1 //===-- ValueObject.cpp -----------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Core/ValueObject.h" 10 11 #include "lldb/Core/Address.h" 12 #include "lldb/Core/Module.h" 13 #include "lldb/Core/ValueObjectCast.h" 14 #include "lldb/Core/ValueObjectChild.h" 15 #include "lldb/Core/ValueObjectConstResult.h" 16 #include "lldb/Core/ValueObjectDynamicValue.h" 17 #include "lldb/Core/ValueObjectMemory.h" 18 #include "lldb/Core/ValueObjectSyntheticFilter.h" 19 #include "lldb/DataFormatters/DataVisualization.h" 20 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 21 #include "lldb/DataFormatters/FormatManager.h" 22 #include "lldb/DataFormatters/StringPrinter.h" 23 #include "lldb/DataFormatters/TypeFormat.h" 24 #include "lldb/DataFormatters/TypeSummary.h" 25 #include "lldb/DataFormatters/TypeValidator.h" 26 #include "lldb/DataFormatters/ValueObjectPrinter.h" 27 #include "lldb/Expression/ExpressionVariable.h" 28 #include "lldb/Symbol/ClangASTContext.h" 29 #include "lldb/Symbol/CompileUnit.h" 30 #include "lldb/Symbol/CompilerType.h" 31 #include "lldb/Symbol/Declaration.h" 32 #include "lldb/Symbol/SymbolContext.h" 33 #include "lldb/Symbol/Type.h" 34 #include "lldb/Symbol/Variable.h" 35 #include "lldb/Target/ExecutionContext.h" 36 #include "lldb/Target/Language.h" 37 #include "lldb/Target/LanguageRuntime.h" 38 #include "lldb/Target/ObjCLanguageRuntime.h" 39 #include "lldb/Target/Process.h" 40 #include "lldb/Target/StackFrame.h" 41 #include "lldb/Target/Target.h" 42 #include "lldb/Target/Thread.h" 43 #include "lldb/Target/ThreadList.h" 44 #include "lldb/Utility/DataBuffer.h" 45 #include "lldb/Utility/DataBufferHeap.h" 46 #include "lldb/Utility/Flags.h" 47 #include "lldb/Utility/Log.h" 48 #include "lldb/Utility/Logging.h" 49 #include "lldb/Utility/Scalar.h" 50 #include "lldb/Utility/SharingPtr.h" 51 #include "lldb/Utility/Stream.h" 52 #include "lldb/Utility/StreamString.h" 53 #include "lldb/lldb-private-types.h" 54 55 #include "llvm/Support/Compiler.h" 56 57 #include <algorithm> 58 #include <cstdint> 59 #include <cstdlib> 60 #include <memory> 61 #include <tuple> 62 63 #include <assert.h> 64 #include <inttypes.h> 65 #include <stdio.h> 66 #include <string.h> 67 68 namespace lldb_private { 69 class ExecutionContextScope; 70 } 71 namespace lldb_private { 72 class SymbolContextScope; 73 } 74 75 using namespace lldb; 76 using namespace lldb_private; 77 using namespace lldb_utility; 78 79 static user_id_t g_value_obj_uid = 0; 80 81 // ValueObject constructor 82 ValueObject::ValueObject(ValueObject &parent) 83 : UserID(++g_value_obj_uid), // Unique identifier for every value object 84 m_parent(&parent), m_root(nullptr), 85 m_update_point(parent.GetUpdatePoint()), m_name(), m_data(), m_value(), 86 m_error(), m_value_str(), m_old_value_str(), m_location_str(), 87 m_summary_str(), m_object_desc_str(), m_validation_result(), 88 m_manager(parent.GetManager()), m_children(), m_synthetic_children(), 89 m_dynamic_value(nullptr), m_synthetic_value(nullptr), 90 m_deref_valobj(nullptr), m_format(eFormatDefault), 91 m_last_format(eFormatDefault), m_last_format_mgr_revision(0), 92 m_type_summary_sp(), m_type_format_sp(), m_synthetic_children_sp(), 93 m_type_validator_sp(), m_user_id_of_forced_summary(), 94 m_address_type_of_ptr_or_ref_children(eAddressTypeInvalid), 95 m_value_checksum(), 96 m_preferred_display_language(lldb::eLanguageTypeUnknown), 97 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 98 m_children_count_valid(false), m_old_value_valid(false), 99 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 100 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 101 m_is_getting_summary(false), 102 m_did_calculate_complete_objc_class_type(false), 103 m_is_synthetic_children_generated( 104 parent.m_is_synthetic_children_generated) { 105 m_manager->ManageObject(this); 106 } 107 108 // ValueObject constructor 109 ValueObject::ValueObject(ExecutionContextScope *exe_scope, 110 AddressType child_ptr_or_ref_addr_type) 111 : UserID(++g_value_obj_uid), // Unique identifier for every value object 112 m_parent(nullptr), m_root(nullptr), m_update_point(exe_scope), m_name(), 113 m_data(), m_value(), m_error(), m_value_str(), m_old_value_str(), 114 m_location_str(), m_summary_str(), m_object_desc_str(), 115 m_validation_result(), m_manager(), m_children(), m_synthetic_children(), 116 m_dynamic_value(nullptr), m_synthetic_value(nullptr), 117 m_deref_valobj(nullptr), m_format(eFormatDefault), 118 m_last_format(eFormatDefault), m_last_format_mgr_revision(0), 119 m_type_summary_sp(), m_type_format_sp(), m_synthetic_children_sp(), 120 m_type_validator_sp(), m_user_id_of_forced_summary(), 121 m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type), 122 m_value_checksum(), 123 m_preferred_display_language(lldb::eLanguageTypeUnknown), 124 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 125 m_children_count_valid(false), m_old_value_valid(false), 126 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 127 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 128 m_is_getting_summary(false), 129 m_did_calculate_complete_objc_class_type(false), 130 m_is_synthetic_children_generated(false) { 131 m_manager = new ValueObjectManager(); 132 m_manager->ManageObject(this); 133 } 134 135 // Destructor 136 ValueObject::~ValueObject() {} 137 138 bool ValueObject::UpdateValueIfNeeded(bool update_format) { 139 140 bool did_change_formats = false; 141 142 if (update_format) 143 did_change_formats = UpdateFormatsIfNeeded(); 144 145 // If this is a constant value, then our success is predicated on whether we 146 // have an error or not 147 if (GetIsConstant()) { 148 // if you are constant, things might still have changed behind your back 149 // (e.g. you are a frozen object and things have changed deeper than you 150 // cared to freeze-dry yourself) in this case, your value has not changed, 151 // but "computed" entries might have, so you might now have a different 152 // summary, or a different object description. clear these so we will 153 // recompute them 154 if (update_format && !did_change_formats) 155 ClearUserVisibleData(eClearUserVisibleDataItemsSummary | 156 eClearUserVisibleDataItemsDescription); 157 return m_error.Success(); 158 } 159 160 bool first_update = IsChecksumEmpty(); 161 162 if (NeedsUpdating()) { 163 m_update_point.SetUpdated(); 164 165 // Save the old value using swap to avoid a string copy which also will 166 // clear our m_value_str 167 if (m_value_str.empty()) { 168 m_old_value_valid = false; 169 } else { 170 m_old_value_valid = true; 171 m_old_value_str.swap(m_value_str); 172 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 173 } 174 175 ClearUserVisibleData(); 176 177 if (IsInScope()) { 178 const bool value_was_valid = GetValueIsValid(); 179 SetValueDidChange(false); 180 181 m_error.Clear(); 182 183 // Call the pure virtual function to update the value 184 185 bool need_compare_checksums = false; 186 llvm::SmallVector<uint8_t, 16> old_checksum; 187 188 if (!first_update && CanProvideValue()) { 189 need_compare_checksums = true; 190 old_checksum.resize(m_value_checksum.size()); 191 std::copy(m_value_checksum.begin(), m_value_checksum.end(), 192 old_checksum.begin()); 193 } 194 195 bool success = UpdateValue(); 196 197 SetValueIsValid(success); 198 199 if (success) { 200 const uint64_t max_checksum_size = 128; 201 m_data.Checksum(m_value_checksum, max_checksum_size); 202 } else { 203 need_compare_checksums = false; 204 m_value_checksum.clear(); 205 } 206 207 assert(!need_compare_checksums || 208 (!old_checksum.empty() && !m_value_checksum.empty())); 209 210 if (first_update) 211 SetValueDidChange(false); 212 else if (!m_value_did_change && !success) { 213 // The value wasn't gotten successfully, so we mark this as changed if 214 // the value used to be valid and now isn't 215 SetValueDidChange(value_was_valid); 216 } else if (need_compare_checksums) { 217 SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0], 218 m_value_checksum.size())); 219 } 220 221 } else { 222 m_error.SetErrorString("out of scope"); 223 } 224 } 225 return m_error.Success(); 226 } 227 228 bool ValueObject::UpdateFormatsIfNeeded() { 229 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_DATAFORMATTERS)); 230 if (log) 231 log->Printf("[%s %p] checking for FormatManager revisions. ValueObject " 232 "rev: %d - Global rev: %d", 233 GetName().GetCString(), static_cast<void *>(this), 234 m_last_format_mgr_revision, 235 DataVisualization::GetCurrentRevision()); 236 237 bool any_change = false; 238 239 if ((m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) { 240 m_last_format_mgr_revision = DataVisualization::GetCurrentRevision(); 241 any_change = true; 242 243 SetValueFormat(DataVisualization::GetFormat(*this, eNoDynamicValues)); 244 SetSummaryFormat( 245 DataVisualization::GetSummaryFormat(*this, GetDynamicValueType())); 246 #ifndef LLDB_DISABLE_PYTHON 247 SetSyntheticChildren( 248 DataVisualization::GetSyntheticChildren(*this, GetDynamicValueType())); 249 #endif 250 SetValidator(DataVisualization::GetValidator(*this, GetDynamicValueType())); 251 } 252 253 return any_change; 254 } 255 256 void ValueObject::SetNeedsUpdate() { 257 m_update_point.SetNeedsUpdate(); 258 // We have to clear the value string here so ConstResult children will notice 259 // if their values are changed by hand (i.e. with SetValueAsCString). 260 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 261 } 262 263 void ValueObject::ClearDynamicTypeInformation() { 264 m_children_count_valid = false; 265 m_did_calculate_complete_objc_class_type = false; 266 m_last_format_mgr_revision = 0; 267 m_override_type = CompilerType(); 268 SetValueFormat(lldb::TypeFormatImplSP()); 269 SetSummaryFormat(lldb::TypeSummaryImplSP()); 270 SetSyntheticChildren(lldb::SyntheticChildrenSP()); 271 } 272 273 CompilerType ValueObject::MaybeCalculateCompleteType() { 274 CompilerType compiler_type(GetCompilerTypeImpl()); 275 276 if (m_did_calculate_complete_objc_class_type) { 277 if (m_override_type.IsValid()) 278 return m_override_type; 279 else 280 return compiler_type; 281 } 282 283 CompilerType class_type; 284 bool is_pointer_type = false; 285 286 if (ClangASTContext::IsObjCObjectPointerType(compiler_type, &class_type)) { 287 is_pointer_type = true; 288 } else if (ClangASTContext::IsObjCObjectOrInterfaceType(compiler_type)) { 289 class_type = compiler_type; 290 } else { 291 return compiler_type; 292 } 293 294 m_did_calculate_complete_objc_class_type = true; 295 296 if (class_type) { 297 ConstString class_name(class_type.GetConstTypeName()); 298 299 if (class_name) { 300 ProcessSP process_sp( 301 GetUpdatePoint().GetExecutionContextRef().GetProcessSP()); 302 303 if (process_sp) { 304 ObjCLanguageRuntime *objc_language_runtime( 305 ObjCLanguageRuntime::Get(*process_sp)); 306 307 if (objc_language_runtime) { 308 TypeSP complete_objc_class_type_sp = 309 objc_language_runtime->LookupInCompleteClassCache(class_name); 310 311 if (complete_objc_class_type_sp) { 312 CompilerType complete_class( 313 complete_objc_class_type_sp->GetFullCompilerType()); 314 315 if (complete_class.GetCompleteType()) { 316 if (is_pointer_type) { 317 m_override_type = complete_class.GetPointerType(); 318 } else { 319 m_override_type = complete_class; 320 } 321 322 if (m_override_type.IsValid()) 323 return m_override_type; 324 } 325 } 326 } 327 } 328 } 329 } 330 return compiler_type; 331 } 332 333 CompilerType ValueObject::GetCompilerType() { 334 return MaybeCalculateCompleteType(); 335 } 336 337 TypeImpl ValueObject::GetTypeImpl() { return TypeImpl(GetCompilerType()); } 338 339 DataExtractor &ValueObject::GetDataExtractor() { 340 UpdateValueIfNeeded(false); 341 return m_data; 342 } 343 344 const Status &ValueObject::GetError() { 345 UpdateValueIfNeeded(false); 346 return m_error; 347 } 348 349 ConstString ValueObject::GetName() const { return m_name; } 350 351 const char *ValueObject::GetLocationAsCString() { 352 return GetLocationAsCStringImpl(m_value, m_data); 353 } 354 355 const char *ValueObject::GetLocationAsCStringImpl(const Value &value, 356 const DataExtractor &data) { 357 if (UpdateValueIfNeeded(false)) { 358 if (m_location_str.empty()) { 359 StreamString sstr; 360 361 Value::ValueType value_type = value.GetValueType(); 362 363 switch (value_type) { 364 case Value::eValueTypeScalar: 365 case Value::eValueTypeVector: 366 if (value.GetContextType() == Value::eContextTypeRegisterInfo) { 367 RegisterInfo *reg_info = value.GetRegisterInfo(); 368 if (reg_info) { 369 if (reg_info->name) 370 m_location_str = reg_info->name; 371 else if (reg_info->alt_name) 372 m_location_str = reg_info->alt_name; 373 if (m_location_str.empty()) 374 m_location_str = (reg_info->encoding == lldb::eEncodingVector) 375 ? "vector" 376 : "scalar"; 377 } 378 } 379 if (m_location_str.empty()) 380 m_location_str = 381 (value_type == Value::eValueTypeVector) ? "vector" : "scalar"; 382 break; 383 384 case Value::eValueTypeLoadAddress: 385 case Value::eValueTypeFileAddress: 386 case Value::eValueTypeHostAddress: { 387 uint32_t addr_nibble_size = data.GetAddressByteSize() * 2; 388 sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, 389 value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS)); 390 m_location_str = sstr.GetString(); 391 } break; 392 } 393 } 394 } 395 return m_location_str.c_str(); 396 } 397 398 Value &ValueObject::GetValue() { return m_value; } 399 400 const Value &ValueObject::GetValue() const { return m_value; } 401 402 bool ValueObject::ResolveValue(Scalar &scalar) { 403 if (UpdateValueIfNeeded( 404 false)) // make sure that you are up to date before returning anything 405 { 406 ExecutionContext exe_ctx(GetExecutionContextRef()); 407 Value tmp_value(m_value); 408 scalar = tmp_value.ResolveValue(&exe_ctx); 409 if (scalar.IsValid()) { 410 const uint32_t bitfield_bit_size = GetBitfieldBitSize(); 411 if (bitfield_bit_size) 412 return scalar.ExtractBitfield(bitfield_bit_size, 413 GetBitfieldBitOffset()); 414 return true; 415 } 416 } 417 return false; 418 } 419 420 bool ValueObject::IsLogicalTrue(Status &error) { 421 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 422 LazyBool is_logical_true = language->IsLogicalTrue(*this, error); 423 switch (is_logical_true) { 424 case eLazyBoolYes: 425 case eLazyBoolNo: 426 return (is_logical_true == true); 427 case eLazyBoolCalculate: 428 break; 429 } 430 } 431 432 Scalar scalar_value; 433 434 if (!ResolveValue(scalar_value)) { 435 error.SetErrorString("failed to get a scalar result"); 436 return false; 437 } 438 439 bool ret; 440 ret = scalar_value.ULongLong(1) != 0; 441 error.Clear(); 442 return ret; 443 } 444 445 bool ValueObject::GetValueIsValid() const { return m_value_is_valid; } 446 447 void ValueObject::SetValueIsValid(bool b) { m_value_is_valid = b; } 448 449 bool ValueObject::GetValueDidChange() { return m_value_did_change; } 450 451 void ValueObject::SetValueDidChange(bool value_changed) { 452 m_value_did_change = value_changed; 453 } 454 455 ValueObjectSP ValueObject::GetChildAtIndex(size_t idx, bool can_create) { 456 ValueObjectSP child_sp; 457 // We may need to update our value if we are dynamic 458 if (IsPossibleDynamicType()) 459 UpdateValueIfNeeded(false); 460 if (idx < GetNumChildren()) { 461 // Check if we have already made the child value object? 