1 //===-- ValueObject.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Core/ValueObject.h" 10 11 #include "lldb/Core/Address.h" 12 #include "lldb/Core/Module.h" 13 #include "lldb/Core/ValueObjectCast.h" 14 #include "lldb/Core/ValueObjectChild.h" 15 #include "lldb/Core/ValueObjectConstResult.h" 16 #include "lldb/Core/ValueObjectDynamicValue.h" 17 #include "lldb/Core/ValueObjectMemory.h" 18 #include "lldb/Core/ValueObjectSyntheticFilter.h" 19 #include "lldb/DataFormatters/DataVisualization.h" 20 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 21 #include "lldb/DataFormatters/FormatManager.h" 22 #include "lldb/DataFormatters/StringPrinter.h" 23 #include "lldb/DataFormatters/TypeFormat.h" 24 #include "lldb/DataFormatters/TypeSummary.h" 25 #include "lldb/DataFormatters/ValueObjectPrinter.h" 26 #include "lldb/Expression/ExpressionVariable.h" 27 #include "lldb/Host/Config.h" 28 #include "lldb/Symbol/CompileUnit.h" 29 #include "lldb/Symbol/CompilerType.h" 30 #include "lldb/Symbol/Declaration.h" 31 #include "lldb/Symbol/SymbolContext.h" 32 #include "lldb/Symbol/Type.h" 33 #include "lldb/Symbol/Variable.h" 34 #include "lldb/Target/ExecutionContext.h" 35 #include "lldb/Target/Language.h" 36 #include "lldb/Target/LanguageRuntime.h" 37 #include "lldb/Target/Process.h" 38 #include "lldb/Target/StackFrame.h" 39 #include "lldb/Target/Target.h" 40 #include "lldb/Target/Thread.h" 41 #include "lldb/Target/ThreadList.h" 42 #include "lldb/Utility/DataBuffer.h" 43 #include "lldb/Utility/DataBufferHeap.h" 44 #include "lldb/Utility/Flags.h" 45 #include "lldb/Utility/Log.h" 46 #include "lldb/Utility/Logging.h" 47 #include "lldb/Utility/Scalar.h" 48 #include "lldb/Utility/SharingPtr.h" 49 #include "lldb/Utility/Stream.h" 50 #include "lldb/Utility/StreamString.h" 51 #include "lldb/lldb-private-types.h" 52 53 #include "llvm/Support/Compiler.h" 54 55 #include <algorithm> 56 #include <cstdint> 57 #include <cstdlib> 58 #include <memory> 59 #include <tuple> 60 61 #include <assert.h> 62 #include <inttypes.h> 63 #include <stdio.h> 64 #include <string.h> 65 66 namespace lldb_private { 67 class ExecutionContextScope; 68 } 69 namespace lldb_private { 70 class SymbolContextScope; 71 } 72 73 using namespace lldb; 74 using namespace lldb_private; 75 76 static user_id_t g_value_obj_uid = 0; 77 78 // ValueObject constructor 79 ValueObject::ValueObject(ValueObject &parent) 80 : UserID(++g_value_obj_uid), // Unique identifier for every value object 81 m_parent(&parent), m_root(nullptr), 82 m_update_point(parent.GetUpdatePoint()), m_name(), m_data(), m_value(), 83 m_error(), m_value_str(), m_old_value_str(), m_location_str(), 84 m_summary_str(), m_object_desc_str(), m_manager(parent.GetManager()), 85 m_children(), m_synthetic_children(), m_dynamic_value(nullptr), 86 m_synthetic_value(nullptr), m_deref_valobj(nullptr), 87 m_format(eFormatDefault), m_last_format(eFormatDefault), 88 m_last_format_mgr_revision(0), m_type_summary_sp(), m_type_format_sp(), 89 m_synthetic_children_sp(), m_user_id_of_forced_summary(), 90 m_address_type_of_ptr_or_ref_children(eAddressTypeInvalid), 91 m_value_checksum(), 92 m_preferred_display_language(lldb::eLanguageTypeUnknown), 93 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 94 m_children_count_valid(false), m_old_value_valid(false), 95 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 96 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 97 m_is_getting_summary(false), 98 m_did_calculate_complete_objc_class_type(false), 99 m_is_synthetic_children_generated( 100 parent.m_is_synthetic_children_generated) { 101 m_data.SetByteOrder(parent.GetDataExtractor().GetByteOrder()); 102 m_data.SetAddressByteSize(parent.GetDataExtractor().GetAddressByteSize()); 103 m_manager->ManageObject(this); 104 } 105 106 // ValueObject constructor 107 ValueObject::ValueObject(ExecutionContextScope *exe_scope, 108 AddressType child_ptr_or_ref_addr_type) 109 : UserID(++g_value_obj_uid), // Unique identifier for every value object 110 m_parent(nullptr), m_root(nullptr), m_update_point(exe_scope), m_name(), 111 m_data(), m_value(), m_error(), m_value_str(), m_old_value_str(), 112 m_location_str(), m_summary_str(), m_object_desc_str(), 113 m_manager(), m_children(), m_synthetic_children(), 114 m_dynamic_value(nullptr), m_synthetic_value(nullptr), 115 m_deref_valobj(nullptr), m_format(eFormatDefault), 116 m_last_format(eFormatDefault), m_last_format_mgr_revision(0), 117 m_type_summary_sp(), m_type_format_sp(), m_synthetic_children_sp(), 118 m_user_id_of_forced_summary(), 119 m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type), 120 m_value_checksum(), 121 m_preferred_display_language(lldb::eLanguageTypeUnknown), 122 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 123 m_children_count_valid(false), m_old_value_valid(false), 124 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 125 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 126 m_is_getting_summary(false), 127 m_did_calculate_complete_objc_class_type(false), 128 m_is_synthetic_children_generated(false) { 129 if (exe_scope) { 130 TargetSP target_sp(exe_scope->CalculateTarget()); 131 if (target_sp) { 132 const ArchSpec &arch = target_sp->GetArchitecture(); 133 m_data.SetByteOrder(arch.GetByteOrder()); 134 m_data.SetAddressByteSize(arch.GetAddressByteSize()); 135 } 136 } 137 m_manager = new ValueObjectManager(); 138 m_manager->ManageObject(this); 139 } 140 141 // Destructor 142 ValueObject::~ValueObject() {} 143 144 void ValueObject::UpdateChildrenAddressType() { 145 Value::ValueType value_type = m_value.GetValueType(); 146 ExecutionContext exe_ctx(GetExecutionContextRef()); 147 Process *process = exe_ctx.GetProcessPtr(); 148 const bool process_is_alive = process && process->IsAlive(); 149 const uint32_t type_info = GetCompilerType().GetTypeInfo(); 150 const bool is_pointer_or_ref = 151 (type_info & (lldb::eTypeIsPointer | lldb::eTypeIsReference)) != 0; 152 153 switch (value_type) { 154 case Value::eValueTypeFileAddress: 155 // If this type is a pointer, then its children will be considered load 156 // addresses if the pointer or reference is dereferenced, but only if 157 // the process is alive. 158 // 159 // There could be global variables like in the following code: 160 // struct LinkedListNode { Foo* foo; LinkedListNode* next; }; 161 // Foo g_foo1; 162 // Foo g_foo2; 163 // LinkedListNode g_second_node = { &g_foo2, NULL }; 164 // LinkedListNode g_first_node = { &g_foo1, &g_second_node }; 165 // 166 // When we aren't running, we should be able to look at these variables 167 // using the "target variable" command. Children of the "g_first_node" 168 // always will be of the same address type as the parent. But children 169 // of the "next" member of LinkedListNode will become load addresses if 170 // we have a live process, or remain a file address if it was a file 171 // address. 