfChar) || 1234 (custom_format == eFormatVectorOfFloat32) || 1235 (custom_format == eFormatVectorOfFloat64) || 1236 (custom_format == eFormatVectorOfSInt16) || 1237 (custom_format == eFormatVectorOfSInt32) || 1238 (custom_format == eFormatVectorOfSInt64) || 1239 (custom_format == eFormatVectorOfSInt8) || 1240 (custom_format == eFormatVectorOfUInt128) || 1241 (custom_format == eFormatVectorOfUInt16) || 1242 (custom_format == eFormatVectorOfUInt32) || 1243 (custom_format == eFormatVectorOfUInt64) || 1244 (custom_format == eFormatVectorOfUInt8)) 1245 return true; 1246 } 1247 } 1248 return false; 1249 } 1250 1251 bool ValueObject::DumpPrintableRepresentation( 1252 Stream &s, ValueObjectRepresentationStyle val_obj_display, 1253 Format custom_format, PrintableRepresentationSpecialCases special, 1254 bool do_dump_error) { 1255 1256 Flags flags(GetTypeInfo()); 1257 1258 bool allow_special = 1259 (special == ValueObject::PrintableRepresentationSpecialCases::eAllow); 1260 const bool only_special = false; 1261 1262 if (allow_special) { 1263 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1264 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1265 // when being asked to get a printable display an array or pointer type 1266 // directly, try to "do the right thing" 1267 1268 if (IsCStringContainer(true) && 1269 (custom_format == eFormatCString || 1270 custom_format == eFormatCharArray || custom_format == eFormatChar || 1271 custom_format == 1272 eFormatVectorOfChar)) // print char[] & char* directly 1273 { 1274 Status error; 1275 lldb::DataBufferSP buffer_sp; 1276 std::pair<size_t, bool> read_string = ReadPointedString( 1277 buffer_sp, error, 0, (custom_format == eFormatVectorOfChar) || 1278 (custom_format == eFormatCharArray)); 1279 lldb_private::formatters::StringPrinter:: 1280 ReadBufferAndDumpToStreamOptions options(*this); 1281 options.SetData(DataExtractor( 1282 buffer_sp, lldb::eByteOrderInvalid, 1283 8)); // none of this matters for a string - pass some defaults 1284 options.SetStream(&s); 1285 options.SetPrefixToken(nullptr); 1286 options.SetQuote('"'); 1287 options.SetSourceSize(buffer_sp->GetByteSize()); 1288 options.SetIsTruncated(read_string.second); 1289 formatters::StringPrinter::ReadBufferAndDumpToStream< 1290 lldb_private::formatters::StringPrinter::StringElementType::ASCII>( 1291 options); 1292 return !error.Fail(); 1293 } 1294 1295 if (custom_format == eFormatEnum) 1296 return false; 1297 1298 // this only works for arrays, because I have no way to know when the 1299 // pointed memory ends, and no special \0 end of data marker 1300 if (flags.Test(eTypeIsArray)) { 1301 if ((custom_format == eFormatBytes) || 1302 (custom_format == eFormatBytesWithASCII)) { 1303 const size_t count = GetNumChildren(); 1304 1305 s << '['; 1306 for (size_t low = 0; low < count; low++) { 1307 1308 if (low) 1309 s << ','; 1310 1311 ValueObjectSP child = GetChildAtIndex(low, true); 1312 if (!child.get()) { 1313 s << "<invalid child>"; 1314 continue; 1315 } 1316 child->DumpPrintableRepresentation( 1317 s, ValueObject::eValueObjectRepresentationStyleValue, 1318 custom_format); 1319 } 1320 1321 s << ']'; 1322 1323 return true; 1324 } 1325 1326 if ((custom_format == eFormatVectorOfChar) || 1327 (custom_format == eFormatVectorOfFloat32) || 1328 (custom_format == eFormatVectorOfFloat64) || 1329 (custom_format == eFormatVectorOfSInt16) || 1330 (custom_format == eFormatVectorOfSInt32) || 1331 (custom_format == eFormatVectorOfSInt64) || 1332 (custom_format == eFormatVectorOfSInt8) || 1333 (custom_format == eFormatVectorOfUInt128) || 1334 (custom_format == eFormatVectorOfUInt16) || 1335 (custom_format == eFormatVectorOfUInt32) || 1336 (custom_format == eFormatVectorOfUInt64) || 1337 (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes 1338 // with ASCII or any vector 1339 // format should be printed 1340 // directly 1341 { 1342 const size_t count = GetNumChildren(); 1343 1344 Format format = FormatManager::GetSingleItemFormat(custom_format); 1345 1346 s << '['; 1347 for (size_t low = 0; low < count; low++) { 1348 1349 if (low) 1350 s << ','; 1351 1352 ValueObjectSP child = GetChildAtIndex(low, true); 1353 if (!child.get()) { 1354 s << "<invalid child>"; 1355 continue; 1356 } 1357 child->DumpPrintableRepresentation( 1358 s, ValueObject::eValueObjectRepresentationStyleValue, format); 1359 } 1360 1361 s << ']'; 1362 1363 return true; 1364 } 1365 } 1366 1367 if ((custom_format == eFormatBoolean) || 1368 (custom_format == eFormatBinary) || (custom_format == eFormatChar) || 1369 (custom_format == eFormatCharPrintable) || 1370 (custom_format == eFormatComplexFloat) || 1371 (custom_format == eFormatDecimal) || (custom_format == eFormatHex) || 1372 (custom_format == eFormatHexUppercase) || 1373 (custom_format == eFormatFloat) || (custom_format == eFormatOctal) || 1374 (custom_format == eFormatOSType) || 1375 (custom_format == eFormatUnicode16) || 1376 (custom_format == eFormatUnicode32) || 1377 (custom_format == eFormatUnsigned) || 1378 (custom_format == eFormatPointer) || 1379 (custom_format == eFormatComplexInteger) || 1380 (custom_format == eFormatComplex) || 1381 (custom_format == eFormatDefault)) // use the [] operator 1382 return false; 1383 } 1384 } 1385 1386 if (only_special) 1387 return false; 1388 1389 bool var_success = false; 1390 1391 { 1392 llvm::StringRef str; 1393 1394 // this is a local stream that we are using to ensure that the data pointed 1395 // to by cstr survives long enough for us to copy it to its destination - 1396 // it is necessary to have this temporary storage area for cases where our 1397 // desired output is not backed by some other longer-term storage 1398 StreamString strm; 1399 1400 if (custom_format != eFormatInvalid) 1401 SetFormat(custom_format); 1402 1403 switch (val_obj_display) { 1404 case eValueObjectRepresentationStyleValue: 1405 str = GetValueAsCString(); 1406 break; 1407 1408 case eValueObjectRepresentationStyleSummary: 1409 str = GetSummaryAsCString(); 1410 break; 1411 1412 case eValueObjectRepresentationStyleLanguageSpecific: 1413 str = GetObjectDescription(); 1414 break; 1415 1416 case eValueObjectRepresentationStyleLocation: 1417 str = GetLocationAsCString(); 1418 break; 1419 1420 case eValueObjectRepresentationStyleChildrenCount: 1421 strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren()); 1422 str = strm.GetString(); 1423 break; 1424 1425 case eValueObjectRepresentationStyleType: 1426 str = GetTypeName().GetStringRef(); 1427 break; 1428 1429 case eValueObjectRepresentationStyleName: 1430 str = GetName().GetStringRef(); 1431 break; 1432 1433 case eValueObjectRepresentationStyleExpressionPath: 1434 GetExpressionPath(strm, false); 1435 str = strm.GetString(); 1436 break; 1437 } 1438 1439 if (str.empty()) { 1440 if (val_obj_display == eValueObjectRepresentationStyleValue) 1441 str = GetSummaryAsCString(); 1442 else if (val_obj_display == eValueObjectRepresentationStyleSummary) { 1443 if (!CanProvideValue()) { 1444 strm.Printf("%s @ %s", GetTypeName().AsCString(), 1445 GetLocationAsCString()); 1446 str = strm.GetString(); 1447 } else 1448 str = GetValueAsCString(); 1449 } 1450 } 1451 1452 if (!str.empty()) 1453 s << str; 1454 else { 1455 if (m_error.Fail()) { 1456 if (do_dump_error) 1457 s.Printf("<%s>", m_error.AsCString()); 1458 else 1459 return false; 1460 } else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1461 s.PutCString("<no summary available>"); 1462 else if (val_obj_display == eValueObjectRepresentationStyleValue) 1463 s.PutCString("<no value available>"); 1464 else if (val_obj_display == 1465 eValueObjectRepresentationStyleLanguageSpecific) 1466 s.PutCString("<not a valid Objective-C object>"); // edit this if we 1467 // have other runtimes 1468 // that support a 1469 // description 1470 else 1471 s.PutCString("<no printable representation>"); 1472 } 1473 1474 // we should only return false here if we could not do *anything* even if 1475 // we have an error message as output, that's a success from our callers' 1476 // perspective, so return true 1477 var_success = true; 1478 1479 if (custom_format != eFormatInvalid) 1480 SetFormat(eFormatDefault); 1481 } 1482 1483 return var_success; 1484 } 1485 1486 addr_t ValueObject::GetAddressOf(bool scalar_is_load_address, 1487 AddressType *address_type) { 1488 // Can't take address of a bitfield 1489 if (IsBitfield()) 1490 return LLDB_INVALID_ADDRESS; 1491 1492 if (!UpdateValueIfNeeded(false)) 1493 return LLDB_INVALID_ADDRESS; 1494 1495 switch (m_value.GetValueType()) { 1496 case Value::eValueTypeScalar: 1497 case Value::eValueTypeVector: 1498 if (scalar_is_load_address) { 1499 if (address_type) 1500 *address_type = eAddressTypeLoad; 1501 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1502 } 1503 break; 1504 1505 case Value::eValueTypeLoadAddress: 1506 case Value::eValueTypeFileAddress: { 1507 if (address_type) 1508 *address_type = m_value.GetValueAddressType(); 1509 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1510 } break; 1511 case Value::eValueTypeHostAddress: { 1512 if (address_type) 1513 *address_type = m_value.GetValueAddressType(); 1514 return LLDB_INVALID_ADDRESS; 1515 } break; 1516 } 1517 if (address_type) 1518 *address_type = eAddressTypeInvalid; 1519 return LLDB_INVALID_ADDRESS; 1520 } 1521 1522 addr_t ValueObject::GetPointerValue(AddressType *address_type) { 1523 addr_t address = LLDB_INVALID_ADDRESS; 1524 if (address_type) 1525 *address_type = eAddressTypeInvalid; 1526 1527 if (!UpdateValueIfNeeded(false)) 1528 return address; 1529 1530 switch (m_value.GetValueType()) { 1531 case Value::eValueTypeScalar: 1532 case Value::eValueTypeVector: 1533 address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1534 break; 1535 1536 case Value::eValueTypeHostAddress: 1537 case Value::eValueTypeLoadAddress: 1538 case Value::eValueTypeFileAddress: { 1539 lldb::offset_t data_offset = 0; 1540 address = m_data.GetPointer(&data_offset); 1541 } break; 1542 } 1543 1544 if (address_type) 1545 *address_type = GetAddressTypeOfChildren(); 1546 1547 return address; 1548 } 1549 1550 bool ValueObject::SetValueFromCString(const char *value_str, Status &error) { 1551 error.Clear(); 1552 // Make sure our value is up to date first so that our location and location 1553 // type is valid. 