462 if (can_create && !m_children.HasChildAtIndex(idx)) { 463 // No we haven't created the child at this index, so lets have our 464 // subclass do it and cache the result for quick future access. 465 m_children.SetChildAtIndex(idx, CreateChildAtIndex(idx, false, 0)); 466 } 467 468 ValueObject *child = m_children.GetChildAtIndex(idx); 469 if (child != nullptr) 470 return child->GetSP(); 471 } 472 return child_sp; 473 } 474 475 lldb::ValueObjectSP 476 ValueObject::GetChildAtIndexPath(llvm::ArrayRef<size_t> idxs, 477 size_t *index_of_error) { 478 if (idxs.size() == 0) 479 return GetSP(); 480 ValueObjectSP root(GetSP()); 481 for (size_t idx : idxs) { 482 root = root->GetChildAtIndex(idx, true); 483 if (!root) { 484 if (index_of_error) 485 *index_of_error = idx; 486 return root; 487 } 488 } 489 return root; 490 } 491 492 lldb::ValueObjectSP ValueObject::GetChildAtIndexPath( 493 llvm::ArrayRef<std::pair<size_t, bool>> idxs, size_t *index_of_error) { 494 if (idxs.size() == 0) 495 return GetSP(); 496 ValueObjectSP root(GetSP()); 497 for (std::pair<size_t, bool> idx : idxs) { 498 root = root->GetChildAtIndex(idx.first, idx.second); 499 if (!root) { 500 if (index_of_error) 501 *index_of_error = idx.first; 502 return root; 503 } 504 } 505 return root; 506 } 507 508 lldb::ValueObjectSP 509 ValueObject::GetChildAtNamePath(llvm::ArrayRef<ConstString> names, 510 ConstString *name_of_error) { 511 if (names.size() == 0) 512 return GetSP(); 513 ValueObjectSP root(GetSP()); 514 for (ConstString name : names) { 515 root = root->GetChildMemberWithName(name, true); 516 if (!root) { 517 if (name_of_error) 518 *name_of_error = name; 519 return root; 520 } 521 } 522 return root; 523 } 524 525 lldb::ValueObjectSP ValueObject::GetChildAtNamePath( 526 llvm::ArrayRef<std::pair<ConstString, bool>> names, 527 ConstString *name_of_error) { 528 if (names.size() == 0) 529 return GetSP(); 530 ValueObjectSP root(GetSP()); 531 for (std::pair<ConstString, bool> name : names) { 532 root = root->GetChildMemberWithName(name.first, name.second); 533 if (!root) { 534 if (name_of_error) 535 *name_of_error = name.first; 536 return root; 537 } 538 } 539 return root; 540 } 541 542 size_t ValueObject::GetIndexOfChildWithName(ConstString name) { 543 bool omit_empty_base_classes = true; 544 return GetCompilerType().GetIndexOfChildWithName(name.GetCString(), 545 omit_empty_base_classes); 546 } 547 548 ValueObjectSP ValueObject::GetChildMemberWithName(ConstString name, 549 bool can_create) { 550 // when getting a child by name, it could be buried inside some base classes 551 // (which really aren't part of the expression path), so we need a vector of 552 // indexes that can get us down to the correct child 553 ValueObjectSP child_sp; 554 555 // We may need to update our value if we are dynamic 556 if (IsPossibleDynamicType()) 557 UpdateValueIfNeeded(false); 558 559 std::vector<uint32_t> child_indexes; 560 bool omit_empty_base_classes = true; 561 const size_t num_child_indexes = 562 GetCompilerType().GetIndexOfChildMemberWithName( 563 name.GetCString(), omit_empty_base_classes, child_indexes); 564 if (num_child_indexes > 0) { 565 std::vector<uint32_t>::const_iterator pos = child_indexes.begin(); 566 std::vector<uint32_t>::const_iterator end = child_indexes.end(); 567 568 child_sp = GetChildAtIndex(*pos, can_create); 569 for (++pos; pos != end; ++pos) { 570 if (child_sp) { 571 ValueObjectSP new_child_sp(child_sp->GetChildAtIndex(*pos, can_create)); 572 child_sp = new_child_sp; 573 } else { 574 child_sp.reset(); 575 } 576 } 577 } 578 return child_sp; 579 } 580 581 size_t ValueObject::GetNumChildren(uint32_t max) { 582 UpdateValueIfNeeded(); 583 584 if (max < UINT32_MAX) { 585 if (m_children_count_valid) { 586 size_t children_count = m_children.GetChildrenCount(); 587 return children_count <= max ? children_count : max; 588 } else 589 return CalculateNumChildren(max); 590 } 591 592 if (!m_children_count_valid) { 593 SetNumChildren(CalculateNumChildren()); 594 } 595 return m_children.GetChildrenCount(); 596 } 597 598 bool ValueObject::MightHaveChildren() { 599 bool has_children = false; 600 const uint32_t type_info = GetTypeInfo(); 601 if (type_info) { 602 if (type_info & (eTypeHasChildren | eTypeIsPointer | eTypeIsReference)) 603 has_children = true; 604 } else { 605 has_children = GetNumChildren() > 0; 606 } 607 return has_children; 608 } 609 610 // Should only be called by ValueObject::GetNumChildren() 611 void ValueObject::SetNumChildren(size_t num_children) { 612 m_children_count_valid = true; 613 m_children.SetChildrenCount(num_children); 614 } 615 616 void ValueObject::SetName(ConstString name) { m_name = name; } 617 618 ValueObject *ValueObject::CreateChildAtIndex(size_t idx, 619 bool synthetic_array_member, 620 int32_t synthetic_index) { 621 ValueObject *valobj = nullptr; 622 623 bool omit_empty_base_classes = true; 624 bool ignore_array_bounds = synthetic_array_member; 625 std::string child_name_str; 626 uint32_t child_byte_size = 0; 627 int32_t child_byte_offset = 0; 628 uint32_t child_bitfield_bit_size = 0; 629 uint32_t child_bitfield_bit_offset = 0; 630 bool child_is_base_class = false; 631 bool child_is_deref_of_parent = false; 632 uint64_t language_flags = 0; 633 634 const bool transparent_pointers = !synthetic_array_member; 635 CompilerType child_compiler_type; 636 637 ExecutionContext exe_ctx(GetExecutionContextRef()); 638 639 child_compiler_type = GetCompilerType().GetChildCompilerTypeAtIndex( 640 &exe_ctx, idx, transparent_pointers, omit_empty_base_classes, 641 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 642 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 643 child_is_deref_of_parent, this, language_flags); 644 if (child_compiler_type) { 645 if (synthetic_index) 646 child_byte_offset += child_byte_size * synthetic_index; 647 648 ConstString child_name; 649 if (!child_name_str.empty()) 650 child_name.SetCString(child_name_str.c_str()); 651 652 valobj = new ValueObjectChild( 653 *this, child_compiler_type, child_name, child_byte_size, 654 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 655 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 656 language_flags); 657 } 658 659 return valobj; 660 } 661 662 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 663 std::string &destination, 664 lldb::LanguageType lang) { 665 return GetSummaryAsCString(summary_ptr, destination, 666 TypeSummaryOptions().SetLanguage(lang)); 667 } 668 669 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 670 std::string &destination, 671 const TypeSummaryOptions &options) { 672 destination.clear(); 673 674 // ideally we would like to bail out if passing NULL, but if we do so we end 675 // up not providing the summary for function pointers anymore 676 if (/*summary_ptr == NULL ||*/ m_is_getting_summary) 677 return false; 678 679 m_is_getting_summary = true; 680 681 TypeSummaryOptions actual_options(options); 682 683 if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown) 684 actual_options.SetLanguage(GetPreferredDisplayLanguage()); 685 686 // this is a hot path in code and we prefer to avoid setting this string all 687 // too often also clearing out other information that we might care to see in 688 // a crash log. might be useful in very specific situations though. 689 /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. 690 Summary provider's description is %s", 691 GetTypeName().GetCString(), 692 GetName().GetCString(), 693 summary_ptr->GetDescription().c_str());*/ 694 695 if (UpdateValueIfNeeded(false) && summary_ptr) { 696 if (HasSyntheticValue()) 697 m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on 698 // the synthetic children being 699 // up-to-date (e.g. ${svar%#}) 700 summary_ptr->FormatObject(this, destination, actual_options); 701 } 702 m_is_getting_summary = false; 703 return !destination.empty(); 704 } 705 706 const char *ValueObject::GetSummaryAsCString(lldb::LanguageType lang) { 707 if (UpdateValueIfNeeded(true) && m_summary_str.empty()) { 708 TypeSummaryOptions summary_options; 709 summary_options.SetLanguage(lang); 710 GetSummaryAsCString(GetSummaryFormat().get(), m_summary_str, 711 summary_options); 712 } 713 if (m_summary_str.empty()) 714 return nullptr; 715 return m_summary_str.c_str(); 716 } 717 718 bool ValueObject::GetSummaryAsCString(std::string &destination, 719 const TypeSummaryOptions &options) { 720 return GetSummaryAsCString(GetSummaryFormat().get(), destination, options); 721 } 722 723 bool ValueObject::IsCStringContainer(bool check_pointer) { 724 CompilerType pointee_or_element_compiler_type; 725 const Flags type_flags(GetTypeInfo(&pointee_or_element_compiler_type)); 726 bool is_char_arr_ptr(type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 727 pointee_or_element_compiler_type.IsCharType()); 728 if (!is_char_arr_ptr) 729 return false; 730 if (!check_pointer) 731 return true; 732 if (type_flags.Test(eTypeIsArray)) 733 return true; 734 addr_t cstr_address = LLDB_INVALID_ADDRESS; 735 AddressType cstr_address_type = eAddressTypeInvalid; 736 cstr_address = GetAddressOf(true, &cstr_address_type); 737 return (cstr_address != LLDB_INVALID_ADDRESS); 738 } 739 740 size_t ValueObject::GetPointeeData(DataExtractor &data, uint32_t item_idx, 741 uint32_t item_count) { 742 CompilerType pointee_or_element_compiler_type; 743 const uint32_t type_info = GetTypeInfo(&pointee_or_element_compiler_type); 744 const bool is_pointer_type = type_info & eTypeIsPointer; 745 const bool is_array_type = type_info & eTypeIsArray; 746 if (!(is_pointer_type || is_array_type)) 747 return 0; 748 749 if (item_count == 0) 750 return 0; 751 752 ExecutionContext exe_ctx(GetExecutionContextRef()); 753 754 llvm::Optional<uint64_t> item_type_size = 755 pointee_or_element_compiler_type.GetByteSize( 756 exe_ctx.GetBestExecutionContextScope()); 757 if (!item_type_size) 758 return 0; 759 const uint64_t bytes = item_count * *item_type_size; 760 const uint64_t offset = item_idx * *item_type_size; 761 762 if (item_idx == 0 && item_count == 1) // simply a deref 763 { 764 if (is_pointer_type) { 765 Status error; 766 ValueObjectSP pointee_sp = Dereference(error); 767 if (error.Fail() || pointee_sp.get() == nullptr) 768 return 0; 769 return pointee_sp->GetData(data, error); 770 } else { 771 ValueObjectSP child_sp = GetChildAtIndex(0, true); 772 if (child_sp.get() == nullptr) 773 return 0; 774 Status error; 775 return child_sp->GetData(data, error); 776 } 777 return true; 778 } else /* (items > 1) */ 779 { 780 Status error; 781 lldb_private::DataBufferHeap *heap_buf_ptr = nullptr; 782 lldb::DataBufferSP data_sp(heap_buf_ptr = 783 new lldb_private::DataBufferHeap()); 784 785 AddressType addr_type; 786 lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type) 787 : GetAddressOf(true, &addr_type); 788 789 switch (addr_type) { 790 case eAddressTypeFile: { 791 ModuleSP module_sp(GetModule()); 792 if (module_sp) { 793 addr = addr + offset; 794 Address so_addr; 795 module_sp->ResolveFileAddress(addr, so_addr); 796 ExecutionContext exe_ctx(GetExecutionContextRef()); 797 Target *target = exe_ctx.GetTargetPtr(); 798 if (target) { 799 heap_buf_ptr->SetByteSize(bytes); 800 size_t bytes_read = target->ReadMemory( 801 so_addr, false, heap_buf_ptr->GetBytes(), bytes, error); 802 if (error.Success()) { 803 data.SetData(data_sp); 804 return bytes_read; 805 } 806 } 807 } 808 } break; 809 case eAddressTypeLoad: { 810 ExecutionContext exe_ctx(GetExecutionContextRef()); 811 Process *process = exe_ctx.GetProcessPtr(); 812 if (process) { 813 heap_buf_ptr->SetByteSize(bytes); 814 size_t bytes_read = process->ReadMemory( 815 addr + offset, heap_buf_ptr->GetBytes(), bytes, error); 816 if (error.Success() || bytes_read > 0) { 817 data.SetData(data_sp); 818 return bytes_read; 819 } 820 } 821 } break; 822 case eAddressTypeHost: { 823 auto max_bytes = 824 GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope()); 825 if (max_bytes && *max_bytes > offset) { 826 size_t bytes_read = std::min<uint64_t>(*max_bytes - offset, bytes); 827 addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 828 if (addr == 0 || addr == LLDB_INVALID_ADDRESS) 829 break; 830 heap_buf_ptr->CopyData((uint8_t *)(addr + offset), bytes_read); 831 data.SetData(data_sp); 832 return bytes_read; 833 } 834 } break; 835 case eAddressTypeInvalid: 836 break; 837 } 838 } 839 return 0; 840 } 841 842 uint64_t ValueObject::GetData(DataExtractor &data, Status &error) { 843 UpdateValueIfNeeded(false); 844 ExecutionContext exe_ctx(GetExecutionContextRef()); 845 error = m_value.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 846 if (error.Fail()) { 847 if (m_data.GetByteSize()) { 848 data = m_data; 849 error.Clear(); 850 return data.GetByteSize(); 851 } else { 852 return 0; 853 } 854 } 855 data.SetAddressByteSize(m_data.GetAddressByteSize()); 856 data.SetByteOrder(m_data.GetByteOrder()); 857 return data.GetByteSize(); 858 } 859 860 bool ValueObject::SetData(DataExtractor &data, Status &error) { 861 error.Clear(); 862 // Make sure our value is up to date first so that our location and location 863 // type is valid. 