172 if (process_is_alive && is_pointer_or_ref) 173 SetAddressTypeOfChildren(eAddressTypeLoad); 174 else 175 SetAddressTypeOfChildren(eAddressTypeFile); 176 break; 177 case Value::eValueTypeHostAddress: 178 // Same as above for load addresses, except children of pointer or refs 179 // are always load addresses. Host addresses are used to store freeze 180 // dried variables. If this type is a struct, the entire struct 181 // contents will be copied into the heap of the 182 // LLDB process, but we do not currently follow any pointers. 183 if (is_pointer_or_ref) 184 SetAddressTypeOfChildren(eAddressTypeLoad); 185 else 186 SetAddressTypeOfChildren(eAddressTypeHost); 187 break; 188 case Value::eValueTypeLoadAddress: 189 case Value::eValueTypeScalar: 190 case Value::eValueTypeVector: 191 SetAddressTypeOfChildren(eAddressTypeLoad); 192 break; 193 } 194 } 195 196 bool ValueObject::UpdateValueIfNeeded(bool update_format) { 197 198 bool did_change_formats = false; 199 200 if (update_format) 201 did_change_formats = UpdateFormatsIfNeeded(); 202 203 // If this is a constant value, then our success is predicated on whether we 204 // have an error or not 205 if (GetIsConstant()) { 206 // if you are constant, things might still have changed behind your back 207 // (e.g. you are a frozen object and things have changed deeper than you 208 // cared to freeze-dry yourself) in this case, your value has not changed, 209 // but "computed" entries might have, so you might now have a different 210 // summary, or a different object description. clear these so we will 211 // recompute them 212 if (update_format && !did_change_formats) 213 ClearUserVisibleData(eClearUserVisibleDataItemsSummary | 214 eClearUserVisibleDataItemsDescription); 215 return m_error.Success(); 216 } 217 218 bool first_update = IsChecksumEmpty(); 219 220 if (NeedsUpdating()) { 221 m_update_point.SetUpdated(); 222 223 // Save the old value using swap to avoid a string copy which also will 224 // clear our m_value_str 225 if (m_value_str.empty()) { 226 m_old_value_valid = false; 227 } else { 228 m_old_value_valid = true; 229 m_old_value_str.swap(m_value_str); 230 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 231 } 232 233 ClearUserVisibleData(); 234 235 if (IsInScope()) { 236 const bool value_was_valid = GetValueIsValid(); 237 SetValueDidChange(false); 238 239 m_error.Clear(); 240 241 // Call the pure virtual function to update the value 242 243 bool need_compare_checksums = false; 244 llvm::SmallVector<uint8_t, 16> old_checksum; 245 246 if (!first_update && CanProvideValue()) { 247 need_compare_checksums = true; 248 old_checksum.resize(m_value_checksum.size()); 249 std::copy(m_value_checksum.begin(), m_value_checksum.end(), 250 old_checksum.begin()); 251 } 252 253 bool success = UpdateValue(); 254 255 SetValueIsValid(success); 256 257 if (success) { 258 UpdateChildrenAddressType(); 259 const uint64_t max_checksum_size = 128; 260 m_data.Checksum(m_value_checksum, max_checksum_size); 261 } else { 262 need_compare_checksums = false; 263 m_value_checksum.clear(); 264 } 265 266 assert(!need_compare_checksums || 267 (!old_checksum.empty() && !m_value_checksum.empty())); 268 269 if (first_update) 270 SetValueDidChange(false); 271 else if (!m_value_did_change && !success) { 272 // The value wasn't gotten successfully, so we mark this as changed if 273 // the value used to be valid and now isn't 274 SetValueDidChange(value_was_valid); 275 } else if (need_compare_checksums) { 276 SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0], 277 m_value_checksum.size())); 278 } 279 280 } else { 281 m_error.SetErrorString("out of scope"); 282 } 283 } 284 return m_error.Success(); 285 } 286 287 bool ValueObject::UpdateFormatsIfNeeded() { 288 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_DATAFORMATTERS)); 289 LLDB_LOGF(log, 290 "[%s %p] checking for FormatManager revisions. ValueObject " 291 "rev: %d - Global rev: %d", 292 GetName().GetCString(), static_cast<void *>(this), 293 m_last_format_mgr_revision, 294 DataVisualization::GetCurrentRevision()); 295 296 bool any_change = false; 297 298 if ((m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) { 299 m_last_format_mgr_revision = DataVisualization::GetCurrentRevision(); 300 any_change = true; 301 302 SetValueFormat(DataVisualization::GetFormat(*this, eNoDynamicValues)); 303 SetSummaryFormat( 304 DataVisualization::GetSummaryFormat(*this, GetDynamicValueType())); 305 #if LLDB_ENABLE_PYTHON 306 SetSyntheticChildren( 307 DataVisualization::GetSyntheticChildren(*this, GetDynamicValueType())); 308 #endif 309 } 310 311 return any_change; 312 } 313 314 void ValueObject::SetNeedsUpdate() { 315 m_update_point.SetNeedsUpdate(); 316 // We have to clear the value string here so ConstResult children will notice 317 // if their values are changed by hand (i.e. with SetValueAsCString). 318 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 319 } 320 321 void ValueObject::ClearDynamicTypeInformation() { 322 m_children_count_valid = false; 323 m_did_calculate_complete_objc_class_type = false; 324 m_last_format_mgr_revision = 0; 325 m_override_type = CompilerType(); 326 SetValueFormat(lldb::TypeFormatImplSP()); 327 SetSummaryFormat(lldb::TypeSummaryImplSP()); 328 SetSyntheticChildren(lldb::SyntheticChildrenSP()); 329 } 330 331 CompilerType ValueObject::MaybeCalculateCompleteType() { 332 CompilerType compiler_type(GetCompilerTypeImpl()); 333 334 if (m_did_calculate_complete_objc_class_type) { 335 if (m_override_type.IsValid()) 336 return m_override_type; 337 else 338 return compiler_type; 339 } 340 341 m_did_calculate_complete_objc_class_type = true; 342 343 ProcessSP process_sp( 344 GetUpdatePoint().GetExecutionContextRef().GetProcessSP()); 345 346 if (!process_sp) 347 return compiler_type; 348 349 if (auto *runtime = 350 process_sp->GetLanguageRuntime(GetObjectRuntimeLanguage())) { 351 if (llvm::Optional<CompilerType> complete_type = 352 runtime->GetRuntimeType(compiler_type)) { 353 m_override_type = complete_type.getValue(); 354 if (m_override_type.IsValid()) 355 return m_override_type; 356 } 357 } 358 return compiler_type; 359 } 360 361 CompilerType ValueObject::GetCompilerType() { 362 return MaybeCalculateCompleteType(); 363 } 364 365 TypeImpl ValueObject::GetTypeImpl() { return TypeImpl(GetCompilerType()); } 366 367 DataExtractor &ValueObject::GetDataExtractor() { 368 UpdateValueIfNeeded(false); 369 return m_data; 370 } 371 372 const Status &ValueObject::GetError() { 373 UpdateValueIfNeeded(false); 374 return m_error; 375 } 376 377 ConstString ValueObject::GetName() const { return m_name; } 378 379 const char *ValueObject::GetLocationAsCString() { 380 return GetLocationAsCStringImpl(m_value, m_data); 381 } 382 383 const char *ValueObject::GetLocationAsCStringImpl(const Value &value, 384 const DataExtractor &data) { 385 if (UpdateValueIfNeeded(false)) { 386 if (m_location_str.empty()) { 387 StreamString sstr; 388 389 Value::ValueType value_type = value.GetValueType(); 390 391 switch (value_type) { 392 case Value::eValueTypeScalar: 393 case Value::eValueTypeVector: 394 if (value.GetContextType() == Value::eContextTypeRegisterInfo) { 395 RegisterInfo *reg_info = value.GetRegisterInfo(); 396 if (reg_info) { 397 if (reg_info->name) 398 m_location_str = reg_info->name; 399 else if (reg_info->alt_name) 400 m_location_str = reg_info->alt_name; 401 if (m_location_str.empty()) 402 m_location_str = (reg_info->encoding == lldb::eEncodingVector) 403 ? "vector" 404 : "scalar"; 405 } 406 } 407 if (m_location_str.empty()) 408 m_location_str = 409 (value_type == Value::eValueTypeVector) ? "vector" : "scalar"; 410 break; 411 412 case Value::eValueTypeLoadAddress: 413 case Value::eValueTypeFileAddress: 414 case Value::eValueTypeHostAddress: { 415 uint32_t addr_nibble_size = data.GetAddressByteSize() * 2; 416 sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, 417 value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS)); 418 m_location_str = std::string(sstr.GetString()); 419 } break; 420 } 421 } 422 } 423 return m_location_str.c_str(); 424 } 425 426 Value &ValueObject::GetValue() { return m_value; } 427 428 const Value &ValueObject::GetValue() const { return m_value; } 429 430 bool ValueObject::ResolveValue(Scalar &scalar) { 431 if (UpdateValueIfNeeded( 432 false)) // make sure that you are up to date before returning anything 433 { 434 ExecutionContext exe_ctx(GetExecutionContextRef()); 435 Value tmp_value(m_value); 436 scalar = tmp_value.ResolveValue(&exe_ctx); 437 if (scalar.IsValid()) { 438 const uint32_t bitfield_bit_size = GetBitfieldBitSize(); 439 if (bitfield_bit_size) 440 return scalar.ExtractBitfield(bitfield_bit_size, 441 GetBitfieldBitOffset()); 442 return true; 443 } 444 } 445 return false; 446 } 447 448 bool ValueObject::IsLogicalTrue(Status &error) { 449 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 450 LazyBool is_logical_true = language->IsLogicalTrue(*this, error); 451 switch (is_logical_true) { 452 case eLazyBoolYes: 453 case eLazyBoolNo: 454 return (is_logical_true == true); 455 case eLazyBoolCalculate: 456 break; 457 } 458 } 459 460 Scalar scalar_value; 461 462 if (!ResolveValue(scalar_value)) { 463 error.SetErrorString("failed to get a scalar result"); 464 return false; 465 } 466 467 bool ret; 468 ret = scalar_value.ULongLong(1) != 0; 469 error.Clear(); 470 return ret; 471 } 472 473 bool ValueObject::GetValueIsValid() const { return m_value_is_valid; } 474 475 void ValueObject::SetValueIsValid(bool b) { m_value_is_valid = b; } 476 477 bool ValueObject::GetValueDidChange() { return m_value_did_change; } 478 479 void ValueObject::SetValueDidChange(bool value_changed) { 480 m_value_did_change = value_changed; 481 } 482 483 ValueObjectSP ValueObject::GetChildAtIndex(size_t idx, bool can_create) { 484 ValueObjectSP child_sp; 485 // We may need to update our value if we are dynamic 486 if (IsPossibleDynamicType()) 487 UpdateValueIfNeeded(false); 488 if (idx < GetNumChildren()) { 489 // Check if we have already made the child value object? 490 if (can_create && !m_children.HasChildAtIndex(idx)) { 491 // No we haven't created the child at this index, so lets have our 492 // subclass do it and cache the result for quick future access. 493 m_children.SetChildAtIndex(idx, CreateChildAtIndex(idx, false, 0)); 494 } 495 496 ValueObject *child = m_children.GetChildAtIndex(idx); 497 if (child != nullptr) 498 return child->GetSP(); 499 } 500 return child_sp; 501 } 502 503 lldb::ValueObjectSP 504 ValueObject::GetChildAtIndexPath(llvm::ArrayRef<size_t> idxs, 505 size_t *index_of_error) { 506 if (idxs.size() == 0) 507 return GetSP(); 508 ValueObjectSP root(GetSP()); 509 for (size_t idx : idxs) { 510 root = root->GetChildAtIndex(idx, true); 511 if (!root) { 512 if (index_of_error) 513 *index_of_error = idx; 514 return root; 515 } 516 } 517 return root; 518 } 519 520 lldb::ValueObjectSP ValueObject::GetChildAtIndexPath( 521 llvm::ArrayRef<std::pair<size_t, bool>> idxs, size_t *index_of_error) { 522 if (idxs.size() == 0) 523 return GetSP(); 524 ValueObjectSP root(GetSP()); 525 for (std::pair<size_t, bool> idx : idxs) { 526 root = root->GetChildAtIndex(idx.first, idx.second); 527 if (!root) { 528 if (index_of_error) 529 *index_of_error = idx.first; 530 return root; 531 } 532 } 533 return root; 534 } 535 536 lldb::ValueObjectSP 537 ValueObject::GetChildAtNamePath(llvm::ArrayRef<ConstString> names, 538 ConstString *name_of_error) { 539 if (names.size() == 0) 540 return GetSP(); 541 ValueObjectSP root(GetSP()); 542 for (ConstString name : names) { 543 root = root->GetChildMemberWithName(name, true); 544 if (!root) { 545 if (name_of_error) 546 *name_of_error = name; 547 return root; 548 } 549 } 550 return root; 551 } 552 553 lldb::ValueObjectSP ValueObject::GetChildAtNamePath( 554 llvm::ArrayRef<std::pair<ConstString, bool>> names, 555 ConstString *name_of_error) { 556 if (names.size() == 0) 557 return GetSP(); 558 ValueObjectSP root(GetSP()); 559 for (std::pair<ConstString, bool> name : names) { 560 root = root->GetChildMemberWithName(name.first, name.second); 561 if (!root) { 562 if (name_of_error) 563 *name_of_error = name.first; 564 return root; 565 } 566 } 567 return root; 568 } 569 570 size_t ValueObject::GetIndexOfChildWithName(ConstString name) { 571 bool omit_empty_base_classes = true; 572 return GetCompilerType().GetIndexOfChildWithName(name.GetCString(), 573 omit_empty_base_classes); 574 } 575 576 ValueObjectSP ValueObject::GetChildMemberWithName(ConstString name, 577 bool can_create) { 578 // when getting a child by name, it could be buried inside some base classes 579 // (which really aren't part of the expression path), so we need a vector of 580 // indexes that can get us down to the correct child 581 ValueObjectSP child_sp; 582 583 // We may need to update our value if we are dynamic 584 if (IsPossibleDynamicType()) 585 UpdateValueIfNeeded(false); 586 587 std::vector<uint32_t> child_indexes; 588 bool omit_empty_base_classes = true; 589 590 if (!GetCompilerType().IsValid()) 591 return ValueObjectSP(); 592 593 const size_t num_child_indexes = 594 GetCompilerType().GetIndexOfChildMemberWithName( 595 name.GetCString(), omit_empty_base_classes, child_indexes); 596 if (num_child_indexes > 0) { 597 std::vector<uint32_t>::const_iterator pos = child_indexes.begin(); 598 std::vector<uint32_t>::const_iterator end = child_indexes.end(); 599 600 child_sp = GetChildAtIndex(*pos, can_create); 601 for (++pos; pos != end; ++pos) { 602 if (child_sp) { 603 ValueObjectSP new_child_sp(child_sp->GetChildAtIndex(*pos, can_create)); 604 child_sp = new_child_sp; 605 } else { 606 child_sp.reset(); 607 } 608 } 609 } 610 return child_sp; 611 } 612 613 size_t ValueObject::GetNumChildren(uint32_t max) { 614 UpdateValueIfNeeded(); 615 616 if (max < UINT32_MAX) { 617 if (m_children_count_valid) { 618 size_t children_count = m_children.GetChildrenCount(); 619 return children_count <= max ? children_count : max; 620 } else 621 return CalculateNumChildren(max); 622 } 623 624 if (!m_children_count_valid) { 625 SetNumChildren(CalculateNumChildren()); 626 } 627 return m_children.GetChildrenCount(); 628 } 629 630 bool ValueObject::MightHaveChildren() { 631 bool