1 //===-- ValueObject.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Core/ValueObject.h" 10 11 #include "lldb/Core/Address.h" 12 #include "lldb/Core/Module.h" 13 #include "lldb/Core/ValueObjectCast.h" 14 #include "lldb/Core/ValueObjectChild.h" 15 #include "lldb/Core/ValueObjectConstResult.h" 16 #include "lldb/Core/ValueObjectDynamicValue.h" 17 #include "lldb/Core/ValueObjectMemory.h" 18 #include "lldb/Core/ValueObjectSyntheticFilter.h" 19 #include "lldb/DataFormatters/DataVisualization.h" 20 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 21 #include "lldb/DataFormatters/FormatManager.h" 22 #include "lldb/DataFormatters/StringPrinter.h" 23 #include "lldb/DataFormatters/TypeFormat.h" 24 #include "lldb/DataFormatters/TypeSummary.h" 25 #include "lldb/DataFormatters/ValueObjectPrinter.h" 26 #include "lldb/Expression/ExpressionVariable.h" 27 #include "lldb/Host/Config.h" 28 #include "lldb/Symbol/CompileUnit.h" 29 #include "lldb/Symbol/CompilerType.h" 30 #include "lldb/Symbol/Declaration.h" 31 #include "lldb/Symbol/SymbolContext.h" 32 #include "lldb/Symbol/Type.h" 33 #include "lldb/Symbol/Variable.h" 34 #include "lldb/Target/ExecutionContext.h" 35 #include "lldb/Target/Language.h" 36 #include "lldb/Target/LanguageRuntime.h" 37 #include "lldb/Target/Process.h" 38 #include "lldb/Target/StackFrame.h" 39 #include "lldb/Target/Target.h" 40 #include "lldb/Target/Thread.h" 41 #include "lldb/Target/ThreadList.h" 42 #include "lldb/Utility/DataBuffer.h" 43 #include "lldb/Utility/DataBufferHeap.h" 44 #include "lldb/Utility/Flags.h" 45 #include "lldb/Utility/Log.h" 46 #include "lldb/Utility/Logging.h" 47 #include "lldb/Utility/Scalar.h" 48 #include "lldb/Utility/Stream.h" 49 #include "lldb/Utility/StreamString.h" 50 #include "lldb/lldb-private-types.h" 51 52 #include "llvm/Support/Compiler.h" 53 54 #include <algorithm> 55 #include <cstdint> 56 #include <cstdlib> 57 #include <memory> 58 #include <tuple> 59 60 #include <assert.h> 61 #include <inttypes.h> 62 #include <stdio.h> 63 #include <string.h> 64 65 namespace lldb_private { 66 class ExecutionContextScope; 67 } 68 namespace lldb_private { 69 class SymbolContextScope; 70 } 71 72 using namespace lldb; 73 using namespace lldb_private; 74 75 static user_id_t g_value_obj_uid = 0; 76 77 // ValueObject constructor 78 ValueObject::ValueObject(ValueObject &parent) 79 : UserID(++g_value_obj_uid), // Unique identifier for every value object 80 m_parent(&parent), m_update_point(parent.GetUpdatePoint()), 81 m_manager(parent.GetManager()) { 82 m_flags.m_is_synthetic_children_generated = 83 parent.m_flags.m_is_synthetic_children_generated; 84 m_data.SetByteOrder(parent.GetDataExtractor().GetByteOrder()); 85 m_data.SetAddressByteSize(parent.GetDataExtractor().GetAddressByteSize()); 86 m_manager->ManageObject(this); 87 } 88 89 // ValueObject constructor 90 ValueObject::ValueObject(ExecutionContextScope *exe_scope, 91 ValueObjectManager &manager, 92 AddressType child_ptr_or_ref_addr_type) 93 : UserID(++g_value_obj_uid), // Unique identifier for every value object 94 m_update_point(exe_scope), m_manager(&manager), 95 m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type) { 96 if (exe_scope) { 97 TargetSP target_sp(exe_scope->CalculateTarget()); 98 if (target_sp) { 99 const ArchSpec &arch = target_sp->GetArchitecture(); 100 m_data.SetByteOrder(arch.GetByteOrder()); 101 m_data.SetAddressByteSize(arch.GetAddressByteSize()); 102 } 103 } 104 m_manager->ManageObject(this); 105 } 106 107 // Destructor 108 ValueObject::~ValueObject() {} 109 110 bool ValueObject::UpdateValueIfNeeded(bool update_format) { 111 112 bool did_change_formats = false; 113 114 if (update_format) 115 did_change_formats = UpdateFormatsIfNeeded(); 116 117 // If this is a constant value, then our success is predicated on whether we 118 // have an error or not 119 if (GetIsConstant()) { 120 // if you are constant, things might still have changed behind your back 121 // (e.g. you are a frozen object and things have changed deeper than you 122 // cared to freeze-dry yourself) in this case, your value has not changed, 123 // but "computed" entries might have, so you might now have a different 124 // summary, or a different object description. clear these so we will 125 // recompute them 126 if (update_format && !did_change_formats) 127 ClearUserVisibleData(eClearUserVisibleDataItemsSummary | 128 eClearUserVisibleDataItemsDescription); 129 return m_error.Success(); 130 } 131 132 bool first_update = IsChecksumEmpty(); 133 134 if (NeedsUpdating()) { 135 m_update_point.SetUpdated(); 136 137 // Save the old value using swap to avoid a string copy which also will 138 // clear our m_value_str 139 if (m_value_str.empty()) { 140 m_flags.m_old_value_valid = false; 141 } else { 142 m_flags.m_old_value_valid = true; 143 m_old_value_str.swap(m_value_str); 144 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 145 } 146 147 ClearUserVisibleData(); 148 149 if (IsInScope()) { 150 const bool value_was_valid = GetValueIsValid(); 151 SetValueDidChange(false); 152 153 m_error.Clear(); 154 155 // Call the pure virtual function to update the value 156 157 bool need_compare_checksums = false; 158 llvm::SmallVector<uint8_t, 16> old_checksum; 159 160 if (!first_update && CanProvideValue()) { 161 need_compare_checksums = true; 162 old_checksum.resize(m_value_checksum.size()); 163 std::copy(m_value_checksum.begin(), m_value_checksum.end(), 164 old_checksum.begin()); 165 } 166 167 bool success = UpdateValue(); 168 169 SetValueIsValid(success); 170 171 if (success) { 172 UpdateChildrenAddressType(); 173 const uint64_t max_checksum_size = 128; 174 m_data.Checksum(m_value_checksum, max_checksum_size); 175 } else { 176 need_compare_checksums = false; 177 m_value_checksum.clear(); 178 } 179 180 assert(!need_compare_checksums || 181 (!old_checksum.empty() && !m_value_checksum.empty())); 182 183 if (first_update) 184 SetValueDidChange(false); 185 else if (!m_flags.m_value_did_change && !success) { 186 // The value wasn't gotten successfully, so we mark this as changed if 187 // the value used to be valid and now isn't 188 SetValueDidChange(value_was_valid); 189 } else if (need_compare_checksums) { 190 SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0], 191 m_value_checksum.size())); 192 } 193 194 } else { 195 m_error.SetErrorString("out of scope"); 196 } 197 } 198 return m_error.Success(); 199 } 200 201 bool ValueObject::UpdateFormatsIfNeeded() { 202 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_DATAFORMATTERS)); 203 LLDB_LOGF(log, 204 "[%s %p] checking for FormatManager revisions. ValueObject " 205 "rev: %d - Global rev: %d", 206 GetName().GetCString(), static_cast<void *>(this), 207 m_last_format_mgr_revision, 208 DataVisualization::GetCurrentRevision()); 209 210 bool any_change = false; 211 212 if ((m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) { 213 m_last_format_mgr_revision = DataVisualization::GetCurrentRevision(); 214 any_change = true; 215 216 SetValueFormat(DataVisualization::GetFormat(*this, eNoDynamicValues)); 217 SetSummaryFormat( 218 DataVisualization::GetSummaryFormat(*this, GetDynamicValueType())); 219 #if LLDB_ENABLE_PYTHON 220 SetSyntheticChildren( 221 DataVisualization::GetSyntheticChildren(*this, GetDynamicValueType())); 222 #endif 223 } 224 225 return any_change; 226 } 227 228 void ValueObject::SetNeedsUpdate() { 229 m_update_point.SetNeedsUpdate(); 230 // We have to clear the value string here so ConstResult children will notice 231 // if their values are changed by hand (i.e. with SetValueAsCString). 232 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 233 } 234 235 void ValueObject::ClearDynamicTypeInformation() { 236 m_flags.m_children_count_valid = false; 237 m_flags.m_did_calculate_complete_objc_class_type = false; 238 m_last_format_mgr_revision = 0; 239 m_override_type = CompilerType(); 240 SetValueFormat(lldb::TypeFormatImplSP()); 241 SetSummaryFormat(lldb::TypeSummaryImplSP()); 242 SetSyntheticChildren(lldb::SyntheticChildrenSP()); 243 } 244 245 CompilerType ValueObject::MaybeCalculateCompleteType() { 246 CompilerType compiler_type(GetCompilerTypeImpl()); 247 248 if (m_flags.m_did_calculate_complete_objc_class_type) { 249 if (m_override_type.IsValid()) 250 return m_override_type; 251 else 252 return compiler_type; 253 } 254 255 m_flags.m_did_calculate_complete_objc_class_type = true; 256 257 ProcessSP process_sp( 258 GetUpdatePoint().GetExecutionContextRef().GetProcessSP()); 259 260 if (!process_sp) 261 return compiler_type; 262 263 if (auto *runtime = 264 process_sp->GetLanguageRuntime(GetObjectRuntimeLanguage())) { 265 if (llvm::Optional<CompilerType> complete_type = 266 runtime->GetRuntimeType(compiler_type)) { 267 m_override_type = complete_type.getValue(); 268 if (m_override_type.IsValid()) 269 return m_override_type; 270 } 271 } 272 return compiler_type; 273 } 274 275 CompilerType ValueObject::GetCompilerType() { 276 return MaybeCalculateCompleteType(); 277 } 278 279 TypeImpl ValueObject::GetTypeImpl() { return TypeImpl(GetCompilerType()); } 280 281 DataExtractor &ValueObject::GetDataExtractor() { 282 UpdateValueIfNeeded(false); 283 return m_data; 284 } 285 286 const Status &ValueObject::GetError() { 287 UpdateValueIfNeeded(false); 288 return m_error; 289 } 290 291 ConstString ValueObject::GetName() const { return m_name; } 292 293 const char *ValueObject::GetLocationAsCString() { 294 return GetLocationAsCStringImpl(m_value, m_data); 295 } 296 297 const char *ValueObject::GetLocationAsCStringImpl(const Value &value, 298 const DataExtractor &data) { 299 if (UpdateValueIfNeeded(false)) { 300 if (m_location_str.empty()) { 301 StreamString sstr; 302 303 Value::ValueType value_type = value.GetValueType(); 304 305 switch (value_type) { 306 case Value::ValueType::Invalid: 307 m_location_str = "invalid"; 308 break; 309 case Value::ValueType::Scalar: 310 if (value.GetContextType() == Value::ContextType::RegisterInfo) { 311 RegisterInfo *reg_info = value.GetRegisterInfo(); 312 if (reg_info) { 313 if (reg_info->name) 314 m_location_str = reg_info->name; 315 else if (reg_info->alt_name) 316 m_location_str = reg_info->alt_name; 317 if (m_location_str.empty()) 318 m_location_str = (reg_info->encoding == lldb::eEncodingVector) 319 ? "vector" 320 : "scalar"; 321 } 322 } 323 if (m_location_str.empty()) 324 m_location_str = "scalar"; 325 break; 326 327 case Value::ValueType::LoadAddress: 328 case Value::ValueType::FileAddress: 329 case Value::ValueType::HostAddress: { 330 uint32_t addr_nibble_size = data.GetAddressByteSize() * 2; 331 sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, 332 value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS)); 333 m_location_str = std::string(sstr.GetString()); 334 } break; 335 } 336 } 337 } 338 return m_location_str.c_str(); 339 } 340 341 Value &ValueObject::GetValue() { return m_value; } 342 343 const Value &ValueObject::GetValue() const { return m_value; } 344 345 bool ValueObject::ResolveValue(Scalar &scalar) { 346 if (UpdateValueIfNeeded( 347 false)) // make sure that you are up to date before returning anything 348 { 349 ExecutionContext exe_ctx(GetExecutionContextRef()); 350 Value tmp_value(m_value); 351 scalar = tmp_value.ResolveValue(&exe_ctx); 352 if (scalar.IsValid()) { 353 const uint32_t bitfield_bit_size = GetBitfieldBitSize(); 354 if (bitfield_bit_size) 355 return scalar.ExtractBitfield(bitfield_bit_size, 356 GetBitfieldBitOffset()); 357 return true; 358 } 359 } 360 return false; 361 } 362 363 bool ValueObject::IsLogicalTrue(Status &error) { 364 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 365 LazyBool is_logical_true = language->IsLogicalTrue(*this, error); 366 switch (is_logical_true) { 367 case eLazyBoolYes: 368 case eLazyBoolNo: 369 return (is_logical_true == true); 370 case eLazyBoolCalculate: 371 break; 372 } 373 } 374 375 Scalar scalar_value; 376 377 if (!ResolveValue(scalar_value)) { 378 error.SetErrorString("failed to get a scalar result"); 379 return false; 380 } 381 382 bool ret; 383 ret = scalar_value.ULongLong(1) != 0; 384 error.Clear(); 385 return ret; 386 } 387 388 bool ValueObject::GetValueIsValid() const { return m_flags.m_value_is_valid; } 389 390 void ValueObject::SetValueIsValid(bool b) { m_flags.m_value_is_valid = b; } 391 392 bool ValueObject::GetValueDidChange() { return m_flags.m_value_did_change; } 393 394 void ValueObject::SetValueDidChange(bool value_changed) { 395 m_flags.m_value_did_change = value_changed; 396 } 397 398 ValueObjectSP ValueObject::GetChildAtIndex(size_t idx, bool can_create) { 399 ValueObjectSP child_sp; 400 // We may need to update our value if we are dynamic 401 if (IsPossibleDynamicType()) 402 UpdateValueIfNeeded(false); 403 if (idx < GetNumChildren()) { 404 // Check if we have already made the child value object? 405 if (can_create && !m_children.HasChildAtIndex(idx)) { 406 // No we haven't created the child at this index, so lets have our 407 // subclass do it and cache the result for quick future access. 