864 if (!UpdateValueIfNeeded(false)) { 865 error.SetErrorString("unable to read value"); 866 return false; 867 } 868 869 uint64_t count = 0; 870 const Encoding encoding = GetCompilerType().GetEncoding(count); 871 872 const size_t byte_size = GetByteSize(); 873 874 Value::ValueType value_type = m_value.GetValueType(); 875 876 switch (value_type) { 877 case Value::eValueTypeScalar: { 878 Status set_error = 879 m_value.GetScalar().SetValueFromData(data, encoding, byte_size); 880 881 if (!set_error.Success()) { 882 error.SetErrorStringWithFormat("unable to set scalar value: %s", 883 set_error.AsCString()); 884 return false; 885 } 886 } break; 887 case Value::eValueTypeLoadAddress: { 888 // If it is a load address, then the scalar value is the storage location 889 // of the data, and we have to shove this value down to that load location. 890 ExecutionContext exe_ctx(GetExecutionContextRef()); 891 Process *process = exe_ctx.GetProcessPtr(); 892 if (process) { 893 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 894 size_t bytes_written = process->WriteMemory( 895 target_addr, data.GetDataStart(), byte_size, error); 896 if (!error.Success()) 897 return false; 898 if (bytes_written != byte_size) { 899 error.SetErrorString("unable to write value to memory"); 900 return false; 901 } 902 } 903 } break; 904 case Value::eValueTypeHostAddress: { 905 // If it is a host address, then we stuff the scalar as a DataBuffer into 906 // the Value's data. 907 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 908 m_data.SetData(buffer_sp, 0); 909 data.CopyByteOrderedData(0, byte_size, 910 const_cast<uint8_t *>(m_data.GetDataStart()), 911 byte_size, m_data.GetByteOrder()); 912 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 913 } break; 914 case Value::eValueTypeFileAddress: 915 case Value::eValueTypeVector: 916 break; 917 } 918 919 // If we have reached this point, then we have successfully changed the 920 // value. 921 SetNeedsUpdate(); 922 return true; 923 } 924 925 static bool CopyStringDataToBufferSP(const StreamString &source, 926 lldb::DataBufferSP &destination) { 927 destination = std::make_shared<DataBufferHeap>(source.GetSize() + 1, 0); 928 memcpy(destination->GetBytes(), source.GetString().data(), source.GetSize()); 929 return true; 930 } 931 932 std::pair<size_t, bool> 933 ValueObject::ReadPointedString(lldb::DataBufferSP &buffer_sp, Status &error, 934 uint32_t max_length, bool honor_array, 935 Format item_format) { 936 bool was_capped = false; 937 StreamString s; 938 ExecutionContext exe_ctx(GetExecutionContextRef()); 939 Target *target = exe_ctx.GetTargetPtr(); 940 941 if (!target) { 942 s << "<no target to read from>"; 943 error.SetErrorString("no target to read from"); 944 CopyStringDataToBufferSP(s, buffer_sp); 945 return {0, was_capped}; 946 } 947 948 if (max_length == 0) 949 max_length = target->GetMaximumSizeOfStringSummary(); 950 951 size_t bytes_read = 0; 952 size_t total_bytes_read = 0; 953 954 CompilerType compiler_type = GetCompilerType(); 955 CompilerType elem_or_pointee_compiler_type; 956 const Flags type_flags(GetTypeInfo(&elem_or_pointee_compiler_type)); 957 if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 958 elem_or_pointee_compiler_type.IsCharType()) { 959 addr_t cstr_address = LLDB_INVALID_ADDRESS; 960 AddressType cstr_address_type = eAddressTypeInvalid; 961 962 size_t cstr_len = 0; 963 bool capped_data = false; 964 const bool is_array = type_flags.Test(eTypeIsArray); 965 if (is_array) { 966 // We have an array 967 uint64_t array_size = 0; 968 if (compiler_type.IsArrayType(nullptr, &array_size, nullptr)) { 969 cstr_len = array_size; 970 if (cstr_len > max_length) { 971 capped_data = true; 972 cstr_len = max_length; 973 } 974 } 975 cstr_address = GetAddressOf(true, &cstr_address_type); 976 } else { 977 // We have a pointer 978 cstr_address = GetPointerValue(&cstr_address_type); 979 } 980 981 if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) { 982 if (cstr_address_type == eAddressTypeHost && is_array) { 983 const char *cstr = GetDataExtractor().PeekCStr(0); 984 if (cstr == nullptr) { 985 s << "<invalid address>"; 986 error.SetErrorString("invalid address"); 987 CopyStringDataToBufferSP(s, buffer_sp); 988 return {0, was_capped}; 989 } 990 buffer_sp = std::make_shared<DataBufferHeap>(cstr_len, 0); 991 memcpy(buffer_sp->GetBytes(), cstr, cstr_len); 992 return {cstr_len, was_capped}; 993 } else { 994 s << "<invalid address>"; 995 error.SetErrorString("invalid address"); 996 CopyStringDataToBufferSP(s, buffer_sp); 997 return {0, was_capped}; 998 } 999 } 1000 1001 Address cstr_so_addr(cstr_address); 1002 DataExtractor data; 1003 if (cstr_len > 0 && honor_array) { 1004 // I am using GetPointeeData() here to abstract the fact that some 1005 // ValueObjects are actually frozen pointers in the host but the pointed- 1006 // to data lives in the debuggee, and GetPointeeData() automatically 1007 // takes care of this 1008 GetPointeeData(data, 0, cstr_len); 1009 1010 if ((bytes_read = data.GetByteSize()) > 0) { 1011 total_bytes_read = bytes_read; 1012 for (size_t offset = 0; offset < bytes_read; offset++) 1013 s.Printf("%c", *data.PeekData(offset, 1)); 1014 if (capped_data) 1015 was_capped = true; 1016 } 1017 } else { 1018 cstr_len = max_length; 1019 const size_t k_max_buf_size = 64; 1020 1021 size_t offset = 0; 1022 1023 int cstr_len_displayed = -1; 1024 bool capped_cstr = false; 1025 // I am using GetPointeeData() here to abstract the fact that some 1026 // ValueObjects are actually frozen pointers in the host but the pointed- 1027 // to data lives in the debuggee, and GetPointeeData() automatically 1028 // takes care of this 1029 while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) { 1030 total_bytes_read += bytes_read; 1031 const char *cstr = data.PeekCStr(0); 1032 size_t len = strnlen(cstr, k_max_buf_size); 1033 if (cstr_len_displayed < 0) 1034 cstr_len_displayed = len; 1035 1036 if (len == 0) 1037 break; 1038 cstr_len_displayed += len; 1039 if (len > bytes_read) 1040 len = bytes_read; 1041 if (len > cstr_len) 1042 len = cstr_len; 1043 1044 for (size_t offset = 0; offset < bytes_read; offset++) 1045 s.Printf("%c", *data.PeekData(offset, 1)); 1046 1047 if (len < k_max_buf_size) 1048 break; 1049 1050 if (len >= cstr_len) { 1051 capped_cstr = true; 1052 break; 1053 } 1054 1055 cstr_len -= len; 1056 offset += len; 1057 } 1058 1059 if (cstr_len_displayed >= 0) { 1060 if (capped_cstr) 1061 was_capped = true; 1062 } 1063 } 1064 } else { 1065 error.SetErrorString("not a string object"); 1066 s << "<not a string object>"; 1067 } 1068 CopyStringDataToBufferSP(s, buffer_sp); 1069 return {total_bytes_read, was_capped}; 1070 } 1071 1072 std::pair<TypeValidatorResult, std::string> ValueObject::GetValidationStatus() { 1073 if (!UpdateValueIfNeeded(true)) 1074 return {TypeValidatorResult::Success, 1075 ""}; // not the validator's job to discuss update problems 1076 1077 if (m_validation_result.hasValue()) 1078 return m_validation_result.getValue(); 1079 1080 if (!m_type_validator_sp) 1081 return {TypeValidatorResult::Success, ""}; // no validator no failure 1082 1083 auto outcome = m_type_validator_sp->FormatObject(this); 1084 1085 return (m_validation_result = {outcome.m_result, outcome.m_message}) 1086 .getValue(); 1087 } 1088 1089 const char *ValueObject::GetObjectDescription() { 1090 if (!UpdateValueIfNeeded(true)) 1091 return nullptr; 1092 1093 // Return cached value. 1094 if (!m_object_desc_str.empty()) 1095 return m_object_desc_str.c_str(); 1096 1097 ExecutionContext exe_ctx(GetExecutionContextRef()); 1098 Process *process = exe_ctx.GetProcessPtr(); 1099 if (!process) 1100 return nullptr; 1101 1102 // Returns the object description produced by one language runtime. 1103 auto get_object_description = [&](LanguageType language) -> const char * { 1104 if (LanguageRuntime *runtime = process->GetLanguageRuntime(language)) { 1105 StreamString s; 1106 if (runtime->GetObjectDescription(s, *this)) { 1107 m_object_desc_str.append(s.GetString()); 1108 return m_object_desc_str.c_str(); 1109 } 1110 } 1111 return nullptr; 1112 }; 1113 1114 // Try the native language runtime first. 1115 LanguageType native_language = GetObjectRuntimeLanguage(); 1116 if (const char *desc = get_object_description(native_language)) 1117 return desc; 1118 1119 // Try the Objective-C language runtime. This fallback is necessary 1120 // for Objective-C++ and mixed Objective-C / C++ programs. 1121 if (Language::LanguageIsCFamily(native_language)) 1122 return get_object_description(eLanguageTypeObjC); 1123 return nullptr; 1124 } 1125 1126 bool ValueObject::GetValueAsCString(const lldb_private::TypeFormatImpl &format, 1127 std::string &destination) { 1128 if (UpdateValueIfNeeded(false)) 1129 return format.FormatObject(this, destination); 1130 else 1131 return false; 1132 } 1133 1134 bool ValueObject::GetValueAsCString(lldb::Format format, 1135 std::string &destination) { 1136 return GetValueAsCString(TypeFormatImpl_Format(format), destination); 1137 } 1138 1139 const char *ValueObject::GetValueAsCString() { 1140 if (UpdateValueIfNeeded(true)) { 1141 lldb::TypeFormatImplSP format_sp; 1142 lldb::Format my_format = GetFormat(); 1143 if (my_format == lldb::eFormatDefault) { 1144 if (m_type_format_sp) 1145 format_sp = m_type_format_sp; 1146 else { 1147 if (m_is_bitfield_for_scalar) 1148 my_format = eFormatUnsigned; 1149 else { 1150 if (m_value.GetContextType() == Value::eContextTypeRegisterInfo) { 1151 const RegisterInfo *reg_info = m_value.GetRegisterInfo(); 1152 if (reg_info) 1153 my_format = reg_info->format; 1154 } else { 1155 my_format = GetValue().GetCompilerType().GetFormat(); 1156 } 1157 } 1158 } 1159 } 1160 if (my_format != m_last_format || m_value_str.empty()) { 1161 m_last_format = my_format; 1162 if (!format_sp) 1163 format_sp = std::make_shared<TypeFormatImpl_Format>(my_format); 1164 if (GetValueAsCString(*format_sp.get(), m_value_str)) { 1165 if (!m_value_did_change && m_old_value_valid) { 1166 // The value was gotten successfully, so we consider the value as 1167 // changed if the value string differs 1168 SetValueDidChange(m_old_value_str != m_value_str); 1169 } 1170 } 1171 } 1172 } 1173 if (m_value_str.empty()) 1174 return nullptr; 1175 return m_value_str.c_str(); 1176 } 1177 1178 // if > 8bytes, 0 is returned. this method should mostly be used to read 1179 // address values out of pointers 1180 uint64_t ValueObject::GetValueAsUnsigned(uint64_t fail_value, bool *success) { 1181 // If our byte size is zero this is an aggregate type that has children 1182 if (CanProvideValue()) { 1183 Scalar scalar; 1184 if (ResolveValue(scalar)) { 1185 if (success) 1186 *success = true; 1187 return scalar.ULongLong(fail_value); 1188 } 1189 // fallthrough, otherwise... 1190 } 1191 1192 if (success) 1193 *success = false; 1194 return fail_value; 1195 } 1196 1197 int64_t ValueObject::GetValueAsSigned(int64_t fail_value, bool *success) { 1198 // If our byte size is zero this is an aggregate type that has children 1199 if (CanProvideValue()) { 1200 Scalar scalar; 1201 if (ResolveValue(scalar)) { 1202 if (success) 1203 *success = true; 1204 return scalar.SLongLong(fail_value); 1205 } 1206 // fallthrough, otherwise... 1207 } 1208 1209 if (success) 1210 *success = false; 1211 return fail_value; 1212 } 1213 1214 // if any more "special cases" are added to 1215 // ValueObject::DumpPrintableRepresentation() please keep this call up to date 1216 // by returning true for your new special cases. We will eventually move to 1217 // checking this call result before trying to display special cases 1218 bool ValueObject::HasSpecialPrintableRepresentation( 1219 ValueObjectRepresentationStyle val_obj_display, Format custom_format) { 1220 Flags flags(GetTypeInfo()); 1221 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1222 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1223 if (IsCStringContainer(true) && 1224 (custom_format == eFormatCString || custom_format == eFormatCharArray || 1225 custom_format == eFormatChar || custom_format == eFormatVectorOfChar)) 1226 return true; 1227 1228 if (flags.Test(eTypeIsArray)) { 1229 if ((custom_format == eFormatBytes) || 1230 (custom_format == eFormatBytesWithASCII)) 1231 return true; 1232 1233 if ((custom_format == eFormatVectorOfChar) || 1234 (custom_format == eFormatVectorOfFloat32) || 1235 (custom_format == eFormatVectorOfFloat64) || 1236 (custom_format == eFormatVectorOfSInt16) || 1237 (custom_format == eFormatVectorOfSInt32) || 1238 (custom_format == eFormatVectorOfSInt64) || 1239 (custom_format == eFormatVectorOfSInt8) || 1240 (custom_format == eFormatVectorOfUInt128) || 1241 (custom_format == eFormatVectorOfUInt16) || 1242 (custom_format == eFormatVectorOfUInt32) || 1243 (custom_format == eFormatVectorOfUInt64) || 1244 (custom_format == eFormatVectorOfUInt8)) 1245 return true; 1246 } 1247 } 1248 return false; 1249 } 1250 1251 bool ValueObject::DumpPrintableRepresentation( 1252 Stream &s, ValueObjectRepresentationStyle val_obj_display, 1253 Format custom_format, PrintableRepresentationSpecialCases special, 1254 bool do_dump_error) { 1255 1256 Flags flags(GetTypeInfo()); 1257 1258 bool allow_special = 1259 (special == ValueObject::PrintableRepresentationSpecialCases::eAllow); 1260 const bool only_special = false; 1261 1262 if (allow_special) { 1263 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1264 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1265 // when being asked to get a printable display an array or pointer type 1266 // directly, try to "do the right thing" 1267 1268 if (IsCStringContainer(true) && 1269 (custom_format == eFormatCString || 1270 custom_format == eFormatCharArray || custom_format == eFormatChar || 1271 custom_format == 1272 eFormatVectorOfChar)) // print char[] & char* directly 1273 { 1274 Status error; 1275 lldb::DataBufferSP buffer_sp; 1276 std::pair<size_t, bool> read_string = ReadPointedString( 1277 buffer_sp, error, 0, (custom_format == eFormatVectorOfChar) || 1278 (custom_format == eFormatCharArray)); 1279 lldb_private::formatters::StringPrinter:: 1280 ReadBufferAndDumpToStreamOptions options(*this); 1281 options.SetData(DataExtractor( 1282 buffer_sp, lldb::eByteOrderInvalid, 1283 8)); // none of this matters for a string - pass some defaults 1284 options.SetStream(&s); 1285 options.SetPrefixToken(nullptr); 1286 options.SetQuote('"'); 1287 