has_children = false; 632 const uint32_t type_info = GetTypeInfo(); 633 if (type_info) { 634 if (type_info & (eTypeHasChildren | eTypeIsPointer | eTypeIsReference)) 635 has_children = true; 636 } else { 637 has_children = GetNumChildren() > 0; 638 } 639 return has_children; 640 } 641 642 // Should only be called by ValueObject::GetNumChildren() 643 void ValueObject::SetNumChildren(size_t num_children) { 644 m_children_count_valid = true; 645 m_children.SetChildrenCount(num_children); 646 } 647 648 void ValueObject::SetName(ConstString name) { m_name = name; } 649 650 ValueObject *ValueObject::CreateChildAtIndex(size_t idx, 651 bool synthetic_array_member, 652 int32_t synthetic_index) { 653 ValueObject *valobj = nullptr; 654 655 bool omit_empty_base_classes = true; 656 bool ignore_array_bounds = synthetic_array_member; 657 std::string child_name_str; 658 uint32_t child_byte_size = 0; 659 int32_t child_byte_offset = 0; 660 uint32_t child_bitfield_bit_size = 0; 661 uint32_t child_bitfield_bit_offset = 0; 662 bool child_is_base_class = false; 663 bool child_is_deref_of_parent = false; 664 uint64_t language_flags = 0; 665 666 const bool transparent_pointers = !synthetic_array_member; 667 CompilerType child_compiler_type; 668 669 ExecutionContext exe_ctx(GetExecutionContextRef()); 670 671 child_compiler_type = GetCompilerType().GetChildCompilerTypeAtIndex( 672 &exe_ctx, idx, transparent_pointers, omit_empty_base_classes, 673 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 674 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 675 child_is_deref_of_parent, this, language_flags); 676 if (child_compiler_type) { 677 if (synthetic_index) 678 child_byte_offset += child_byte_size * synthetic_index; 679 680 ConstString child_name; 681 if (!child_name_str.empty()) 682 child_name.SetCString(child_name_str.c_str()); 683 684 valobj = new ValueObjectChild( 685 *this, child_compiler_type, child_name, child_byte_size, 686 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 687 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 688 language_flags); 689 } 690 691 return valobj; 692 } 693 694 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 695 std::string &destination, 696 lldb::LanguageType lang) { 697 return GetSummaryAsCString(summary_ptr, destination, 698 TypeSummaryOptions().SetLanguage(lang)); 699 } 700 701 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 702 std::string &destination, 703 const TypeSummaryOptions &options) { 704 destination.clear(); 705 706 // ideally we would like to bail out if passing NULL, but if we do so we end 707 // up not providing the summary for function pointers anymore 708 if (/*summary_ptr == NULL ||*/ m_is_getting_summary) 709 return false; 710 711 m_is_getting_summary = true; 712 713 TypeSummaryOptions actual_options(options); 714 715 if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown) 716 actual_options.SetLanguage(GetPreferredDisplayLanguage()); 717 718 // this is a hot path in code and we prefer to avoid setting this string all 719 // too often also clearing out other information that we might care to see in 720 // a crash log. might be useful in very specific situations though. 721 /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. 722 Summary provider's description is %s", 723 GetTypeName().GetCString(), 724 GetName().GetCString(), 725 summary_ptr->GetDescription().c_str());*/ 726 727 if (UpdateValueIfNeeded(false) && summary_ptr) { 728 if (HasSyntheticValue()) 729 m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on 730 // the synthetic children being 731 // up-to-date (e.g. ${svar%#}) 732 summary_ptr->FormatObject(this, destination, actual_options); 733 } 734 m_is_getting_summary = false; 735 return !destination.empty(); 736 } 737 738 const char *ValueObject::GetSummaryAsCString(lldb::LanguageType lang) { 739 if (UpdateValueIfNeeded(true) && m_summary_str.empty()) { 740 TypeSummaryOptions summary_options; 741 summary_options.SetLanguage(lang); 742 GetSummaryAsCString(GetSummaryFormat().get(), m_summary_str, 743 summary_options); 744 } 745 if (m_summary_str.empty()) 746 return nullptr; 747 return m_summary_str.c_str(); 748 } 749 750 bool ValueObject::GetSummaryAsCString(std::string &destination, 751 const TypeSummaryOptions &options) { 752 return GetSummaryAsCString(GetSummaryFormat().get(), destination, options); 753 } 754 755 bool ValueObject::IsCStringContainer(bool check_pointer) { 756 CompilerType pointee_or_element_compiler_type; 757 const Flags type_flags(GetTypeInfo(&pointee_or_element_compiler_type)); 758 bool is_char_arr_ptr(type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 759 pointee_or_element_compiler_type.IsCharType()); 760 if (!is_char_arr_ptr) 761 return false; 762 if (!check_pointer) 763 return true; 764 if (type_flags.Test(eTypeIsArray)) 765 return true; 766 addr_t cstr_address = LLDB_INVALID_ADDRESS; 767 AddressType cstr_address_type = eAddressTypeInvalid; 768 cstr_address = GetAddressOf(true, &cstr_address_type); 769 return (cstr_address != LLDB_INVALID_ADDRESS); 770 } 771 772 size_t ValueObject::GetPointeeData(DataExtractor &data, uint32_t item_idx, 773 uint32_t item_count) { 774 CompilerType pointee_or_element_compiler_type; 775 const uint32_t type_info = GetTypeInfo(&pointee_or_element_compiler_type); 776 const bool is_pointer_type = type_info & eTypeIsPointer; 777 const bool is_array_type = type_info & eTypeIsArray; 778 if (!(is_pointer_type || is_array_type)) 779 return 0; 780 781 if (item_count == 0) 782 return 0; 783 784 ExecutionContext exe_ctx(GetExecutionContextRef()); 785 786 llvm::Optional<uint64_t> item_type_size = 787 pointee_or_element_compiler_type.GetByteSize( 788 exe_ctx.GetBestExecutionContextScope()); 789 if (!item_type_size) 790 return 0; 791 const uint64_t bytes = item_count * *item_type_size; 792 const uint64_t offset = item_idx * *item_type_size; 793 794 if (item_idx == 0 && item_count == 1) // simply a deref 795 { 796 if (is_pointer_type) { 797 Status error; 798 ValueObjectSP pointee_sp = Dereference(error); 799 if (error.Fail() || pointee_sp.get() == nullptr) 800 return 0; 801 return pointee_sp->GetData(data, error); 802 } else { 803 ValueObjectSP child_sp = GetChildAtIndex(0, true); 804 if (child_sp.get() == nullptr) 805 return 0; 806 Status error; 807 return child_sp->GetData(data, error); 808 } 809 return true; 810 } else /* (items > 1) */ 811 { 812 Status error; 813 lldb_private::DataBufferHeap *heap_buf_ptr = nullptr; 814 lldb::DataBufferSP data_sp(heap_buf_ptr = 815 new lldb_private::DataBufferHeap()); 816 817 AddressType addr_type; 818 lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type) 819 : GetAddressOf(true, &addr_type); 820 821 switch (addr_type) { 822 case eAddressTypeFile: { 823 ModuleSP module_sp(GetModule()); 824 if (module_sp) { 825 addr = addr + offset; 826 Address so_addr; 827 module_sp->ResolveFileAddress(addr, so_addr); 828 ExecutionContext exe_ctx(GetExecutionContextRef()); 829 Target *target = exe_ctx.GetTargetPtr(); 830 if (target) { 831 