1554 if (!UpdateValueIfNeeded(false)) { 1555 error.SetErrorString("unable to read value"); 1556 return false; 1557 } 1558 1559 uint64_t count = 0; 1560 const Encoding encoding = GetCompilerType().GetEncoding(count); 1561 1562 const size_t byte_size = GetByteSize(); 1563 1564 Value::ValueType value_type = m_value.GetValueType(); 1565 1566 if (value_type == Value::eValueTypeScalar) { 1567 // If the value is already a scalar, then let the scalar change itself: 1568 m_value.GetScalar().SetValueFromCString(value_str, encoding, byte_size); 1569 } else if (byte_size <= 16) { 1570 // If the value fits in a scalar, then make a new scalar and again let the 1571 // scalar code do the conversion, then figure out where to put the new 1572 // value. 1573 Scalar new_scalar; 1574 error = new_scalar.SetValueFromCString(value_str, encoding, byte_size); 1575 if (error.Success()) { 1576 switch (value_type) { 1577 case Value::eValueTypeLoadAddress: { 1578 // If it is a load address, then the scalar value is the storage 1579 // location of the data, and we have to shove this value down to that 1580 // load location. 1581 ExecutionContext exe_ctx(GetExecutionContextRef()); 1582 Process *process = exe_ctx.GetProcessPtr(); 1583 if (process) { 1584 addr_t target_addr = 1585 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1586 size_t bytes_written = process->WriteScalarToMemory( 1587 target_addr, new_scalar, byte_size, error); 1588 if (!error.Success()) 1589 return false; 1590 if (bytes_written != byte_size) { 1591 error.SetErrorString("unable to write value to memory"); 1592 return false; 1593 } 1594 } 1595 } break; 1596 case Value::eValueTypeHostAddress: { 1597 // If it is a host address, then we stuff the scalar as a DataBuffer 1598 // into the Value's data. 1599 DataExtractor new_data; 1600 new_data.SetByteOrder(m_data.GetByteOrder()); 1601 1602 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 1603 m_data.SetData(buffer_sp, 0); 1604 bool success = new_scalar.GetData(new_data); 1605 if (success) { 1606 new_data.CopyByteOrderedData( 1607 0, byte_size, const_cast<uint8_t *>(m_data.GetDataStart()), 1608 byte_size, m_data.GetByteOrder()); 1609 } 1610 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1611 1612 } break; 1613 case Value::eValueTypeFileAddress: 1614 case Value::eValueTypeScalar: 1615 case Value::eValueTypeVector: 1616 break; 1617 } 1618 } else { 1619 return false; 1620 } 1621 } else { 1622 // We don't support setting things bigger than a scalar at present. 1623 error.SetErrorString("unable to write aggregate data type"); 1624 return false; 1625 } 1626 1627 // If we have reached this point, then we have successfully changed the 1628 // value. 1629 SetNeedsUpdate(); 1630 return true; 1631 } 1632 1633 bool ValueObject::GetDeclaration(Declaration &decl) { 1634 decl.Clear(); 1635 return false; 1636 } 1637 1638 ConstString ValueObject::GetTypeName() { 1639 return GetCompilerType().GetConstTypeName(); 1640 } 1641 1642 ConstString ValueObject::GetDisplayTypeName() { return GetTypeName(); } 1643 1644 ConstString ValueObject::GetQualifiedTypeName() { 1645 return GetCompilerType().GetConstQualifiedTypeName(); 1646 } 1647 1648 LanguageType ValueObject::GetObjectRuntimeLanguage() { 1649 return GetCompilerType().GetMinimumLanguage(); 1650 } 1651 1652 void ValueObject::AddSyntheticChild(ConstString key, 1653 ValueObject *valobj) { 1654 m_synthetic_children[key] = valobj; 1655 } 1656 1657 ValueObjectSP ValueObject::GetSyntheticChild(ConstString key) const { 1658 ValueObjectSP synthetic_child_sp; 1659 std::map<ConstString, ValueObject *>::const_iterator pos = 1660 m_synthetic_children.find(key); 1661 if (pos != m_synthetic_children.end()) 1662 synthetic_child_sp = pos->second->GetSP(); 1663 return synthetic_child_sp; 1664 } 1665 1666 uint32_t 1667 ValueObject::GetTypeInfo(CompilerType *pointee_or_element_compiler_type) { 1668 return GetCompilerType().GetTypeInfo(pointee_or_element_compiler_type); 1669 } 1670 1671 bool ValueObject::IsPointerType() { return GetCompilerType().IsPointerType(); } 1672 1673 bool ValueObject::IsArrayType() { 1674 return GetCompilerType().IsArrayType(nullptr, nullptr, nullptr); 1675 } 1676 1677 bool ValueObject::IsScalarType() { return GetCompilerType().IsScalarType(); } 1678 1679 bool ValueObject::IsIntegerType(bool &is_signed) { 1680 return GetCompilerType().IsIntegerType(is_signed); 1681 } 1682 1683 bool ValueObject::IsPointerOrReferenceType() { 1684 return GetCompilerType().IsPointerOrReferenceType(); 1685 } 1686 1687 bool ValueObject::IsPossibleDynamicType() { 1688 ExecutionContext exe_ctx(GetExecutionContextRef()); 1689 Process *process = exe_ctx.GetProcessPtr(); 1690 if (process) 1691 return process->IsPossibleDynamicValue(*this); 1692 else 1693 return GetCompilerType().IsPossibleDynamicType(nullptr, true, true); 1694 } 1695 1696 bool ValueObject::IsRuntimeSupportValue() { 1697 Process *process(GetProcessSP().get()); 1698 if (!process) 1699 return false; 1700 1701 // We trust the the compiler did the right thing and marked runtime support 1702 // values as artificial. 1703 if (!GetVariable() || !GetVariable()->IsArtificial()) 1704 return false; 1705 1706 LanguageType lang = eLanguageTypeUnknown; 1707 if (auto *sym_ctx_scope = GetSymbolContextScope()) { 1708 if (auto *func = sym_ctx_scope->CalculateSymbolContextFunction()) 1709 lang = func->GetLanguage(); 1710 else if (auto *comp_unit = 1711 sym_ctx_scope->CalculateSymbolContextCompileUnit()) 1712 lang = comp_unit->GetLanguage(); 1713 } 1714 1715 if (auto *runtime = process->GetLanguageRuntime(lang)) 1716 if (runtime->IsWhitelistedRuntimeValue(GetName())) 1717 return false; 1718 1719 return true; 1720 } 1721 1722 bool ValueObject::IsNilReference() { 1723 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1724 return language->IsNilReference(*this); 1725 } 1726 return false; 1727 } 1728 1729 bool ValueObject::IsUninitializedReference() { 1730 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1731 return language->IsUninitializedReference(*this); 1732 } 1733 return false; 1734 } 1735 1736 // This allows you to create an array member using and index that doesn't not 1737 // fall in the normal bounds of the array. Many times structure can be defined 1738 // as: struct Collection { 1739 // uint32_t item_count; 1740 // Item item_array[0]; 1741 // }; 1742 // The size of the "item_array" is 1, but many times in practice there are more 1743 // items in "item_array". 1744 1745 ValueObjectSP ValueObject::GetSyntheticArrayMember(size_t index, 1746 bool can_create) { 1747 ValueObjectSP synthetic_child_sp; 1748 if (IsPointerType() || IsArrayType()) { 1749 char index_str[64]; 1750 snprintf(index_str, sizeof(index_str), "[%" PRIu64 "]", (uint64_t)index); 1751 ConstString index_const_str(index_str); 1752 // Check if we have already created a synthetic array member in this valid 1753 // object. If we have we will re-use it. 1754 synthetic_child_sp = GetSyntheticChild(index_const_str); 1755 if (!synthetic_child_sp) { 1756 ValueObject *synthetic_child; 1757 // We haven't made a synthetic array member for INDEX yet, so lets make 1758 // one and cache it for any future reference. 1759 synthetic_child = CreateChildAtIndex(0, true, index); 1760 1761 // Cache the value if we got one back... 1762 if (synthetic_child) { 1763 AddSyntheticChild(index_const_str, synthetic_child); 1764 synthetic_child_sp = synthetic_child->GetSP(); 1765 synthetic_child_sp->SetName(ConstString(index_str)); 1766 synthetic_child_sp->m_is_array_item_for_pointer = true; 1767 } 1768 } 1769 } 1770 return synthetic_child_sp; 1771 } 1772 1773 ValueObjectSP ValueObject::GetSyntheticBitFieldChild(uint32_t from, uint32_t to, 1774 bool can_create) { 1775 ValueObjectSP synthetic_child_sp; 1776 if (IsScalarType()) { 1777 char index_str[64]; 1778 snprintf(index_str, sizeof(index_str), "[%i-%i]", from, to); 1779 ConstString index_const_str(index_str); 1780 // Check if we have already created a synthetic array member in this valid 1781 // object. If we have we will re-use it. 1782 synthetic_child_sp = GetSyntheticChild(index_const_str); 1783 if (!synthetic_child_sp) { 1784 uint32_t bit_field_size = to - from + 1; 1785 uint32_t bit_field_offset = from; 1786 if (GetDataExtractor().GetByteOrder() == eByteOrderBig) 1787 bit_field_offset = 1788 GetByteSize() * 8 - bit_field_size - bit_field_offset; 1789 // We haven't made a synthetic array member for INDEX yet, so lets make 1790 // one and cache it for any future reference. 