options.SetSourceSize(buffer_sp->GetByteSize()); 1288 options.SetIsTruncated(read_string.second); 1289 formatters::StringPrinter::ReadBufferAndDumpToStream< 1290 lldb_private::formatters::StringPrinter::StringElementType::ASCII>( 1291 options); 1292 return !error.Fail(); 1293 } 1294 1295 if (custom_format == eFormatEnum) 1296 return false; 1297 1298 // this only works for arrays, because I have no way to know when the 1299 // pointed memory ends, and no special \0 end of data marker 1300 if (flags.Test(eTypeIsArray)) { 1301 if ((custom_format == eFormatBytes) || 1302 (custom_format == eFormatBytesWithASCII)) { 1303 const size_t count = GetNumChildren(); 1304 1305 s << '['; 1306 for (size_t low = 0; low < count; low++) { 1307 1308 if (low) 1309 s << ','; 1310 1311 ValueObjectSP child = GetChildAtIndex(low, true); 1312 if (!child.get()) { 1313 s << "<invalid child>"; 1314 continue; 1315 } 1316 child->DumpPrintableRepresentation( 1317 s, ValueObject::eValueObjectRepresentationStyleValue, 1318 custom_format); 1319 } 1320 1321 s << ']'; 1322 1323 return true; 1324 } 1325 1326 if ((custom_format == eFormatVectorOfChar) || 1327 (custom_format == eFormatVectorOfFloat32) || 1328 (custom_format == eFormatVectorOfFloat64) || 1329 (custom_format == eFormatVectorOfSInt16) || 1330 (custom_format == eFormatVectorOfSInt32) || 1331 (custom_format == eFormatVectorOfSInt64) || 1332 (custom_format == eFormatVectorOfSInt8) || 1333 (custom_format == eFormatVectorOfUInt128) || 1334 (custom_format == eFormatVectorOfUInt16) || 1335 (custom_format == eFormatVectorOfUInt32) || 1336 (custom_format == eFormatVectorOfUInt64) || 1337 (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes 1338 // with ASCII or any vector 1339 // format should be printed 1340 // directly 1341 { 1342 const size_t count = GetNumChildren(); 1343 1344 Format format = FormatManager::GetSingleItemFormat(custom_format); 1345 1346 s << '['; 1347 for (size_t low = 0; low < count; low++) { 1348 1349 if (low) 1350 s << ','; 1351 1352 ValueObjectSP child = GetChildAtIndex(low, true); 1353 if (!child.get()) { 1354 s << "<invalid child>"; 1355 continue; 1356 } 1357 child->DumpPrintableRepresentation( 1358 s, ValueObject::eValueObjectRepresentationStyleValue, format); 1359 } 1360 1361 s << ']'; 1362 1363 return true; 1364 } 1365 } 1366 1367 if ((custom_format == eFormatBoolean) || 1368 (custom_format == eFormatBinary) || (custom_format == eFormatChar) || 1369 (custom_format == eFormatCharPrintable) || 1370 (custom_format == eFormatComplexFloat) || 1371 (custom_format == eFormatDecimal) || (custom_format == eFormatHex) || 1372 (custom_format == eFormatHexUppercase) || 1373 (custom_format == eFormatFloat) || (custom_format == eFormatOctal) || 1374 (custom_format == eFormatOSType) || 1375 (custom_format == eFormatUnicode16) || 1376 (custom_format == eFormatUnicode32) || 1377 (custom_format == eFormatUnsigned) || 1378 (custom_format == eFormatPointer) || 1379 (custom_format == eFormatComplexInteger) || 1380 (custom_format == eFormatComplex) || 1381 (custom_format == eFormatDefault)) // use the [] operator 1382 return false; 1383 } 1384 } 1385 1386 if (only_special) 1387 return false; 1388 1389 bool var_success = false; 1390 1391 { 1392 llvm::StringRef str; 1393 1394 // this is a local stream that we are using to ensure that the data pointed 1395 // to by cstr survives long enough for us to copy it to its destination - 1396 // it is necessary to have this temporary storage area for cases where our 1397 // desired output is not backed by some other longer-term storage 1398 StreamString strm; 1399 1400 if (custom_format != eFormatInvalid) 1401 SetFormat(custom_format); 1402 1403 switch (val_obj_display) { 1404 case eValueObjectRepresentationStyleValue: 1405 str = GetValueAsCString(); 1406 break; 1407 1408 case eValueObjectRepresentationStyleSummary: 1409 str = GetSummaryAsCString(); 1410 break; 1411 1412 case eValueObjectRepresentationStyleLanguageSpecific: 1413 str = GetObjectDescription(); 1414 break; 1415 1416 case eValueObjectRepresentationStyleLocation: 1417 str = GetLocationAsCString(); 1418 break; 1419 1420 case eValueObjectRepresentationStyleChildrenCount: 1421 strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren()); 1422 str = strm.GetString(); 1423 break; 1424 1425 case eValueObjectRepresentationStyleType: 1426 str = GetTypeName().GetStringRef(); 1427 break; 1428 1429 case eValueObjectRepresentationStyleName: 1430 str = GetName().GetStringRef(); 1431 break; 1432 1433 case eValueObjectRepresentationStyleExpressionPath: 1434 GetExpressionPath(strm, false); 1435 str = strm.GetString(); 1436 break; 1437 } 1438 1439 if (str.empty()) { 1440 if (val_obj_display == eValueObjectRepresentationStyleValue) 1441 str = GetSummaryAsCString(); 1442 else if (val_obj_display == eValueObjectRepresentationStyleSummary) { 1443 if (!CanProvideValue()) { 1444 strm.Printf("%s @ %s", GetTypeName().AsCString(), 1445 GetLocationAsCString()); 1446 str = strm.GetString(); 1447 } else 1448 str = GetValueAsCString(); 1449 } 1450 } 1451 1452 if (!str.empty()) 1453 s << str; 1454 else { 1455 if (m_error.Fail()) { 1456 if (do_dump_error) 1457 s.Printf("<%s>", m_error.AsCString()); 1458 else 1459 return false; 1460 } else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1461 s.PutCString("<no summary available>"); 1462 else if (val_obj_display == eValueObjectRepresentationStyleValue) 1463 s.PutCString("<no value available>"); 1464 else if (val_obj_display == 1465 eValueObjectRepresentationStyleLanguageSpecific) 1466 s.PutCString("<not a valid Objective-C object>"); // edit this if we 1467 // have other runtimes 1468 // that support a 1469 // description 1470 else 1471 s.PutCString("<no printable representation>"); 1472 } 1473 1474 // we should only return false here if we could not do *anything* even if 1475 // we have an error message as output, that's a success from our callers' 1476 // perspective, so return true 1477 var_success = true; 1478 1479 if (custom_format != eFormatInvalid) 1480 SetFormat(eFormatDefault); 1481 } 1482 1483 return var_success; 1484 } 1485 1486 addr_t ValueObject::GetAddressOf(bool scalar_is_load_address, 1487 AddressType *address_type) { 1488 // Can't take address of a bitfield 1489 if (IsBitfield()) 1490 return LLDB_INVALID_ADDRESS; 1491 1492 if (!UpdateValueIfNeeded(false)) 1493 return LLDB_INVALID_ADDRESS; 1494 1495 switch (m_value.GetValueType()) { 1496 case Value::eValueTypeScalar: 1497 case Value::eValueTypeVector: 1498 if (scalar_is_load_address) { 1499 if (address_type) 1500 *address_type = eAddressTypeLoad; 1501 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1502 } 1503 break; 1504 1505 case Value::eValueTypeLoadAddress: 1506 case Value::eValueTypeFileAddress: { 1507 if (address_type) 1508 *address_type = m_value.GetValueAddressType(); 1509 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1510 } break; 1511 case Value::eValueTypeHostAddress: { 1512 if (address_type) 1513 *address_type = m_value.GetValueAddressType(); 1514 return LLDB_INVALID_ADDRESS; 1515 } break; 1516 } 1517 if (address_type) 1518 *address_type = eAddressTypeInvalid; 1519 return LLDB_INVALID_ADDRESS; 1520 } 1521 1522 addr_t ValueObject::GetPointerValue(AddressType *address_type) { 1523 addr_t address = LLDB_INVALID_ADDRESS; 1524 if (address_type) 1525 *address_type = eAddressTypeInvalid; 1526 1527 if (!UpdateValueIfNeeded(false)) 1528 return address; 1529 1530 switch (m_value.GetValueType()) { 1531 case Value::eValueTypeScalar: 1532 case Value::eValueTypeVector: 1533 address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1534 break; 1535 1536 case Value::eValueTypeHostAddress: 1537 case Value::eValueTypeLoadAddress: 1538 case Value::eValueTypeFileAddress: { 1539 lldb::offset_t data_offset = 0; 1540 address = m_data.GetPointer(&data_offset); 1541 } break; 1542 } 1543 1544 if (address_type) 1545 *address_type = GetAddressTypeOfChildren(); 1546 1547 return address; 1548 } 1549 1550 bool ValueObject::SetValueFromCString(const char *value_str, Status &error) { 1551 error.Clear(); 1552 // Make sure our value is up to date first so that our location and location 1553 // type is valid. 1554 if (!UpdateValueIfNeeded(false)) { 1555 error.SetErrorString("unable to read value"); 1556 return false; 1557 } 1558 1559 uint64_t count = 0; 1560 const Encoding encoding = GetCompilerType().GetEncoding(count); 1561 1562 const size_t byte_size = GetByteSize(); 1563 1564 Value::ValueType value_type = m_value.GetValueType(); 1565 1566 if (value_type == Value::eValueTypeScalar) { 1567 // If the value is already a scalar, then let the scalar change itself: 1568 m_value.GetScalar().SetValueFromCString(value_str, encoding, byte_size); 1569 } else if (byte_size <= 16) { 1570 // If the value fits in a scalar, then make a new scalar and again let the 1571 // scalar code do the conversion, then figure out where to put the new 1572 // value. 1573 Scalar new_scalar; 1574 error = new_scalar.SetValueFromCString(value_str, encoding, byte_size); 1575 if (error.Success()) { 1576 switch (value_type) { 1577 case Value::eValueTypeLoadAddress: { 1578 // If it is a load address, then the scalar value is the storage 1579 // location of the data, and we have to shove this value down to that 1580 // load location. 1581 ExecutionContext exe_ctx(GetExecutionContextRef()); 1582 Process *process = exe_ctx.GetProcessPtr(); 1583 if (process) { 1584 addr_t target_addr = 1585 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1586 size_t bytes_written = process->WriteScalarToMemory( 1587 target_addr, new_scalar, byte_size, error); 1588 if (!error.Success()) 1589 return false; 1590 if (bytes_written != byte_size) { 1591 error.SetErrorString("unable to write value to memory"); 1592 return false; 1593 } 1594 } 1595 } break; 1596 case Value::eValueTypeHostAddress: { 1597 // If it is a host address, then we stuff the scalar as a DataBuffer 1598 // into the Value's data. 1599 DataExtractor new_data; 1600 new_data.SetByteOrder(m_data.GetByteOrder()); 1601 1602 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 1603 m_data.SetData(buffer_sp, 0); 1604 bool success = new_scalar.GetData(new_data); 1605 if (success) { 1606 new_data.CopyByteOrderedData( 1607 0, byte_size, const_cast<uint8_t *>(m_data.GetDataStart()), 1608 byte_size, m_data.GetByteOrder()); 1609 } 1610 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1611 1612 } break; 1613 case Value::eValueTypeFileAddress: 1614 case Value::eValueTypeScalar: 1615 case Value::eValueTypeVector: 1616 break; 1617 } 1618 } else { 1619 return false; 1620 } 1621 } else { 1622 // We don't support setting things bigger than a scalar at present. 1623 error.SetErrorString("unable to write aggregate data type"); 1624 return false; 1625 } 1626 1627 // If we have reached this point, then we have successfully changed the 1628 // value. 1629 SetNeedsUpdate(); 1630 return true; 1631 } 1632 1633 bool ValueObject::GetDeclaration(Declaration &decl) { 1634 decl.Clear(); 1635 return false; 1636 } 1637 1638 ConstString ValueObject::GetTypeName() { 1639 return GetCompilerType().GetConstTypeName(); 1640 } 1641 1642 ConstString ValueObject::GetDisplayTypeName() { return GetTypeName(); } 1643 1644 ConstString ValueObject::GetQualifiedTypeName() { 1645 return GetCompilerType().GetConstQualifiedTypeName(); 1646 } 1647 1648 LanguageType ValueObject::GetObjectRuntimeLanguage() { 1649 return GetCompilerType().GetMinimumLanguage(); 1650 } 1651 1652 void ValueObject::AddSyntheticChild(ConstString key, 1653 ValueObject *valobj) { 1654 m_synthetic_children[key] = valobj; 1655 } 1656 1657 ValueObjectSP ValueObject::GetSyntheticChild(ConstString key) const { 1658 ValueObjectSP synthetic_child_sp; 1659 std::map<ConstString, ValueObject *>::const_iterator pos = 1660 m_synthetic_children.find(key); 1661 if (pos != m_synthetic_children.end()) 1662 synthetic_child_sp = pos->second->GetSP(); 1663 return synthetic_child_sp; 1664 } 1665 1666 uint32_t 1667 ValueObject::GetTypeInfo(CompilerType *pointee_or_element_compiler_type) { 1668 return GetCompilerType().GetTypeInfo(pointee_or_element_compiler_type); 1669 } 1670 1671 bool ValueObject::IsPointerType() { return GetCompilerType().IsPointerType(); } 1672 1673 bool ValueObject::IsArrayType() { 1674 return GetCompilerType().IsArrayType(nullptr, nullptr, nullptr); 1675 } 1676 1677 bool ValueObject::IsScalarType() { return GetCompilerType().IsScalarType(); } 1678 1679 bool ValueObject::IsIntegerType(bool &is_signed) { 1680 return GetCompilerType().IsIntegerType(is_signed); 1681 } 1682 1683 bool ValueObject::IsPointerOrReferenceType() { 1684 return GetCompilerType().IsPointerOrReferenceType(); 1685 } 1686 1687 bool ValueObject::IsPossibleDynamicType() { 1688 ExecutionContext exe_ctx(GetExecutionContextRef()); 1689 Process *process = exe_ctx.GetProcessPtr(); 1690 if (process) 1691 return process->IsPossibleDynamicValue(*this); 1692 else 1693 return GetCompilerType().IsPossibleDynamicType(nullptr, true, true); 1694 } 1695 1696 bool ValueObject::IsRuntimeSupportValue() { 1697 Process *process(GetProcessSP().get()); 1698 if (process) { 1699 LanguageRuntime *runtime = 1700 process->GetLanguageRuntime(GetObjectRuntimeLanguage()); 1701 if (!runtime) 1702 runtime = ObjCLanguageRuntime::Get(*process); 1703 if (runtime) 1704 return runtime->IsRuntimeSupportValue(*this); 1705 // If there is no language runtime, trust the compiler to mark all 1706 // runtime support variables as artificial. 1707 return GetVariable() && GetVariable()->IsArtificial(); 1708 } 1709 return false; 1710 } 1711 1712 bool ValueObject::IsNilReference() { 1713 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1714 return language->IsNilReference(*this); 1715 } 1716 return false; 1717 } 1718 1719 bool ValueObject::IsUninitializedReference() { 1720 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1721 return language->IsUninitializedReference(*this); 1722 } 1723 return false; 1724 } 1725 1726 // This allows you to create an array member using and index that doesn't not 1727 // fall in the normal bounds of the array. Many times structure can be defined 1728 // as: struct Collection { 1729 // uint32_t item_count; 1730 // Item item_array[0]; 1731 // }; 1732 // The size of the "item_array" is 1, but many times in practice there are more 1733 // items in "item_array". 