heap_buf_ptr->SetByteSize(bytes); 832 size_t bytes_read = target->ReadMemory( 833 so_addr, false, heap_buf_ptr->GetBytes(), bytes, error); 834 if (error.Success()) { 835 data.SetData(data_sp); 836 return bytes_read; 837 } 838 } 839 } 840 } break; 841 case eAddressTypeLoad: { 842 ExecutionContext exe_ctx(GetExecutionContextRef()); 843 Process *process = exe_ctx.GetProcessPtr(); 844 if (process) { 845 heap_buf_ptr->SetByteSize(bytes); 846 size_t bytes_read = process->ReadMemory( 847 addr + offset, heap_buf_ptr->GetBytes(), bytes, error); 848 if (error.Success() || bytes_read > 0) { 849 data.SetData(data_sp); 850 return bytes_read; 851 } 852 } 853 } break; 854 case eAddressTypeHost: { 855 auto max_bytes = 856 GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope()); 857 if (max_bytes && *max_bytes > offset) { 858 size_t bytes_read = std::min<uint64_t>(*max_bytes - offset, bytes); 859 addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 860 if (addr == 0 || addr == LLDB_INVALID_ADDRESS) 861 break; 862 heap_buf_ptr->CopyData((uint8_t *)(addr + offset), bytes_read); 863 data.SetData(data_sp); 864 return bytes_read; 865 } 866 } break; 867 case eAddressTypeInvalid: 868 break; 869 } 870 } 871 return 0; 872 } 873 874 uint64_t ValueObject::GetData(DataExtractor &data, Status &error) { 875 UpdateValueIfNeeded(false); 876 ExecutionContext exe_ctx(GetExecutionContextRef()); 877 error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get()); 878 if (error.Fail()) { 879 if (m_data.GetByteSize()) { 880 data = m_data; 881 error.Clear(); 882 return data.GetByteSize(); 883 } else { 884 return 0; 885 } 886 } 887 data.SetAddressByteSize(m_data.GetAddressByteSize()); 888 data.SetByteOrder(m_data.GetByteOrder()); 889 return data.GetByteSize(); 890 } 891 892 bool ValueObject::SetData(DataExtractor &data, Status &error) { 893 error.Clear(); 894 // Make sure our value is up to date first so that our location and location 895 // type is valid. 896 if (!UpdateValueIfNeeded(false)) { 897 error.SetErrorString("unable to read value"); 898 return false; 899 } 900 901 uint64_t count = 0; 902 const Encoding encoding = GetCompilerType().GetEncoding(count); 903 904 const size_t byte_size = GetByteSize(); 905 906 Value::ValueType value_type = m_value.GetValueType(); 907 908 switch (value_type) { 909 case Value::eValueTypeScalar: { 910 Status set_error = 911 m_value.GetScalar().SetValueFromData(data, encoding, byte_size); 912 913 if (!set_error.Success()) { 914 error.SetErrorStringWithFormat("unable to set scalar value: %s", 915 set_error.AsCString()); 916 return false; 917 } 918 } break; 919 case Value::eValueTypeLoadAddress: { 920 // If it is a load address, then the scalar value is the storage location 921 // of the data, and we have to shove this value down to that load location. 922 ExecutionContext exe_ctx(GetExecutionContextRef()); 923 Process *process = exe_ctx.GetProcessPtr(); 924 if (process) { 925 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 926 size_t bytes_written = process->WriteMemory( 927 target_addr, data.GetDataStart(), byte_size, error); 928 if (!error.Success()) 929 return false; 930 if (bytes_written != byte_size) { 931 error.SetErrorString("unable to write value to memory"); 932 return false; 933 } 934 } 935 } break; 936 case Value::eValueTypeHostAddress: { 937 // If it is a host address, then we stuff the scalar as a DataBuffer into 938 // the Value's data. 939 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 940 m_data.SetData(buffer_sp, 0); 941 data.CopyByteOrderedData(0, byte_size, 942 const_cast<uint8_t *>(m_data.GetDataStart()), 943 byte_size, m_data.GetByteOrder()); 944 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 945 } break; 946 case Value::eValueTypeFileAddress: 947 case Value::eValueTypeVector: 948 break; 949 } 950 951 // If we have reached this point, then we have successfully changed the 952 // value. 953 SetNeedsUpdate(); 954 return true; 955 } 956 957 static bool CopyStringDataToBufferSP(const StreamString &source, 958 lldb::DataBufferSP &destination) { 959 destination = std::make_shared<DataBufferHeap>(source.GetSize() + 1, 0); 960 memcpy(destination->GetBytes(), source.GetString().data(), source.GetSize()); 961 return true; 962 } 963 964 std::pair<size_t, bool> 965 ValueObject::ReadPointedString(lldb::DataBufferSP &buffer_sp, Status &error, 966 uint32_t max_length, bool honor_array, 967 Format item_format) { 968 bool was_capped = false; 969 StreamString s; 970 ExecutionContext exe_ctx(GetExecutionContextRef()); 971 Target *target = exe_ctx.GetTargetPtr(); 972 973 if (!target) { 974 s << "<no target to read from>"; 975 error.SetErrorString("no target to read from"); 976 CopyStringDataToBufferSP(s, buffer_sp); 977 return {0, was_capped}; 978 } 979 980 if (max_length == 0) 981 max_length = target->GetMaximumSizeOfStringSummary(); 982 983 size_t bytes_read = 0; 984 size_t total_bytes_read = 0; 985 986 CompilerType compiler_type = GetCompilerType(); 987 CompilerType elem_or_pointee_compiler_type; 988 const Flags type_flags(GetTypeInfo(&elem_or_pointee_compiler_type)); 989 if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 990 elem_or_pointee_compiler_type.IsCharType()) { 991 addr_t cstr_address = LLDB_INVALID_ADDRESS; 992 AddressType cstr_address_type = eAddressTypeInvalid; 993 994 size_t cstr_len = 0; 995 bool capped_data = false; 996 const bool is_array = type_flags.Test(eTypeIsArray); 997 if (is_array) { 998 // We have an array 999 uint64_t array_size = 0; 1000 if (compiler_type.IsArrayType(nullptr, &array_size, nullptr)) { 1001 cstr_len = array_size; 1002 if (cstr_len > max_length) { 1003 capped_data = true; 1004 cstr_len = max_length; 1005 } 1006 } 1007 cstr_address = GetAddressOf(true, &cstr_address_type); 1008 } else { 1009 // We have a pointer 1010 cstr_address = GetPointerValue(&cstr_address_type); 1011 } 1012 1013 if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) { 1014 if (cstr_address_type == eAddressTypeHost && is_array) { 1015 const char *cstr = GetDataExtractor().PeekCStr(0); 1016 if (cstr == nullptr) { 1017 s << "<invalid address>"; 1018 error.SetErrorString("invalid address"); 1019 CopyStringDataToBufferSP(s, buffer_sp); 1020 return {0, was_capped}; 1021 } 1022 buffer_sp = std::make_shared<DataBufferHeap>(cstr_len, 0); 1023 memcpy(buffer_sp->GetBytes(), cstr, cstr_len); 1024 return {cstr_len, was_capped}; 1025 } else { 1026 s << "<invalid address>"; 1027 error.SetErrorString("invalid address"); 1028 CopyStringDataToBufferSP(s, buffer_sp); 1029 return {0, was_capped}; 1030 } 1031 } 1032 1033 Address cstr_so_addr(cstr_address); 1034 DataExtractor data; 1035 if (cstr_len > 0 && honor_array) { 1036 // I am using GetPointeeData() here to abstract the fact that some 1037 // ValueObjects are actually frozen pointers in the host but the pointed- 1038 // to data lives in the debuggee, and GetPointeeData() automatically 1039 // takes care of this 1040 GetPointeeData(data, 0, cstr_len); 1041 1042 if ((bytes_read = data.GetByteSize()) > 0) { 1043 