1791 ValueObjectChild *synthetic_child = new ValueObjectChild( 1792 *this, GetCompilerType(), index_const_str, GetByteSize(), 0, 1793 bit_field_size, bit_field_offset, false, false, eAddressTypeInvalid, 1794 0); 1795 1796 // Cache the value if we got one back... 1797 if (synthetic_child) { 1798 AddSyntheticChild(index_const_str, synthetic_child); 1799 synthetic_child_sp = synthetic_child->GetSP(); 1800 synthetic_child_sp->SetName(ConstString(index_str)); 1801 synthetic_child_sp->m_is_bitfield_for_scalar = true; 1802 } 1803 } 1804 } 1805 return synthetic_child_sp; 1806 } 1807 1808 ValueObjectSP ValueObject::GetSyntheticChildAtOffset( 1809 uint32_t offset, const CompilerType &type, bool can_create, 1810 ConstString name_const_str) { 1811 1812 ValueObjectSP synthetic_child_sp; 1813 1814 if (name_const_str.IsEmpty()) { 1815 char name_str[64]; 1816 snprintf(name_str, sizeof(name_str), "@%i", offset); 1817 name_const_str.SetCString(name_str); 1818 } 1819 1820 // Check if we have already created a synthetic array member in this valid 1821 // object. If we have we will re-use it. 1822 synthetic_child_sp = GetSyntheticChild(name_const_str); 1823 1824 if (synthetic_child_sp.get()) 1825 return synthetic_child_sp; 1826 1827 if (!can_create) 1828 return {}; 1829 1830 ExecutionContext exe_ctx(GetExecutionContextRef()); 1831 llvm::Optional<uint64_t> size = 1832 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1833 if (!size) 1834 return {}; 1835 ValueObjectChild *synthetic_child = 1836 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1837 false, false, eAddressTypeInvalid, 0); 1838 if (synthetic_child) { 1839 AddSyntheticChild(name_const_str, synthetic_child); 1840 synthetic_child_sp = synthetic_child->GetSP(); 1841 synthetic_child_sp->SetName(name_const_str); 1842 synthetic_child_sp->m_is_child_at_offset = true; 1843 } 1844 return synthetic_child_sp; 1845 } 1846 1847 ValueObjectSP ValueObject::GetSyntheticBase(uint32_t offset, 1848 const CompilerType &type, 1849 bool can_create, 1850 ConstString name_const_str) { 1851 ValueObjectSP synthetic_child_sp; 1852 1853 if (name_const_str.IsEmpty()) { 1854 char name_str[128]; 1855 snprintf(name_str, sizeof(name_str), "base%s@%i", 1856 type.GetTypeName().AsCString("<unknown>"), offset); 1857 name_const_str.SetCString(name_str); 1858 } 1859 1860 // Check if we have already created a synthetic array member in this valid 1861 // object. If we have we will re-use it. 1862 synthetic_child_sp = GetSyntheticChild(name_const_str); 1863 1864 if (synthetic_child_sp.get()) 1865 return synthetic_child_sp; 1866 1867 if (!can_create) 1868 return {}; 1869 1870 const bool is_base_class = true; 1871 1872 ExecutionContext exe_ctx(GetExecutionContextRef()); 1873 llvm::Optional<uint64_t> size = 1874 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1875 if (!size) 1876 return {}; 1877 ValueObjectChild *synthetic_child = 1878 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1879 is_base_class, false, eAddressTypeInvalid, 0); 1880 if (synthetic_child) { 1881 AddSyntheticChild(name_const_str, synthetic_child); 1882 synthetic_child_sp = synthetic_child->GetSP(); 1883 synthetic_child_sp->SetName(name_const_str); 1884 } 1885 return synthetic_child_sp; 1886 } 1887 1888 // your expression path needs to have a leading . or -> (unless it somehow 1889 // "looks like" an array, in which case it has a leading [ symbol). while the [ 1890 // is meaningful and should be shown to the user, . and -> are just parser 1891 // design, but by no means added information for the user.. strip them off 1892 static const char *SkipLeadingExpressionPathSeparators(const char *expression) { 1893 if (!expression || !expression[0]) 1894 return expression; 1895 if (expression[0] == '.') 1896 return expression + 1; 1897 if (expression[0] == '-' && expression[1] == '>') 1898 return expression + 2; 1899 return expression; 1900 } 1901 1902 ValueObjectSP 1903 ValueObject::GetSyntheticExpressionPathChild(const char *expression, 1904 bool can_create) { 1905 ValueObjectSP synthetic_child_sp; 1906 ConstString name_const_string(expression); 1907 // Check if we have already created a synthetic array member in this valid 1908 // object. If we have we will re-use it. 1909 synthetic_child_sp = GetSyntheticChild(name_const_string); 1910 if (!synthetic_child_sp) { 1911 // We haven't made a synthetic array member for expression yet, so lets 1912 // make one and cache it for any future reference. 1913 synthetic_child_sp = GetValueForExpressionPath( 1914 expression, nullptr, nullptr, 1915 GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal( 1916 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 1917 None)); 1918 1919 // Cache the value if we got one back... 1920 if (synthetic_child_sp.get()) { 1921 // FIXME: this causes a "real" child to end up with its name changed to 1922 // the contents of expression 1923 AddSyntheticChild(name_const_string, synthetic_child_sp.get()); 1924 synthetic_child_sp->SetName( 1925 ConstString(SkipLeadingExpressionPathSeparators(expression))); 1926 } 1927 } 1928 return synthetic_child_sp; 1929 } 1930 1931 void ValueObject::CalculateSyntheticValue(bool use_synthetic) { 1932 if (!use_synthetic) 1933 return; 1934 1935 TargetSP target_sp(GetTargetSP()); 1936 if (target_sp && !target_sp->GetEnableSyntheticValue()) { 1937 m_synthetic_value = nullptr; 1938 return; 1939 } 1940 1941 lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp); 1942 1943 if (!UpdateFormatsIfNeeded() && m_synthetic_value) 1944 return; 1945 1946 if (m_synthetic_children_sp.get() == nullptr) 1947 return; 1948 1949 if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value) 1950 return; 1951 1952 m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp); 1953 } 1954 1955 void ValueObject::CalculateDynamicValue(DynamicValueType use_dynamic) { 1956 if (use_dynamic == eNoDynamicValues) 1957 return; 1958 1959 if (!m_dynamic_value && !IsDynamic()) { 1960 ExecutionContext exe_ctx(GetExecutionContextRef()); 1961 Process *process = exe_ctx.GetProcessPtr(); 1962 if (process && process->IsPossibleDynamicValue(*this)) { 1963 ClearDynamicTypeInformation(); 1964 m_dynamic_value = new ValueObjectDynamicValue(*this, use_dynamic); 1965 } 1966 } 1967 } 1968 1969 ValueObjectSP ValueObject::GetDynamicValue(DynamicValueType use_dynamic) { 1970 if (use_dynamic == eNoDynamicValues) 1971 return ValueObjectSP(); 1972 1973 if (!IsDynamic() && m_dynamic_value == nullptr) { 1974 CalculateDynamicValue(use_dynamic); 1975 } 1976 if (m_dynamic_value) 1977 return m_dynamic_value->GetSP(); 1978 else 1979 return ValueObjectSP(); 1980 } 1981 1982 ValueObjectSP ValueObject::GetStaticValue() { return GetSP(); } 1983 1984 lldb::ValueObjectSP ValueObject::GetNonSyntheticValue() { return GetSP(); } 1985 1986 ValueObjectSP ValueObject::GetSyntheticValue(bool use_synthetic) { 1987 if (!use_synthetic) 1988 return ValueObjectSP(); 1989 1990 CalculateSyntheticValue(use_synthetic); 1991 1992 if (m_synthetic_value) 1993 return m_synthetic_value->GetSP(); 1994 else 1995 return ValueObjectSP(); 1996 } 1997 1998 bool ValueObject::HasSyntheticValue() { 1999 UpdateFormatsIfNeeded(); 2000 2001 if (m_synthetic_children_sp.get() == nullptr) 2002 return false; 2003 2004 CalculateSyntheticValue(true); 2005 2006 return m_synthetic_value != nullptr; 2007 } 2008 2009 bool ValueObject::GetBaseClassPath(Stream &s) { 2010 if (IsBaseClass()) { 2011 bool parent_had_base_class = 2012 GetParent() && GetParent()->GetBaseClassPath(s); 2013 CompilerType compiler_type = GetCompilerType(); 2014 std::string cxx_class_name; 2015 bool this_had_base_class = 2016 ClangASTContext::GetCXXClassName(compiler_type, cxx_class_name); 2017 if (this_had_base_class) { 2018 if (parent_had_base_class) 2019 s.PutCString("::"); 2020 s.PutCString(cxx_class_name); 2021 } 2022 return parent_had_base_class || this_had_base_class; 2023 } 2024 return false; 2025 } 2026 2027 ValueObject *ValueObject::GetNonBaseClassParent() { 2028 if (GetParent()) { 2029 if (GetParent()->IsBaseClass()) 2030 return GetParent()->GetNonBaseClassParent(); 2031 else 2032 return GetParent(); 2033 } 2034 return nullptr; 2035 } 2036 2037 bool ValueObject::IsBaseClass(uint32_t &depth) { 2038 if (!IsBaseClass()) { 2039 depth = 0; 2040 return false; 2041 } 2042 if (GetParent()) { 2043 GetParent()->IsBaseClass(depth); 2044 depth = depth + 1; 2045 return true; 2046 } 2047 // TODO: a base of no parent? weird.. 