408 m_children.SetChildAtIndex(idx, CreateChildAtIndex(idx, false, 0)); 409 } 410 411 ValueObject *child = m_children.GetChildAtIndex(idx); 412 if (child != nullptr) 413 return child->GetSP(); 414 } 415 return child_sp; 416 } 417 418 lldb::ValueObjectSP 419 ValueObject::GetChildAtIndexPath(llvm::ArrayRef<size_t> idxs, 420 size_t *index_of_error) { 421 if (idxs.size() == 0) 422 return GetSP(); 423 ValueObjectSP root(GetSP()); 424 for (size_t idx : idxs) { 425 root = root->GetChildAtIndex(idx, true); 426 if (!root) { 427 if (index_of_error) 428 *index_of_error = idx; 429 return root; 430 } 431 } 432 return root; 433 } 434 435 lldb::ValueObjectSP ValueObject::GetChildAtIndexPath( 436 llvm::ArrayRef<std::pair<size_t, bool>> idxs, size_t *index_of_error) { 437 if (idxs.size() == 0) 438 return GetSP(); 439 ValueObjectSP root(GetSP()); 440 for (std::pair<size_t, bool> idx : idxs) { 441 root = root->GetChildAtIndex(idx.first, idx.second); 442 if (!root) { 443 if (index_of_error) 444 *index_of_error = idx.first; 445 return root; 446 } 447 } 448 return root; 449 } 450 451 lldb::ValueObjectSP 452 ValueObject::GetChildAtNamePath(llvm::ArrayRef<ConstString> names, 453 ConstString *name_of_error) { 454 if (names.size() == 0) 455 return GetSP(); 456 ValueObjectSP root(GetSP()); 457 for (ConstString name : names) { 458 root = root->GetChildMemberWithName(name, true); 459 if (!root) { 460 if (name_of_error) 461 *name_of_error = name; 462 return root; 463 } 464 } 465 return root; 466 } 467 468 lldb::ValueObjectSP ValueObject::GetChildAtNamePath( 469 llvm::ArrayRef<std::pair<ConstString, bool>> names, 470 ConstString *name_of_error) { 471 if (names.size() == 0) 472 return GetSP(); 473 ValueObjectSP root(GetSP()); 474 for (std::pair<ConstString, bool> name : names) { 475 root = root->GetChildMemberWithName(name.first, name.second); 476 if (!root) { 477 if (name_of_error) 478 *name_of_error = name.first; 479 return root; 480 } 481 } 482 return root; 483 } 484 485 size_t ValueObject::GetIndexOfChildWithName(ConstString name) { 486 bool omit_empty_base_classes = true; 487 return GetCompilerType().GetIndexOfChildWithName(name.GetCString(), 488 omit_empty_base_classes); 489 } 490 491 ValueObjectSP ValueObject::GetChildMemberWithName(ConstString name, 492 bool can_create) { 493 // We may need to update our value if we are dynamic. 494 if (IsPossibleDynamicType()) 495 UpdateValueIfNeeded(false); 496 497 // When getting a child by name, it could be buried inside some base classes 498 // (which really aren't part of the expression path), so we need a vector of 499 // indexes that can get us down to the correct child. 500 std::vector<uint32_t> child_indexes; 501 bool omit_empty_base_classes = true; 502 503 if (!GetCompilerType().IsValid()) 504 return ValueObjectSP(); 505 506 const size_t num_child_indexes = 507 GetCompilerType().GetIndexOfChildMemberWithName( 508 name.GetCString(), omit_empty_base_classes, child_indexes); 509 if (num_child_indexes == 0) 510 return nullptr; 511 512 ValueObjectSP child_sp = GetSP(); 513 for (uint32_t idx : child_indexes) 514 if (child_sp) 515 child_sp = child_sp->GetChildAtIndex(idx, can_create); 516 return child_sp; 517 } 518 519 size_t ValueObject::GetNumChildren(uint32_t max) { 520 UpdateValueIfNeeded(); 521 522 if (max < UINT32_MAX) { 523 if (m_flags.m_children_count_valid) { 524 size_t children_count = m_children.GetChildrenCount(); 525 return children_count <= max ? children_count : max; 526 } else 527 return CalculateNumChildren(max); 528 } 529 530 if (!m_flags.m_children_count_valid) { 531 SetNumChildren(CalculateNumChildren()); 532 } 533 return m_children.GetChildrenCount(); 534 } 535 536 bool ValueObject::MightHaveChildren() { 537 bool has_children = false; 538 const uint32_t type_info = GetTypeInfo(); 539 if (type_info) { 540 if (type_info & (eTypeHasChildren | eTypeIsPointer | eTypeIsReference)) 541 has_children = true; 542 } else { 543 has_children = GetNumChildren() > 0; 544 } 545 return has_children; 546 } 547 548 // Should only be called by ValueObject::GetNumChildren() 549 void ValueObject::SetNumChildren(size_t num_children) { 550 m_flags.m_children_count_valid = true; 551 m_children.SetChildrenCount(num_children); 552 } 553 554 void ValueObject::SetName(ConstString name) { m_name = name; } 555 556 ValueObject *ValueObject::CreateChildAtIndex(size_t idx, 557 bool synthetic_array_member, 558 int32_t synthetic_index) { 559 ValueObject *valobj = nullptr; 560 561 bool omit_empty_base_classes = true; 562 bool ignore_array_bounds = synthetic_array_member; 563 std::string child_name_str; 564 uint32_t child_byte_size = 0; 565 int32_t child_byte_offset = 0; 566 uint32_t child_bitfield_bit_size = 0; 567 uint32_t child_bitfield_bit_offset = 0; 568 bool child_is_base_class = false; 569 bool child_is_deref_of_parent = false; 570 uint64_t language_flags = 0; 571 572 const bool transparent_pointers = !synthetic_array_member; 573 CompilerType child_compiler_type; 574 575 ExecutionContext exe_ctx(GetExecutionContextRef()); 576 577 child_compiler_type = GetCompilerType().GetChildCompilerTypeAtIndex( 578 &exe_ctx, idx, transparent_pointers, omit_empty_base_classes, 579 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 580 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 581 child_is_deref_of_parent, this, language_flags); 582 if (child_compiler_type) { 583 if (synthetic_index) 584 child_byte_offset += child_byte_size * synthetic_index; 585 586 ConstString child_name; 587 if (!child_name_str.empty()) 588 child_name.SetCString(child_name_str.c_str()); 589 590 valobj = new ValueObjectChild( 591 *this, child_compiler_type, child_name, child_byte_size, 592 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 593 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 594 language_flags); 595 } 596 597 // In case of an incomplete type, try to use the ValueObject's 598 // synthetic value to create the child ValueObject. 599 if (!valobj && synthetic_array_member) { 600 if (ValueObjectSP synth_valobj_sp = GetSyntheticValue()) { 601 valobj = synth_valobj_sp 602 ->GetChildAtIndex(synthetic_index, synthetic_array_member) 603 .get(); 604 } 605 } 606 607 return valobj; 608 } 609 610 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 611 std::string &destination, 612 lldb::LanguageType lang) { 613 return GetSummaryAsCString(summary_ptr, destination, 614 TypeSummaryOptions().SetLanguage(lang)); 615 } 616 617 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 618 std::string &destination, 619 const TypeSummaryOptions &options) { 620 destination.clear(); 621 622 // ideally we would like to bail out if passing NULL, but if we do so we end 623 // up not providing the summary for function pointers anymore 624 if (/*summary_ptr == NULL ||*/ m_flags.m_is_getting_summary) 625 return false; 626 627 m_flags.m_is_getting_summary = true; 628 629 TypeSummaryOptions actual_options(options); 630 631 if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown) 632 actual_options.SetLanguage(GetPreferredDisplayLanguage()); 633 634 // this is a hot path in code and we prefer to avoid setting this string all 635 // too often also clearing out other information that we might care to see in 636 // a crash log. might be useful in very specific situations though. 637 /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. 638 Summary provider's description is %s", 639 GetTypeName().GetCString(), 640 GetName().GetCString(), 641 summary_ptr->GetDescription().c_str());*/ 642 643 if (UpdateValueIfNeeded(false) && summary_ptr) { 644 if (HasSyntheticValue()) 645 m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on 646 // the synthetic children being 647 // up-to-date (e.g. ${svar%#}) 648 summary_ptr->FormatObject(this, destination, actual_options); 649 } 650 m_flags.m_is_getting_summary = false; 651 return !destination.empty(); 652 } 653 654 const char *ValueObject::GetSummaryAsCString(lldb::LanguageType lang) { 655 if (UpdateValueIfNeeded(true) && m_summary_str.empty()) { 656 TypeSummaryOptions summary_options; 657 summary_options.SetLanguage(lang); 658 GetSummaryAsCString(GetSummaryFormat().get(), m_summary_str, 659 summary_options); 660 } 661 if (m_summary_str.empty()) 662 return nullptr; 663 return m_summary_str.c_str(); 664 } 665 666 bool ValueObject::GetSummaryAsCString(std::string &destination, 667 const TypeSummaryOptions &options) { 668 return GetSummaryAsCString(GetSummaryFormat().get(), destination, options); 669 } 670 671 bool ValueObject::IsCStringContainer(bool check_pointer) { 672 CompilerType pointee_or_element_compiler_type; 673 const Flags type_flags(GetTypeInfo(&pointee_or_element_compiler_type)); 674 bool is_char_arr_ptr(type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 675 pointee_or_element_compiler_type.IsCharType()); 676 if (!is_char_arr_ptr) 677 return false; 678 if (!check_pointer) 679 return true; 680 if (type_flags.Test(eTypeIsArray)) 681 return true; 682 addr_t cstr_address = LLDB_INVALID_ADDRESS; 683 AddressType cstr_address_type = eAddressTypeInvalid; 684 cstr_address = GetPointerValue(&cstr_address_type); 685 return (cstr_address != LLDB_INVALID_ADDRESS); 686 } 687 688 size_t ValueObject::GetPointeeData(DataExtractor &data, uint32_t item_idx, 689 uint32_t item_count) { 690 CompilerType pointee_or_element_compiler_type; 691 const uint32_t type_info = GetTypeInfo(&pointee_or_element_compiler_type); 692 const bool is_pointer_type = type_info & eTypeIsPointer; 693 const bool is_array_type = type_info & eTypeIsArray; 694 if (!(is_pointer_type || is_array_type)) 695 return 0; 696 697 if (item_count == 0) 698 return 0; 699 700 ExecutionContext exe_ctx(GetExecutionContextRef()); 701 702 llvm::Optional<uint64_t> item_type_size = 703 pointee_or_element_compiler_type.GetByteSize( 704 exe_ctx.GetBestExecutionContextScope()); 705 if (!item_type_size) 706 return 0; 707 const uint64_t bytes = item_count * *item_type_size; 708 const uint64_t offset = item_idx * *item_type_size; 709 710 if (item_idx == 0 && item_count == 1) // simply a deref 711 { 712 if (is_pointer_type) { 713 Status error; 714 ValueObjectSP pointee_sp = Dereference(error); 715 if (error.Fail() || pointee_sp.get() == nullptr) 716 return 0; 717 return pointee_sp->GetData(data, error); 718 } else { 719 ValueObjectSP child_sp = GetChildAtIndex(0, true); 720 if (child_sp.get() == nullptr) 721 return 0; 722 Status error; 723 return child_sp->GetData(data, error); 724 } 725 return true; 726 } else /* (items > 1) */ 727 { 728 Status error; 729 lldb_private::DataBufferHeap *heap_buf_ptr = nullptr; 730 lldb::DataBufferSP data_sp(heap_buf_ptr = 731 new lldb_private::DataBufferHeap()); 732 733 AddressType addr_type; 734 lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type) 735 : GetAddressOf(true, &addr_type); 736 737 switch (addr_type) { 738 case eAddressTypeFile: { 739 ModuleSP module_sp(GetModule()); 740 if (module_sp) { 741 addr = addr + offset; 742 Address so_addr; 743 module_sp->ResolveFileAddress(addr, so_addr); 744 ExecutionContext exe_ctx(GetExecutionContextRef()); 745 Target *target = exe_ctx.GetTargetPtr(); 746 if (target) { 747 heap_buf_ptr->SetByteSize(bytes); 748 size_t bytes_read = target->ReadMemory( 749 so_addr, false, heap_buf_ptr->GetBytes(), bytes, error); 750 if (error.Success()) { 751 data.SetData(data_sp); 752 return bytes_read; 753 } 754 } 755 } 756 } break; 757 case eAddressTypeLoad: { 758 ExecutionContext exe_ctx(GetExecutionContextRef()); 759 Process *process = exe_ctx.GetProcessPtr(); 760 if (process) { 761 heap_buf_ptr->SetByteSize(bytes); 762 size_t bytes_read = process->ReadMemory( 763 addr + offset, heap_buf_ptr->GetBytes(), bytes, error); 764 if (error.Success() || bytes_read > 0) { 765 data.SetData(data_sp); 766 return bytes_read; 767 } 768 } 769 } break; 770 case eAddressTypeHost: { 771 auto max_bytes = 772 GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope()); 773 if (max_bytes && *max_bytes > offset) { 774 size_t bytes_read = std::min<uint64_t>(*max_bytes - offset, bytes); 775 addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 776 if (addr == 0 || addr == LLDB_INVALID_ADDRESS) 777 break; 778 heap_buf_ptr->CopyData((uint8_t *)(addr + offset), bytes_read); 779 data.SetData(data_sp); 780 return bytes_read; 781 } 782 } break; 783 case eAddressTypeInvalid: 784 break; 785 } 786 } 787 return 0; 788 } 789 790 uint64_t ValueObject::GetData(DataExtractor &data, Status &error) { 791 UpdateValueIfNeeded(false); 792 ExecutionContext exe_ctx(GetExecutionContextRef()); 793 error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get()); 794 if (error.Fail()) { 795 if (m_data.GetByteSize()) { 796 data = m_data; 797 error.Clear(); 798 return data.GetByteSize(); 799 } else { 800 return 0; 801 } 802 } 803 data.SetAddressByteSize(m_data.GetAddressByteSize()); 804 data.SetByteOrder(m_data.GetByteOrder()); 805 return data.GetByteSize(); 806 } 807 808 bool ValueObject::SetData(DataExtractor &data, Status &error) { 809 error.Clear(); 810 // Make sure our value is up to date first so that our location and location 811 // type is valid. 812 if (!UpdateValueIfNeeded(false)) { 813 error.SetErrorString("unable to read value"); 814 return false; 815 } 816 817 uint64_t count = 0; 818 const Encoding encoding = GetCompilerType().GetEncoding(count); 819 820 const size_t byte_size = GetByteSize().getValueOr(0); 821 822 Value::ValueType value_type = m_value.GetValueType(); 823 824 switch (value_type) { 825 case Value::ValueType::Invalid: 826 error.SetErrorString("invalid location"); 827 return false; 828 case Value::ValueType::Scalar: { 829 Status set_error = 830 m_value.GetScalar().SetValueFromData(data, encoding, byte_size); 831 832 if (!set_error.Success()) { 833 error.SetErrorStringWithFormat("unable to set scalar value: %s", 834 set_error.AsCString()); 835 return false; 836 } 837 } break; 838 case Value::ValueType::LoadAddress: { 839 // If it is a load address, then the scalar value is the storage location 840 // of the data, and we have to shove this value down to that load location. 841 ExecutionContext exe_ctx(GetExecutionContextRef()); 842 Process *process = exe_ctx.GetProcessPtr(); 843 if (process) { 844 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 845 size_t bytes_written = process->WriteMemory( 846 target_addr, data.GetDataStart(), byte_size, error); 847 if (!error.Success()) 848 return false; 849 if (bytes_written != byte_size) { 850 error.SetErrorString("unable to write value to memory"); 851 return false; 852 } 853 } 854 } break; 855 case Value::ValueType::HostAddress: { 856 // If it is a host address, then we stuff the scalar as a DataBuffer into 857 // the Value's data. 858 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 859 m_data.SetData(buffer_sp, 0); 860 data.CopyByteOrderedData(0, byte_size, 861 const_cast<uint8_t *>(m_data.GetDataStart()), 862 byte_size, m_data.GetByteOrder()); 863 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 864 } break; 865 case Value::ValueType::FileAddress: 866 break; 867 } 868 869 // If we have reached this point, then we have successfully changed the 870 // value. 