1734 1735 ValueObjectSP ValueObject::GetSyntheticArrayMember(size_t index, 1736 bool can_create) { 1737 ValueObjectSP synthetic_child_sp; 1738 if (IsPointerType() || IsArrayType()) { 1739 char index_str[64]; 1740 snprintf(index_str, sizeof(index_str), "[%" PRIu64 "]", (uint64_t)index); 1741 ConstString index_const_str(index_str); 1742 // Check if we have already created a synthetic array member in this valid 1743 // object. If we have we will re-use it. 1744 synthetic_child_sp = GetSyntheticChild(index_const_str); 1745 if (!synthetic_child_sp) { 1746 ValueObject *synthetic_child; 1747 // We haven't made a synthetic array member for INDEX yet, so lets make 1748 // one and cache it for any future reference. 1749 synthetic_child = CreateChildAtIndex(0, true, index); 1750 1751 // Cache the value if we got one back... 1752 if (synthetic_child) { 1753 AddSyntheticChild(index_const_str, synthetic_child); 1754 synthetic_child_sp = synthetic_child->GetSP(); 1755 synthetic_child_sp->SetName(ConstString(index_str)); 1756 synthetic_child_sp->m_is_array_item_for_pointer = true; 1757 } 1758 } 1759 } 1760 return synthetic_child_sp; 1761 } 1762 1763 ValueObjectSP ValueObject::GetSyntheticBitFieldChild(uint32_t from, uint32_t to, 1764 bool can_create) { 1765 ValueObjectSP synthetic_child_sp; 1766 if (IsScalarType()) { 1767 char index_str[64]; 1768 snprintf(index_str, sizeof(index_str), "[%i-%i]", from, to); 1769 ConstString index_const_str(index_str); 1770 // Check if we have already created a synthetic array member in this valid 1771 // object. If we have we will re-use it. 1772 synthetic_child_sp = GetSyntheticChild(index_const_str); 1773 if (!synthetic_child_sp) { 1774 uint32_t bit_field_size = to - from + 1; 1775 uint32_t bit_field_offset = from; 1776 if (GetDataExtractor().GetByteOrder() == eByteOrderBig) 1777 bit_field_offset = 1778 GetByteSize() * 8 - bit_field_size - bit_field_offset; 1779 // We haven't made a synthetic array member for INDEX yet, so lets make 1780 // one and cache it for any future reference. 1781 ValueObjectChild *synthetic_child = new ValueObjectChild( 1782 *this, GetCompilerType(), index_const_str, GetByteSize(), 0, 1783 bit_field_size, bit_field_offset, false, false, eAddressTypeInvalid, 1784 0); 1785 1786 // Cache the value if we got one back... 1787 if (synthetic_child) { 1788 AddSyntheticChild(index_const_str, synthetic_child); 1789 synthetic_child_sp = synthetic_child->GetSP(); 1790 synthetic_child_sp->SetName(ConstString(index_str)); 1791 synthetic_child_sp->m_is_bitfield_for_scalar = true; 1792 } 1793 } 1794 } 1795 return synthetic_child_sp; 1796 } 1797 1798 ValueObjectSP ValueObject::GetSyntheticChildAtOffset( 1799 uint32_t offset, const CompilerType &type, bool can_create, 1800 ConstString name_const_str) { 1801 1802 ValueObjectSP synthetic_child_sp; 1803 1804 if (name_const_str.IsEmpty()) { 1805 char name_str[64]; 1806 snprintf(name_str, sizeof(name_str), "@%i", offset); 1807 name_const_str.SetCString(name_str); 1808 } 1809 1810 // Check if we have already created a synthetic array member in this valid 1811 // object. If we have we will re-use it. 1812 synthetic_child_sp = GetSyntheticChild(name_const_str); 1813 1814 if (synthetic_child_sp.get()) 1815 return synthetic_child_sp; 1816 1817 if (!can_create) 1818 return {}; 1819 1820 ExecutionContext exe_ctx(GetExecutionContextRef()); 1821 llvm::Optional<uint64_t> size = 1822 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1823 if (!size) 1824 return {}; 1825 ValueObjectChild *synthetic_child = 1826 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1827 false, false, eAddressTypeInvalid, 0); 1828 if (synthetic_child) { 1829 AddSyntheticChild(name_const_str, synthetic_child); 1830 synthetic_child_sp = synthetic_child->GetSP(); 1831 synthetic_child_sp->SetName(name_const_str); 1832 synthetic_child_sp->m_is_child_at_offset = true; 1833 } 1834 return synthetic_child_sp; 1835 } 1836 1837 ValueObjectSP ValueObject::GetSyntheticBase(uint32_t offset, 1838 const CompilerType &type, 1839 bool can_create, 1840 ConstString name_const_str) { 1841 ValueObjectSP synthetic_child_sp; 1842 1843 if (name_const_str.IsEmpty()) { 1844 char name_str[128]; 1845 snprintf(name_str, sizeof(name_str), "base%s@%i", 1846 type.GetTypeName().AsCString("<unknown>"), offset); 1847 name_const_str.SetCString(name_str); 1848 } 1849 1850 // Check if we have already created a synthetic array member in this valid 1851 // object. If we have we will re-use it. 1852 synthetic_child_sp = GetSyntheticChild(name_const_str); 1853 1854 if (synthetic_child_sp.get()) 1855 return synthetic_child_sp; 1856 1857 if (!can_create) 1858 return {}; 1859 1860 const bool is_base_class = true; 1861 1862 ExecutionContext exe_ctx(GetExecutionContextRef()); 1863 llvm::Optional<uint64_t> size = 1864 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1865 if (!size) 1866 return {}; 1867 ValueObjectChild *synthetic_child = 1868 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1869 is_base_class, false, eAddressTypeInvalid, 0); 1870 if (synthetic_child) { 1871 AddSyntheticChild(name_const_str, synthetic_child); 1872 synthetic_child_sp = synthetic_child->GetSP(); 1873 synthetic_child_sp->SetName(name_const_str); 1874 } 1875 return synthetic_child_sp; 1876 } 1877 1878 // your expression path needs to have a leading . or -> (unless it somehow 1879 // "looks like" an array, in which case it has a leading [ symbol). while the [ 1880 // is meaningful and should be shown to the user, . and -> are just parser 1881 // design, but by no means added information for the user.. strip them off 1882 static const char *SkipLeadingExpressionPathSeparators(const char *expression) { 1883 if (!expression || !expression[0]) 1884 return expression; 1885 if (expression[0] == '.') 1886 return expression + 1; 1887 if (expression[0] == '-' && expression[1] == '>') 1888 return expression + 2; 1889 return expression; 1890 } 1891 1892 ValueObjectSP 1893 ValueObject::GetSyntheticExpressionPathChild(const char *expression, 1894 bool can_create) { 1895 ValueObjectSP synthetic_child_sp; 1896 ConstString name_const_string(expression); 1897 // Check if we have already created a synthetic array member in this valid 1898 // object. If we have we will re-use it. 1899 synthetic_child_sp = GetSyntheticChild(name_const_string); 1900 if (!synthetic_child_sp) { 1901 // We haven't made a synthetic array member for expression yet, so lets 1902 // make one and cache it for any future reference. 1903 synthetic_child_sp = GetValueForExpressionPath( 1904 expression, nullptr, nullptr, 1905 GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal( 1906 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 1907 None)); 1908 1909 // Cache the value if we got one back... 1910 if (synthetic_child_sp.get()) { 1911 // FIXME: this causes a "real" child to end up with its name changed to 1912 // the contents of expression 1913 AddSyntheticChild(name_const_string, synthetic_child_sp.get()); 1914 synthetic_child_sp->SetName( 1915 ConstString(SkipLeadingExpressionPathSeparators(expression))); 1916 } 1917 } 1918 return synthetic_child_sp; 1919 } 1920 1921 void ValueObject::CalculateSyntheticValue(bool use_synthetic) { 1922 if (!use_synthetic) 1923 return; 1924 1925 TargetSP target_sp(GetTargetSP()); 1926 if (target_sp && !target_sp->GetEnableSyntheticValue()) { 1927 m_synthetic_value = nullptr; 1928 return; 1929 } 1930 1931 lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp); 1932 1933 if (!UpdateFormatsIfNeeded() && m_synthetic_value) 1934 return; 1935 1936 if (m_synthetic_children_sp.get() == nullptr) 1937 return; 1938 1939 if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value) 1940 return; 1941 1942 m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp); 1943 } 1944 1945 void ValueObject::CalculateDynamicValue(DynamicValueType use_dynamic) { 1946 if (use_dynamic == eNoDynamicValues) 1947 return; 1948 1949 if (!m_dynamic_value && !IsDynamic()) { 1950 ExecutionContext exe_ctx(GetExecutionContextRef()); 1951 Process *process = exe_ctx.GetProcessPtr(); 1952 if (process && process->IsPossibleDynamicValue(*this)) { 1953 ClearDynamicTypeInformation(); 1954 m_dynamic_value = new ValueObjectDynamicValue(*this, use_dynamic); 1955 } 1956 } 1957 } 1958 1959 ValueObjectSP ValueObject::GetDynamicValue(DynamicValueType use_dynamic) { 1960 if (use_dynamic == eNoDynamicValues) 1961 return ValueObjectSP(); 1962 1963 if (!IsDynamic() && m_dynamic_value == nullptr) { 1964 CalculateDynamicValue(use_dynamic); 1965 } 1966 if (m_dynamic_value) 1967 return m_dynamic_value->GetSP(); 1968 else 1969 return ValueObjectSP(); 1970 } 1971 1972 ValueObjectSP ValueObject::GetStaticValue() { return GetSP(); } 1973 1974 lldb::ValueObjectSP ValueObject::GetNonSyntheticValue() { return GetSP(); } 1975 1976 ValueObjectSP ValueObject::GetSyntheticValue(bool use_synthetic) { 1977 if (!use_synthetic) 1978 return ValueObjectSP(); 1979 1980 CalculateSyntheticValue(use_synthetic); 1981 1982 if (m_synthetic_value) 1983 return m_synthetic_value->GetSP(); 1984 else 1985 return ValueObjectSP(); 1986 } 1987 1988 bool ValueObject::HasSyntheticValue() { 1989 UpdateFormatsIfNeeded(); 1990 1991 if (m_synthetic_children_sp.get() == nullptr) 1992 return false; 1993 1994 CalculateSyntheticValue(true); 1995 1996 return m_synthetic_value != nullptr; 1997 } 1998 1999 bool ValueObject::GetBaseClassPath(Stream &s) { 2000 if (IsBaseClass()) { 2001 bool parent_had_base_class = 2002 GetParent() && GetParent()->GetBaseClassPath(s); 2003 CompilerType compiler_type = GetCompilerType(); 2004 std::string cxx_class_name; 2005 bool this_had_base_class = 2006 ClangASTContext::GetCXXClassName(compiler_type, cxx_class_name); 2007 if (this_had_base_class) { 2008 if (parent_had_base_class) 2009 s.PutCString("::"); 2010 s.PutCString(cxx_class_name); 2011 } 2012 return parent_had_base_class || this_had_base_class; 2013 } 2014 return false; 2015 } 2016 2017 ValueObject *ValueObject::GetNonBaseClassParent() { 2018 if (GetParent()) { 2019 if (GetParent()->IsBaseClass()) 2020 return GetParent()->GetNonBaseClassParent(); 2021 else 2022 return GetParent(); 2023 } 2024 return nullptr; 2025 } 2026 2027 bool ValueObject::IsBaseClass(uint32_t &depth) { 2028 if (!IsBaseClass()) { 2029 depth = 0; 2030 return false; 2031 } 2032 if (GetParent()) { 2033 GetParent()->IsBaseClass(depth); 2034 depth = depth + 1; 2035 return true; 2036 } 2037 // TODO: a base of no parent? weird.. 2038 depth = 1; 2039 return true; 2040 } 2041 2042 void ValueObject::GetExpressionPath(Stream &s, bool qualify_cxx_base_classes, 2043 GetExpressionPathFormat epformat) { 2044 // synthetic children do not actually "exist" as part of the hierarchy, and 2045 // sometimes they are consed up in ways that don't make sense from an 2046 // underlying language/API standpoint. So, use a special code path here to 2047 // return something that can hopefully be used in expression 2048 if (m_is_synthetic_children_generated) { 2049 UpdateValueIfNeeded(); 2050 2051 if (m_value.GetValueType() == Value::eValueTypeLoadAddress) { 2052 if (IsPointerOrReferenceType()) { 2053 s.Printf("((%s)0x%" PRIx64 ")", GetTypeName().AsCString("void"), 2054 GetValueAsUnsigned(0)); 2055 return; 2056 } else { 2057 uint64_t load_addr = 2058 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2059 if (load_addr != LLDB_INVALID_ADDRESS) { 2060 s.Printf("(*( (%s *)0x%" PRIx64 "))", GetTypeName().AsCString("void"), 2061 load_addr); 2062 return; 2063 } 2064 } 2065 } 2066 2067 if (CanProvideValue()) { 2068 s.Printf("((%s)%s)", GetTypeName().AsCString("void"), 2069 GetValueAsCString()); 2070 return; 2071 } 2072 2073 return; 2074 } 2075 2076 const bool is_deref_of_parent = IsDereferenceOfParent(); 2077 2078 if (is_deref_of_parent && 2079 epformat == eGetExpressionPathFormatDereferencePointers) { 2080 // this is the original format of GetExpressionPath() producing code like 2081 // *(a_ptr).memberName, which is entirely fine, until you put this into 2082 // StackFrame::GetValueForVariableExpressionPath() which prefers to see 2083 // a_ptr->memberName. the eHonorPointers mode is meant to produce strings 2084 // in this latter format 2085 s.PutCString("*("); 2086 } 2087 2088 ValueObject *parent = GetParent(); 2089 2090 if (parent) 2091 parent->GetExpressionPath(s, qualify_cxx_base_classes, epformat); 2092 2093 // if we are a deref_of_parent just because we are synthetic array members 2094 // made up to allow ptr[%d] syntax to work in variable printing, then add our 2095 // name ([%d]) to the expression path 2096 if (m_is_array_item_for_pointer && 2097 epformat == eGetExpressionPathFormatHonorPointers) 2098 s.PutCString(m_name.AsCString()); 2099 2100 if (!IsBaseClass()) { 2101 if (!is_deref_of_parent) { 2102 ValueObject *non_base_class_parent = GetNonBaseClassParent(); 2103 if (non_base_class_parent && 2104 !non_base_class_parent->GetName().IsEmpty()) { 2105 CompilerType non_base_class_parent_compiler_type = 2106 non_base_class_parent->GetCompilerType(); 2107 if (non_base_class_parent_compiler_type) { 2108 if (parent && parent->IsDereferenceOfParent() && 2109 epformat == eGetExpressionPathFormatHonorPointers) { 2110 s.PutCString("->"); 2111 } else { 2112 const uint32_t non_base_class_parent_type_info = 2113 non_base_class_parent_compiler_type.GetTypeInfo(); 2114 2115 if (non_base_class_parent_type_info & eTypeIsPointer) { 2116 s.PutCString("->"); 2117 } else if ((non_base_class_parent_type_info & eTypeHasChildren) && 2118 !