2048 depth = 1; 2049 return true; 2050 } 2051 2052 void ValueObject::GetExpressionPath(Stream &s, bool qualify_cxx_base_classes, 2053 GetExpressionPathFormat epformat) { 2054 // synthetic children do not actually "exist" as part of the hierarchy, and 2055 // sometimes they are consed up in ways that don't make sense from an 2056 // underlying language/API standpoint. So, use a special code path here to 2057 // return something that can hopefully be used in expression 2058 if (m_is_synthetic_children_generated) { 2059 UpdateValueIfNeeded(); 2060 2061 if (m_value.GetValueType() == Value::eValueTypeLoadAddress) { 2062 if (IsPointerOrReferenceType()) { 2063 s.Printf("((%s)0x%" PRIx64 ")", GetTypeName().AsCString("void"), 2064 GetValueAsUnsigned(0)); 2065 return; 2066 } else { 2067 uint64_t load_addr = 2068 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2069 if (load_addr != LLDB_INVALID_ADDRESS) { 2070 s.Printf("(*( (%s *)0x%" PRIx64 "))", GetTypeName().AsCString("void"), 2071 load_addr); 2072 return; 2073 } 2074 } 2075 } 2076 2077 if (CanProvideValue()) { 2078 s.Printf("((%s)%s)", GetTypeName().AsCString("void"), 2079 GetValueAsCString()); 2080 return; 2081 } 2082 2083 return; 2084 } 2085 2086 const bool is_deref_of_parent = IsDereferenceOfParent(); 2087 2088 if (is_deref_of_parent && 2089 epformat == eGetExpressionPathFormatDereferencePointers) { 2090 // this is the original format of GetExpressionPath() producing code like 2091 // *(a_ptr).memberName, which is entirely fine, until you put this into 2092 // StackFrame::GetValueForVariableExpressionPath() which prefers to see 2093 // a_ptr->memberName. the eHonorPointers mode is meant to produce strings 2094 // in this latter format 2095 s.PutCString("*("); 2096 } 2097 2098 ValueObject *parent = GetParent(); 2099 2100 if (parent) 2101 parent->GetExpressionPath(s, qualify_cxx_base_classes, epformat); 2102 2103 // if we are a deref_of_parent just because we are synthetic array members 2104 // made up to allow ptr[%d] syntax to work in variable printing, then add our 2105 // name ([%d]) to the expression path 2106 if (m_is_array_item_for_pointer && 2107 epformat == eGetExpressionPathFormatHonorPointers) 2108 s.PutCString(m_name.AsCString()); 2109 2110 if (!IsBaseClass()) { 2111 if (!is_deref_of_parent) { 2112 ValueObject *non_base_class_parent = GetNonBaseClassParent(); 2113 if (non_base_class_parent && 2114 !non_base_class_parent->GetName().IsEmpty()) { 2115 CompilerType non_base_class_parent_compiler_type = 2116 non_base_class_parent->GetCompilerType(); 2117 if (non_base_class_parent_compiler_type) { 2118 if (parent && parent->IsDereferenceOfParent() && 2119 epformat == eGetExpressionPathFormatHonorPointers) { 2120 s.PutCString("->"); 2121 } else { 2122 const uint32_t non_base_class_parent_type_info = 2123 non_base_class_parent_compiler_type.GetTypeInfo(); 2124 2125 if (non_base_class_parent_type_info & eTypeIsPointer) { 2126 s.PutCString("->"); 2127 } else if ((non_base_class_parent_type_info & eTypeHasChildren) && 2128 !(non_base_class_parent_type_info & eTypeIsArray)) { 2129 s.PutChar('.'); 2130 } 2131 } 2132 } 2133 } 2134 2135 const char *name = GetName().GetCString(); 2136 if (name) { 2137 if (qualify_cxx_base_classes) { 2138 if (GetBaseClassPath(s)) 2139 s.PutCString("::"); 2140 } 2141 s.PutCString(name); 2142 } 2143 } 2144 } 2145 2146 if (is_deref_of_parent && 2147 epformat == eGetExpressionPathFormatDereferencePointers) { 2148 s.PutChar(')'); 2149 } 2150 } 2151 2152 ValueObjectSP ValueObject::GetValueForExpressionPath( 2153 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2154 ExpressionPathEndResultType *final_value_type, 2155 const GetValueForExpressionPathOptions &options, 2156 ExpressionPathAftermath *final_task_on_target) { 2157 2158 ExpressionPathScanEndReason dummy_reason_to_stop = 2159 ValueObject::eExpressionPathScanEndReasonUnknown; 2160 ExpressionPathEndResultType dummy_final_value_type = 2161 ValueObject::eExpressionPathEndResultTypeInvalid; 2162 ExpressionPathAftermath dummy_final_task_on_target = 2163 ValueObject::eExpressionPathAftermathNothing; 2164 2165 ValueObjectSP ret_val = GetValueForExpressionPath_Impl( 2166 expression, reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2167 final_value_type ? final_value_type : &dummy_final_value_type, options, 2168 final_task_on_target ? final_task_on_target 2169 : &dummy_final_task_on_target); 2170 2171 if (!final_task_on_target || 2172 *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2173 return ret_val; 2174 2175 if (ret_val.get() && 2176 ((final_value_type ? *final_value_type : dummy_final_value_type) == 2177 eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress 2178 // of plain objects 2179 { 2180 if ((final_task_on_target ? *final_task_on_target 2181 : dummy_final_task_on_target) == 2182 ValueObject::eExpressionPathAftermathDereference) { 2183 Status error; 2184 ValueObjectSP final_value = ret_val->Dereference(error); 2185 if (error.Fail() || !final_value.get()) { 2186 if (reason_to_stop) 2187 *reason_to_stop = 2188 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2189 if (final_value_type) 2190 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2191 return ValueObjectSP(); 2192 } else { 2193 if (final_task_on_target) 2194 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2195 return final_value; 2196 } 2197 } 2198 if (*final_task_on_target == 2199 ValueObject::eExpressionPathAftermathTakeAddress) { 2200 Status error; 2201 ValueObjectSP final_value = ret_val->AddressOf(error); 2202 if (error.Fail() || !final_value.get()) { 2203 if (reason_to_stop) 2204 *reason_to_stop = 2205 ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2206 if (final_value_type) 2207 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2208 return ValueObjectSP(); 2209 } else { 2210 if (final_task_on_target) 2211 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2212 return final_value; 2213 } 2214 } 2215 } 2216 return ret_val; // final_task_on_target will still have its original value, so 2217 // you know I did not do it 2218 } 2219 2220 ValueObjectSP ValueObject::GetValueForExpressionPath_Impl( 2221 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2222 ExpressionPathEndResultType *final_result, 2223 const GetValueForExpressionPathOptions &options, 2224 ExpressionPathAftermath *what_next) { 2225 ValueObjectSP root = GetSP(); 2226 2227 if (!root) 2228 return nullptr; 2229 2230 llvm::StringRef remainder = expression; 2231 2232 while (true) { 2233 llvm::StringRef temp_expression = remainder; 2234 2235 CompilerType root_compiler_type = root->GetCompilerType(); 2236 CompilerType pointee_compiler_type; 2237 Flags pointee_compiler_type_info; 2238 2239 Flags root_compiler_type_info( 2240 root_compiler_type.GetTypeInfo(&pointee_compiler_type)); 2241 if (pointee_compiler_type) 2242 pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo()); 2243 2244 if (temp_expression.empty()) { 2245 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2246 return root; 2247 } 2248 2249 switch (temp_expression.front()) { 2250 case '-': { 2251 temp_expression = temp_expression.drop_front(); 2252 if (options.m_check_dot_vs_arrow_syntax && 2253 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2254 // use -> on a 2255 // non-pointer and I 2256 // must catch the error 2257 { 2258 *reason_to_stop = 2259 ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot; 2260 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2261 return ValueObjectSP(); 2262 } 2263 if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to 2264 // extract an ObjC IVar 2265 // when this is forbidden 2266 root_compiler_type_info.Test(eTypeIsPointer) && 2267 options.m_no_fragile_ivar) { 2268 *reason_to_stop = 2269 ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed; 2270 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2271 return ValueObjectSP(); 2272 } 2273 if (!temp_expression.startswith(">")) { 2274 *reason_to_stop = 2275 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2276 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2277 return ValueObjectSP(); 2278 } 2279 } 2280 LLVM_FALLTHROUGH; 2281 case '.': // or fallthrough from -> 2282 { 2283 if (options.m_check_dot_vs_arrow_syntax && 2284 temp_expression.front() == '.' && 2285 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2286 // use . on a pointer 2287 // and I must catch the 2288 // error 2289 { 2290 *reason_to_stop = 2291 ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow; 2292 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2293 return nullptr; 2294 } 2295 temp_expression = temp_expression.drop_front(); // skip . or > 2296 2297 size_t next_sep_pos = temp_expression.find_first_of("-.