total_bytes_read = bytes_read; 1044 for (size_t offset = 0; offset < bytes_read; offset++) 1045 s.Printf("%c", *data.PeekData(offset, 1)); 1046 if (capped_data) 1047 was_capped = true; 1048 } 1049 } else { 1050 cstr_len = max_length; 1051 const size_t k_max_buf_size = 64; 1052 1053 size_t offset = 0; 1054 1055 int cstr_len_displayed = -1; 1056 bool capped_cstr = false; 1057 // I am using GetPointeeData() here to abstract the fact that some 1058 // ValueObjects are actually frozen pointers in the host but the pointed- 1059 // to data lives in the debuggee, and GetPointeeData() automatically 1060 // takes care of this 1061 while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) { 1062 total_bytes_read += bytes_read; 1063 const char *cstr = data.PeekCStr(0); 1064 size_t len = strnlen(cstr, k_max_buf_size); 1065 if (cstr_len_displayed < 0) 1066 cstr_len_displayed = len; 1067 1068 if (len == 0) 1069 break; 1070 cstr_len_displayed += len; 1071 if (len > bytes_read) 1072 len = bytes_read; 1073 if (len > cstr_len) 1074 len = cstr_len; 1075 1076 for (size_t offset = 0; offset < bytes_read; offset++) 1077 s.Printf("%c", *data.PeekData(offset, 1)); 1078 1079 if (len < k_max_buf_size) 1080 break; 1081 1082 if (len >= cstr_len) { 1083 capped_cstr = true; 1084 break; 1085 } 1086 1087 cstr_len -= len; 1088 offset += len; 1089 } 1090 1091 if (cstr_len_displayed >= 0) { 1092 if (capped_cstr) 1093 was_capped = true; 1094 } 1095 } 1096 } else { 1097 error.SetErrorString("not a string object"); 1098 s << "<not a string object>"; 1099 } 1100 CopyStringDataToBufferSP(s, buffer_sp); 1101 return {total_bytes_read, was_capped}; 1102 } 1103 1104 const char *ValueObject::GetObjectDescription() { 1105 if (!UpdateValueIfNeeded(true)) 1106 return nullptr; 1107 1108 // Return cached value. 1109 if (!m_object_desc_str.empty()) 1110 return m_object_desc_str.c_str(); 1111 1112 ExecutionContext exe_ctx(GetExecutionContextRef()); 1113 Process *process = exe_ctx.GetProcessPtr(); 1114 if (!process) 1115 return nullptr; 1116 1117 // Returns the object description produced by one language runtime. 1118 auto get_object_description = [&](LanguageType language) -> const char * { 1119 if (LanguageRuntime *runtime = process->GetLanguageRuntime(language)) { 1120 StreamString s; 1121 if (runtime->GetObjectDescription(s, *this)) { 1122 m_object_desc_str.append(std::string(s.GetString())); 1123 return m_object_desc_str.c_str(); 1124 } 1125 } 1126 return nullptr; 1127 }; 1128 1129 // Try the native language runtime first. 1130 LanguageType native_language = GetObjectRuntimeLanguage(); 1131 if (const char *desc = get_object_description(native_language)) 1132 return desc; 1133 1134 // Try the Objective-C language runtime. This fallback is necessary 1135 // for Objective-C++ and mixed Objective-C / C++ programs. 1136 if (Language::LanguageIsCFamily(native_language)) 1137 return get_object_description(eLanguageTypeObjC); 1138 return nullptr; 1139 } 1140 1141 bool ValueObject::GetValueAsCString(const lldb_private::TypeFormatImpl &format, 1142 std::string &destination) { 1143 if (UpdateValueIfNeeded(false)) 1144 return format.FormatObject(this, destination); 1145 else 1146 return false; 1147 } 1148 1149 bool ValueObject::GetValueAsCString(lldb::Format format, 1150 std::string &destination) { 1151 return GetValueAsCString(TypeFormatImpl_Format(format), destination); 1152 } 1153 1154 const char *ValueObject::GetValueAsCString() { 1155 if (UpdateValueIfNeeded(true)) { 1156 lldb::TypeFormatImplSP format_sp; 1157 lldb::Format my_format = GetFormat(); 1158 if (my_format == lldb::eFormatDefault) { 1159 if (m_type_format_sp) 1160 format_sp = m_type_format_sp; 1161 else { 1162 if (m_is_bitfield_for_scalar) 1163 my_format = eFormatUnsigned; 1164 else { 1165 if (m_value.GetContextType() == Value::eContextTypeRegisterInfo) { 1166 const RegisterInfo *reg_info = m_value.GetRegisterInfo(); 1167 if (reg_info) 1168 my_format = reg_info->format; 1169 } else { 1170 my_format = GetValue().GetCompilerType().GetFormat(); 1171 } 1172 } 1173 } 1174 } 1175 if (my_format != m_last_format || m_value_str.empty()) { 1176 m_last_format = my_format; 1177 if (!format_sp) 1178 format_sp = std::make_shared<TypeFormatImpl_Format>(my_format); 1179 if (GetValueAsCString(*format_sp.get(), m_value_str)) { 1180 if (!m_value_did_change && m_old_value_valid) { 1181 // The value was gotten successfully, so we consider the value as 1182 // changed if the value string differs 1183 SetValueDidChange(m_old_value_str != m_value_str); 1184 } 1185 } 1186 } 1187 } 1188 if (m_value_str.empty()) 1189 return nullptr; 1190 return m_value_str.c_str(); 1191 } 1192 1193 // if > 8bytes, 0 is returned. this method should mostly be used to read 1194 // address values out of pointers 1195 uint64_t ValueObject::GetValueAsUnsigned(uint64_t fail_value, bool *success) { 1196 // If our byte size is zero this is an aggregate type that has children 1197 if (CanProvideValue()) { 1198 Scalar scalar; 1199 if (ResolveValue(scalar)) { 1200 if (success) 1201 *success = true; 1202 return scalar.ULongLong(fail_value); 1203 } 1204 // fallthrough, otherwise... 1205 } 1206 1207 if (success) 1208 *success = false; 1209 return fail_value; 1210 } 1211 1212 int64_t ValueObject::GetValueAsSigned(int64_t fail_value, bool *success) { 1213 // If our byte size is zero this is an aggregate type that has children 1214 if (CanProvideValue()) { 1215 Scalar scalar; 1216 if (ResolveValue(scalar)) { 1217 if (success) 1218 *success = true; 1219 return scalar.SLongLong(fail_value); 1220 } 1221 // fallthrough, otherwise... 1222 } 1223 1224 if (success) 1225 *success = false; 1226 return fail_value; 1227 } 1228 1229 // if any more "special cases" are added to 1230 // ValueObject::DumpPrintableRepresentation() please keep this call up to date 1231 // by returning true for your new special cases. We will eventually move to 1232 // checking this call result before trying to display special cases 1233 bool ValueObject::HasSpecialPrintableRepresentation( 1234 ValueObjectRepresentationStyle val_obj_display, Format custom_format) { 1235 Flags flags(GetTypeInfo()); 1236 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1237 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1238 if (IsCStringContainer(true) && 1239 (custom_format == eFormatCString || custom_format == eFormatCharArray || 1240 custom_format == eFormatChar || custom_format == eFormatVectorOfChar)) 1241 return true; 1242 1243 if (flags.Test(eTypeIsArray)) { 1244 if ((custom_format == eFormatBytes) || 1245 (custom_format == eFormatBytesWithASCII)) 1246 return true; 1247 1248 if ((custom_format == eFormatVectorOfChar) || 1249 (custom_format == eFormatVectorOfFloat32) || 1250 (custom_format == eFormatVectorOfFloat64) || 1251 (custom_format == eFormatVectorOfSInt16) || 1252 (custom_format == eFormatVectorOfSInt32) || 1253 (custom_format == eFormatVectorOfSInt64) || 1254 (custom_format == eFormatVectorOfSInt8) || 1255 (custom_format == eFormatVectorOfUInt128) || 1256 (custom_format == eFormatVectorOfUInt16) || 1257 (custom_format == eFormatVectorOfUInt32) || 1258 (custom_format == eFormatVectorOfUInt64) || 1259 (custom_format == eFormatVectorOfUInt8)) 1260 return true; 1261 } 1262 } 1263 return false; 1264 } 1265 1266 bool ValueObject::DumpPrintableRepresentation( 1267 Stream &s, ValueObjectRepresentationStyle val_obj_display, 1268 Format custom_format, PrintableRepresentationSpecialCases special, 1269 bool do_dump_error) { 1270 1271 Flags flags(GetTypeInfo()); 1272 1273 bool allow_special = 1274 (special == ValueObject::PrintableRepresentationSpecialCases::eAllow); 1275 const bool only_special = false; 1276 1277 if (allow_special) { 1278 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1279 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1280 // when being asked to get a printable display an array or pointer type 1281 // directly, try to "do the right thing" 1282 1283 if (IsCStringContainer(true) && 1284 (custom_format == eFormatCString || 1285 custom_format == eFormatCharArray || custom_format == eFormatChar || 1286 custom_format == 1287 eFormatVectorOfChar)) // print char[] & char* directly 1288 { 1289 Status error; 1290 lldb::DataBufferSP buffer_sp; 1291 std::pair<size_t, bool> read_string = ReadPointedString( 1292 buffer_sp, error, 0, (custom_format == eFormatVectorOfChar) || 1293 (custom_format == eFormatCharArray)); 1294 lldb_private::formatters::StringPrinter:: 1295 ReadBufferAndDumpToStreamOptions options(*this); 1296 options.SetData(DataExtractor( 1297 buffer_sp, lldb::eByteOrderInvalid, 1298 8)); // none of this matters for a string - pass some defaults 1299 options.SetStream(&s); 1300 options.SetPrefixToken(nullptr); 1301 options.SetQuote('"'); 1302 options.SetSourceSize(buffer_sp->GetByteSize()); 1303 options.SetIsTruncated(read_string.second); 1304 formatters::StringPrinter::ReadBufferAndDumpToStream< 1305 lldb_private::formatters::StringPrinter::StringElementType::ASCII>( 1306 options); 1307 return !error.Fail(); 1308 } 1309 1310 if (custom_format == eFormatEnum) 1311 return false; 1312 1313 // this only works for arrays, because I have no way to know when the 1314 // pointed memory ends, and no special \0 end of data marker 1315 if (flags.Test(eTypeIsArray)) { 1316 if ((custom_format == eFormatBytes) || 1317 (custom_format == eFormatBytesWithASCII)) { 1318 const size_t count = GetNumChildren(); 1319 1320 s << '['; 1321 for (size_t low = 0; low < count; low++) { 1322 1323 if (low) 1324 s << ','; 1325 1326 ValueObjectSP child = GetChildAtIndex(low, true); 1327 if (!child.get()) { 1328 s << "<invalid child>"; 1329 continue; 1330 } 1331 child->DumpPrintableRepresentation( 1332 s, ValueObject::eValueObjectRepresentationStyleValue, 1333 custom_format); 1334 } 1335 1336 s << ']'; 1337 1338 return true; 1339 } 1340 1341 if ((custom_format == eFormatVectorOfChar) || 1342 (custom_format == eFormatVectorOfFloat32) || 1343 (custom_format == eFormatVectorOfFloat64) || 1344 (custom_format == eFormatVectorOfSInt16) || 1345 (custom_format == eFormatVectorOfSInt32) || 1346 (custom_format == eFormatVectorOfSInt64) || 1347 (custom_format == eFormatVectorOfSInt8) || 1348 (custom_format == eFormatVectorOfUInt128) || 1349 (custom_format == eFormatVectorOfUInt16) || 1350 (custom_format == eFormatVectorOfUInt32) || 1351 (custom_format == eFormatVectorOfUInt64) || 1352 (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes 1353 // with ASCII or any vector 1354 // format should be printed 1355 // directly 1356 { 1357 const size_t count = GetNumChildren(); 1358 1359 Format format = FormatManager::GetSingleItemFormat(custom_format); 1360 1361 s << '['; 1362 for (size_t low = 0; low < count; low++) { 1363 1364 if (low) 1365 s << ','; 1366 1367 ValueObjectSP child = GetChildAtIndex(low, true); 1368 if (!child.get()) { 1369 s << "<invalid child>"; 1370 continue; 1371 } 1372 child->DumpPrintableRepresentation( 1373 s, ValueObject::eValueObjectRepresentationStyleValue, format); 1374 } 1375 1376 s << ']'; 1377 1378 return true; 1379 } 1380 } 1381 1382 if ((custom_format == eFormatBoolean) || 1383 (custom_format == eFormatBinary) || (custom_format == eFormatChar) || 1384 (custom_format == eFormatCharPrintable) || 1385 (custom_format == eFormatComplexFloat) || 1386 (custom_format == eFormatDecimal) || (custom_format == eFormatHex) || 1387 (custom_format == eFormatHexUppercase) || 1388 (custom_format == eFormatFloat) || (custom_format == eFormatOctal) || 1389 (custom_format == eFormatOSType) || 1390 (custom_format == eFormatUnicode16) || 1391 (custom_format == eFormatUnicode32) || 1392 (custom_format == eFormatUnsigned) || 1393 (custom_format == eFormatPointer) || 1394 (custom_format == eFormatComplexInteger) || 1395 (custom_format == eFormatComplex) || 1396 (custom_format == eFormatDefault)) // use the [] operator 1397 return false; 1398 } 1399 } 1400 1401 if (only_special) 1402 return false; 1403 1404 bool var_success = false; 1405 1406 { 1407 llvm::StringRef str; 1408 1409 // this is a local stream that we are using to ensure that the data pointed 1410 // to by cstr survives long enough for us to copy it to its destination - 1411 // it is necessary to have this temporary storage area for cases where our 1412 // desired output is not backed by some other longer-term storage 1413 StreamString strm; 1414 1415 if (custom_format != eFormatInvalid) 1416 SetFormat(custom_format); 1417 1418 switch (val_obj_display) { 1419 case eValueObjectRepresentationStyleValue: 1420 str = GetValueAsCString(); 1421 break; 1422 1423 case eValueObjectRepresentationStyleSummary: 1424 str = GetSummaryAsCString(); 1425 break; 1426 1427 case eValueObjectRepresentationStyleLanguageSpecific: 1428 str = GetObjectDescription(); 1429 break; 1430 1431 case eValueObjectRepresentationStyleLocation: 1432 str = GetLocationAsCString(); 1433 break; 1434 1435 case eValueObjectRepresentationStyleChildrenCount: 1436 strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren()); 1437 str = strm.GetString(); 1438 break; 1439 1440 case eValueObjectRepresentationStyleType: 1441 str = GetTypeName().GetStringRef(); 1442 break; 1443 1444 case eValueObjectRepresentationStyleName: 1445 str = GetName().GetStringRef(); 1446 break; 1447 1448 case eValueObjectRepresentationStyleExpressionPath: 1449 GetExpressionPath(strm); 1450 str = strm.GetString(); 1451 break; 1452 } 1453 1454 if (str.empty()) { 1455 if (val_obj_display == eValueObjectRepresentationStyleValue) 1456 str = GetSummaryAsCString(); 1457 else if (val_obj_display == eValueObjectRepresentationStyleSummary) { 1458 if (!CanProvideValue()) { 1459 strm.Printf("%s @ %s", GetTypeName().AsCString(), 1460 GetLocationAsCString()); 1461 str = strm.GetString(); 1462 } else 1463 str = GetValueAsCString(); 1464 } 1465 } 1466 1467 if (!str.empty()) 1468 s << str; 1469 else { 1470 if (m_error.Fail()) { 1471 if (do_dump_error) 1472 s.Printf("<%s>", m_error.AsCString()); 1473 else 1474 return false; 1475 } else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1476 s.PutCString("<no