871 SetNeedsUpdate(); 872 return true; 873 } 874 875 static bool CopyStringDataToBufferSP(const StreamString &source, 876 lldb::DataBufferSP &destination) { 877 destination = std::make_shared<DataBufferHeap>(source.GetSize() + 1, 0); 878 memcpy(destination->GetBytes(), source.GetString().data(), source.GetSize()); 879 return true; 880 } 881 882 std::pair<size_t, bool> 883 ValueObject::ReadPointedString(lldb::DataBufferSP &buffer_sp, Status &error, 884 uint32_t max_length, bool honor_array, 885 Format item_format) { 886 bool was_capped = false; 887 StreamString s; 888 ExecutionContext exe_ctx(GetExecutionContextRef()); 889 Target *target = exe_ctx.GetTargetPtr(); 890 891 if (!target) { 892 s << "<no target to read from>"; 893 error.SetErrorString("no target to read from"); 894 CopyStringDataToBufferSP(s, buffer_sp); 895 return {0, was_capped}; 896 } 897 898 if (max_length == 0) 899 max_length = target->GetMaximumSizeOfStringSummary(); 900 901 size_t bytes_read = 0; 902 size_t total_bytes_read = 0; 903 904 CompilerType compiler_type = GetCompilerType(); 905 CompilerType elem_or_pointee_compiler_type; 906 const Flags type_flags(GetTypeInfo(&elem_or_pointee_compiler_type)); 907 if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 908 elem_or_pointee_compiler_type.IsCharType()) { 909 addr_t cstr_address = LLDB_INVALID_ADDRESS; 910 AddressType cstr_address_type = eAddressTypeInvalid; 911 912 size_t cstr_len = 0; 913 bool capped_data = false; 914 const bool is_array = type_flags.Test(eTypeIsArray); 915 if (is_array) { 916 // We have an array 917 uint64_t array_size = 0; 918 if (compiler_type.IsArrayType(nullptr, &array_size, nullptr)) { 919 cstr_len = array_size; 920 if (cstr_len > max_length) { 921 capped_data = true; 922 cstr_len = max_length; 923 } 924 } 925 cstr_address = GetAddressOf(true, &cstr_address_type); 926 } else { 927 // We have a pointer 928 cstr_address = GetPointerValue(&cstr_address_type); 929 } 930 931 if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) { 932 if (cstr_address_type == eAddressTypeHost && is_array) { 933 const char *cstr = GetDataExtractor().PeekCStr(0); 934 if (cstr == nullptr) { 935 s << "<invalid address>"; 936 error.SetErrorString("invalid address"); 937 CopyStringDataToBufferSP(s, buffer_sp); 938 return {0, was_capped}; 939 } 940 buffer_sp = std::make_shared<DataBufferHeap>(cstr_len, 0); 941 memcpy(buffer_sp->GetBytes(), cstr, cstr_len); 942 return {cstr_len, was_capped}; 943 } else { 944 s << "<invalid address>"; 945 error.SetErrorString("invalid address"); 946 CopyStringDataToBufferSP(s, buffer_sp); 947 return {0, was_capped}; 948 } 949 } 950 951 Address cstr_so_addr(cstr_address); 952 DataExtractor data; 953 if (cstr_len > 0 && honor_array) { 954 // I am using GetPointeeData() here to abstract the fact that some 955 // ValueObjects are actually frozen pointers in the host but the pointed- 956 // to data lives in the debuggee, and GetPointeeData() automatically 957 // takes care of this 958 GetPointeeData(data, 0, cstr_len); 959 960 if ((bytes_read = data.GetByteSize()) > 0) { 961 total_bytes_read = bytes_read; 962 for (size_t offset = 0; offset < bytes_read; offset++) 963 s.Printf("%c", *data.PeekData(offset, 1)); 964 if (capped_data) 965 was_capped = true; 966 } 967 } else { 968 cstr_len = max_length; 969 const size_t k_max_buf_size = 64; 970 971 size_t offset = 0; 972 973 int cstr_len_displayed = -1; 974 bool capped_cstr = false; 975 // I am using GetPointeeData() here to abstract the fact that some 976 // ValueObjects are actually frozen pointers in the host but the pointed- 977 // to data lives in the debuggee, and GetPointeeData() automatically 978 // takes care of this 979 while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) { 980 total_bytes_read += bytes_read; 981 const char *cstr = data.PeekCStr(0); 982 size_t len = strnlen(cstr, k_max_buf_size); 983 if (cstr_len_displayed < 0) 984 cstr_len_displayed = len; 985 986 if (len == 0) 987 break; 988 cstr_len_displayed += len; 989 if (len > bytes_read) 990 len = bytes_read; 991 if (len > cstr_len) 992 len = cstr_len; 993 994 for (size_t offset = 0; offset < bytes_read; offset++) 995 s.Printf("%c", *data.PeekData(offset, 1)); 996 997 if (len < k_max_buf_size) 998 break; 999 1000 if (len >= cstr_len) { 1001 capped_cstr = true; 1002 break; 1003 } 1004 1005 cstr_len -= len; 1006 offset += len; 1007 } 1008 1009 if (cstr_len_displayed >= 0) { 1010 if (capped_cstr) 1011 was_capped = true; 1012 } 1013 } 1014 } else { 1015 error.SetErrorString("not a string object"); 1016 s << "<not a string object>"; 1017 } 1018 CopyStringDataToBufferSP(s, buffer_sp); 1019 return {total_bytes_read, was_capped}; 1020 } 1021 1022 const char *ValueObject::GetObjectDescription() { 1023 if (!UpdateValueIfNeeded(true)) 1024 return nullptr; 1025 1026 // Return cached value. 1027 if (!m_object_desc_str.empty()) 1028 return m_object_desc_str.c_str(); 1029 1030 ExecutionContext exe_ctx(GetExecutionContextRef()); 1031 Process *process = exe_ctx.GetProcessPtr(); 1032 if (!process) 1033 return nullptr; 1034 1035 // Returns the object description produced by one language runtime. 1036 auto get_object_description = [&](LanguageType language) -> const char * { 1037 if (LanguageRuntime *runtime = process->GetLanguageRuntime(language)) { 1038 StreamString s; 1039 if (runtime->GetObjectDescription(s, *this)) { 1040 m_object_desc_str.append(std::string(s.GetString())); 1041 return m_object_desc_str.c_str(); 1042 } 1043 } 1044 return nullptr; 1045 }; 1046 1047 // Try the native language runtime first. 1048 LanguageType native_language = GetObjectRuntimeLanguage(); 1049 if (const char *desc = get_object_description(native_language)) 1050 return desc; 1051 1052 // Try the Objective-C language runtime. This fallback is necessary 1053 // for Objective-C++ and mixed Objective-C / C++ programs. 1054 if (Language::LanguageIsCFamily(native_language)) 1055 return get_object_description(eLanguageTypeObjC); 1056 return nullptr; 1057 } 1058 1059 bool ValueObject::GetValueAsCString(const lldb_private::TypeFormatImpl &format, 1060 std::string &destination) { 1061 if (UpdateValueIfNeeded(false)) 1062 return format.FormatObject(this, destination); 1063 else 1064 return false; 1065 } 1066 1067 bool ValueObject::GetValueAsCString(lldb::Format format, 1068 std::string &destination) { 1069 return GetValueAsCString(TypeFormatImpl_Format(format), destination); 1070 } 1071 1072 const char *ValueObject::GetValueAsCString() { 1073 if (UpdateValueIfNeeded(true)) { 1074 lldb::TypeFormatImplSP format_sp; 1075 lldb::Format my_format = GetFormat(); 1076 if (my_format == lldb::eFormatDefault) { 1077 if (m_type_format_sp) 1078 format_sp = m_type_format_sp; 1079 else { 1080 if (m_flags.m_is_bitfield_for_scalar) 1081 my_format = eFormatUnsigned; 1082 else { 1083 if (m_value.GetContextType() == Value::ContextType::RegisterInfo) { 1084 const RegisterInfo *reg_info = m_value.GetRegisterInfo(); 1085 if (reg_info) 1086 my_format = reg_info->format; 1087 } else { 1088 my_format = GetValue().GetCompilerType().GetFormat(); 1089 } 1090 } 1091 } 1092 } 1093 if (my_format != m_last_format || m_value_str.empty()) { 1094 m_last_format = my_format; 1095 if (!format_sp) 1096 format_sp = std::make_shared<TypeFormatImpl_Format>(my_format); 1097 if (GetValueAsCString(*format_sp.get(), m_value_str)) { 1098 if (!m_flags.m_value_did_change && m_flags.m_old_value_valid) { 1099 // The value was gotten successfully, so we consider the value as 1100 // changed if the value string differs 1101 SetValueDidChange(m_old_value_str != m_value_str); 1102 } 1103 } 1104 } 1105 } 1106 if (m_value_str.empty()) 1107 return nullptr; 1108 return m_value_str.c_str(); 1109 } 1110 1111 // if > 8bytes, 0 is returned. this method should mostly be used to read 1112 // address values out of pointers 1113 uint64_t ValueObject::GetValueAsUnsigned(uint64_t fail_value, bool *success) { 1114 // If our byte size is zero this is an aggregate type that has children 1115 if (CanProvideValue()) { 1116 Scalar scalar; 1117 if (ResolveValue(scalar)) { 1118 if (success) 1119 *success = true; 1120 scalar.MakeUnsigned(); 1121 return scalar.ULongLong(fail_value); 1122 } 1123 // fallthrough, otherwise... 1124 } 1125 1126 if (success) 1127 *success = false; 1128 return fail_value; 1129 } 1130 1131 int64_t ValueObject::GetValueAsSigned(int64_t fail_value, bool *success) { 1132 // If our byte size is zero this is an aggregate type that has children 1133 if (CanProvideValue()) { 1134 Scalar scalar; 1135 if (ResolveValue(scalar)) { 1136 if (success) 1137 *success = true; 1138 scalar.MakeSigned(); 1139 return scalar.SLongLong(fail_value); 1140 } 1141 // fallthrough, otherwise... 1142 } 1143 1144 if (success) 1145 *success = false; 1146 return fail_value; 1147 } 1148 1149 // if any more "special cases" are added to 1150 // ValueObject::DumpPrintableRepresentation() please keep this call up to date 1151 // by returning true for your new special cases. We will eventually move to 1152 // checking this call result before trying to display special cases 1153 bool ValueObject::HasSpecialPrintableRepresentation( 1154 ValueObjectRepresentationStyle val_obj_display, Format custom_format) { 1155 Flags flags(GetTypeInfo()); 1156 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1157 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1158 if (IsCStringContainer(true) && 1159 (custom_format == eFormatCString || custom_format == eFormatCharArray || 1160 custom_format == eFormatChar || custom_format == eFormatVectorOfChar)) 1161 return true; 1162 1163 if (flags.Test(eTypeIsArray)) { 1164 if ((custom_format == eFormatBytes) || 1165 (custom_format == eFormatBytesWithASCII)) 1166 return true; 1167 1168 if ((custom_format == eFormatVectorOfChar) || 1169 (custom_format == eFormatVectorOfFloat32) || 1170 (custom_format == eFormatVectorOfFloat64) || 1171 (custom_format == eFormatVectorOfSInt16) || 1172 (custom_format == eFormatVectorOfSInt32) || 1173 (custom_format == eFormatVectorOfSInt64) || 1174 (custom_format == eFormatVectorOfSInt8) || 1175 (custom_format == eFormatVectorOfUInt128) || 1176 (custom_format == eFormatVectorOfUInt16) || 1177 (custom_format == eFormatVectorOfUInt32) || 1178 (custom_format == eFormatVectorOfUInt64) || 1179 (custom_format == eFormatVectorOfUInt8)) 1180 return true; 1181 } 1182 } 1183 return false; 1184 } 1185 1186 bool ValueObject::DumpPrintableRepresentation( 1187 Stream &s, ValueObjectRepresentationStyle val_obj_display, 1188 Format custom_format, PrintableRepresentationSpecialCases special, 1189 bool do_dump_error) { 1190 1191 Flags flags(GetTypeInfo()); 1192 1193 bool allow_special = 1194 (special == ValueObject::PrintableRepresentationSpecialCases::eAllow); 1195 const bool only_special = false; 1196 1197 if (allow_special) { 1198 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1199 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1200 // when being asked to get a printable display an array or pointer type 1201 // directly, try to "do the right thing" 1202 1203 if (IsCStringContainer(true) && 1204 (custom_format == eFormatCString || 1205 custom_format == eFormatCharArray || custom_format == eFormatChar || 1206 custom_format == 1207 eFormatVectorOfChar)) // print char[] & char* directly 1208 { 1209 Status error; 1210 lldb::DataBufferSP buffer_sp; 1211 std::pair<size_t, bool> read_string = ReadPointedString( 1212 buffer_sp, error, 0, (custom_format == eFormatVectorOfChar) || 1213 (custom_format == eFormatCharArray)); 1214 lldb_private::formatters::StringPrinter:: 1215 ReadBufferAndDumpToStreamOptions options(*this); 1216 options.SetData(DataExtractor( 1217 buffer_sp, lldb::eByteOrderInvalid, 1218 8)); // none of this matters for a string - pass some defaults 1219 options.SetStream(&s); 1220 options.SetPrefixToken(nullptr); 1221 options.SetQuote('"'); 1222 options.SetSourceSize(buffer_sp->GetByteSize()); 1223 options.SetIsTruncated(read_string.second); 1224 formatters::StringPrinter::ReadBufferAndDumpToStream< 1225 lldb_private::formatters::StringPrinter::StringElementType::ASCII>( 1226 options); 1227 return !error.Fail(); 1228 } 1229 1230 if (custom_format == eFormatEnum) 1231 return false; 1232 1233 // this only works for arrays, because I have no way to know when the 1234 // pointed memory ends, and no special \0 end of data marker 1235 if (flags.Test(eTypeIsArray)) { 1236 if ((custom_format == eFormatBytes) || 1237 (custom_format == eFormatBytesWithASCII)) { 1238 const size_t count = GetNumChildren(); 1239 1240 s << '['; 1241 for (size_t low = 0; low < count; low++) { 1242 1243 if (low) 1244 s << ','; 1245 1246 ValueObjectSP child = GetChildAtIndex(low, true); 1247 if (!child.get()) { 1248 s << "<invalid child>"; 1249 continue; 1250 } 1251 child->DumpPrintableRepresentation( 1252 s, ValueObject::eValueObjectRepresentationStyleValue, 1253 custom_format); 1254 } 1255 1256 s << ']'; 1257 1258 return true; 1259 } 1260 1261 if ((custom_format == eFormatVectorOfChar) || 1262 (custom_format == eFormatVectorOfFloat32) || 1263 (custom_format == eFormatVectorOfFloat64) || 1264 (custom_format == eFormatVectorOfSInt16) || 1265 (custom_format == eFormatVectorOfSInt32) || 1266 (custom_format == eFormatVectorOfSInt64) || 1267 (custom_format == eFormatVectorOfSInt8) || 1268 (custom_format == eFormatVectorOfUInt128) || 1269 (custom_format == eFormatVectorOfUInt16) || 1270 (custom_format == eFormatVectorOfUInt32) || 1271 (custom_format == eFormatVectorOfUInt64) || 1272 (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes 1273 // with ASCII or any vector 1274 // format should be printed 1275 // directly 1276 { 1277 const size_t count = GetNumChildren(); 1278 1279 Format format = FormatManager::GetSingleItemFormat(custom_format); 1280 1281 s << '['; 1282 for (size_t low = 0; low < count; low++) { 1283 1284 if (low) 1285 s << ','; 1286 1287 ValueObjectSP child = GetChildAtIndex(low, true); 1288 if (!child.get()) { 1289 s << "<invalid child>"; 1290 continue; 1291 } 1292 child->DumpPrintableRepresentation( 1293 s, ValueObject::eValueObjectRepresentationStyleValue, format); 1294 } 1295 1296 s << ']'; 1297 1298 return true; 1299 } 1300 } 1301 1302 if ((custom_format == eFormatBoolean) || 1303 (custom_format == eFormatBinary) || (custom_format == eFormatChar) || 1304 (custom_format == eFormatCharPrintable) || 1305 (custom_format == eFormatComplexFloat) || 1306 (custom_format == eFormatDecimal) || (custom_format == eFormatHex) || 1307 (custom_format == eFormatHexUppercase) || 1308 (custom_format == eFormatFloat) || (custom_format == eFormatOctal) || 1309 (custom_format == eFormatOSType) || 1310 (custom_format == eFormatUnicode16) || 1311 (custom_format == eFormatUnicode32) || 1312 (custom_format == eFormatUnsigned) || 1313 (custom_format == eFormatPointer) || 1314 (custom_format == eFormatComplexInteger) || 1315 (custom_format == eFormatComplex) || 1316 (custom_format == eFormatDefault)) // use the [] operator 1317 return false; 1318 } 1319 } 1320 1321 if (only_special) 1322 return false; 1323 1324 bool var_success = false; 1325 1326 { 1327 llvm::StringRef str; 1328 1329 // this is a local stream that we are using to ensure that the data pointed 1330 // to by cstr survives long enough for us to copy it to its destination - 1331 // it is necessary to have this temporary storage area for cases where our 1332 // desired output is not backed by some other longer-term storage 1333 StreamString strm; 1334 1335 if (custom_format != eFormatInvalid) 1336 SetFormat(custom_format); 1337 1338 switch (val_obj_display) { 1339 case eValueObjectRepresentationStyleValue: 1340 str = GetValueAsCString(); 1341 break; 1342 1343 case eValueObjectRepresentationStyleSummary: 1344 str = GetSummaryAsCString(); 1345 break; 1346 1347 case eValueObjectRepresentationStyleLanguageSpecific: 1348 str = GetObjectDescription(); 1349 break; 1350 1351 case eValueObjectRepresentationStyleLocation: 1352 str = GetLocationAsCString(); 1353 break; 1354 1355 case eValueObjectRepresentationStyleChildrenCount: 1356 strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren()); 1357 str = strm.GetString(); 1358 break; 1359 1360 case eValueObjectRepresentationStyleType: 1361 str = GetTypeName().GetStringRef(); 1362 break; 1363 1364 case eValueObjectRepresentationStyleName: 1365 str = GetName().GetStringRef(); 1366 break; 1367 1368 case eValueObjectRepresentationStyleExpressionPath: 1369 GetExpressionPath(strm); 1370 str = strm.GetString(); 1371 break; 1372 } 1373 1374 if (str.empty()) { 1375 if (val_obj_display == eValueObjectRepresentationStyleValue) 1376 str = GetSummaryAsCString(); 1377 else if (val_obj_display == eValueObjectRepresentationStyleSummary) { 1378 if (!CanProvideValue()) { 1379 strm.Printf("%s @ %s", GetTypeName().AsCString(), 1380 GetLocationAsCString()); 1381 str = strm.GetString(); 1382 } else 1383 str = GetValueAsCString(); 1384 } 1385 } 1386 1387 if (!str.empty()) 1388 s << str; 1389 else { 1390 if (m_error.Fail()) { 1391 if (do_dump_error) 1392 s.Printf("<%s>", m_error.AsCString()); 1393 else 1394 return false; 1395 } else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1396 s.PutCString("<no summary available>"); 1397 else if (val_obj_display == eValueObjectRepresentationStyleValue) 1398 s.PutCString("<no value available>"); 1399 else if (val_obj_display == 1400 eValueObjectRepresentationStyleLanguageSpecific) 1401 s.PutCString("<not a valid Objective-C object>"); // edit this if we 1402 // have other runtimes 1403 // that support a 1404 // description 1405 else 1406 s.PutCString("<no printable representation>"); 1407 } 1408 1409 // we should only return false here if we could not do *anything* even if 1410 // we have an error message as output, that's a success from our callers' 1411 // perspective, so return true 1412 var_success = true; 1413 1414 if (custom_format != eFormatInvalid) 1415 SetFormat(eFormatDefault); 1416 } 1417 1418 return var_success; 1419 } 1420 1421 addr_t ValueObject::GetAddressOf(bool scalar_is_load_address, 1422 AddressType *address_type) { 1423 // Can't take address of a bitfield 1424 if (IsBitfield()) 1425 return LLDB_INVALID_ADDRESS; 1426 1427 if (!UpdateValueIfNeeded(false)) 1428 return LLDB_INVALID_ADDRESS; 1429 1430 switch (m_value.GetValueType()) { 1431 case Value::ValueType::Invalid: 1432 return LLDB_INVALID_ADDRESS; 1433 case Value::ValueType::Scalar: 1434 if (scalar_is_load_address) { 1435 if (address_type) 1436 *address_type = eAddressTypeLoad; 1437 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1438 } 1439 break; 1440 1441 case Value::ValueType::LoadAddress: 1442 case Value::ValueType::FileAddress: { 1443 if (address_type) 1444 *address_type = m_value.GetValueAddressType(); 1445 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1446 } break; 1447 case Value::ValueType::HostAddress: { 1448 if (address_type) 1449 *address_type = m_value.GetValueAddressType(); 1450 return LLDB_INVALID_ADDRESS; 1451 } break; 1452 } 1453 if (address_type) 1454 *address_type = eAddressTypeInvalid; 1455 return LLDB_INVALID_ADDRESS; 1456 } 1457 1458 addr_t ValueObject::GetPointerValue(AddressType *address_type) { 1459 addr_t address = LLDB_INVALID_ADDRESS; 1460 if (address_type) 1461 *address_type = eAddressTypeInvalid; 1462 1463 if (!UpdateValueIfNeeded(false)) 1464 return address; 1465 1466 switch (m_value.GetValueType()) { 1467 case Value::ValueType::Invalid: 1468 return LLDB_INVALID_ADDRESS; 1469 case Value::ValueType::Scalar: 1470 address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1471 break; 1472 1473 case Value::ValueType::HostAddress: 1474 case Value::ValueType::LoadAddress: 1475 case Value::ValueType::FileAddress: { 1476 lldb::offset_t data_offset = 0; 1477 address = m_data.GetAddress(&data_offset); 1478 } break; 1479 } 1480 1481 if (address_type) 1482 *address_type = GetAddressTypeOfChildren(); 1483 1484 return address; 1485 } 1486 1487 bool ValueObject::SetValueFromCString(const char *value_str, Status &error) { 1488 error.Clear(); 1489 // Make sure our value is up to date first so that our location and location 1490 // type is valid. 1491 if (!UpdateValueIfNeeded(false)) { 1492 error.SetErrorString("unable to read value"); 1493 return false; 1494 } 1495 1496 uint64_t count = 0; 1497 const Encoding encoding = GetCompilerType().GetEncoding(count); 1498 1499 const size_t byte_size = GetByteSize().getValueOr(0); 1500 1501 Value::ValueType value_type = m_value.GetValueType(); 1502 1503 if (value_type == Value::ValueType::Scalar) { 1504 // If the value is already a scalar, then let the scalar change itself: 1505 m_value.GetScalar().SetValueFromCString(value_str, encoding, byte_size); 1506 } else if (byte_size <= 16) { 1507 // If the value fits in a scalar, then make a new scalar and again let the 1508 // scalar code do the conversion, then figure out where to put the new 1509 // value. 1510 Scalar new_scalar; 1511 error = new_scalar.SetValueFromCString(value_str, encoding, byte_size); 1512 if (error.Success()) { 1513 switch (value_type) { 1514 case Value::ValueType::LoadAddress: { 1515 // If it is a load address, then the scalar value is the storage 1516 // location of the data, and we have to shove this value down to that 1517 // load location. 1518 ExecutionContext exe_ctx(GetExecutionContextRef()); 1519 Process *process = exe_ctx.GetProcessPtr(); 1520 if (process) { 1521 addr_t target_addr = 1522 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1523 size_t bytes_written = process->WriteScalarToMemory( 1524 target_addr, new_scalar, byte_size, error); 1525 if (!error.Success()) 1526 return false; 1527 if (bytes_written != byte_size) { 1528 error.SetErrorString("unable to write value to memory"); 1529 return false; 1530 } 1531 } 1532 } break; 1533 case Value::ValueType::HostAddress: { 1534 // If it is a host address, then we stuff the scalar as a DataBuffer 1535 // into the Value's data. 1536 DataExtractor new_data; 1537 new_data.SetByteOrder(m_data.GetByteOrder()); 1538 1539 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 1540 m_data.SetData(buffer_sp, 0); 1541 bool success = new_scalar.GetData(new_data); 1542 if (success) { 1543 new_data.CopyByteOrderedData( 1544 0, byte_size, const_cast<uint8_t *>(m_data.GetDataStart()), 1545 byte_size, m_data.GetByteOrder()); 1546 } 1547 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1548 1549 } break; 1550 case Value::ValueType::Invalid: 1551 error.SetErrorString("invalid location"); 1552 return false; 1553 case Value::ValueType::FileAddress: 1554 case Value::ValueType::Scalar: 1555 break; 1556 } 1557 } else { 1558 return false; 1559 } 1560 } else { 1561 // We don't support setting things bigger than a scalar at present. 1562 error.SetErrorString("unable to write aggregate data type"); 1563 return false; 1564 } 1565 1566 // If we have reached this point, then we have successfully changed the 1567 // value. 1568 SetNeedsUpdate(); 1569 return true; 1570 } 1571 1572 bool ValueObject::GetDeclaration(Declaration &decl) { 1573 decl.Clear(); 1574 return false; 1575 } 1576 1577 ConstString ValueObject::GetTypeName() { 1578 return GetCompilerType().GetTypeName(); 1579 } 1580 1581 ConstString ValueObject::GetDisplayTypeName() { return GetTypeName(); } 1582 1583 ConstString ValueObject::GetQualifiedTypeName() { 1584 return GetCompilerType().GetTypeName(); 1585 } 1586 1587 LanguageType ValueObject::GetObjectRuntimeLanguage() { 1588 return GetCompilerType().GetMinimumLanguage(); 1589 } 1590 1591 void ValueObject::AddSyntheticChild(ConstString key, 1592 ValueObject *valobj) { 1593 m_synthetic_children[key] = valobj; 1594 } 1595 1596 ValueObjectSP ValueObject::GetSyntheticChild(ConstString key) const { 1597 ValueObjectSP synthetic_child_sp; 1598 std::map<ConstString, ValueObject *>::const_iterator pos = 1599 m_synthetic_children.find(key); 1600 if (pos != m_synthetic_children.end()) 1601 synthetic_child_sp = pos->second->GetSP(); 1602 return synthetic_child_sp; 1603 } 1604 1605 uint32_t 1606 ValueObject::GetTypeInfo(CompilerType *pointee_or_element_compiler_type) { 1607 return GetCompilerType().GetTypeInfo(pointee_or_element_compiler_type); 1608 } 1609 1610 bool ValueObject::IsPointerType() { return GetCompilerType().IsPointerType(); } 1611 1612 bool ValueObject::IsArrayType() { 1613 return GetCompilerType().IsArrayType(nullptr, nullptr, nullptr); 1614 } 1615 1616 bool ValueObject::IsScalarType() { return GetCompilerType().IsScalarType(); } 1617 1618 bool ValueObject::IsIntegerType(bool &is_signed) { 1619 return GetCompilerType().IsIntegerType(is_signed); 1620 } 1621 1622 bool ValueObject::IsPointerOrReferenceType() { 1623 return GetCompilerType().IsPointerOrReferenceType(); 1624 } 1625 1626 bool ValueObject::IsPossibleDynamicType() { 1627 ExecutionContext exe_ctx(GetExecutionContextRef()); 1628 Process *process = exe_ctx.GetProcessPtr(); 1629 if (process) 1630 return process->IsPossibleDynamicValue(*this); 1631 else 1632 return GetCompilerType().IsPossibleDynamicType(nullptr, true, true); 1633 } 1634 1635 bool ValueObject::IsRuntimeSupportValue() { 1636 Process *process(GetProcessSP().get()); 1637 if (!process) 1638 return false; 1639 1640 // We trust the the compiler did the right thing and marked runtime support 1641 // values as artificial. 1642 if (!GetVariable() || !GetVariable()->IsArtificial()) 1643 return false; 1644 1645 if (auto *runtime = process->GetLanguageRuntime(GetVariable()->GetLanguage())) 1646 if (runtime->IsAllowedRuntimeValue(GetName())) 1647 return false; 1648 1649 return true; 1650 } 1651 1652 bool ValueObject::IsNilReference() { 1653 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1654 return language->IsNilReference(*this); 1655 } 1656 return false; 1657 } 1658 1659 bool ValueObject::IsUninitializedReference() { 1660 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1661 return language->IsUninitializedReference(*this); 1662 } 1663 return false; 1664 } 1665 1666 // This allows you to create an array member using and index that doesn't not 1667 // fall in the normal bounds of the array. Many times structure can be defined 1668 // as: struct Collection { 1669 // uint32_t item_count; 1670 // Item item_array[0]; 1671 // }; 1672 // The size of the "item_array" is 1, but many times in practice there are more 1673 // items in "item_array". 1674 1675 ValueObjectSP ValueObject::GetSyntheticArrayMember(size_t index, 1676 bool can_create) { 1677 ValueObjectSP synthetic_child_sp; 1678 if (IsPointerType() || IsArrayType()) { 1679 std::string index_str = llvm::formatv("[{0}]", index); 1680 ConstString index_const_str(index_str); 1681 // Check if we have already created a synthetic array member in this valid 1682 // object. If we have we will re-use it. 1683 synthetic_child_sp = GetSyntheticChild(index_const_str); 1684 if (!synthetic_child_sp) { 1685 ValueObject *synthetic_child; 1686 // We haven't made a synthetic array member for INDEX yet, so lets make 1687 // one and cache it for any future reference. 