[", 1); 2298 ConstString child_name; 2299 if (next_sep_pos == llvm::StringRef::npos) // if no other separator just 2300 // expand this last layer 2301 { 2302 child_name.SetString(temp_expression); 2303 ValueObjectSP child_valobj_sp = 2304 root->GetChildMemberWithName(child_name, true); 2305 2306 if (child_valobj_sp.get()) // we know we are done, so just return 2307 { 2308 *reason_to_stop = 2309 ValueObject::eExpressionPathScanEndReasonEndOfString; 2310 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2311 return child_valobj_sp; 2312 } else { 2313 switch (options.m_synthetic_children_traversal) { 2314 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2315 None: 2316 break; 2317 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2318 FromSynthetic: 2319 if (root->IsSynthetic()) { 2320 child_valobj_sp = root->GetNonSyntheticValue(); 2321 if (child_valobj_sp.get()) 2322 child_valobj_sp = 2323 child_valobj_sp->GetChildMemberWithName(child_name, true); 2324 } 2325 break; 2326 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2327 ToSynthetic: 2328 if (!root->IsSynthetic()) { 2329 child_valobj_sp = root->GetSyntheticValue(); 2330 if (child_valobj_sp.get()) 2331 child_valobj_sp = 2332 child_valobj_sp->GetChildMemberWithName(child_name, true); 2333 } 2334 break; 2335 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2336 Both: 2337 if (root->IsSynthetic()) { 2338 child_valobj_sp = root->GetNonSyntheticValue(); 2339 if (child_valobj_sp.get()) 2340 child_valobj_sp = 2341 child_valobj_sp->GetChildMemberWithName(child_name, true); 2342 } else { 2343 child_valobj_sp = root->GetSyntheticValue(); 2344 if (child_valobj_sp.get()) 2345 child_valobj_sp = 2346 child_valobj_sp->GetChildMemberWithName(child_name, true); 2347 } 2348 break; 2349 } 2350 } 2351 2352 // if we are here and options.m_no_synthetic_children is true, 2353 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2354 // branch, and return an error 2355 if (child_valobj_sp.get()) // if it worked, just return 2356 { 2357 *reason_to_stop = 2358 ValueObject::eExpressionPathScanEndReasonEndOfString; 2359 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2360 return child_valobj_sp; 2361 } else { 2362 *reason_to_stop = 2363 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2364 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2365 return nullptr; 2366 } 2367 } else // other layers do expand 2368 { 2369 llvm::StringRef next_separator = temp_expression.substr(next_sep_pos); 2370 2371 child_name.SetString(temp_expression.slice(0, next_sep_pos)); 2372 2373 ValueObjectSP child_valobj_sp = 2374 root->GetChildMemberWithName(child_name, true); 2375 if (child_valobj_sp.get()) // store the new root and move on 2376 { 2377 root = child_valobj_sp; 2378 remainder = next_separator; 2379 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2380 continue; 2381 } else { 2382 switch (options.m_synthetic_children_traversal) { 2383 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2384 None: 2385 break; 2386 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2387 FromSynthetic: 2388 if (root->IsSynthetic()) { 2389 child_valobj_sp = root->GetNonSyntheticValue(); 2390 if (child_valobj_sp.get()) 2391 child_valobj_sp = 2392 child_valobj_sp->GetChildMemberWithName(child_name, true); 2393 } 2394 break; 2395 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2396 ToSynthetic: 2397 if (!root->IsSynthetic()) { 2398 child_valobj_sp = root->GetSyntheticValue(); 2399 if (child_valobj_sp.get()) 2400 child_valobj_sp = 2401 child_valobj_sp->GetChildMemberWithName(child_name, true); 2402 } 2403 break; 2404 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2405 Both: 2406 if (root->IsSynthetic()) { 2407 child_valobj_sp = root->GetNonSyntheticValue(); 2408 if (child_valobj_sp.get()) 2409 child_valobj_sp = 2410 child_valobj_sp->GetChildMemberWithName(child_name, true); 2411 } else { 2412 child_valobj_sp = root->GetSyntheticValue(); 2413 if (child_valobj_sp.get()) 2414 child_valobj_sp = 2415 child_valobj_sp->GetChildMemberWithName(child_name, true); 2416 } 2417 break; 2418 } 2419 } 2420 2421 // if we are here and options.m_no_synthetic_children is true, 2422 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2423 // branch, and return an error 2424 if (child_valobj_sp.get()) // if it worked, move on 2425 { 2426 root = child_valobj_sp; 2427 remainder = next_separator; 2428 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2429 continue; 2430 } else { 2431 *reason_to_stop = 2432 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2433 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2434 return nullptr; 2435 } 2436 } 2437 break; 2438 } 2439 case '[': { 2440 if (!root_compiler_type_info.Test(eTypeIsArray) && 2441 !root_compiler_type_info.Test(eTypeIsPointer) && 2442 !root_compiler_type_info.Test( 2443 eTypeIsVector)) // if this is not a T[] nor a T* 2444 { 2445 if (!root_compiler_type_info.Test( 2446 eTypeIsScalar)) // if this is not even a scalar... 2447 { 2448 if (options.m_synthetic_children_traversal == 2449 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2450 None) // ...only chance left is synthetic 2451 { 2452 *reason_to_stop = 2453 ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 2454 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2455 return ValueObjectSP(); 2456 } 2457 } else if (!options.m_allow_bitfields_syntax) // if this is a scalar, 2458 // check that we can 2459 // expand bitfields 2460 { 2461 *reason_to_stop = 2462 ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 2463 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2464 return ValueObjectSP(); 2465 } 2466 } 2467 if (temp_expression[1] == 2468 ']') // if this is an unbounded range it only works for arrays 2469 { 2470 if (!root_compiler_type_info.Test(eTypeIsArray)) { 2471 *reason_to_stop = 2472 ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 2473 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2474 return nullptr; 2475 } else // even if something follows, we cannot expand unbounded ranges, 2476 // just let the caller do it 2477 { 2478 *reason_to_stop = 2479 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2480 *final_result = 2481 ValueObject::eExpressionPathEndResultTypeUnboundedRange; 2482 return root; 2483 } 2484 } 2485 2486 size_t close_bracket_position = temp_expression.find(']', 1); 2487 if (close_bracket_position == 2488 llvm::StringRef::npos) // if there is no ], this is a syntax error 2489 { 2490 *reason_to_stop = 2491 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2492 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2493 return nullptr; 2494 } 2495 2496 llvm::StringRef bracket_expr = 2497 temp_expression.slice(1, close_bracket_position); 2498 2499 // If this was an empty expression it would have been caught by the if 2500 // above. 2501 assert(!bracket_expr.empty()); 2502 2503 if (!bracket_expr.contains('-')) { 2504 // if no separator, this is of the form [N]. Note that this cannot be 2505 // an unbounded range of the form [], because that case was handled 2506 // above with an unconditional return. 2507 unsigned long index = 0; 2508 if (bracket_expr.getAsInteger(0, index)) { 2509 *reason_to_stop = 2510 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2511 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2512 return nullptr; 2513 } 2514 2515 // from here on we do have a valid index 2516 if (root_compiler_type_info.Test(eTypeIsArray)) { 2517 ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true); 2518 if (!child_valobj_sp) 2519 child_valobj_sp = root->GetSyntheticArrayMember(index, true); 2520 if (!child_valobj_sp) 2521 if (root->HasSyntheticValue() && 2522 root->GetSyntheticValue()->GetNumChildren() > index) 2523 child_valobj_sp = 2524 root->GetSyntheticValue()->GetChildAtIndex(index, true); 2525 if (child_valobj_sp) { 2526 root = child_valobj_sp; 2527 remainder = 2528 temp_expression.substr(close_bracket_position + 1); // skip ] 2529 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2530 continue; 2531 } else { 2532 *reason_to_stop = 2533 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2534 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2535 return nullptr; 2536 } 2537 } else if (root_compiler_type_info.Test(eTypeIsPointer)) { 2538 if (*what_next == 2539 ValueObject:: 2540 eExpressionPathAftermathDereference && // if this is a 2541 // ptr-to-scalar, I 2542 // am accessing it 2543 // by index and I 2544 // would have 2545 // deref'ed anyway, 2546 // then do it now 2547 // and use this as 2548 // a bitfield 2549 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2550 Status error; 2551 root = root->Dereference(error); 2552 if (error.Fail() || !root) { 2553 *reason_to_stop = 2554 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2555 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2556 return nullptr; 2557 } else { 2558 *what_next = eExpressionPathAftermathNothing; 2559 continue; 2560 } 2561 } else { 2562 if (root->GetCompilerType().GetMinimumLanguage() == 2563 eLanguageTypeObjC && 2564 pointee_compiler_type_info.AllClear(eTypeIsPointer) && 2565 root->HasSyntheticValue() && 2566 (options.m_synthetic_children_traversal == 2567 GetValueForExpressionPathOptions:: 2568 SyntheticChildrenTraversal::ToSynthetic || 2569 options.m_synthetic_children_traversal == 2570 GetValueForExpressionPathOptions:: 2571 SyntheticChildrenTraversal::Both)) { 2572 root = root->GetSyntheticValue()->GetChildAtIndex(index, true); 2573 } else 2574 root = root->GetSyntheticArrayMember(index, true); 2575 if (!root) { 2576 *reason_to_stop = 2577 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2578 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2579 return nullptr; 2580 } else { 2581 remainder = 2582 temp_expression.substr(close_bracket_position + 1); // skip ] 2583 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2584 continue; 2585 } 2586 } 2587 } else if (root_compiler_type_info.Test(eTypeIsScalar)) { 2588 root = root->GetSyntheticBitFieldChild(index, index, true); 2589 if (!root) { 2590 *reason_to_stop = 2591 