(non_base_class_parent_type_info & eTypeIsArray)) { 2119 s.PutChar('.'); 2120 } 2121 } 2122 } 2123 } 2124 2125 const char *name = GetName().GetCString(); 2126 if (name) { 2127 if (qualify_cxx_base_classes) { 2128 if (GetBaseClassPath(s)) 2129 s.PutCString("::"); 2130 } 2131 s.PutCString(name); 2132 } 2133 } 2134 } 2135 2136 if (is_deref_of_parent && 2137 epformat == eGetExpressionPathFormatDereferencePointers) { 2138 s.PutChar(')'); 2139 } 2140 } 2141 2142 ValueObjectSP ValueObject::GetValueForExpressionPath( 2143 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2144 ExpressionPathEndResultType *final_value_type, 2145 const GetValueForExpressionPathOptions &options, 2146 ExpressionPathAftermath *final_task_on_target) { 2147 2148 ExpressionPathScanEndReason dummy_reason_to_stop = 2149 ValueObject::eExpressionPathScanEndReasonUnknown; 2150 ExpressionPathEndResultType dummy_final_value_type = 2151 ValueObject::eExpressionPathEndResultTypeInvalid; 2152 ExpressionPathAftermath dummy_final_task_on_target = 2153 ValueObject::eExpressionPathAftermathNothing; 2154 2155 ValueObjectSP ret_val = GetValueForExpressionPath_Impl( 2156 expression, reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2157 final_value_type ? final_value_type : &dummy_final_value_type, options, 2158 final_task_on_target ? final_task_on_target 2159 : &dummy_final_task_on_target); 2160 2161 if (!final_task_on_target || 2162 *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2163 return ret_val; 2164 2165 if (ret_val.get() && 2166 ((final_value_type ? *final_value_type : dummy_final_value_type) == 2167 eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress 2168 // of plain objects 2169 { 2170 if ((final_task_on_target ? *final_task_on_target 2171 : dummy_final_task_on_target) == 2172 ValueObject::eExpressionPathAftermathDereference) { 2173 Status error; 2174 ValueObjectSP final_value = ret_val->Dereference(error); 2175 if (error.Fail() || !final_value.get()) { 2176 if (reason_to_stop) 2177 *reason_to_stop = 2178 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2179 if (final_value_type) 2180 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2181 return ValueObjectSP(); 2182 } else { 2183 if (final_task_on_target) 2184 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2185 return final_value; 2186 } 2187 } 2188 if (*final_task_on_target == 2189 ValueObject::eExpressionPathAftermathTakeAddress) { 2190 Status error; 2191 ValueObjectSP final_value = ret_val->AddressOf(error); 2192 if (error.Fail() || !final_value.get()) { 2193 if (reason_to_stop) 2194 *reason_to_stop = 2195 ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2196 if (final_value_type) 2197 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2198 return ValueObjectSP(); 2199 } else { 2200 if (final_task_on_target) 2201 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2202 return final_value; 2203 } 2204 } 2205 } 2206 return ret_val; // final_task_on_target will still have its original value, so 2207 // you know I did not do it 2208 } 2209 2210 ValueObjectSP ValueObject::GetValueForExpressionPath_Impl( 2211 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2212 ExpressionPathEndResultType *final_result, 2213 const GetValueForExpressionPathOptions &options, 2214 ExpressionPathAftermath *what_next) { 2215 ValueObjectSP root = GetSP(); 2216 2217 if (!root) 2218 return nullptr; 2219 2220 llvm::StringRef remainder = expression; 2221 2222 while (true) { 2223 llvm::StringRef temp_expression = remainder; 2224 2225 CompilerType root_compiler_type = root->GetCompilerType(); 2226 CompilerType pointee_compiler_type; 2227 Flags pointee_compiler_type_info; 2228 2229 Flags root_compiler_type_info( 2230 root_compiler_type.GetTypeInfo(&pointee_compiler_type)); 2231 if (pointee_compiler_type) 2232 pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo()); 2233 2234 if (temp_expression.empty()) { 2235 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2236 return root; 2237 } 2238 2239 switch (temp_expression.front()) { 2240 case '-': { 2241 temp_expression = temp_expression.drop_front(); 2242 if (options.m_check_dot_vs_arrow_syntax && 2243 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2244 // use -> on a 2245 // non-pointer and I 2246 // must catch the error 2247 { 2248 *reason_to_stop = 2249 ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot; 2250 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2251 return ValueObjectSP(); 2252 } 2253 if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to 2254 // extract an ObjC IVar 2255 // when this is forbidden 2256 root_compiler_type_info.Test(eTypeIsPointer) && 2257 options.m_no_fragile_ivar) { 2258 *reason_to_stop = 2259 ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed; 2260 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2261 return ValueObjectSP(); 2262 } 2263 if (!temp_expression.startswith(">")) { 2264 *reason_to_stop = 2265 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2266 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2267 return ValueObjectSP(); 2268 } 2269 } 2270 LLVM_FALLTHROUGH; 2271 case '.': // or fallthrough from -> 2272 { 2273 if (options.m_check_dot_vs_arrow_syntax && 2274 temp_expression.front() == '.' && 2275 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2276 // use . on a pointer 2277 // and I must catch the 2278 // error 2279 { 2280 *reason_to_stop = 2281 ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow; 2282 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2283 return nullptr; 2284 } 2285 temp_expression = temp_expression.drop_front(); // skip . or > 2286 2287 size_t next_sep_pos = temp_expression.find_first_of("-.[", 1); 2288 ConstString child_name; 2289 if (next_sep_pos == llvm::StringRef::npos) // if no other separator just 2290 // expand this last layer 2291 { 2292 child_name.SetString(temp_expression); 2293 ValueObjectSP child_valobj_sp = 2294 root->GetChildMemberWithName(child_name, true); 2295 2296 if (child_valobj_sp.get()) // we know we are done, so just return 2297 { 2298 *reason_to_stop = 2299 ValueObject::eExpressionPathScanEndReasonEndOfString; 2300 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2301 return child_valobj_sp; 2302 } else { 2303 switch (options.m_synthetic_children_traversal) { 2304 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2305 None: 2306 break; 2307 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2308 FromSynthetic: 2309 if (root->IsSynthetic()) { 2310 child_valobj_sp = root->GetNonSyntheticValue(); 2311 if (child_valobj_sp.get()) 2312 child_valobj_sp = 2313 child_valobj_sp->GetChildMemberWithName(child_name, true); 2314 } 2315 break; 2316 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2317 ToSynthetic: 2318 if (!root->IsSynthetic()) { 2319 child_valobj_sp = root->GetSyntheticValue(); 2320 if (child_valobj_sp.get()) 2321 child_valobj_sp = 2322 child_valobj_sp->GetChildMemberWithName(child_name, true); 2323 } 2324 break; 2325 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2326 Both: 2327 if (root->IsSynthetic()) { 2328 child_valobj_sp = root->GetNonSyntheticValue(); 2329 if (child_valobj_sp.get()) 2330 child_valobj_sp = 2331 child_valobj_sp->GetChildMemberWithName(child_name, true); 2332 } else { 2333 child_valobj_sp = root->GetSyntheticValue(); 2334 if (child_valobj_sp.get()) 2335 child_valobj_sp = 2336 child_valobj_sp->GetChildMemberWithName(child_name, true); 2337 } 2338 break; 2339 } 2340 } 2341 2342 // if we are here and options.m_no_synthetic_children is true, 2343 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2344 // branch, and return an error 2345 if (child_valobj_sp.get()) // if it worked, just return 2346 { 2347 *reason_to_stop = 2348 ValueObject::eExpressionPathScanEndReasonEndOfString; 2349 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2350 return child_valobj_sp; 2351 } else { 2352 *reason_to_stop = 2353 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2354 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2355 return nullptr; 2356 } 2357 } else // other layers do expand 2358 { 2359 llvm::StringRef next_separator = temp_expression.substr(next_sep_pos); 2360 2361 child_name.SetString(temp_expression.slice(0, next_sep_pos)); 2362 2363 ValueObjectSP child_valobj_sp = 2364 root->GetChildMemberWithName(child_name, true); 2365 if (child_valobj_sp.get()) // store the new root and move on 2366 { 2367 root = child_valobj_sp; 2368 remainder = next_separator; 2369 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2370 continue; 2371 } else { 2372 switch (options.m_synthetic_children_traversal) { 2373 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2374 None: 2375 break; 2376 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2377 FromSynthetic: 2378 if (root->IsSynthetic()) { 2379 child_valobj_sp = root->GetNonSyntheticValue(); 2380 if (child_valobj_sp.get()) 2381 child_valobj_sp = 2382 child_valobj_sp->GetChildMemberWithName(child_name, true); 2383 } 2384 break; 2385 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2386 ToSynthetic: 2387 if (!root->IsSynthetic()) { 2388 child_valobj_sp = root->GetSyntheticValue(); 2389 if (child_valobj_sp.get()) 2390 child_valobj_sp = 2391 child_valobj_sp->GetChildMemberWithName(child_name, true); 2392 } 2393 break; 2394 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2395 Both: 2396 if (root->IsSynthetic()) { 2397 child_valobj_sp = root->GetNonSyntheticValue(); 2398 if (child_valobj_sp.get()) 2399 child_valobj_sp = 2400 child_valobj_sp->GetChildMemberWithName(child_name, true); 2401 } else { 2402 child_valobj_sp = root->GetSyntheticValue(); 2403 if (child_valobj_sp.get()) 2404 child_valobj_sp = 2405 child_valobj_sp->GetChildMemberWithName(child_name, true); 2406 } 2407 break; 2408 } 2409 } 2410 2411 // if we are here and options.m_no_synthetic_children is true, 2412 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2413 // branch, and return an error 2414 if (child_valobj_sp.get()) // if it worked, move on 2415 { 2416 root = child_valobj_sp; 2417 remainder = next_separator; 2418 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2419 continue; 2420 } else { 2421 *reason_to_stop = 2422 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2423 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2424 return nullptr; 2425 } 2426 } 2427 break; 2428 } 2429 case '[': { 2430 if (!root_compiler_type_info.Test(eTypeIsArray) && 2431 !root_compiler_type_info.Test(eTypeIsPointer) && 2432 !root_compiler_type_info.Test( 2433 eTypeIsVector)) // if this is not a T[] nor a T* 2434 { 2435 if (!root_compiler_type_info.Test( 2436 eTypeIsScalar)) // if this is not even a scalar... 2437 { 2438 if (options.m_synthetic_children_traversal == 2439 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2440 None) // ...only chance left is synthetic 2441 { 2442 *reason_to_stop = 2443 ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 2444 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2445 return ValueObjectSP(); 2446 } 2447 } else if (!options.m_allow_bitfields_syntax) // if this is a scalar, 2448 // check that we can 2449 // expand bitfields 2450 { 2451 *reason_to_stop = 2452 ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 2453 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2454 return ValueObjectSP(); 2455 } 2456 } 2457 if (temp_expression[1] == 2458 ']') // if this is an unbounded range it only works for arrays 2459 { 2460 if (!root_compiler_type_info.Test(eTypeIsArray)) { 2461 *reason_to_stop = 2462 ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 2463 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2464 return nullptr; 2465 } else // even if something follows, we cannot expand unbounded ranges, 2466 // just let the caller do it 2467 { 2468 *reason_to_stop = 2469 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2470 *final_result = 2471 ValueObject::eExpressionPathEndResultTypeUnboundedRange; 2472 return root; 2473 } 2474 } 2475 2476 size_t close_bracket_position = temp_expression.find(']', 1); 2477 if (close_bracket_position == 2478 llvm::StringRef::npos) // if there is no ], this is a syntax error 2479 { 2480 *reason_to_stop = 2481 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2482 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2483 return nullptr; 2484 } 2485 2486 llvm::StringRef bracket_expr = 2487 temp_expression.slice(1, close_bracket_position); 2488 2489 // If this was an empty expression it would have been caught by the if 2490 // above. 2491 assert(!bracket_expr.empty()); 2492 2493 if (!bracket_expr.contains('-')) { 2494 // if no separator, this is of the form [N]. Note that this cannot be 2495 // an unbounded range of the form [], because that case was handled 2496 // above with an unconditional return. 