1688 synthetic_child = CreateChildAtIndex(0, true, index); 1689 1690 // Cache the value if we got one back... 1691 if (synthetic_child) { 1692 AddSyntheticChild(index_const_str, synthetic_child); 1693 synthetic_child_sp = synthetic_child->GetSP(); 1694 synthetic_child_sp->SetName(ConstString(index_str)); 1695 synthetic_child_sp->m_flags.m_is_array_item_for_pointer = true; 1696 } 1697 } 1698 } 1699 return synthetic_child_sp; 1700 } 1701 1702 ValueObjectSP ValueObject::GetSyntheticBitFieldChild(uint32_t from, uint32_t to, 1703 bool can_create) { 1704 ValueObjectSP synthetic_child_sp; 1705 if (IsScalarType()) { 1706 std::string index_str = llvm::formatv("[{0}-{1}]", from, to); 1707 ConstString index_const_str(index_str); 1708 // Check if we have already created a synthetic array member in this valid 1709 // object. If we have we will re-use it. 1710 synthetic_child_sp = GetSyntheticChild(index_const_str); 1711 if (!synthetic_child_sp) { 1712 uint32_t bit_field_size = to - from + 1; 1713 uint32_t bit_field_offset = from; 1714 if (GetDataExtractor().GetByteOrder() == eByteOrderBig) 1715 bit_field_offset = 1716 GetByteSize().getValueOr(0) * 8 - bit_field_size - bit_field_offset; 1717 // We haven't made a synthetic array member for INDEX yet, so lets make 1718 // one and cache it for any future reference. 1719 ValueObjectChild *synthetic_child = new ValueObjectChild( 1720 *this, GetCompilerType(), index_const_str, 1721 GetByteSize().getValueOr(0), 0, bit_field_size, bit_field_offset, 1722 false, false, eAddressTypeInvalid, 0); 1723 1724 // Cache the value if we got one back... 1725 if (synthetic_child) { 1726 AddSyntheticChild(index_const_str, synthetic_child); 1727 synthetic_child_sp = synthetic_child->GetSP(); 1728 synthetic_child_sp->SetName(ConstString(index_str)); 1729 synthetic_child_sp->m_flags.m_is_bitfield_for_scalar = true; 1730 } 1731 } 1732 } 1733 return synthetic_child_sp; 1734 } 1735 1736 ValueObjectSP ValueObject::GetSyntheticChildAtOffset( 1737 uint32_t offset, const CompilerType &type, bool can_create, 1738 ConstString name_const_str) { 1739 1740 ValueObjectSP synthetic_child_sp; 1741 1742 if (name_const_str.IsEmpty()) { 1743 name_const_str.SetString("@" + std::to_string(offset)); 1744 } 1745 1746 // Check if we have already created a synthetic array member in this valid 1747 // object. If we have we will re-use it. 1748 synthetic_child_sp = GetSyntheticChild(name_const_str); 1749 1750 if (synthetic_child_sp.get()) 1751 return synthetic_child_sp; 1752 1753 if (!can_create) 1754 return {}; 1755 1756 ExecutionContext exe_ctx(GetExecutionContextRef()); 1757 llvm::Optional<uint64_t> size = 1758 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1759 if (!size) 1760 return {}; 1761 ValueObjectChild *synthetic_child = 1762 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1763 false, false, eAddressTypeInvalid, 0); 1764 if (synthetic_child) { 1765 AddSyntheticChild(name_const_str, synthetic_child); 1766 synthetic_child_sp = synthetic_child->GetSP(); 1767 synthetic_child_sp->SetName(name_const_str); 1768 synthetic_child_sp->m_flags.m_is_child_at_offset = true; 1769 } 1770 return synthetic_child_sp; 1771 } 1772 1773 ValueObjectSP ValueObject::GetSyntheticBase(uint32_t offset, 1774 const CompilerType &type, 1775 bool can_create, 1776 ConstString name_const_str) { 1777 ValueObjectSP synthetic_child_sp; 1778 1779 if (name_const_str.IsEmpty()) { 1780 char name_str[128]; 1781 snprintf(name_str, sizeof(name_str), "base%s@%i", 1782 type.GetTypeName().AsCString("<unknown>"), offset); 1783 name_const_str.SetCString(name_str); 1784 } 1785 1786 // Check if we have already created a synthetic array member in this valid 1787 // object. If we have we will re-use it. 1788 synthetic_child_sp = GetSyntheticChild(name_const_str); 1789 1790 if (synthetic_child_sp.get()) 1791 return synthetic_child_sp; 1792 1793 if (!can_create) 1794 return {}; 1795 1796 const bool is_base_class = true; 1797 1798 ExecutionContext exe_ctx(GetExecutionContextRef()); 1799 llvm::Optional<uint64_t> size = 1800 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1801 if (!size) 1802 return {}; 1803 ValueObjectChild *synthetic_child = 1804 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1805 is_base_class, false, eAddressTypeInvalid, 0); 1806 if (synthetic_child) { 1807 AddSyntheticChild(name_const_str, synthetic_child); 1808 synthetic_child_sp = synthetic_child->GetSP(); 1809 synthetic_child_sp->SetName(name_const_str); 1810 } 1811 return synthetic_child_sp; 1812 } 1813 1814 // your expression path needs to have a leading . or -> (unless it somehow 1815 // "looks like" an array, in which case it has a leading [ symbol). while the [ 1816 // is meaningful and should be shown to the user, . and -> are just parser 1817 // design, but by no means added information for the user.. strip them off 1818 static const char *SkipLeadingExpressionPathSeparators(const char *expression) { 1819 if (!expression || !expression[0]) 1820 return expression; 1821 if (expression[0] == '.') 1822 return expression + 1; 1823 if (expression[0] == '-' && expression[1] == '>') 1824 return expression + 2; 1825 return expression; 1826 } 1827 1828 ValueObjectSP 1829 ValueObject::GetSyntheticExpressionPathChild(const char *expression, 1830 bool can_create) { 1831 ValueObjectSP synthetic_child_sp; 1832 ConstString name_const_string(expression); 1833 // Check if we have already created a synthetic array member in this valid 1834 // object. If we have we will re-use it. 1835 synthetic_child_sp = GetSyntheticChild(name_const_string); 1836 if (!synthetic_child_sp) { 1837 // We haven't made a synthetic array member for expression yet, so lets 1838 // make one and cache it for any future reference. 1839 synthetic_child_sp = GetValueForExpressionPath( 1840 expression, nullptr, nullptr, 1841 GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal( 1842 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 1843 None)); 1844 1845 // Cache the value if we got one back... 1846 if (synthetic_child_sp.get()) { 1847 // FIXME: this causes a "real" child to end up with its name changed to 1848 // the contents of expression 1849 AddSyntheticChild(name_const_string, synthetic_child_sp.get()); 1850 synthetic_child_sp->SetName( 1851 ConstString(SkipLeadingExpressionPathSeparators(expression))); 1852 } 1853 } 1854 return synthetic_child_sp; 1855 } 1856 1857 void ValueObject::CalculateSyntheticValue() { 1858 TargetSP target_sp(GetTargetSP()); 1859 if (target_sp && !target_sp->GetEnableSyntheticValue()) { 1860 m_synthetic_value = nullptr; 1861 return; 1862 } 1863 1864 lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp); 1865 1866 if (!UpdateFormatsIfNeeded() && m_synthetic_value) 1867 return; 1868 1869 if (m_synthetic_children_sp.get() == nullptr) 1870 return; 1871 1872 if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value) 1873 return; 1874 1875 m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp); 1876 } 1877 1878 void ValueObject::CalculateDynamicValue(DynamicValueType use_dynamic) { 1879 if (use_dynamic == eNoDynamicValues) 1880 return; 1881 1882 if (!m_dynamic_value && !IsDynamic()) { 1883 ExecutionContext exe_ctx(GetExecutionContextRef()); 1884 Process *process = exe_ctx.GetProcessPtr(); 1885 if (process && process->IsPossibleDynamicValue(*this)) { 1886 ClearDynamicTypeInformation(); 1887 m_dynamic_value = new ValueObjectDynamicValue(*this, use_dynamic); 1888 } 1889 } 1890 } 1891 1892 ValueObjectSP ValueObject::GetDynamicValue(DynamicValueType use_dynamic) { 1893 if (use_dynamic == eNoDynamicValues) 1894 return ValueObjectSP(); 1895 1896 if (!IsDynamic() && m_dynamic_value == nullptr) { 1897 CalculateDynamicValue(use_dynamic); 1898 } 1899 if (m_dynamic_value) 1900 return m_dynamic_value->GetSP(); 1901 else 1902 return ValueObjectSP(); 1903 } 1904 1905 ValueObjectSP ValueObject::GetStaticValue() { return GetSP(); } 1906 1907 lldb::ValueObjectSP ValueObject::GetNonSyntheticValue() { return GetSP(); } 1908 1909 ValueObjectSP ValueObject::GetSyntheticValue() { 1910 CalculateSyntheticValue(); 1911 1912 if (m_synthetic_value) 1913 return m_synthetic_value->GetSP(); 1914 else 1915 return ValueObjectSP(); 1916 } 1917 1918 bool ValueObject::HasSyntheticValue() { 1919 UpdateFormatsIfNeeded(); 1920 1921 if (m_synthetic_children_sp.get() == nullptr) 1922 return false; 1923 1924 CalculateSyntheticValue(); 1925 1926 return m_synthetic_value != nullptr; 1927 } 1928 1929 ValueObject *ValueObject::GetNonBaseClassParent() { 1930 if (GetParent()) { 1931 if (GetParent()->IsBaseClass()) 1932 return GetParent()->GetNonBaseClassParent(); 1933 else 1934 return GetParent(); 1935 } 1936 return nullptr; 1937 } 1938 1939 bool ValueObject::IsBaseClass(uint32_t &depth) { 1940 if (!IsBaseClass()) { 1941 depth = 0; 1942 return false; 1943 } 1944 if (GetParent()) { 1945 GetParent()->IsBaseClass(depth); 1946 depth = depth + 1; 1947 return true; 1948 } 1949 // TODO: a base of no parent? weird.. 1950 depth = 1; 1951 return true; 1952 } 1953 1954 void ValueObject::GetExpressionPath(Stream &s, 1955 GetExpressionPathFormat epformat) { 1956 // synthetic children do not actually "exist" as part of the hierarchy, and 1957 // sometimes they are consed up in ways that don't make sense from an 1958 // underlying language/API standpoint. So, use a special code path here to 1959 // return something that can hopefully be used in expression 1960 if (m_flags.m_is_synthetic_children_generated) { 1961 UpdateValueIfNeeded(); 1962 1963 if (m_value.GetValueType() == Value::ValueType::LoadAddress) { 1964 if (IsPointerOrReferenceType()) { 1965 s.Printf("((%s)0x%" PRIx64 ")", GetTypeName().AsCString("void"), 1966 GetValueAsUnsigned(0)); 1967 return; 1968 } else { 1969 uint64_t load_addr = 1970 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1971 if (load_addr != LLDB_INVALID_ADDRESS) { 1972 s.Printf("(*( (%s *)0x%" PRIx64 "))", GetTypeName().AsCString("void"), 1973 load_addr); 1974 return; 1975 } 1976 } 1977 } 1978 1979 if (CanProvideValue()) { 1980 s.Printf("((%s)%s)", GetTypeName().AsCString("void"), 1981 GetValueAsCString()); 1982 return; 1983 } 1984 1985 return; 1986 } 1987 1988 const bool is_deref_of_parent = IsDereferenceOfParent(); 1989 1990 if (is_deref_of_parent && 1991 epformat == eGetExpressionPathFormatDereferencePointers) { 1992 // this is the original format of GetExpressionPath() producing code like 1993 // *(a_ptr).memberName, which is entirely fine, until you put this into 1994 // StackFrame::GetValueForVariableExpressionPath() which prefers to see 1995 // a_ptr->memberName. the eHonorPointers mode is meant to produce strings 1996 // in this latter format 1997 s.PutCString("*("); 1998 } 1999 2000 ValueObject *parent = GetParent(); 2001 2002 if (parent) 2003 parent->GetExpressionPath(s, epformat); 2004 2005 // if we are a deref_of_parent just because we are synthetic array members 2006 // made up to allow ptr[%d] syntax to work in variable printing, then add our 2007 // name ([%d]) to the expression path 2008 if (m_flags.m_is_array_item_for_pointer && 2009 epformat == eGetExpressionPathFormatHonorPointers) 2010 s.PutCString(m_name.GetStringRef()); 2011 2012 if (!IsBaseClass()) { 2013 if (!is_deref_of_parent) { 2014 ValueObject *non_base_class_parent = GetNonBaseClassParent(); 2015 if (non_base_class_parent && 2016 !non_base_class_parent->GetName().IsEmpty()) { 2017 CompilerType non_base_class_parent_compiler_type = 2018 non_base_class_parent->GetCompilerType(); 2019 if (non_base_class_parent_compiler_type) { 2020 if (parent && parent->IsDereferenceOfParent() && 2021 epformat == eGetExpressionPathFormatHonorPointers) { 2022 s.PutCString("->"); 2023 } else { 2024 const uint32_t non_base_class_parent_type_info = 2025 non_base_class_parent_compiler_type.GetTypeInfo(); 2026 2027 if (non_base_class_parent_type_info & eTypeIsPointer) { 2028 s.PutCString("->"); 2029 } else if ((non_base_class_parent_type_info & eTypeHasChildren) && 2030 !(non_base_class_parent_type_info & eTypeIsArray)) { 2031 s.PutChar('.'); 2032 } 2033 } 2034 } 2035 } 2036 2037 const char *name = GetName().GetCString(); 2038 if (name) 2039 s.PutCString(name); 2040 } 2041 } 2042 2043 if (is_deref_of_parent && 2044 epformat == eGetExpressionPathFormatDereferencePointers) { 2045 s.PutChar(')'); 2046 } 2047 } 2048 2049 ValueObjectSP ValueObject::GetValueForExpressionPath( 2050 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2051 ExpressionPathEndResultType *final_value_type, 2052 const GetValueForExpressionPathOptions &options, 2053 ExpressionPathAftermath *final_task_on_target) { 2054 2055 ExpressionPathScanEndReason dummy_reason_to_stop = 2056 ValueObject::eExpressionPathScanEndReasonUnknown; 2057 ExpressionPathEndResultType dummy_final_value_type = 2058 ValueObject::eExpressionPathEndResultTypeInvalid; 2059 ExpressionPathAftermath dummy_final_task_on_target = 2060 ValueObject::eExpressionPathAftermathNothing; 2061 2062 ValueObjectSP ret_val = GetValueForExpressionPath_Impl( 2063 expression, reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2064 final_value_type ? final_value_type : &dummy_final_value_type, options, 2065 final_task_on_target ? final_task_on_target 2066 : &dummy_final_task_on_target); 2067 2068 if (!final_task_on_target || 2069 *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2070 return ret_val; 2071 2072 if (ret_val.get() && 2073 ((final_value_type ? *final_value_type : dummy_final_value_type) == 2074 eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress 2075 // of plain objects 2076 { 2077 if ((final_task_on_target ? *final_task_on_target 2078 : dummy_final_task_on_target) == 2079 ValueObject::eExpressionPathAftermathDereference) { 2080 Status error; 2081 ValueObjectSP final_value = ret_val->Dereference(error); 2082 if (error.Fail() || !final_value.get()) { 2083 if (reason_to_stop) 2084 *reason_to_stop = 2085 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2086 if (final_value_type) 2087 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2088 return ValueObjectSP(); 2089 } else { 2090 if (final_task_on_target) 2091 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2092 return final_value; 2093 } 2094 } 2095 if (*final_task_on_target == 2096 ValueObject::eExpressionPathAftermathTakeAddress) { 