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2592 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2593 return nullptr; 2594 } else // we do not know how to expand members of bitfields, so we 2595 // just return and let the caller do any further processing 2596 { 2597 *reason_to_stop = ValueObject:: 2598 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2599 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2600 return root; 2601 } 2602 } else if (root_compiler_type_info.Test(eTypeIsVector)) { 2603 root = root->GetChildAtIndex(index, true); 2604 if (!root) { 2605 *reason_to_stop = 2606 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2607 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2608 return ValueObjectSP(); 2609 } else { 2610 remainder = 2611 temp_expression.substr(close_bracket_position + 1); // skip ] 2612 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2613 continue; 2614 } 2615 } else if (options.m_synthetic_children_traversal == 2616 GetValueForExpressionPathOptions:: 2617 SyntheticChildrenTraversal::ToSynthetic || 2618 options.m_synthetic_children_traversal == 2619 GetValueForExpressionPathOptions:: 2620 SyntheticChildrenTraversal::Both) { 2621 if (root->HasSyntheticValue()) 2622 root = root->GetSyntheticValue(); 2623 else if (!root->IsSynthetic()) { 2624 *reason_to_stop = 2625 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2626 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2627 return nullptr; 2628 } 2629 // if we are here, then root itself is a synthetic VO.. should be 2630 // good to go 2631 2632 if (!root) { 2633 *reason_to_stop = 2634 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2635 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2636 return nullptr; 2637 } 2638 root = root->GetChildAtIndex(index, true); 2639 if (!root) { 2640 *reason_to_stop = 2641 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2642 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2643 return nullptr; 2644 } else { 2645 remainder = 2646 temp_expression.substr(close_bracket_position + 1); // skip ] 2647 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2648 continue; 2649 } 2650 } else { 2651 *reason_to_stop = 2652 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2653 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2654 return nullptr; 2655 } 2656 } else { 2657 // we have a low and a high index 2658 llvm::StringRef sleft, sright; 2659 unsigned long low_index, high_index; 2660 std::tie(sleft, sright) = bracket_expr.split('-'); 2661 if (sleft.getAsInteger(0, low_index) || 2662 sright.getAsInteger(0, high_index)) { 2663 *reason_to_stop = 2664 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2665 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2666 return nullptr; 2667 } 2668 2669 if (low_index > high_index) // swap indices if required 2670 std::swap(low_index, high_index); 2671 2672 if (root_compiler_type_info.Test( 2673 eTypeIsScalar)) // expansion only works for scalars 2674 { 2675 root = root->GetSyntheticBitFieldChild(low_index, high_index, true); 2676 if (!root) { 2677 *reason_to_stop = 2678 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2679 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2680 return nullptr; 2681 } else { 2682 *reason_to_stop = ValueObject:: 2683 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2684 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2685 return root; 2686 } 2687 } else if (root_compiler_type_info.Test( 2688 eTypeIsPointer) && // if this is a ptr-to-scalar, I am 2689 // accessing it by index and I would 2690 // have deref'ed anyway, then do it 2691 // now and use this as a bitfield 2692 *what_next == 2693 ValueObject::eExpressionPathAftermathDereference && 2694 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2695 Status error; 2696 root = root->Dereference(error); 2697 if (error.Fail() || !root) { 2698 *reason_to_stop = 2699 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2700 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2701 return nullptr; 2702 } else { 2703 *what_next = ValueObject::eExpressionPathAftermathNothing; 2704 continue; 2705 } 2706 } else { 2707 *reason_to_stop = 2708 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2709 *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange; 2710 return root; 2711 } 2712 } 2713 break; 2714 } 2715 default: // some non-separator is in the way 2716 { 2717 *reason_to_stop = 2718 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2719 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2720 return nullptr; 2721 } 2722 } 2723 } 2724 } 2725 2726 void ValueObject::LogValueObject(Log *log) { 2727 if (log) 2728 return LogValueObject(log, DumpValueObjectOptions(*this)); 2729 } 2730 2731 void ValueObject::LogValueObject(Log *log, 2732 const DumpValueObjectOptions &options) { 2733 if (log) { 2734 StreamString s; 2735 Dump(s, options); 2736 if (s.GetSize()) 2737 log->PutCString(s.GetData()); 2738 } 2739 } 2740 2741 void ValueObject::Dump(Stream &s) { Dump(s, DumpValueObjectOptions(*this)); } 2742 2743 void ValueObject::Dump(Stream &s, const DumpValueObjectOptions &options) { 2744 ValueObjectPrinter printer(this, &s, options); 2745 printer.PrintValueObject(); 2746 } 2747 2748 ValueObjectSP ValueObject::CreateConstantValue(ConstString name) { 2749 ValueObjectSP valobj_sp; 2750 2751 if (UpdateValueIfNeeded(false) && m_error.Success()) { 2752 ExecutionContext exe_ctx(GetExecutionContextRef()); 2753 2754 DataExtractor data; 2755 data.SetByteOrder(m_data.GetByteOrder()); 2756 data.SetAddressByteSize(m_data.GetAddressByteSize()); 2757 2758 if (IsBitfield()) { 2759 Value v(Scalar(GetValueAsUnsigned(UINT64_MAX))); 2760 m_error = v.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 2761 } else 2762 m_error = m_value.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 2763 2764 valobj_sp = ValueObjectConstResult::Create( 2765 exe_ctx.GetBestExecutionContextScope(), GetCompilerType(), name, data, 2766 GetAddressOf()); 2767 } 2768 2769 if (!valobj_sp) { 2770 ExecutionContext exe_ctx(GetExecutionContextRef()); 2771 valobj_sp = ValueObjectConstResult::Create( 2772 exe_ctx.GetBestExecutionContextScope(), m_error); 2773 } 2774 return valobj_sp; 2775 } 2776 2777 ValueObjectSP ValueObject::GetQualifiedRepresentationIfAvailable( 2778 lldb::DynamicValueType dynValue, bool synthValue) { 2779 ValueObjectSP result_sp(GetSP()); 2780 2781 switch (dynValue) { 2782 case lldb::eDynamicCanRunTarget: 2783 case lldb::eDynamicDontRunTarget: { 2784 if (!result_sp->IsDynamic()) { 2785 if (result_sp->GetDynamicValue(dynValue)) 2786 result_sp = result_sp->GetDynamicValue(dynValue); 2787 } 2788 } break; 2789 case lldb::eNoDynamicValues: { 2790 if (result_sp->IsDynamic()) { 2791 if (result_sp->GetStaticValue()) 2792 result_sp = result_sp->GetStaticValue(); 2793 } 2794 } break; 2795 } 2796 2797 if (synthValue) { 2798 if (!result_sp->IsSynthetic()) { 2799 if (result_sp->GetSyntheticValue()) 2800 result_sp = result_sp->GetSyntheticValue(); 2801 } 2802 } else { 2803 if (result_sp->IsSynthetic()) { 2804 if (result_sp->GetNonSyntheticValue()) 2805 result_sp = result_sp->GetNonSyntheticValue(); 2806 } 2807 } 2808 2809 return result_sp; 2810 } 2811 2812 ValueObjectSP ValueObject::Dereference(Status &error) { 2813 if (m_deref_valobj) 2814 return m_deref_valobj->GetSP(); 2815 2816 const bool is_pointer_or_reference_type = IsPointerOrReferenceType(); 2817 if (is_pointer_or_reference_type) { 2818 bool omit_empty_base_classes = true; 2819 bool ignore_array_bounds = false; 2820 2821 std::string child_name_str; 2822 uint32_t child_byte_size = 0; 2823 int32_t child_byte_offset = 0; 2824 uint32_t child_bitfield_bit_size = 0; 2825 uint32_t child_bitfield_bit_offset = 0; 2826 bool child_is_base_class = false; 2827 bool child_is_deref_of_parent = false; 2828 const bool transparent_pointers = false; 2829 CompilerType compiler_type = GetCompilerType(); 2830 CompilerType child_compiler_type; 2831 uint64_t language_flags; 2832 2833 ExecutionContext exe_ctx(GetExecutionContextRef()); 2834 2835 child_compiler_type = compiler_type.GetChildCompilerTypeAtIndex( 2836 &exe_ctx, 0, transparent_pointers, omit_empty_base_classes, 2837 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 2838 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 2839 child_is_deref_of_parent, this, language_flags); 2840 if (child_compiler_type && child_byte_size) { 2841 ConstString child_name; 2842 if (!child_name_str.empty()) 2843 child_name.SetCString(child_name_str.c_str()); 2844 2845 m_deref_valobj = new ValueObjectChild( 2846 *this, child_compiler_type, child_name, child_byte_size, 2847 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 2848 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 2849 language_flags); 2850 } 2851 } else if (HasSyntheticValue()) { 2852 m_deref_valobj = 2853 GetSyntheticValue() 2854 ->GetChildMemberWithName(ConstString("$$dereference$$"), true) 2855 .get(); 2856 } 2857 2858 if (m_deref_valobj) { 2859 error.Clear(); 2860 return m_deref_valobj->GetSP(); 2861 } else { 2862 StreamString strm; 2863 GetExpressionPath(strm, true); 2864 2865 if (is_pointer_or_reference_type) 2866 error.SetErrorStringWithFormat("dereference