2497 unsigned long index = 0; 2498 if (bracket_expr.getAsInteger(0, index)) { 2499 *reason_to_stop = 2500 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2501 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2502 return nullptr; 2503 } 2504 2505 // from here on we do have a valid index 2506 if (root_compiler_type_info.Test(eTypeIsArray)) { 2507 ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true); 2508 if (!child_valobj_sp) 2509 child_valobj_sp = root->GetSyntheticArrayMember(index, true); 2510 if (!child_valobj_sp) 2511 if (root->HasSyntheticValue() && 2512 root->GetSyntheticValue()->GetNumChildren() > index) 2513 child_valobj_sp = 2514 root->GetSyntheticValue()->GetChildAtIndex(index, true); 2515 if (child_valobj_sp) { 2516 root = child_valobj_sp; 2517 remainder = 2518 temp_expression.substr(close_bracket_position + 1); // skip ] 2519 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2520 continue; 2521 } else { 2522 *reason_to_stop = 2523 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2524 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2525 return nullptr; 2526 } 2527 } else if (root_compiler_type_info.Test(eTypeIsPointer)) { 2528 if (*what_next == 2529 ValueObject:: 2530 eExpressionPathAftermathDereference && // if this is a 2531 // ptr-to-scalar, I 2532 // am accessing it 2533 // by index and I 2534 // would have 2535 // deref'ed anyway, 2536 // then do it now 2537 // and use this as 2538 // a bitfield 2539 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2540 Status error; 2541 root = root->Dereference(error); 2542 if (error.Fail() || !root) { 2543 *reason_to_stop = 2544 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2545 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2546 return nullptr; 2547 } else { 2548 *what_next = eExpressionPathAftermathNothing; 2549 continue; 2550 } 2551 } else { 2552 if (root->GetCompilerType().GetMinimumLanguage() == 2553 eLanguageTypeObjC && 2554 pointee_compiler_type_info.AllClear(eTypeIsPointer) && 2555 root->HasSyntheticValue() && 2556 (options.m_synthetic_children_traversal == 2557 GetValueForExpressionPathOptions:: 2558 SyntheticChildrenTraversal::ToSynthetic || 2559 options.m_synthetic_children_traversal == 2560 GetValueForExpressionPathOptions:: 2561 SyntheticChildrenTraversal::Both)) { 2562 root = root->GetSyntheticValue()->GetChildAtIndex(index, true); 2563 } else 2564 root = root->GetSyntheticArrayMember(index, true); 2565 if (!root) { 2566 *reason_to_stop = 2567 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2568 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2569 return nullptr; 2570 } else { 2571 remainder = 2572 temp_expression.substr(close_bracket_position + 1); // skip ] 2573 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2574 continue; 2575 } 2576 } 2577 } else if (root_compiler_type_info.Test(eTypeIsScalar)) { 2578 root = root->GetSyntheticBitFieldChild(index, index, true); 2579 if (!root) { 2580 *reason_to_stop = 2581 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2582 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2583 return nullptr; 2584 } else // we do not know how to expand members of bitfields, so we 2585 // just return and let the caller do any further processing 2586 { 2587 *reason_to_stop = ValueObject:: 2588 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2589 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2590 return root; 2591 } 2592 } else if (root_compiler_type_info.Test(eTypeIsVector)) { 2593 root = root->GetChildAtIndex(index, true); 2594 if (!root) { 2595 *reason_to_stop = 2596 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2597 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2598 return ValueObjectSP(); 2599 } else { 2600 remainder = 2601 temp_expression.substr(close_bracket_position + 1); // skip ] 2602 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2603 continue; 2604 } 2605 } else if (options.m_synthetic_children_traversal == 2606 GetValueForExpressionPathOptions:: 2607 SyntheticChildrenTraversal::ToSynthetic || 2608 options.m_synthetic_children_traversal == 2609 GetValueForExpressionPathOptions:: 2610 SyntheticChildrenTraversal::Both) { 2611 if (root->HasSyntheticValue()) 2612 root = root->GetSyntheticValue(); 2613 else if (!root->IsSynthetic()) { 2614 *reason_to_stop = 2615 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2616 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2617 return nullptr; 2618 } 2619 // if we are here, then root itself is a synthetic VO.. should be 2620 // good to go 2621 2622 if (!root) { 2623 *reason_to_stop = 2624 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2625 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2626 return nullptr; 2627 } 2628 root = root->GetChildAtIndex(index, true); 2629 if (!root) { 2630 *reason_to_stop = 2631 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2632 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2633 return nullptr; 2634 } else { 2635 remainder = 2636 temp_expression.substr(close_bracket_position + 1); // skip ] 2637 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2638 continue; 2639 } 2640 } else { 2641 *reason_to_stop = 2642 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2643 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2644 return nullptr; 2645 } 2646 } else { 2647 // we have a low and a high index 2648 llvm::StringRef sleft, sright; 2649 unsigned long low_index, high_index; 2650 std::tie(sleft, sright) = bracket_expr.split('-'); 2651 if (sleft.getAsInteger(0, low_index) || 2652 sright.getAsInteger(0, high_index)) { 2653 *reason_to_stop = 2654 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2655 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2656 return nullptr; 2657 } 2658 2659 if (low_index > high_index) // swap indices if required 2660 std::swap(low_index, high_index); 2661 2662 if (root_compiler_type_info.Test( 2663 eTypeIsScalar)) // expansion only works for scalars 2664 { 2665 root = root->GetSyntheticBitFieldChild(low_index, high_index, true); 2666 if (!root) { 2667 *reason_to_stop = 2668 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2669 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2670 return nullptr; 2671 } else { 2672 *reason_to_stop = ValueObject:: 2673 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2674 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2675 return root; 2676 } 2677 } else if (root_compiler_type_info.Test( 2678 eTypeIsPointer) && // if this is a ptr-to-scalar, I am 2679 // accessing it by index and I would 2680 // have deref'ed anyway, then do it 2681 // now and use this as a bitfield 2682 *what_next == 2683 ValueObject::eExpressionPathAftermathDereference && 2684 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2685 Status error; 2686 root = root->Dereference(error); 2687 if (error.Fail() || !root) { 2688 *reason_to_stop = 2689 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2690 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2691 return nullptr; 2692 } else { 2693 *what_next = ValueObject::eExpressionPathAftermathNothing; 2694 continue; 2695 } 2696 } else { 2697 *reason_to_stop = 2698 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2699 *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange; 2700 return root; 2701 } 2702 } 2703 break; 2704 } 2705 default: // some non-separator is in the way 2706 { 2707 *reason_to_stop = 2708 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2709 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2710 return nullptr; 2711 } 2712 } 2713 } 2714 } 2715 2716 void ValueObject::LogValueObject(Log *log) { 2717 if (log) 2718 return LogValueObject(log, DumpValueObjectOptions(*this)); 2719 } 2720 2721 void ValueObject::LogValueObject(Log *log, 2722 const DumpValueObjectOptions &options) { 2723 if (log) { 2724 StreamString s; 2725 Dump(s, options); 2726 if (s.GetSize()) 2727 log->PutCString(s.GetData()); 2728 } 2729 } 2730 2731 void ValueObject::Dump(Stream &s) { Dump(s, DumpValueObjectOptions(*this)); } 2732 2733 void ValueObject::Dump(Stream &s, const DumpValueObjectOptions &options) { 2734 ValueObjectPrinter printer(this, &s, options); 2735 printer.PrintValueObject(); 2736 } 2737 2738 ValueObjectSP ValueObject::CreateConstantValue(ConstString name) { 2739 ValueObjectSP valobj_sp; 2740 2741 if (UpdateValueIfNeeded(false) && m_error.Success()) { 2742 ExecutionContext exe_ctx(GetExecutionContextRef()); 2743 2744 DataExtractor data; 2745 data.SetByteOrder(m_data.GetByteOrder()); 2746 data.SetAddressByteSize(m_data.GetAddressByteSize()); 2747 2748 if (IsBitfield()) { 2749 Value v(Scalar(GetValueAsUnsigned(UINT64_MAX))); 2750 m_error = v.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 2751 } else 2752 m_error = m_value.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 2753 2754 valobj_sp = ValueObjectConstResult::Create( 2755 exe_ctx.GetBestExecutionContextScope(), GetCompilerType(), name, data, 2756 GetAddressOf()); 2757 } 2758 2759 if (!valobj_sp) { 2760 ExecutionContext exe_ctx(GetExecutionContextRef()); 2761 valobj_sp = ValueObjectConstResult::Create( 2762 exe_ctx.GetBestExecutionContextScope(), m_error); 2763 } 2764 return valobj_sp; 2765 } 2766 2767 ValueObjectSP ValueObject::GetQualifiedRepresentationIfAvailable( 2768 lldb::DynamicValueType dynValue, bool synthValue) { 2769 ValueObjectSP result_sp(GetSP()); 2770 2771 switch (dynValue) { 2772 case lldb::eDynamicCanRunTarget: 2773 case lldb::eDynamicDontRunTarget: { 2774 if (!result_sp->IsDynamic()) { 2775 if (result_sp->GetDynamicValue(dynValue)) 2776 result_sp = result_sp->GetDynamicValue(dynValue); 2777 } 2778 } break; 2779 case lldb::eNoDynamicValues: { 2780 if (result_sp->IsDynamic()) { 2781 if (result_sp->GetStaticValue()) 2782 result_sp = result_sp->GetStaticValue(); 2783 } 2784 } break; 2785 } 2786 2787 if (synthValue) { 2788 if (!result_sp->IsSynthetic()) { 2789 if (result_sp->GetSyntheticValue()) 2790 result_sp = result_sp->GetSyntheticValue(); 2791 } 2792 } else { 2793 if (result_sp->IsSynthetic()) { 2794 if (result_sp->GetNonSyntheticValue()) 2795 result_sp = result_sp->GetNonSyntheticValue(); 2796 } 2797 } 2798 2799 return result_sp; 2800 } 2801 2802 ValueObjectSP ValueObject::Dereference(Status &error) { 2803 if (m_deref_valobj) 2804 return m_deref_valobj->GetSP(); 2805 2806 const bool is_pointer_or_reference_type = IsPointerOrReferenceType(); 2807 if (is_pointer_or_reference_type) { 2808 bool omit_empty_base_classes = true; 2809 bool ignore_array_bounds = false; 2810 2811 std::string child_name_str; 2812 uint32_t child_byte_size = 0; 2813 int32_t child_byte_offset = 0; 2814 uint32_t child_bitfield_bit_size = 0; 2815 uint32_t child_bitfield_bit_offset = 0; 2816 bool child_is_base_class = false; 2817 bool child_is_deref_of_parent = false; 2818 const bool transparent_pointers = false; 2819 CompilerType compiler_type = GetCompilerType(); 2820 CompilerType child_compiler_type; 2821 uint64_t language_flags; 2822 2823 ExecutionContext exe_ctx(GetExecutionContextRef()); 2824 2825 child_compiler_type = compiler_type.GetChildCompilerTypeAtIndex( 2826 &exe_ctx, 0, transparent_pointers, omit_empty_base_classes, 2827 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 2828 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 2829 child_is_deref_of_parent, this, language_flags); 2830 if (child_compiler_type && child_byte_size) { 2831 ConstString child_name; 2832 if (!child_name_str.empty()) 2833 child_name.SetCString(child_name_str.c_str()); 2834 2835 m_deref_valobj = new ValueObjectChild( 2836 *this, child_compiler_type, child_name, child_byte_size, 2837 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 2838 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 2839 language_flags); 2840 } 2841 } else if (HasSyntheticValue()) { 2842 m_deref_valobj = 2843 GetSyntheticValue() 2844 ->GetChildMemberWithName(ConstString("$$dereference$$"), true) 2845 .get(); 2846 } 2847 2848 if (m_deref_valobj) { 2849 error.Clear(); 2850 return m_deref_valobj->GetSP(); 2851 } else { 2852 StreamString strm; 2853 GetExpressionPath(strm, true); 2854 2855 if (is_pointer_or_reference_type) 2856 error.SetErrorStringWithFormat("dereference failed: (%s) %s", 2857 GetTypeName().AsCString("<invalid type>"), 2858 strm.GetData()); 2859 else 2860 error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s", 2861 GetTypeName().AsCString("<invalid type>"), 2862 strm.GetData()); 2863 return ValueObjectSP(); 2864 } 2865 } 2866 2867 ValueObjectSP ValueObject::AddressOf(Status &error) { 2868 if (m_addr_of_valobj_sp) 2869 return m_addr_of_valobj_sp; 2870 2871 AddressType address_type = eAddressTypeInvalid; 2872 const bool scalar_is_load_address = false; 2873 addr_t addr = GetAddressOf(scalar_is_load_address, &address_type); 2874 error.Clear(); 2875 if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) { 2876 switch (address_type) { 2877 case eAddressTypeInvalid: { 2878 StreamString expr_path_strm; 2879 GetExpressionPath(expr_path_strm, true); 2880 error.SetErrorStringWithFormat("'%s' is not in memory", 2881 expr_path_strm.GetData()); 2882 } break; 2883 2884 case eAddressTypeFile: 2885 case eAddressTypeLoad: { 2886 CompilerType compiler_type = GetCompilerType(); 2887 if (compiler_type) { 2888 std::string name(1, '&'); 2889 name.append(m_name.AsCString("")); 2890 ExecutionContext exe_ctx(GetExecutionContextRef()); 2891 m_addr_of_valobj_sp = ValueObjectConstResult::Create( 2892 exe_ctx.GetBestExecutionContextScope(), 2893 compiler_type.GetPointerType(), ConstString(name.c_str()), addr, 2894 eAddressTypeInvalid, m_data.GetAddressByteSize()); 2895 } 2896 } break; 2897 default: 2898 break; 2899 } 2900 } else { 2901 StreamString expr_path_strm; 2902 GetExpressionPath(expr_path_strm, true); 2903 error.SetErrorStringWithFormat("'%s' doesn't have a valid address", 2904 expr_path_strm.GetData()); 2905 } 2906 2907 return m_addr_of_valobj_sp; 2908 } 2909 2910 ValueObjectSP ValueObject::Cast(const CompilerType &compiler_type) { 2911 return ValueObjectCast::Create(*this, GetName(), compiler_type); 2912 } 2913 2914 lldb::ValueObjectSP ValueObject::Clone(ConstString new_name) { 2915 return ValueObjectCast::Create(*this, new_name, GetCompilerType()); 2916 } 2917 2918 ValueObjectSP ValueObject::CastPointerType(const char *name, 2919 CompilerType &compiler_type) { 2920 ValueObjectSP valobj_sp; 2921 AddressType address_type; 2922 addr_t ptr_value = GetPointerValue(&address_type); 2923 2924 if (ptr_value != LLDB_INVALID_ADDRESS) { 2925 Address ptr_addr(ptr_value); 2926 ExecutionContext exe_ctx(GetExecutionContextRef()); 2927 valobj_sp = ValueObjectMemory::Create( 2928 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, compiler_type); 2929 } 2930 return valobj_sp; 2931 } 2932 2933 ValueObjectSP ValueObject::CastPointerType(const char *name, TypeSP &type_sp) { 2934 ValueObjectSP valobj_sp; 2935 AddressType address_type; 2936 addr_t ptr_value = GetPointerValue(&address_type); 2937 2938 if (ptr_value != LLDB_INVALID_ADDRESS) { 2939 Address ptr_addr(ptr_value); 2940 ExecutionContext exe_ctx(GetExecutionContextRef()); 2941 valobj_sp = ValueObjectMemory::Create( 2942 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, type_sp); 2943 } 2944 return valobj_sp; 2945 } 2946 2947 ValueObject::EvaluationPoint::EvaluationPoint() 2948 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) {} 2949 2950 ValueObject::EvaluationPoint::EvaluationPoint(ExecutionContextScope *exe_scope, 2951 bool use_selected) 2952 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) { 2953 ExecutionContext exe_ctx(exe_scope); 2954 TargetSP target_sp(exe_ctx.GetTargetSP()); 2955 if (target_sp) { 2956 m_exe_ctx_ref.SetTargetSP(target_sp); 2957 ProcessSP process_sp(exe_ctx.GetProcessSP()); 2958 if (!process_sp) 2959 process_sp = target_sp->GetProcessSP(); 2960 2961 if (process_sp) { 2962 m_mod_id = process_sp->GetModID(); 2963 m_exe_ctx_ref.SetProcessSP(process_sp); 2964 2965 ThreadSP thread_sp(exe_ctx.GetThreadSP()); 2966 2967 if (!thread_sp) { 2968 if (use_selected) 2969 thread_sp = process_sp->GetThreadList().GetSelectedThread(); 2970 } 2971 2972 if (thread_sp) { 2973 m_exe_ctx_ref.SetThreadSP(thread_sp); 2974 2975 StackFrameSP frame_sp(exe_ctx.GetFrameSP()); 2976 if (!frame_sp) { 2977 if (use_selected) 2978 frame_sp = thread_sp->GetSelectedFrame(); 2979 } 2980 if (frame_sp) 2981 m_exe_ctx_ref.SetFrameSP(frame_sp); 2982 } 2983 } 2984 } 2985 } 2986 2987 ValueObject::EvaluationPoint::EvaluationPoint( 2988 const ValueObject::EvaluationPoint &rhs) 2989 : m_mod_id(), m_exe_ctx_ref(rhs.m_exe_ctx_ref), m_needs_update(true) {} 2990 2991 ValueObject::EvaluationPoint::~EvaluationPoint() {} 2992 2993 // This function checks the EvaluationPoint against the current process state. 