2097 Status error; 2098 ValueObjectSP final_value = ret_val->AddressOf(error); 2099 if (error.Fail() || !final_value.get()) { 2100 if (reason_to_stop) 2101 *reason_to_stop = 2102 ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2103 if (final_value_type) 2104 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2105 return ValueObjectSP(); 2106 } else { 2107 if (final_task_on_target) 2108 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2109 return final_value; 2110 } 2111 } 2112 } 2113 return ret_val; // final_task_on_target will still have its original value, so 2114 // you know I did not do it 2115 } 2116 2117 ValueObjectSP ValueObject::GetValueForExpressionPath_Impl( 2118 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2119 ExpressionPathEndResultType *final_result, 2120 const GetValueForExpressionPathOptions &options, 2121 ExpressionPathAftermath *what_next) { 2122 ValueObjectSP root = GetSP(); 2123 2124 if (!root) 2125 return nullptr; 2126 2127 llvm::StringRef remainder = expression; 2128 2129 while (true) { 2130 llvm::StringRef temp_expression = remainder; 2131 2132 CompilerType root_compiler_type = root->GetCompilerType(); 2133 CompilerType pointee_compiler_type; 2134 Flags pointee_compiler_type_info; 2135 2136 Flags root_compiler_type_info( 2137 root_compiler_type.GetTypeInfo(&pointee_compiler_type)); 2138 if (pointee_compiler_type) 2139 pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo()); 2140 2141 if (temp_expression.empty()) { 2142 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2143 return root; 2144 } 2145 2146 switch (temp_expression.front()) { 2147 case '-': { 2148 temp_expression = temp_expression.drop_front(); 2149 if (options.m_check_dot_vs_arrow_syntax && 2150 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2151 // use -> on a 2152 // non-pointer and I 2153 // must catch the error 2154 { 2155 *reason_to_stop = 2156 ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot; 2157 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2158 return ValueObjectSP(); 2159 } 2160 if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to 2161 // extract an ObjC IVar 2162 // when this is forbidden 2163 root_compiler_type_info.Test(eTypeIsPointer) && 2164 options.m_no_fragile_ivar) { 2165 *reason_to_stop = 2166 ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed; 2167 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2168 return ValueObjectSP(); 2169 } 2170 if (!temp_expression.startswith(">")) { 2171 *reason_to_stop = 2172 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2173 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2174 return ValueObjectSP(); 2175 } 2176 } 2177 LLVM_FALLTHROUGH; 2178 case '.': // or fallthrough from -> 2179 { 2180 if (options.m_check_dot_vs_arrow_syntax && 2181 temp_expression.front() == '.' && 2182 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2183 // use . on a pointer 2184 // and I must catch the 2185 // error 2186 { 2187 *reason_to_stop = 2188 ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow; 2189 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2190 return nullptr; 2191 } 2192 temp_expression = temp_expression.drop_front(); // skip . or > 2193 2194 size_t next_sep_pos = temp_expression.find_first_of("-.[", 1); 2195 ConstString child_name; 2196 if (next_sep_pos == llvm::StringRef::npos) // if no other separator just 2197 // expand this last layer 2198 { 2199 child_name.SetString(temp_expression); 2200 ValueObjectSP child_valobj_sp = 2201 root->GetChildMemberWithName(child_name, true); 2202 2203 if (child_valobj_sp.get()) // we know we are done, so just return 2204 { 2205 *reason_to_stop = 2206 ValueObject::eExpressionPathScanEndReasonEndOfString; 2207 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2208 return child_valobj_sp; 2209 } else { 2210 switch (options.m_synthetic_children_traversal) { 2211 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2212 None: 2213 break; 2214 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2215 FromSynthetic: 2216 if (root->IsSynthetic()) { 2217 child_valobj_sp = root->GetNonSyntheticValue(); 2218 if (child_valobj_sp.get()) 2219 child_valobj_sp = 2220 child_valobj_sp->GetChildMemberWithName(child_name, true); 2221 } 2222 break; 2223 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2224 ToSynthetic: 2225 if (!root->IsSynthetic()) { 2226 child_valobj_sp = root->GetSyntheticValue(); 2227 if (child_valobj_sp.get()) 2228 child_valobj_sp = 2229 child_valobj_sp->GetChildMemberWithName(child_name, true); 2230 } 2231 break; 2232 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2233 Both: 2234 if (root->IsSynthetic()) { 2235 child_valobj_sp = root->GetNonSyntheticValue(); 2236 if (child_valobj_sp.get()) 2237 child_valobj_sp = 2238 child_valobj_sp->GetChildMemberWithName(child_name, true); 2239 } else { 2240 child_valobj_sp = root->GetSyntheticValue(); 2241 if (child_valobj_sp.get()) 2242 child_valobj_sp = 2243 child_valobj_sp->GetChildMemberWithName(child_name, true); 2244 } 2245 break; 2246 } 2247 } 2248 2249 // if we are here and options.m_no_synthetic_children is true, 2250 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2251 // branch, and return an error 2252 if (child_valobj_sp.get()) // if it worked, just return 2253 { 2254 *reason_to_stop = 2255 ValueObject::eExpressionPathScanEndReasonEndOfString; 2256 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2257 return child_valobj_sp; 2258 } else { 2259 *reason_to_stop = 2260 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2261 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2262 return nullptr; 2263 } 2264 } else // other layers do expand 2265 { 2266 llvm::StringRef next_separator = temp_expression.substr(next_sep_pos); 2267 2268 child_name.SetString(temp_expression.slice(0, next_sep_pos)); 2269 2270 ValueObjectSP child_valobj_sp = 2271 root->GetChildMemberWithName(child_name, true); 2272 if (child_valobj_sp.get()) // store the new root and move on 2273 { 2274 root = child_valobj_sp; 2275 remainder = next_separator; 2276 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2277 continue; 2278 } else { 2279 switch (options.m_synthetic_children_traversal) { 2280 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2281 None: 2282 break; 2283 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2284 FromSynthetic: 2285 if (root->IsSynthetic()) { 2286 child_valobj_sp = root->GetNonSyntheticValue(); 2287 if (child_valobj_sp.get()) 2288 child_valobj_sp = 2289 child_valobj_sp->GetChildMemberWithName(child_name, true); 2290 } 2291 break; 2292 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2293 ToSynthetic: 2294 if (!root->IsSynthetic()) { 2295 child_valobj_sp = root->GetSyntheticValue(); 2296 if (child_valobj_sp.get()) 2297 child_valobj_sp = 2298 child_valobj_sp->GetChildMemberWithName(child_name, true); 2299 } 2300 break; 2301 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2302 Both: 2303 if (root->IsSynthetic()) { 2304 child_valobj_sp = root->GetNonSyntheticValue(); 2305 if (child_valobj_sp.get()) 2306 child_valobj_sp = 2307 child_valobj_sp->GetChildMemberWithName(child_name, true); 2308 } else { 2309 child_valobj_sp = root->GetSyntheticValue(); 2310 if (child_valobj_sp.get()) 2311 child_valobj_sp = 2312 child_valobj_sp->GetChildMemberWithName(child_name, true); 2313 } 2314 break; 2315 } 2316 } 2317 2318 // if we are here and options.m_no_synthetic_children is true, 2319 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2320 // branch, and return an error 2321 if (child_valobj_sp.get()) // if it worked, move on 2322 { 2323 root = child_valobj_sp; 2324 remainder = next_separator; 2325 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2326 continue; 2327 } else { 2328 *reason_to_stop = 2329 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2330 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2331 return nullptr; 2332 } 2333 } 2334 break; 2335 } 2336 case '[': { 2337 if (!root_compiler_type_info.Test(eTypeIsArray) && 2338 !root_compiler_type_info.Test(eTypeIsPointer) && 2339 !root_compiler_type_info.Test( 2340 eTypeIsVector)) // if this is not a T[] nor a T* 2341 { 2342 if (!root_compiler_type_info.Test( 2343 eTypeIsScalar)) // if this is not even a scalar... 2344 { 2345 if (options.m_synthetic_children_traversal == 2346 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2347 None) // ...only chance left is synthetic 2348 { 2349 *reason_to_stop = 2350 ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 2351 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2352 return ValueObjectSP(); 2353 } 2354 } else if (!options.m_allow_bitfields_syntax) // if this is a scalar, 2355 // check that we can 2356 // expand bitfields 2357 { 2358 *reason_to_stop = 2359 ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 2360 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2361 return ValueObjectSP(); 2362 } 2363 } 2364 if (temp_expression[1] == 2365 ']') // if this is an unbounded range it only works for arrays 2366 { 2367 if (!root_compiler_type_info.Test(eTypeIsArray)) { 2368 *reason_to_stop = 2369 ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 2370 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2371 return nullptr; 2372 } else // even if something follows, we cannot expand unbounded ranges, 2373 // just let the caller do it 2374 { 2375 *reason_to_stop = 2376 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2377 *final_result = 2378 ValueObject::eExpressionPathEndResultTypeUnboundedRange; 2379 return root; 2380 } 2381 } 2382 2383 size_t close_bracket_position = temp_expression.find(']', 1); 2384 if (close_bracket_position == 2385 llvm::StringRef::npos) // if there is no ], this is a syntax error 2386 { 2387 *reason_to_stop = 2388 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2389 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2390 return nullptr; 2391 } 2392 2393 llvm::StringRef bracket_expr = 2394 temp_expression.slice(1, close_bracket_position); 2395 2396 // If this was an empty expression it would have been caught by the if 2397 // above. 2398 assert(!bracket_expr.empty()); 2399 2400 if (!bracket_expr.contains('-')) { 2401 // if no separator, this is of the form [N]. Note that this cannot be 2402 // an unbounded range of the form [], because that case was handled 2403 // above with an unconditional return. 2404 unsigned long index = 0; 2405 if (bracket_expr.getAsInteger(0, index)) { 2406 *reason_to_stop = 2407 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2408 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2409 return nullptr; 2410 } 2411 2412 // from here on we do have a valid index 2413 if (root_compiler_type_info.Test(eTypeIsArray)) { 2414 ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true); 2415 if (!child_valobj_sp) 2416 child_valobj_sp = root->GetSyntheticArrayMember(index, true); 2417 if (!child_valobj_sp) 2418 if (root->HasSyntheticValue() && 2419 root->GetSyntheticValue()->GetNumChildren() > index) 2420 child_valobj_sp = 2421 root->GetSyntheticValue()->GetChildAtIndex(index, true); 2422 if (child_valobj_sp) { 2423 root = child_valobj_sp; 2424 remainder = 2425 temp_expression.substr(close_bracket_position + 1); // skip ] 2426 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2427 continue; 2428 } else { 2429 *reason_to_stop = 2430 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2431 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2432 return nullptr; 2433 } 2434 } else if (root_compiler_type_info.Test(eTypeIsPointer)) { 2435 if (*what_next == 2436 ValueObject:: 2437 eExpressionPathAftermathDereference && // if this is a 2438 // ptr-to-scalar, I 2439 // am accessing it 2440 // by index and I 2441 // would have 2442 // deref'ed anyway, 2443 // then do it now 2444 // and use this as 2445 // a bitfield 2446 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2447 Status error; 2448 root = root->Dereference(error); 2449 if (error.Fail() || !root) { 2450 *reason_to_stop = 2451 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2452 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2453 return nullptr; 2454 } else { 2455 *what_next = eExpressionPathAftermathNothing; 2456 continue; 2457 } 2458 } else { 2459 if (root->GetCompilerType().GetMinimumLanguage() == 2460 eLanguageTypeObjC && 2461 pointee_compiler_type_info.AllClear(eTypeIsPointer) && 2462 root->HasSyntheticValue() && 2463 (options.m_synthetic_children_traversal == 2464 GetValueForExpressionPathOptions:: 2465 SyntheticChildrenTraversal::ToSynthetic || 2466 options.m_synthetic_children_traversal == 2467 GetValueForExpressionPathOptions:: 2468 SyntheticChildrenTraversal::Both)) { 2469 root = root->GetSyntheticValue()->GetChildAtIndex(index, true); 2470 } else 2471 root = root->GetSyntheticArrayMember(index, true); 2472 if (!root) { 2473 *reason_to_stop = 2474 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2475 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2476 return nullptr; 2477 } else { 2478 remainder = 2479 temp_expression.substr(close_bracket_position + 1); // skip ] 2480 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2481 continue; 2482 } 2483 } 2484 } else if (root_compiler_type_info.Test(eTypeIsScalar)) { 2485 root = root->GetSyntheticBitFieldChild(index, index, true); 2486 if (!root) { 2487 *reason_to_stop = 2488 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2489 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2490 return nullptr; 2491 } else // we do not know how to expand members of bitfields, so we 2492 // just return and let the caller do any further processing 2493 { 2494 *reason_to_stop = ValueObject:: 2495 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2496 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2497 return root; 2498 } 2499 } else if (root_compiler_type_info.Test(eTypeIsVector)) { 