failed: (%s) %s", 2867 GetTypeName().AsCString("<invalid type>"), 2868 strm.GetData()); 2869 else 2870 error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s", 2871 GetTypeName().AsCString("<invalid type>"), 2872 strm.GetData()); 2873 return ValueObjectSP(); 2874 } 2875 } 2876 2877 ValueObjectSP ValueObject::AddressOf(Status &error) { 2878 if (m_addr_of_valobj_sp) 2879 return m_addr_of_valobj_sp; 2880 2881 AddressType address_type = eAddressTypeInvalid; 2882 const bool scalar_is_load_address = false; 2883 addr_t addr = GetAddressOf(scalar_is_load_address, &address_type); 2884 error.Clear(); 2885 if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) { 2886 switch (address_type) { 2887 case eAddressTypeInvalid: { 2888 StreamString expr_path_strm; 2889 GetExpressionPath(expr_path_strm, true); 2890 error.SetErrorStringWithFormat("'%s' is not in memory", 2891 expr_path_strm.GetData()); 2892 } break; 2893 2894 case eAddressTypeFile: 2895 case eAddressTypeLoad: { 2896 CompilerType compiler_type = GetCompilerType(); 2897 if (compiler_type) { 2898 std::string name(1, '&'); 2899 name.append(m_name.AsCString("")); 2900 ExecutionContext exe_ctx(GetExecutionContextRef()); 2901 m_addr_of_valobj_sp = ValueObjectConstResult::Create( 2902 exe_ctx.GetBestExecutionContextScope(), 2903 compiler_type.GetPointerType(), ConstString(name.c_str()), addr, 2904 eAddressTypeInvalid, m_data.GetAddressByteSize()); 2905 } 2906 } break; 2907 default: 2908 break; 2909 } 2910 } else { 2911 StreamString expr_path_strm; 2912 GetExpressionPath(expr_path_strm, true); 2913 error.SetErrorStringWithFormat("'%s' doesn't have a valid address", 2914 expr_path_strm.GetData()); 2915 } 2916 2917 return m_addr_of_valobj_sp; 2918 } 2919 2920 ValueObjectSP ValueObject::Cast(const CompilerType &compiler_type) { 2921 return ValueObjectCast::Create(*this, GetName(), compiler_type); 2922 } 2923 2924 lldb::ValueObjectSP ValueObject::Clone(ConstString new_name) { 2925 return ValueObjectCast::Create(*this, new_name, GetCompilerType()); 2926 } 2927 2928 ValueObjectSP ValueObject::CastPointerType(const char *name, 2929 CompilerType &compiler_type) { 2930 ValueObjectSP valobj_sp; 2931 AddressType address_type; 2932 addr_t ptr_value = GetPointerValue(&address_type); 2933 2934 if (ptr_value != LLDB_INVALID_ADDRESS) { 2935 Address ptr_addr(ptr_value); 2936 ExecutionContext exe_ctx(GetExecutionContextRef()); 2937 valobj_sp = ValueObjectMemory::Create( 2938 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, compiler_type); 2939 } 2940 return valobj_sp; 2941 } 2942 2943 ValueObjectSP ValueObject::CastPointerType(const char *name, TypeSP &type_sp) { 2944 ValueObjectSP valobj_sp; 2945 AddressType address_type; 2946 addr_t ptr_value = GetPointerValue(&address_type); 2947 2948 if (ptr_value != LLDB_INVALID_ADDRESS) { 2949 Address ptr_addr(ptr_value); 2950 ExecutionContext exe_ctx(GetExecutionContextRef()); 2951 valobj_sp = ValueObjectMemory::Create( 2952 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, type_sp); 2953 } 2954 return valobj_sp; 2955 } 2956 2957 ValueObject::EvaluationPoint::EvaluationPoint() 2958 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) {} 2959 2960 ValueObject::EvaluationPoint::EvaluationPoint(ExecutionContextScope *exe_scope, 2961 bool use_selected) 2962 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) { 2963 ExecutionContext exe_ctx(exe_scope); 2964 TargetSP target_sp(exe_ctx.GetTargetSP()); 2965 if (target_sp) { 2966 m_exe_ctx_ref.SetTargetSP(target_sp); 2967 ProcessSP process_sp(exe_ctx.GetProcessSP()); 2968 if (!process_sp) 2969 process_sp = target_sp->GetProcessSP(); 2970 2971 if (process_sp) { 2972 m_mod_id = process_sp->GetModID(); 2973 m_exe_ctx_ref.SetProcessSP(process_sp); 2974 2975 ThreadSP thread_sp(exe_ctx.GetThreadSP()); 2976 2977 if (!thread_sp) { 2978 if (use_selected) 2979 thread_sp = process_sp->GetThreadList().GetSelectedThread(); 2980 } 2981 2982 if (thread_sp) { 2983 m_exe_ctx_ref.SetThreadSP(thread_sp); 2984 2985 StackFrameSP frame_sp(exe_ctx.GetFrameSP()); 2986 if (!frame_sp) { 2987 if (use_selected) 2988 frame_sp = thread_sp->GetSelectedFrame(); 2989 } 2990 if (frame_sp) 2991 m_exe_ctx_ref.SetFrameSP(frame_sp); 2992 } 2993 } 2994 } 2995 } 2996 2997 ValueObject::EvaluationPoint::EvaluationPoint( 2998 const ValueObject::EvaluationPoint &rhs) 2999 : m_mod_id(), m_exe_ctx_ref(rhs.m_exe_ctx_ref), m_needs_update(true) {} 3000 3001 ValueObject::EvaluationPoint::~EvaluationPoint() {} 3002 3003 // This function checks the EvaluationPoint against the current process state. 3004 // If the current state matches the evaluation point, or the evaluation point 3005 // is already invalid, then we return false, meaning "no change". If the 3006 // current state is different, we update our state, and return true meaning 3007 // "yes, change". If we did see a change, we also set m_needs_update to true, 3008 // so future calls to NeedsUpdate will return true. exe_scope will be set to 3009 // the current execution context scope. 3010 3011 bool ValueObject::EvaluationPoint::SyncWithProcessState( 3012 bool accept_invalid_exe_ctx) { 3013 // Start with the target, if it is NULL, then we're obviously not going to 3014 // get any further: 3015 const bool thread_and_frame_only_if_stopped = true; 3016 ExecutionContext exe_ctx( 3017 m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped)); 3018 3019 if (exe_ctx.GetTargetPtr() == nullptr) 3020 return false; 3021 3022 // If we don't have a process nothing can change. 3023 Process *process = exe_ctx.GetProcessPtr(); 3024 if (process == nullptr) 3025 return false; 3026 3027 // If our stop id is the current stop ID, nothing has changed: 3028 ProcessModID current_mod_id = process->GetModID(); 3029 3030 // If the current stop id is 0, either we haven't run yet, or the process 3031 // state has been cleared. In either case, we aren't going to be able to sync 3032 // with the process state. 3033 if (current_mod_id.GetStopID() == 0) 3034 return false; 3035 3036 bool changed = false; 3037 const bool was_valid = m_mod_id.IsValid(); 3038 if (was_valid) { 3039 if (m_mod_id == current_mod_id) { 3040 // Everything is already up to date in this object, no need to update the 3041 // execution context scope. 3042 changed = false; 3043 } else { 3044 m_mod_id = current_mod_id; 3045 m_needs_update = true; 3046 changed = true; 3047 } 3048 } 3049 3050 // Now re-look up the thread and frame in case the underlying objects have 3051 // gone away & been recreated. That way we'll be sure to return a valid 3052 // exe_scope. If we used to have a thread or a frame but can't find it 3053 // anymore, then mark ourselves as invalid. 3054 3055 if (!accept_invalid_exe_ctx) { 3056 if (m_exe_ctx_ref.HasThreadRef()) { 3057 ThreadSP thread_sp(m_exe_ctx_ref.GetThreadSP()); 3058 if (thread_sp) { 3059 if (m_exe_ctx_ref.HasFrameRef()) { 3060 StackFrameSP frame_sp(m_exe_ctx_ref.GetFrameSP()); 3061 if (!frame_sp) { 3062 // We used to have a frame, but now it is gone 3063 SetInvalid(); 3064 changed = was_valid; 3065 } 3066 } 3067 } else { 3068 // We used to have a thread, but now it is gone 3069 SetInvalid(); 3070 changed = was_valid; 3071 } 3072 } 3073 } 3074 3075 return changed; 3076 } 3077 3078 void ValueObject::EvaluationPoint::SetUpdated() { 3079 ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP()); 3080 if (process_sp) 3081 m_mod_id = process_sp->GetModID(); 3082 m_needs_update = false; 3083 } 3084 3085 void ValueObject::ClearUserVisibleData(uint32_t clear_mask) { 3086 if ((clear_mask & eClearUserVisibleDataItemsValue) == 3087 eClearUserVisibleDataItemsValue) 3088 m_value_str.clear(); 3089 3090 if ((clear_mask & eClearUserVisibleDataItemsLocation) == 3091 eClearUserVisibleDataItemsLocation) 3092 m_location_str.clear(); 3093 3094 if ((clear_mask & eClearUserVisibleDataItemsSummary) == 3095 eClearUserVisibleDataItemsSummary) 3096 m_summary_str.clear(); 3097 3098 if ((clear_mask & eClearUserVisibleDataItemsDescription) == 3099 eClearUserVisibleDataItemsDescription) 3100 m_object_desc_str.clear(); 3101 3102 if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == 3103 eClearUserVisibleDataItemsSyntheticChildren) { 3104 if (m_synthetic_value) 3105 m_synthetic_value = nullptr; 3106 } 3107 3108 if ((clear_mask & eClearUserVisibleDataItemsValidator) == 3109 eClearUserVisibleDataItemsValidator) 3110 m_validation_result.reset(); 3111 } 3112 3113 SymbolContextScope *ValueObject::GetSymbolContextScope() { 3114 if (m_parent) { 3115 if (!m_parent->IsPointerOrReferenceType()) 3116 return m_parent->GetSymbolContextScope(); 3117 } 3118 return nullptr; 3119 } 3120 3121 lldb::ValueObjectSP 3122 ValueObject::CreateValueObjectFromExpression(llvm::StringRef name, 3123 llvm::StringRef expression, 3124 const ExecutionContext &exe_ctx) { 3125 return CreateValueObjectFromExpression(name, expression, exe_ctx, 3126 EvaluateExpressionOptions()); 3127 } 3128 3129 lldb::ValueObjectSP ValueObject::CreateValueObjectFromExpression( 3130 llvm::StringRef name, llvm::StringRef expression, 3131 const ExecutionContext &exe_ctx, const EvaluateExpressionOptions &options) { 3132 lldb::ValueObjectSP retval_sp; 3133 lldb::TargetSP target_sp(exe_ctx.GetTargetSP()); 