2994 // If the current state matches the evaluation point, or the evaluation point 2995 // is already invalid, then we return false, meaning "no change". If the 2996 // current state is different, we update our state, and return true meaning 2997 // "yes, change". If we did see a change, we also set m_needs_update to true, 2998 // so future calls to NeedsUpdate will return true. exe_scope will be set to 2999 // the current execution context scope. 3000 3001 bool ValueObject::EvaluationPoint::SyncWithProcessState( 3002 bool accept_invalid_exe_ctx) { 3003 // Start with the target, if it is NULL, then we're obviously not going to 3004 // get any further: 3005 const bool thread_and_frame_only_if_stopped = true; 3006 ExecutionContext exe_ctx( 3007 m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped)); 3008 3009 if (exe_ctx.GetTargetPtr() == nullptr) 3010 return false; 3011 3012 // If we don't have a process nothing can change. 3013 Process *process = exe_ctx.GetProcessPtr(); 3014 if (process == nullptr) 3015 return false; 3016 3017 // If our stop id is the current stop ID, nothing has changed: 3018 ProcessModID current_mod_id = process->GetModID(); 3019 3020 // If the current stop id is 0, either we haven't run yet, or the process 3021 // state has been cleared. In either case, we aren't going to be able to sync 3022 // with the process state. 3023 if (current_mod_id.GetStopID() == 0) 3024 return false; 3025 3026 bool changed = false; 3027 const bool was_valid = m_mod_id.IsValid(); 3028 if (was_valid) { 3029 if (m_mod_id == current_mod_id) { 3030 // Everything is already up to date in this object, no need to update the 3031 // execution context scope. 3032 changed = false; 3033 } else { 3034 m_mod_id = current_mod_id; 3035 m_needs_update = true; 3036 changed = true; 3037 } 3038 } 3039 3040 // Now re-look up the thread and frame in case the underlying objects have 3041 // gone away & been recreated. That way we'll be sure to return a valid 3042 // exe_scope. If we used to have a thread or a frame but can't find it 3043 // anymore, then mark ourselves as invalid. 3044 3045 if (!accept_invalid_exe_ctx) { 3046 if (m_exe_ctx_ref.HasThreadRef()) { 3047 ThreadSP thread_sp(m_exe_ctx_ref.GetThreadSP()); 3048 if (thread_sp) { 3049 if (m_exe_ctx_ref.HasFrameRef()) { 3050 StackFrameSP frame_sp(m_exe_ctx_ref.GetFrameSP()); 3051 if (!frame_sp) { 3052 // We used to have a frame, but now it is gone 3053 SetInvalid(); 3054 changed = was_valid; 3055 } 3056 } 3057 } else { 3058 // We used to have a thread, but now it is gone 3059 SetInvalid(); 3060 changed = was_valid; 3061 } 3062 } 3063 } 3064 3065 return changed; 3066 } 3067 3068 void ValueObject::EvaluationPoint::SetUpdated() { 3069 ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP()); 3070 if (process_sp) 3071 m_mod_id = process_sp->GetModID(); 3072 m_needs_update = false; 3073 } 3074 3075 void ValueObject::ClearUserVisibleData(uint32_t clear_mask) { 3076 if ((clear_mask & eClearUserVisibleDataItemsValue) == 3077 eClearUserVisibleDataItemsValue) 3078 m_value_str.clear(); 3079 3080 if ((clear_mask & eClearUserVisibleDataItemsLocation) == 3081 eClearUserVisibleDataItemsLocation) 3082 m_location_str.clear(); 3083 3084 if ((clear_mask & eClearUserVisibleDataItemsSummary) == 3085 eClearUserVisibleDataItemsSummary) 3086 m_summary_str.clear(); 3087 3088 if ((clear_mask & eClearUserVisibleDataItemsDescription) == 3089 eClearUserVisibleDataItemsDescription) 3090 m_object_desc_str.clear(); 3091 3092 if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == 3093 eClearUserVisibleDataItemsSyntheticChildren) { 3094 if (m_synthetic_value) 3095 m_synthetic_value = nullptr; 3096 } 3097 3098 if ((clear_mask & eClearUserVisibleDataItemsValidator) == 3099 eClearUserVisibleDataItemsValidator) 3100 m_validation_result.reset(); 3101 } 3102 3103 SymbolContextScope *ValueObject::GetSymbolContextScope() { 3104 if (m_parent) { 3105 if (!m_parent->IsPointerOrReferenceType()) 3106 return m_parent->GetSymbolContextScope(); 3107 } 3108 return nullptr; 3109 } 3110 3111 lldb::ValueObjectSP 3112 ValueObject::CreateValueObjectFromExpression(llvm::StringRef name, 3113 llvm::StringRef expression, 3114 const ExecutionContext &exe_ctx) { 3115 return CreateValueObjectFromExpression(name, expression, exe_ctx, 3116 EvaluateExpressionOptions()); 3117 } 3118 3119 lldb::ValueObjectSP ValueObject::CreateValueObjectFromExpression( 3120 llvm::StringRef name, llvm::StringRef expression, 3121 const ExecutionContext &exe_ctx, const EvaluateExpressionOptions &options) { 3122 lldb::ValueObjectSP retval_sp; 3123 lldb::TargetSP target_sp(exe_ctx.GetTargetSP()); 3124 if (!target_sp) 3125 return retval_sp; 3126 if (expression.empty()) 3127 return retval_sp; 3128 target_sp->EvaluateExpression(expression, exe_ctx.GetFrameSP().get(), 3129 retval_sp, options); 3130 if (retval_sp && !name.empty()) 3131 retval_sp->SetName(ConstString(name)); 3132 return retval_sp; 3133 } 3134 3135 lldb::ValueObjectSP ValueObject::CreateValueObjectFromAddress( 3136 llvm::StringRef name, uint64_t address, const ExecutionContext &exe_ctx, 3137 CompilerType type) { 3138 if (type) { 3139 CompilerType pointer_type(type.GetPointerType()); 3140 if (pointer_type) { 3141 lldb::DataBufferSP buffer( 3142 new lldb_private::DataBufferHeap(&address, sizeof(lldb::addr_t))); 3143 lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create( 3144 exe_ctx.GetBestExecutionContextScope(), pointer_type, 3145 ConstString(name), buffer, exe_ctx.GetByteOrder(), 3146 exe_ctx.GetAddressByteSize())); 3147 if (ptr_result_valobj_sp) { 3148 ptr_result_valobj_sp->GetValue().SetValueType( 3149 Value::eValueTypeLoadAddress); 3150 Status err; 3151 ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err); 3152 if (ptr_result_valobj_sp && !name.empty()) 3153 ptr_result_valobj_sp->SetName(ConstString(name)); 3154 } 3155 return ptr_result_valobj_sp; 3156 } 3157 } 3158 return lldb::ValueObjectSP(); 3159 } 3160 3161 lldb::ValueObjectSP ValueObject::CreateValueObjectFromData( 3162 llvm::StringRef name, const DataExtractor &data, 3163 const ExecutionContext &exe_ctx, CompilerType type) { 3164 lldb::ValueObjectSP new_value_sp; 3165 new_value_sp = ValueObjectConstResult::Create( 3166 exe_ctx.GetBestExecutionContextScope(), type, ConstString(name), data, 3167 LLDB_INVALID_ADDRESS); 3168 new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad); 3169 if (new_value_sp && !name.empty()) 3170 new_value_sp->SetName(ConstString(name)); 3171 return new_value_sp; 3172 } 3173 3174 ModuleSP ValueObject::GetModule() { 3175 ValueObject *root(GetRoot()); 3176 if (root != this) 3177 return root->GetModule(); 3178 return lldb::ModuleSP(); 3179 } 3180 3181 ValueObject *ValueObject::GetRoot() { 3182 if (m_root) 3183 return m_root; 3184 return (m_root = FollowParentChain([](ValueObject *vo) -> bool { 3185 return (vo->m_parent != nullptr); 3186 })); 3187 } 3188 3189 ValueObject * 3190 ValueObject::FollowParentChain(std::function<bool(ValueObject *)> f) { 3191 ValueObject *vo = this; 3192 while (vo) { 3193 if (!f(vo)) 3194 break; 3195 vo = vo->m_parent; 3196 } 3197 return vo; 3198 } 3199 3200 AddressType ValueObject::GetAddressTypeOfChildren() { 3201 if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) { 3202 ValueObject *root(GetRoot()); 3203 if (root != this) 3204 return root->GetAddressTypeOfChildren(); 3205 } 3206 return m_address_type_of_ptr_or_ref_children; 3207 } 3208 3209 lldb::DynamicValueType ValueObject::GetDynamicValueType() { 3210 ValueObject *with_dv_info = this; 3211 while (with_dv_info) { 3212 if (with_dv_info->HasDynamicValueTypeInfo()) 3213 return with_dv_info->GetDynamicValueTypeImpl(); 3214 with_dv_info = with_dv_info->m_parent; 3215 } 3216 return lldb::eNoDynamicValues; 3217 } 3218 3219 lldb::Format ValueObject::GetFormat() const { 3220 const ValueObject *with_fmt_info = this; 3221 while (with_fmt_info) { 3222 if (with_fmt_info->m_format != lldb::eFormatDefault) 3223 return with_fmt_info->m_format; 3224 with_fmt_info = with_fmt_info->m_parent; 3225 } 3226 return m_format; 3227 } 3228 3229 lldb::LanguageType ValueObject::GetPreferredDisplayLanguage() { 3230 lldb::LanguageType type = m_preferred_display_language; 3231 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) { 3232 if (GetRoot()) { 3233 if (GetRoot() == this) { 3234 if (StackFrameSP frame_sp = GetFrameSP()) { 3235 const SymbolContext &sc( 3236 frame_sp->GetSymbolContext(eSymbolContextCompUnit)); 3237 if (CompileUnit *cu = sc.comp_unit) 3238 type = cu->GetLanguage(); 3239 } 3240 } else { 3241 type = GetRoot()->GetPreferredDisplayLanguage(); 3242 } 3243 } 3244 } 3245 return (m_preferred_display_language = type); // only compute it once 3246 } 3247 3248 void ValueObject::SetPreferredDisplayLanguage(lldb::LanguageType lt) { 3249 m_preferred_display_language = lt; 3250 } 3251 3252 void ValueObject::SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType lt) { 3253 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 3254 SetPreferredDisplayLanguage(lt); 3255 } 3256 3257 bool ValueObject::CanProvideValue() { 3258 // we need to support invalid types as providers of values because some bare- 3259 // board debugging scenarios have no notion of types, but still manage to 3260 // have raw numeric values for things like registers. sigh. 3261 const CompilerType &type(GetCompilerType()); 3262 return (!type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue)); 3263 } 3264 3265 bool ValueObject::IsChecksumEmpty() { return m_value_checksum.empty(); } 3266 3267 ValueObjectSP ValueObject::Persist() { 3268 if (!UpdateValueIfNeeded()) 3269 return nullptr; 3270 3271 TargetSP target_sp(GetTargetSP()); 3272 if (!target_sp) 3273 return nullptr; 3274 3275 PersistentExpressionState *persistent_state = 3276 target_sp->GetPersistentExpressionStateForLanguage( 3277 GetPreferredDisplayLanguage()); 3278 3279 if (!persistent_state) 3280 return nullptr; 3281 3282 auto prefix = persistent_state->GetPersistentVariablePrefix(); 3283 ConstString name = 3284 persistent_state->GetNextPersistentVariableName(*target_sp, prefix); 3285 3286 ValueObjectSP const_result_sp = 3287 ValueObjectConstResult::Create(target_sp.get(), GetValue(), name); 3288 3289 ExpressionVariableSP clang_var_sp = 3290 persistent_state->CreatePersistentVariable(const_result_sp); 3291 clang_var_sp->m_live_sp = clang_var_sp->m_frozen_sp; 3292 clang_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference; 3293 3294 return clang_var_sp->GetValueObject(); 3295 } 3296 3297 bool ValueObject::IsSyntheticChildrenGenerated() { 3298 return m_is_synthetic_children_generated; 3299 } 3300 3301 void ValueObject::SetSyntheticChildrenGenerated(bool b) { 3302 m_is_synthetic_children_generated = b; 3303 } 3304 3305 uint64_t ValueObject::GetLanguageFlags() { return m_language_flags; } 3306 3307 void ValueObject::SetLanguageFlags(uint64_t flags) { m_language_flags = flags; } 3308 3309 ValueObjectManager::ValueObjectManager(lldb::ValueObjectSP in_valobj_sp, 3310 lldb::DynamicValueType use_dynamic, 3311 bool use_synthetic) : m_root_valobj_sp(), 3312 m_user_valobj_sp(), m_use_dynamic(use_dynamic), m_stop_id(UINT32_MAX), 3313 m_use_synthetic(use_synthetic) { 3314 if (!in_valobj_sp) 3315 return; 3316 // If the user passes in a value object that is dynamic or synthetic, then 3317 // water it down to the static type. 3318 m_root_valobj_sp = in_valobj_sp->GetQualifiedRepresentationIfAvailable(lldb::eNoDynamicValues, false); 3319 } 3320 3321 bool ValueObjectManager::IsValid() const { 3322 if (!m_root_valobj_sp) 3323 return false; 3324 lldb::TargetSP target_sp = GetTargetSP(); 3325 if (target_sp) 3326 return target_sp->IsValid(); 3327 return false; 3328 } 3329 3330 lldb::ValueObjectSP ValueObjectManager::GetSP() { 3331 lldb::ProcessSP process_sp = GetProcessSP(); 3332 if (!process_sp) 3333 return lldb::ValueObjectSP(); 3334 3335 const uint32_t current_stop_id = process_sp->GetLastNaturalStopID(); 3336 if (current_stop_id == m_stop_id) 3337 return m_user_valobj_sp; 3338 3339 m_stop_id = current_stop_id; 3340 3341 if (!m_root_valobj_sp) { 3342 m_user_valobj_sp.reset(); 3343 return m_root_valobj_sp; 3344 } 3345 3346 m_user_valobj_sp = m_root_valobj_sp; 3347 3348 if (m_use_dynamic != lldb::eNoDynamicValues) { 3349 lldb::ValueObjectSP dynamic_sp = m_user_valobj_sp->GetDynamicValue(m_use_dynamic); 3350 if (dynamic_sp) 3351 m_user_valobj_sp = dynamic_sp; 3352 } 3353 3354 if (m_use_synthetic) { 3355 lldb::ValueObjectSP synthetic_sp = m_user_valobj_sp->GetSyntheticValue(m_use_synthetic); 3356 if (synthetic_sp) 3357 m_user_valobj_sp = synthetic_sp; 3358 } 3359 3360 return m_user_valobj_sp; 3361 } 3362 3363 void ValueObjectManager::SetUseDynamic(lldb::DynamicValueType use_dynamic) { 3364 if (use_dynamic != m_use_dynamic) { 3365 m_use_dynamic = use_dynamic; 3366 m_user_valobj_sp.reset(); 3367 m_stop_id = UINT32_MAX; 3368 } 3369 } 3370 3371 void ValueObjectManager::SetUseSynthetic(bool use_synthetic) { 3372 if (m_use_synthetic != use_synthetic) { 3373 m_use_synthetic = use_synthetic; 3374 m_user_valobj_sp.reset(); 3375 m_stop_id = UINT32_MAX; 3376 } 3377 } 3378 3379 lldb::TargetSP ValueObjectManager::GetTargetSP() const { 3380 if (!m_root_valobj_sp) 3381 return m_root_valobj_sp->GetTargetSP(); 3382 return lldb::TargetSP(); 3383 } 3384 3385 lldb::ProcessSP ValueObjectManager::GetProcessSP() const { 3386 if (m_root_valobj_sp) 3387 return m_root_valobj_sp->GetProcessSP(); 3388 return lldb::ProcessSP(); 3389 } 3390 3391 lldb::ThreadSP ValueObjectManager::GetThreadSP() const { 3392 if (m_root_valobj_sp) 3393 return m_root_valobj_sp->GetThreadSP(); 3394 return lldb::ThreadSP(); 3395 } 3396 3397 lldb::StackFrameSP ValueObjectManager::GetFrameSP() const { 3398 if (m_root_valobj_sp) 3399 return m_root_valobj_sp->GetFrameSP(); 3400 return lldb::StackFrameSP(); 3401 } 3402