2500 root = root->GetChildAtIndex(index, true); 2501 if (!root) { 2502 *reason_to_stop = 2503 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2504 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2505 return ValueObjectSP(); 2506 } else { 2507 remainder = 2508 temp_expression.substr(close_bracket_position + 1); // skip ] 2509 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2510 continue; 2511 } 2512 } else if (options.m_synthetic_children_traversal == 2513 GetValueForExpressionPathOptions:: 2514 SyntheticChildrenTraversal::ToSynthetic || 2515 options.m_synthetic_children_traversal == 2516 GetValueForExpressionPathOptions:: 2517 SyntheticChildrenTraversal::Both) { 2518 if (root->HasSyntheticValue()) 2519 root = root->GetSyntheticValue(); 2520 else if (!root->IsSynthetic()) { 2521 *reason_to_stop = 2522 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2523 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2524 return nullptr; 2525 } 2526 // if we are here, then root itself is a synthetic VO.. should be 2527 // good to go 2528 2529 if (!root) { 2530 *reason_to_stop = 2531 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2532 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2533 return nullptr; 2534 } 2535 root = root->GetChildAtIndex(index, true); 2536 if (!root) { 2537 *reason_to_stop = 2538 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2539 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2540 return nullptr; 2541 } else { 2542 remainder = 2543 temp_expression.substr(close_bracket_position + 1); // skip ] 2544 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2545 continue; 2546 } 2547 } else { 2548 *reason_to_stop = 2549 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2550 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2551 return nullptr; 2552 } 2553 } else { 2554 // we have a low and a high index 2555 llvm::StringRef sleft, sright; 2556 unsigned long low_index, high_index; 2557 std::tie(sleft, sright) = bracket_expr.split('-'); 2558 if (sleft.getAsInteger(0, low_index) || 2559 sright.getAsInteger(0, high_index)) { 2560 *reason_to_stop = 2561 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2562 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2563 return nullptr; 2564 } 2565 2566 if (low_index > high_index) // swap indices if required 2567 std::swap(low_index, high_index); 2568 2569 if (root_compiler_type_info.Test( 2570 eTypeIsScalar)) // expansion only works for scalars 2571 { 2572 root = root->GetSyntheticBitFieldChild(low_index, high_index, true); 2573 if (!root) { 2574 *reason_to_stop = 2575 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2576 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2577 return nullptr; 2578 } else { 2579 *reason_to_stop = ValueObject:: 2580 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2581 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2582 return root; 2583 } 2584 } else if (root_compiler_type_info.Test( 2585 eTypeIsPointer) && // if this is a ptr-to-scalar, I am 2586 // accessing it by index and I would 2587 // have deref'ed anyway, then do it 2588 // now and use this as a bitfield 2589 *what_next == 2590 ValueObject::eExpressionPathAftermathDereference && 2591 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2592 Status error; 2593 root = root->Dereference(error); 2594 if (error.Fail() || !root) { 2595 *reason_to_stop = 2596 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2597 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2598 return nullptr; 2599 } else { 2600 *what_next = ValueObject::eExpressionPathAftermathNothing; 2601 continue; 2602 } 2603 } else { 2604 *reason_to_stop = 2605 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2606 *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange; 2607 return root; 2608 } 2609 } 2610 break; 2611 } 2612 default: // some non-separator is in the way 2613 { 2614 *reason_to_stop = 2615 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2616 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2617 return nullptr; 2618 } 2619 } 2620 } 2621 } 2622 2623 void ValueObject::LogValueObject(Log *log) { 2624 if (log) 2625 return LogValueObject(log, DumpValueObjectOptions(*this)); 2626 } 2627 2628 void ValueObject::LogValueObject(Log *log, 2629 const DumpValueObjectOptions &options) { 2630 if (log) { 2631 StreamString s; 2632 Dump(s, options); 2633 if (s.GetSize()) 2634 log->PutCString(s.GetData()); 2635 } 2636 } 2637 2638 void ValueObject::Dump(Stream &s) { Dump(s, DumpValueObjectOptions(*this)); } 2639 2640 void ValueObject::Dump(Stream &s, const DumpValueObjectOptions &options) { 2641 ValueObjectPrinter printer(this, &s, options); 2642 printer.PrintValueObject(); 2643 } 2644 2645 ValueObjectSP ValueObject::CreateConstantValue(ConstString name) { 2646 ValueObjectSP valobj_sp; 2647 2648 if (UpdateValueIfNeeded(false) && m_error.Success()) { 2649 ExecutionContext exe_ctx(GetExecutionContextRef()); 2650 2651 DataExtractor data; 2652 data.SetByteOrder(m_data.GetByteOrder()); 2653 data.SetAddressByteSize(m_data.GetAddressByteSize()); 2654 2655 if (IsBitfield()) { 2656 Value v(Scalar(GetValueAsUnsigned(UINT64_MAX))); 2657 m_error = v.GetValueAsData(&exe_ctx, data, GetModule().get()); 2658 } else 2659 m_error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get()); 2660 2661 valobj_sp = ValueObjectConstResult::Create( 2662 exe_ctx.GetBestExecutionContextScope(), GetCompilerType(), name, data, 2663 GetAddressOf()); 2664 } 2665 2666 if (!valobj_sp) { 2667 ExecutionContext exe_ctx(GetExecutionContextRef()); 2668 valobj_sp = ValueObjectConstResult::Create( 2669 exe_ctx.GetBestExecutionContextScope(), m_error); 2670 } 2671 return valobj_sp; 2672 } 2673 2674 ValueObjectSP ValueObject::GetQualifiedRepresentationIfAvailable( 2675 lldb::DynamicValueType dynValue, bool synthValue) { 2676 ValueObjectSP result_sp(GetSP()); 2677 2678 switch (dynValue) { 2679 case lldb::eDynamicCanRunTarget: 2680 case lldb::eDynamicDontRunTarget: { 2681 if (!result_sp->IsDynamic()) { 2682 if (result_sp->GetDynamicValue(dynValue)) 2683 result_sp = result_sp->GetDynamicValue(dynValue); 2684 } 2685 } break; 2686 case lldb::eNoDynamicValues: { 2687 if (result_sp->IsDynamic()) { 2688 if (result_sp->GetStaticValue()) 2689 result_sp = result_sp->GetStaticValue(); 2690 } 2691 } break; 2692 } 2693 2694 if (synthValue) { 2695 if (!result_sp->IsSynthetic()) { 2696 if (result_sp->GetSyntheticValue()) 2697 result_sp = result_sp->GetSyntheticValue(); 2698 } 2699 } else { 2700 if (result_sp->IsSynthetic()) { 2701 if (result_sp->GetNonSyntheticValue()) 2702 result_sp = result_sp->GetNonSyntheticValue(); 2703 } 2704 } 2705 2706 return result_sp; 2707 } 2708 2709 ValueObjectSP ValueObject::Dereference(Status &error) { 2710 if (m_deref_valobj) 2711 return m_deref_valobj->GetSP(); 2712 2713 const bool is_pointer_or_reference_type = IsPointerOrReferenceType(); 2714 if (is_pointer_or_reference_type) { 2715 bool omit_empty_base_classes = true; 2716 bool ignore_array_bounds = false; 2717 2718 std::string child_name_str; 2719 uint32_t child_byte_size = 0; 2720 int32_t child_byte_offset = 0; 2721 uint32_t child_bitfield_bit_size = 0; 2722 uint32_t child_bitfield_bit_offset = 0; 2723 bool child_is_base_class = false; 2724 bool child_is_deref_of_parent = false; 2725 const bool transparent_pointers = false; 2726 CompilerType compiler_type = GetCompilerType(); 2727 CompilerType child_compiler_type; 2728 uint64_t language_flags = 0; 2729 2730 ExecutionContext exe_ctx(GetExecutionContextRef()); 2731 2732 child_compiler_type = compiler_type.GetChildCompilerTypeAtIndex( 2733 &exe_ctx, 0, transparent_pointers, omit_empty_base_classes, 2734 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 2735 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 2736 child_is_deref_of_parent, this, language_flags); 2737 if (child_compiler_type && child_byte_size) { 2738 ConstString child_name; 2739 if (!child_name_str.empty()) 2740 child_name.SetCString(child_name_str.c_str()); 2741 2742 m_deref_valobj = new ValueObjectChild( 2743 *this, child_compiler_type, child_name, child_byte_size, 2744 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 2745 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 2746 language_flags); 2747 } 2748 2749 // In case of incomplete child compiler type, use the pointee type and try 2750 // to recreate a new ValueObjectChild using it. 2751 if (!m_deref_valobj) { 2752 if (HasSyntheticValue()) { 2753 child_compiler_type = compiler_type.GetPointeeType(); 2754 2755 if (child_compiler_type) { 2756 ConstString child_name; 2757 if (!child_name_str.empty()) 2758 child_name.SetCString(child_name_str.c_str()); 2759 2760 m_deref_valobj = new ValueObjectChild( 2761 *this, child_compiler_type, child_name, child_byte_size, 2762 child_byte_offset, child_bitfield_bit_size, 2763 child_bitfield_bit_offset, child_is_base_class, 2764 child_is_deref_of_parent, eAddressTypeInvalid, language_flags); 2765 } 2766 } 2767 } 2768 2769 } else if (HasSyntheticValue()) { 2770 m_deref_valobj = 2771 GetSyntheticValue() 2772 ->GetChildMemberWithName(ConstString("$$dereference$$"), true) 2773 .get(); 2774 } else if (IsSynthetic()) { 2775 m_deref_valobj = 2776 GetChildMemberWithName(ConstString("$$dereference$$"), true).get(); 2777 } 2778 2779 if (m_deref_valobj) { 2780 error.Clear(); 2781 return m_deref_valobj->GetSP(); 2782 } else { 2783 StreamString strm; 2784 GetExpressionPath(strm); 2785 2786 if (is_pointer_or_reference_type) 2787 error.SetErrorStringWithFormat("dereference failed: (%s) %s", 2788 GetTypeName().AsCString("<invalid type>"), 2789 strm.GetData()); 2790 else 2791 error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s", 2792 GetTypeName().AsCString("<invalid type>"), 2793 strm.GetData()); 2794 return ValueObjectSP(); 2795 } 2796 } 2797 2798 ValueObjectSP ValueObject::AddressOf(Status &error) { 2799 if (m_addr_of_valobj_sp) 2800 return m_addr_of_valobj_sp; 2801 2802 AddressType address_type = eAddressTypeInvalid; 2803 const bool scalar_is_load_address = false; 2804 addr_t addr = GetAddressOf(scalar_is_load_address, &address_type); 2805 error.Clear(); 2806 if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) { 2807 switch (address_type) { 2808 case eAddressTypeInvalid: { 2809 StreamString expr_path_strm; 2810 GetExpressionPath(expr_path_strm); 2811 error.SetErrorStringWithFormat("'%s' is not in memory", 2812 expr_path_strm.GetData()); 2813 } break; 2814 2815 case eAddressTypeFile: 2816 case eAddressTypeLoad: { 2817 CompilerType compiler_type = GetCompilerType(); 2818 if (compiler_type) { 2819 std::string name(1, '&'); 2820 name.append(m_name.AsCString("")); 2821 ExecutionContext exe_ctx(GetExecutionContextRef()); 2822 m_addr_of_valobj_sp = ValueObjectConstResult::Create( 2823 exe_ctx.GetBestExecutionContextScope(), 2824 compiler_type.GetPointerType(), ConstString(name.c_str()), addr, 2825 eAddressTypeInvalid, m_data.GetAddressByteSize()); 2826 } 2827 } break; 2828 default: 2829 break; 2830 } 2831 } else { 2832 StreamString expr_path_strm; 2833 GetExpressionPath(expr_path_strm); 2834 error.SetErrorStringWithFormat("'%s' doesn't have a valid address", 2835 expr_path_strm.GetData()); 2836 } 2837 2838 return m_addr_of_valobj_sp; 2839 } 2840 2841 ValueObjectSP ValueObject::Cast(const CompilerType &compiler_type) { 2842 return ValueObjectCast::Create(*this, GetName(), compiler_type); 2843 } 2844 2845 lldb::ValueObjectSP ValueObject::Clone(ConstString new_name) { 2846 return ValueObjectCast::Create(*this, new_name, GetCompilerType()); 2847 } 2848 2849 ValueObjectSP ValueObject::CastPointerType(const char *name, 2850 CompilerType &compiler_type) { 2851 ValueObjectSP valobj_sp; 2852 AddressType address_type; 2853 addr_t ptr_value = GetPointerValue(&address_type); 2854 2855 if (ptr_value != LLDB_INVALID_ADDRESS) { 2856 Address ptr_addr(ptr_value); 2857 ExecutionContext exe_ctx(GetExecutionContextRef()); 2858 valobj_sp = ValueObjectMemory::Create( 2859 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, compiler_type); 2860 } 2861 return valobj_sp; 2862 } 2863 2864 ValueObjectSP ValueObject::CastPointerType(const char *name, TypeSP &type_sp) { 2865 ValueObjectSP valobj_sp; 2866 AddressType address_type; 2867 addr_t ptr_value = GetPointerValue(&address_type); 2868 2869 if (ptr_value != LLDB_INVALID_ADDRESS) { 2870 Address ptr_addr(ptr_value); 2871 ExecutionContext exe_ctx(GetExecutionContextRef()); 2872 valobj_sp = ValueObjectMemory::Create( 2873 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, type_sp); 2874 } 2875 return valobj_sp; 2876 } 2877 2878 ValueObject::EvaluationPoint::EvaluationPoint() 2879 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) {} 2880 2881 ValueObject::EvaluationPoint::EvaluationPoint(ExecutionContextScope *exe_scope, 2882 bool use_selected) 2883 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) { 2884 ExecutionContext exe_ctx(exe_scope); 2885 TargetSP target_sp(exe_ctx.GetTargetSP()); 2886 if (target_sp) { 2887 m_exe_ctx_ref.SetTargetSP(target_sp); 2888 ProcessSP process_sp(exe_ctx.GetProcessSP()); 2889 if (!process_sp) 2890 process_sp = target_sp->GetProcessSP(); 2891 2892 if (process_sp) { 2893 m_mod_id = process_sp->GetModID(); 2894 m_exe_ctx_ref.SetProcessSP(process_sp); 2895 2896 ThreadSP thread_sp(exe_ctx.GetThreadSP()); 2897 2898 if (!thread_sp) { 2899 if (use_selected) 2900 thread_sp = process_sp->GetThreadList().GetSelectedThread(); 2901 } 2902 2903 if (thread_sp) { 2904 m_exe_ctx_ref.SetThreadSP(thread_sp); 2905 2906 StackFrameSP frame_sp(exe_ctx.GetFrameSP()); 2907 if (!frame_sp) { 2908 if (use_selected) 2909 frame_sp = thread_sp->GetSelectedFrame(); 2910 } 2911 if (frame_sp) 2912 m_exe_ctx_ref.SetFrameSP(frame_sp); 2913 } 2914 } 2915 } 2916 } 2917 2918 ValueObject::EvaluationPoint::EvaluationPoint( 2919 const ValueObject::EvaluationPoint &rhs) 2920 : m_mod_id(), m_exe_ctx_ref(rhs.m_exe_ctx_ref), m_needs_update(true) {} 2921 2922 ValueObject::EvaluationPoint::~EvaluationPoint() {} 2923 2924 // This function checks the EvaluationPoint against the current process state. 