3134 if (!target_sp) 3135 return retval_sp; 3136 if (expression.empty()) 3137 return retval_sp; 3138 target_sp->EvaluateExpression(expression, exe_ctx.GetFrameSP().get(), 3139 retval_sp, options); 3140 if (retval_sp && !name.empty()) 3141 retval_sp->SetName(ConstString(name)); 3142 return retval_sp; 3143 } 3144 3145 lldb::ValueObjectSP ValueObject::CreateValueObjectFromAddress( 3146 llvm::StringRef name, uint64_t address, const ExecutionContext &exe_ctx, 3147 CompilerType type) { 3148 if (type) { 3149 CompilerType pointer_type(type.GetPointerType()); 3150 if (pointer_type) { 3151 lldb::DataBufferSP buffer( 3152 new lldb_private::DataBufferHeap(&address, sizeof(lldb::addr_t))); 3153 lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create( 3154 exe_ctx.GetBestExecutionContextScope(), pointer_type, 3155 ConstString(name), buffer, exe_ctx.GetByteOrder(), 3156 exe_ctx.GetAddressByteSize())); 3157 if (ptr_result_valobj_sp) { 3158 ptr_result_valobj_sp->GetValue().SetValueType( 3159 Value::eValueTypeLoadAddress); 3160 Status err; 3161 ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err); 3162 if (ptr_result_valobj_sp && !name.empty()) 3163 ptr_result_valobj_sp->SetName(ConstString(name)); 3164 } 3165 return ptr_result_valobj_sp; 3166 } 3167 } 3168 return lldb::ValueObjectSP(); 3169 } 3170 3171 lldb::ValueObjectSP ValueObject::CreateValueObjectFromData( 3172 llvm::StringRef name, const DataExtractor &data, 3173 const ExecutionContext &exe_ctx, CompilerType type) { 3174 lldb::ValueObjectSP new_value_sp; 3175 new_value_sp = ValueObjectConstResult::Create( 3176 exe_ctx.GetBestExecutionContextScope(), type, ConstString(name), data, 3177 LLDB_INVALID_ADDRESS); 3178 new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad); 3179 if (new_value_sp && !name.empty()) 3180 new_value_sp->SetName(ConstString(name)); 3181 return new_value_sp; 3182 } 3183 3184 ModuleSP ValueObject::GetModule() { 3185 ValueObject *root(GetRoot()); 3186 if (root != this) 3187 return root->GetModule(); 3188 return lldb::ModuleSP(); 3189 } 3190 3191 ValueObject *ValueObject::GetRoot() { 3192 if (m_root) 3193 return m_root; 3194 return (m_root = FollowParentChain([](ValueObject *vo) -> bool { 3195 return (vo->m_parent != nullptr); 3196 })); 3197 } 3198 3199 ValueObject * 3200 ValueObject::FollowParentChain(std::function<bool(ValueObject *)> f) { 3201 ValueObject *vo = this; 3202 while (vo) { 3203 if (!f(vo)) 3204 break; 3205 vo = vo->m_parent; 3206 } 3207 return vo; 3208 } 3209 3210 AddressType ValueObject::GetAddressTypeOfChildren() { 3211 if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) { 3212 ValueObject *root(GetRoot()); 3213 if (root != this) 3214 return root->GetAddressTypeOfChildren(); 3215 } 3216 return m_address_type_of_ptr_or_ref_children; 3217 } 3218 3219 lldb::DynamicValueType ValueObject::GetDynamicValueType() { 3220 ValueObject *with_dv_info = this; 3221 while (with_dv_info) { 3222 if (with_dv_info->HasDynamicValueTypeInfo()) 3223 return with_dv_info->GetDynamicValueTypeImpl(); 3224 with_dv_info = with_dv_info->m_parent; 3225 } 3226 return lldb::eNoDynamicValues; 3227 } 3228 3229 lldb::Format ValueObject::GetFormat() const { 3230 const ValueObject *with_fmt_info = this; 3231 while (with_fmt_info) { 3232 if (with_fmt_info->m_format != lldb::eFormatDefault) 3233 return with_fmt_info->m_format; 3234 with_fmt_info = with_fmt_info->m_parent; 3235 } 3236 return m_format; 3237 } 3238 3239 lldb::LanguageType ValueObject::GetPreferredDisplayLanguage() { 3240 lldb::LanguageType type = m_preferred_display_language; 3241 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) { 3242 if (GetRoot()) { 3243 if (GetRoot() == this) { 3244 if (StackFrameSP frame_sp = GetFrameSP()) { 3245 const SymbolContext &sc( 3246 frame_sp->GetSymbolContext(eSymbolContextCompUnit)); 3247 if (CompileUnit *cu = sc.comp_unit) 3248 type = cu->GetLanguage(); 3249 } 3250 } else { 3251 type = GetRoot()->GetPreferredDisplayLanguage(); 3252 } 3253 } 3254 } 3255 return (m_preferred_display_language = type); // only compute it once 3256 } 3257 3258 void ValueObject::SetPreferredDisplayLanguage(lldb::LanguageType lt) { 3259 m_preferred_display_language = lt; 3260 } 3261 3262 void ValueObject::SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType lt) { 3263 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 3264 SetPreferredDisplayLanguage(lt); 3265 } 3266 3267 bool ValueObject::CanProvideValue() { 3268 // we need to support invalid types as providers of values because some bare- 3269 // board debugging scenarios have no notion of types, but still manage to 3270 // have raw numeric values for things like registers. sigh. 3271 const CompilerType &type(GetCompilerType()); 3272 return (!type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue)); 3273 } 3274 3275 bool ValueObject::IsChecksumEmpty() { return m_value_checksum.empty(); } 3276 3277 ValueObjectSP ValueObject::Persist() { 3278 if (!UpdateValueIfNeeded()) 3279 return nullptr; 3280 3281 TargetSP target_sp(GetTargetSP()); 3282 if (!target_sp) 3283 return nullptr; 3284 3285 PersistentExpressionState *persistent_state = 3286 target_sp->GetPersistentExpressionStateForLanguage( 3287 GetPreferredDisplayLanguage()); 3288 3289 if (!persistent_state) 3290 return nullptr; 3291 3292 auto prefix = persistent_state->GetPersistentVariablePrefix(); 3293 ConstString name = 3294 persistent_state->GetNextPersistentVariableName(*target_sp, prefix); 3295 3296 ValueObjectSP const_result_sp = 3297 ValueObjectConstResult::Create(target_sp.get(), GetValue(), name); 3298 3299 ExpressionVariableSP clang_var_sp = 3300 persistent_state->CreatePersistentVariable(const_result_sp); 3301 clang_var_sp->m_live_sp = clang_var_sp->m_frozen_sp; 3302 clang_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference; 3303 3304 return clang_var_sp->GetValueObject(); 3305 } 3306 3307 bool ValueObject::IsSyntheticChildrenGenerated() { 3308 return m_is_synthetic_children_generated; 3309 } 3310 3311 void ValueObject::SetSyntheticChildrenGenerated(bool b) { 3312 m_is_synthetic_children_generated = b; 3313 } 3314 3315 uint64_t ValueObject::GetLanguageFlags() { return m_language_flags; } 3316 3317 void ValueObject::SetLanguageFlags(uint64_t flags) { m_language_flags = flags; } 3318 3319 ValueObjectManager::ValueObjectManager(lldb::ValueObjectSP in_valobj_sp, 3320 lldb::DynamicValueType use_dynamic, 3321 bool use_synthetic) : m_root_valobj_sp(), 3322 m_user_valobj_sp(), m_use_dynamic(use_dynamic), m_stop_id(UINT32_MAX), 3323 m_use_synthetic(use_synthetic) { 3324 if (!in_valobj_sp) 3325 return; 3326 // If the user passes in a value object that is dynamic or synthetic, then 3327 // water it down to the static type. 3328 m_root_valobj_sp = in_valobj_sp->GetQualifiedRepresentationIfAvailable(lldb::eNoDynamicValues, false); 3329 } 3330 3331 bool ValueObjectManager::IsValid() const { 3332 if (!m_root_valobj_sp) 3333 return false; 3334 lldb::TargetSP target_sp = GetTargetSP(); 3335 if (target_sp) 3336 return target_sp->IsValid(); 3337 return false; 3338 } 3339 3340 lldb::ValueObjectSP ValueObjectManager::GetSP() { 3341 lldb::ProcessSP process_sp = GetProcessSP(); 3342 if (!process_sp) 3343 return lldb::ValueObjectSP(); 3344 3345 const uint32_t current_stop_id = process_sp->GetLastNaturalStopID(); 3346 if (current_stop_id == m_stop_id) 3347 return m_user_valobj_sp; 3348 3349 m_stop_id = current_stop_id; 3350 3351 if (!m_root_valobj_sp) { 3352 m_user_valobj_sp.reset(); 3353 return m_root_valobj_sp; 3354 } 3355 3356 m_user_valobj_sp = m_root_valobj_sp; 3357 3358 if (m_use_dynamic != lldb::eNoDynamicValues) { 3359 lldb::ValueObjectSP dynamic_sp = m_user_valobj_sp->GetDynamicValue(m_use_dynamic); 3360 if (dynamic_sp) 3361 m_user_valobj_sp = dynamic_sp; 3362 } 3363 3364 if (m_use_synthetic) { 3365 lldb::ValueObjectSP synthetic_sp = m_user_valobj_sp->GetSyntheticValue(m_use_synthetic); 3366 if (synthetic_sp) 3367 m_user_valobj_sp = synthetic_sp; 3368 } 3369 3370 return m_user_valobj_sp; 3371 } 3372 3373 void ValueObjectManager::SetUseDynamic(lldb::DynamicValueType use_dynamic) { 3374 if (use_dynamic != m_use_dynamic) { 3375 m_use_dynamic = use_dynamic; 3376 m_user_valobj_sp.reset(); 3377 m_stop_id = UINT32_MAX; 3378 } 3379 } 3380 3381 void ValueObjectManager::SetUseSynthetic(bool use_synthetic) { 3382 if (m_use_synthetic != use_synthetic) { 3383 m_use_synthetic = use_synthetic; 3384 m_user_valobj_sp.reset(); 3385 m_stop_id = UINT32_MAX; 3386 } 3387 } 3388 3389 lldb::TargetSP ValueObjectManager::GetTargetSP() const { 3390 if (!m_root_valobj_sp) 3391 return m_root_valobj_sp->GetTargetSP(); 3392 return lldb::TargetSP(); 3393 } 3394 3395 lldb::ProcessSP ValueObjectManager::GetProcessSP() const { 3396 if (m_root_valobj_sp) 3397 return m_root_valobj_sp->GetProcessSP(); 3398 return lldb::ProcessSP(); 3399 } 3400 3401 lldb::ThreadSP ValueObjectManager::GetThreadSP() const { 3402 if (m_root_valobj_sp) 3403 return m_root_valobj_sp->GetThreadSP(); 3404 return lldb::ThreadSP(); 3405 } 3406 3407 lldb::StackFrameSP ValueObjectManager::GetFrameSP() const { 3408 if (m_root_valobj_sp) 3409 return m_root_valobj_sp->GetFrameSP(); 3410 return lldb::StackFrameSP(); 3411 } 3412