2925 // If the current state matches the evaluation point, or the evaluation point 2926 // is already invalid, then we return false, meaning "no change". If the 2927 // current state is different, we update our state, and return true meaning 2928 // "yes, change". If we did see a change, we also set m_needs_update to true, 2929 // so future calls to NeedsUpdate will return true. exe_scope will be set to 2930 // the current execution context scope. 2931 2932 bool ValueObject::EvaluationPoint::SyncWithProcessState( 2933 bool accept_invalid_exe_ctx) { 2934 // Start with the target, if it is NULL, then we're obviously not going to 2935 // get any further: 2936 const bool thread_and_frame_only_if_stopped = true; 2937 ExecutionContext exe_ctx( 2938 m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped)); 2939 2940 if (exe_ctx.GetTargetPtr() == nullptr) 2941 return false; 2942 2943 // If we don't have a process nothing can change. 2944 Process *process = exe_ctx.GetProcessPtr(); 2945 if (process == nullptr) 2946 return false; 2947 2948 // If our stop id is the current stop ID, nothing has changed: 2949 ProcessModID current_mod_id = process->GetModID(); 2950 2951 // If the current stop id is 0, either we haven't run yet, or the process 2952 // state has been cleared. In either case, we aren't going to be able to sync 2953 // with the process state. 2954 if (current_mod_id.GetStopID() == 0) 2955 return false; 2956 2957 bool changed = false; 2958 const bool was_valid = m_mod_id.IsValid(); 2959 if (was_valid) { 2960 if (m_mod_id == current_mod_id) { 2961 // Everything is already up to date in this object, no need to update the 2962 // execution context scope. 2963 changed = false; 2964 } else { 2965 m_mod_id = current_mod_id; 2966 m_needs_update = true; 2967 changed = true; 2968 } 2969 } 2970 2971 // Now re-look up the thread and frame in case the underlying objects have 2972 // gone away & been recreated. That way we'll be sure to return a valid 2973 // exe_scope. If we used to have a thread or a frame but can't find it 2974 // anymore, then mark ourselves as invalid. 2975 2976 if (!accept_invalid_exe_ctx) { 2977 if (m_exe_ctx_ref.HasThreadRef()) { 2978 ThreadSP thread_sp(m_exe_ctx_ref.GetThreadSP()); 2979 if (thread_sp) { 2980 if (m_exe_ctx_ref.HasFrameRef()) { 2981 StackFrameSP frame_sp(m_exe_ctx_ref.GetFrameSP()); 2982 if (!frame_sp) { 2983 // We used to have a frame, but now it is gone 2984 SetInvalid(); 2985 changed = was_valid; 2986 } 2987 } 2988 } else { 2989 // We used to have a thread, but now it is gone 2990 SetInvalid(); 2991 changed = was_valid; 2992 } 2993 } 2994 } 2995 2996 return changed; 2997 } 2998 2999 void ValueObject::EvaluationPoint::SetUpdated() { 3000 ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP()); 3001 if (process_sp) 3002 m_mod_id = process_sp->GetModID(); 3003 m_needs_update = false; 3004 } 3005 3006 void ValueObject::ClearUserVisibleData(uint32_t clear_mask) { 3007 if ((clear_mask & eClearUserVisibleDataItemsValue) == 3008 eClearUserVisibleDataItemsValue) 3009 m_value_str.clear(); 3010 3011 if ((clear_mask & eClearUserVisibleDataItemsLocation) == 3012 eClearUserVisibleDataItemsLocation) 3013 m_location_str.clear(); 3014 3015 if ((clear_mask & eClearUserVisibleDataItemsSummary) == 3016 eClearUserVisibleDataItemsSummary) 3017 m_summary_str.clear(); 3018 3019 if ((clear_mask & eClearUserVisibleDataItemsDescription) == 3020 eClearUserVisibleDataItemsDescription) 3021 m_object_desc_str.clear(); 3022 3023 if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == 3024 eClearUserVisibleDataItemsSyntheticChildren) { 3025 if (m_synthetic_value) 3026 m_synthetic_value = nullptr; 3027 } 3028 } 3029 3030 SymbolContextScope *ValueObject::GetSymbolContextScope() { 3031 if (m_parent) { 3032 if (!m_parent->IsPointerOrReferenceType()) 3033 return m_parent->GetSymbolContextScope(); 3034 } 3035 return nullptr; 3036 } 3037 3038 lldb::ValueObjectSP 3039 ValueObject::CreateValueObjectFromExpression(llvm::StringRef name, 3040 llvm::StringRef expression, 3041 const ExecutionContext &exe_ctx) { 3042 return CreateValueObjectFromExpression(name, expression, exe_ctx, 3043 EvaluateExpressionOptions()); 3044 } 3045 3046 lldb::ValueObjectSP ValueObject::CreateValueObjectFromExpression( 3047 llvm::StringRef name, llvm::StringRef expression, 3048 const ExecutionContext &exe_ctx, const EvaluateExpressionOptions &options) { 3049 lldb::ValueObjectSP retval_sp; 3050 lldb::TargetSP target_sp(exe_ctx.GetTargetSP()); 3051 if (!target_sp) 3052 return retval_sp; 3053 if (expression.empty()) 3054 return retval_sp; 3055 target_sp->EvaluateExpression(expression, exe_ctx.GetFrameSP().get(), 3056 retval_sp, options); 3057 if (retval_sp && !name.empty()) 3058 retval_sp->SetName(ConstString(name)); 3059 return retval_sp; 3060 } 3061 3062 lldb::ValueObjectSP ValueObject::CreateValueObjectFromAddress( 3063 llvm::StringRef name, uint64_t address, const ExecutionContext &exe_ctx, 3064 CompilerType type) { 3065 if (type) { 3066 CompilerType pointer_type(type.GetPointerType()); 3067 if (pointer_type) { 3068 lldb::DataBufferSP buffer( 3069 new lldb_private::DataBufferHeap(&address, sizeof(lldb::addr_t))); 3070 lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create( 3071 exe_ctx.GetBestExecutionContextScope(), pointer_type, 3072 ConstString(name), buffer, exe_ctx.GetByteOrder(), 3073 exe_ctx.GetAddressByteSize())); 3074 if (ptr_result_valobj_sp) { 3075 ptr_result_valobj_sp->GetValue().SetValueType( 3076 Value::ValueType::LoadAddress); 3077 Status err; 3078 ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err); 3079 if (ptr_result_valobj_sp && !name.empty()) 3080 ptr_result_valobj_sp->SetName(ConstString(name)); 3081 } 3082 return ptr_result_valobj_sp; 3083 } 3084 } 3085 return lldb::ValueObjectSP(); 3086 } 3087 3088 lldb::ValueObjectSP ValueObject::CreateValueObjectFromData( 3089 llvm::StringRef name, const DataExtractor &data, 3090 const ExecutionContext &exe_ctx, CompilerType type) { 3091 lldb::ValueObjectSP new_value_sp; 3092 new_value_sp = ValueObjectConstResult::Create( 3093 exe_ctx.GetBestExecutionContextScope(), type, ConstString(name), data, 3094 LLDB_INVALID_ADDRESS); 3095 new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad); 3096 if (new_value_sp && !name.empty()) 3097 new_value_sp->SetName(ConstString(name)); 3098 return new_value_sp; 3099 } 3100 3101 ModuleSP ValueObject::GetModule() { 3102 ValueObject *root(GetRoot()); 3103 if (root != this) 3104 return root->GetModule(); 3105 return lldb::ModuleSP(); 3106 } 3107 3108 ValueObject *ValueObject::GetRoot() { 3109 if (m_root) 3110 return m_root; 3111 return (m_root = FollowParentChain([](ValueObject *vo) -> bool { 3112 return (vo->m_parent != nullptr); 3113 })); 3114 } 3115 3116 ValueObject * 3117 ValueObject::FollowParentChain(std::function<bool(ValueObject *)> f) { 3118 ValueObject *vo = this; 3119 while (vo) { 3120 if (!f(vo)) 3121 break; 3122 vo = vo->m_parent; 3123 } 3124 return vo; 3125 } 3126 3127 AddressType ValueObject::GetAddressTypeOfChildren() { 3128 if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) { 3129 ValueObject *root(GetRoot()); 3130 if (root != this) 3131 return root->GetAddressTypeOfChildren(); 3132 } 3133 return m_address_type_of_ptr_or_ref_children; 3134 } 3135 3136 lldb::DynamicValueType ValueObject::GetDynamicValueType() { 3137 ValueObject *with_dv_info = this; 3138 while (with_dv_info) { 3139 if (with_dv_info->HasDynamicValueTypeInfo()) 3140 return with_dv_info->GetDynamicValueTypeImpl(); 3141 with_dv_info = with_dv_info->m_parent; 3142 } 3143 return lldb::eNoDynamicValues; 3144 } 3145 3146 lldb::Format ValueObject::GetFormat() const { 3147 const ValueObject *with_fmt_info = this; 3148 while (with_fmt_info) { 3149 if (with_fmt_info->m_format != lldb::eFormatDefault) 3150 return with_fmt_info->m_format; 3151 with_fmt_info = with_fmt_info->m_parent; 3152 } 3153 return m_format; 3154 } 3155 3156 lldb::LanguageType ValueObject::GetPreferredDisplayLanguage() { 3157 lldb::LanguageType type = m_preferred_display_language; 3158 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) { 3159 if (GetRoot()) { 3160 if (GetRoot() == this) { 3161 if (StackFrameSP frame_sp = GetFrameSP()) { 3162 const SymbolContext &sc( 3163 frame_sp->GetSymbolContext(eSymbolContextCompUnit)); 3164 if (CompileUnit *cu = sc.comp_unit) 3165 type = cu->GetLanguage(); 3166 } 3167 } else { 3168 type = GetRoot()->GetPreferredDisplayLanguage(); 3169 } 3170 } 3171 } 3172 return (m_preferred_display_language = type); // only compute it once 3173 } 3174 3175 void ValueObject::SetPreferredDisplayLanguage(lldb::LanguageType lt) { 3176 m_preferred_display_language = lt; 3177 } 3178 3179 void ValueObject::SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType lt) { 3180 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 3181 SetPreferredDisplayLanguage(lt); 3182 } 3183 3184 bool ValueObject::CanProvideValue() { 3185 // we need to support invalid types as providers of values because some bare- 3186 // board debugging scenarios have no notion of types, but still manage to 3187 // have raw numeric values for things like registers. sigh. 3188 CompilerType type = GetCompilerType(); 3189 return (!type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue)); 3190 } 3191 3192 bool ValueObject::IsChecksumEmpty() { return m_value_checksum.empty(); } 3193 3194 ValueObjectSP ValueObject::Persist() { 3195 if (!UpdateValueIfNeeded()) 3196 return nullptr; 3197 3198 TargetSP target_sp(GetTargetSP()); 3199 if (!target_sp) 3200 return nullptr; 3201 3202 PersistentExpressionState *persistent_state = 3203 target_sp->GetPersistentExpressionStateForLanguage( 3204 GetPreferredDisplayLanguage()); 3205 3206 if (!persistent_state) 3207 return nullptr; 3208 3209 ConstString name = persistent_state->GetNextPersistentVariableName(); 3210 3211 ValueObjectSP const_result_sp = 3212 ValueObjectConstResult::Create(target_sp.get(), GetValue(), name); 3213 3214 ExpressionVariableSP persistent_var_sp = 3215 persistent_state->CreatePersistentVariable(const_result_sp); 3216 persistent_var_sp->m_live_sp = persistent_var_sp->m_frozen_sp; 3217 persistent_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference; 3218 3219 return persistent_var_sp->GetValueObject(); 3220 } 3221 3222 bool ValueObject::IsSyntheticChildrenGenerated() { 3223 return m_flags.m_is_synthetic_children_generated; 3224 } 3225 3226 void ValueObject::SetSyntheticChildrenGenerated(bool b) { 3227 m_flags.m_is_synthetic_children_generated = b; 3228 } 3229 3230 uint64_t ValueObject::GetLanguageFlags() { return m_language_flags; } 3231 3232 void ValueObject::SetLanguageFlags(uint64_t flags) { m_language_flags = flags; } 3233 3234 ValueObjectManager::ValueObjectManager(lldb::ValueObjectSP in_valobj_sp, 3235 lldb::DynamicValueType use_dynamic, 3236 bool use_synthetic) : m_root_valobj_sp(), 3237 m_user_valobj_sp(), m_use_dynamic(use_dynamic), m_stop_id(UINT32_MAX), 3238 m_use_synthetic(use_synthetic) { 3239 if (!in_valobj_sp) 3240 return; 3241 // If the user passes in a value object that is dynamic or synthetic, then 3242 // water it down to the static type. 3243 m_root_valobj_sp = in_valobj_sp->GetQualifiedRepresentationIfAvailable(lldb::eNoDynamicValues, false); 3244 } 3245 3246 bool ValueObjectManager::IsValid() const { 3247 if (!m_root_valobj_sp) 3248 return false; 3249 lldb::TargetSP target_sp = GetTargetSP(); 3250 if (target_sp) 3251 return target_sp->IsValid(); 3252 return false; 3253 } 3254 3255 lldb::ValueObjectSP ValueObjectManager::GetSP() { 3256 lldb::ProcessSP process_sp = GetProcessSP(); 3257 if (!process_sp) 3258 return lldb::ValueObjectSP(); 3259 3260 const uint32_t current_stop_id = process_sp->GetLastNaturalStopID(); 3261 if (current_stop_id == m_stop_id) 3262 return m_user_valobj_sp; 3263 3264 m_stop_id = current_stop_id; 3265 3266 if (!m_root_valobj_sp) { 3267 m_user_valobj_sp.reset(); 3268 return m_root_valobj_sp; 3269 } 3270 3271 m_user_valobj_sp = m_root_valobj_sp; 3272 3273 if (m_use_dynamic != lldb::eNoDynamicValues) { 3274 lldb::ValueObjectSP dynamic_sp = m_user_valobj_sp->GetDynamicValue(m_use_dynamic); 3275 if (dynamic_sp) 3276 m_user_valobj_sp = dynamic_sp; 3277 } 3278 3279 if (m_use_synthetic) { 3280 lldb::ValueObjectSP synthetic_sp = m_user_valobj_sp->GetSyntheticValue(); 3281 if (synthetic_sp) 3282 m_user_valobj_sp = synthetic_sp; 3283 } 3284 3285 return m_user_valobj_sp; 3286 } 3287 3288 void ValueObjectManager::SetUseDynamic(lldb::DynamicValueType use_dynamic) { 3289 if (use_dynamic != m_use_dynamic) { 3290 m_use_dynamic = use_dynamic; 3291 m_user_valobj_sp.reset(); 3292 m_stop_id = UINT32_MAX; 3293 } 3294 } 3295 3296 void ValueObjectManager::SetUseSynthetic(bool use_synthetic) { 3297 if (m_use_synthetic != use_synthetic) { 3298 m_use_synthetic = use_synthetic; 3299 m_user_valobj_sp.reset(); 3300 m_stop_id = UINT32_MAX; 3301 } 3302 } 3303 3304 lldb::TargetSP ValueObjectManager::GetTargetSP() const { 3305 if (!m_root_valobj_sp) 3306 return m_root_valobj_sp->GetTargetSP(); 3307 return lldb::TargetSP(); 3308 } 3309 3310 lldb::ProcessSP ValueObjectManager::GetProcessSP() const { 3311 if (m_root_valobj_sp) 3312 return m_root_valobj_sp->GetProcessSP(); 3313 return lldb::ProcessSP(); 3314 } 3315 3316 lldb::ThreadSP ValueObjectManager::GetThreadSP() const { 3317 if (m_root_valobj_sp) 3318 return m_root_valobj_sp->GetThreadSP(); 3319 return lldb::ThreadSP(); 3320 } 3321 3322 lldb::StackFrameSP ValueObjectManager::GetFrameSP() const { 3323 if (m_root_valobj_sp) 3324 return m_root_valobj_sp->GetFrameSP(); 3325 return lldb::StackFrameSP(); 3326 } 3327