summary available>"); 1477 else if (val_obj_display == eValueObjectRepresentationStyleValue) 1478 s.PutCString("<no value available>"); 1479 else if (val_obj_display == 1480 eValueObjectRepresentationStyleLanguageSpecific) 1481 s.PutCString("<not a valid Objective-C object>"); // edit this if we 1482 // have other runtimes 1483 // that support a 1484 // description 1485 else 1486 s.PutCString("<no printable representation>"); 1487 } 1488 1489 // we should only return false here if we could not do *anything* even if 1490 // we have an error message as output, that's a success from our callers' 1491 // perspective, so return true 1492 var_success = true; 1493 1494 if (custom_format != eFormatInvalid) 1495 SetFormat(eFormatDefault); 1496 } 1497 1498 return var_success; 1499 } 1500 1501 addr_t ValueObject::GetAddressOf(bool scalar_is_load_address, 1502 AddressType *address_type) { 1503 // Can't take address of a bitfield 1504 if (IsBitfield()) 1505 return LLDB_INVALID_ADDRESS; 1506 1507 if (!UpdateValueIfNeeded(false)) 1508 return LLDB_INVALID_ADDRESS; 1509 1510 switch (m_value.GetValueType()) { 1511 case Value::eValueTypeScalar: 1512 case Value::eValueTypeVector: 1513 if (scalar_is_load_address) { 1514 if (address_type) 1515 *address_type = eAddressTypeLoad; 1516 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1517 } 1518 break; 1519 1520 case Value::eValueTypeLoadAddress: 1521 case Value::eValueTypeFileAddress: { 1522 if (address_type) 1523 *address_type = m_value.GetValueAddressType(); 1524 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1525 } break; 1526 case Value::eValueTypeHostAddress: { 1527 if (address_type) 1528 *address_type = m_value.GetValueAddressType(); 1529 return LLDB_INVALID_ADDRESS; 1530 } break; 1531 } 1532 if (address_type) 1533 *address_type = eAddressTypeInvalid; 1534 return LLDB_INVALID_ADDRESS; 1535 } 1536 1537 addr_t ValueObject::GetPointerValue(AddressType *address_type) { 1538 addr_t address = LLDB_INVALID_ADDRESS; 1539 if (address_type) 1540 *address_type = eAddressTypeInvalid; 1541 1542 if (!UpdateValueIfNeeded(false)) 1543 return address; 1544 1545 switch (m_value.GetValueType()) { 1546 case Value::eValueTypeScalar: 1547 case Value::eValueTypeVector: 1548 address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1549 break; 1550 1551 case Value::eValueTypeHostAddress: 1552 case Value::eValueTypeLoadAddress: 1553 case Value::eValueTypeFileAddress: { 1554 lldb::offset_t data_offset = 0; 1555 address = m_data.GetPointer(&data_offset); 1556 } break; 1557 } 1558 1559 if (address_type) 1560 *address_type = GetAddressTypeOfChildren(); 1561 1562 return address; 1563 } 1564 1565 bool ValueObject::SetValueFromCString(const char *value_str, Status &error) { 1566 error.Clear(); 1567 // Make sure our value is up to date first so that our location and location 1568 // type is valid. 1569 if (!UpdateValueIfNeeded(false)) { 1570 error.SetErrorString("unable to read value"); 1571 return false; 1572 } 1573 1574 uint64_t count = 0; 1575 const Encoding encoding = GetCompilerType().GetEncoding(count); 1576 1577 const size_t byte_size = GetByteSize(); 1578 1579 Value::ValueType value_type = m_value.GetValueType(); 1580 1581 if (value_type == Value::eValueTypeScalar) { 1582 // If the value is already a scalar, then let the scalar change itself: 1583 m_value.GetScalar().SetValueFromCString(value_str, encoding, byte_size); 1584 } else if (byte_size <= 16) { 1585 // If the value fits in a scalar, then make a new scalar and again let the 1586 // scalar code do the conversion, then figure out where to put the new 1587 // value. 1588 Scalar new_scalar; 1589 error = new_scalar.SetValueFromCString(value_str, encoding, byte_size); 1590 if (error.Success()) { 1591 switch (value_type) { 1592 case Value::eValueTypeLoadAddress: { 1593 // If it is a load address, then the scalar value is the storage 1594 // location of the data, and we have to shove this value down to that 1595 // load location. 1596 ExecutionContext exe_ctx(GetExecutionContextRef()); 1597 Process *process = exe_ctx.GetProcessPtr(); 1598 if (process) { 1599 addr_t target_addr = 1600 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1601 size_t bytes_written = process->WriteScalarToMemory( 1602 target_addr, new_scalar, byte_size, error); 1603 if (!error.Success()) 1604 return false; 1605 if (bytes_written != byte_size) { 1606 error.SetErrorString("unable to write value to memory"); 1607 return false; 1608 } 1609 } 1610 } break; 1611 case Value::eValueTypeHostAddress: { 1612 // If it is a host address, then we stuff the scalar as a DataBuffer 1613 // into the Value's data. 1614 DataExtractor new_data; 1615 new_data.SetByteOrder(m_data.GetByteOrder()); 1616 1617 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 1618 m_data.SetData(buffer_sp, 0); 1619 bool success = new_scalar.GetData(new_data); 1620 if (success) { 1621 new_data.CopyByteOrderedData( 1622 0, byte_size, const_cast<uint8_t *>(m_data.GetDataStart()), 1623 byte_size, m_data.GetByteOrder()); 1624 } 1625 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1626 1627 } break; 1628 case Value::eValueTypeFileAddress: 1629 case Value::eValueTypeScalar: 1630 case Value::eValueTypeVector: 1631 break; 1632 } 1633 } else { 1634 return false; 1635 } 1636 } else { 1637 // We don't support setting things bigger than a scalar at present. 1638 error.SetErrorString("unable to write aggregate data type"); 1639 return false; 1640 } 1641 1642 // If we have reached this point, then we have successfully changed the 1643 // value. 1644 SetNeedsUpdate(); 1645 return true; 1646 } 1647 1648 bool ValueObject::GetDeclaration(Declaration &decl) { 1649 decl.Clear(); 1650 return false; 1651 } 1652 1653 ConstString ValueObject::GetTypeName() { 1654 return GetCompilerType().GetConstTypeName(); 1655 } 1656 1657 ConstString ValueObject::GetDisplayTypeName() { return GetTypeName(); } 1658 1659 ConstString ValueObject::GetQualifiedTypeName() { 1660 return GetCompilerType().GetConstQualifiedTypeName(); 1661 } 1662 1663 LanguageType ValueObject::GetObjectRuntimeLanguage() { 1664 return GetCompilerType().GetMinimumLanguage(); 1665 } 1666 1667 void ValueObject::AddSyntheticChild(ConstString key, 1668 ValueObject *valobj) { 1669 m_synthetic_children[key] = valobj; 1670 } 1671 1672 ValueObjectSP ValueObject::GetSyntheticChild(ConstString key) const { 1673 ValueObjectSP synthetic_child_sp; 1674 std::map<ConstString, ValueObject *>::const_iterator pos = 1675 m_synthetic_children.find(key); 1676 if (pos != m_synthetic_children.end()) 1677 synthetic_child_sp = pos->second->GetSP(); 1678 return synthetic_child_sp; 1679 } 1680 1681 uint32_t 1682 ValueObject::GetTypeInfo(CompilerType *pointee_or_element_compiler_type) { 1683 return GetCompilerType().GetTypeInfo(pointee_or_element_compiler_type); 1684 } 1685 1686 bool ValueObject::IsPointerType() { return GetCompilerType().IsPointerType(); } 1687 1688 bool ValueObject::IsArrayType() { 1689 return GetCompilerType().IsArrayType(nullptr, nullptr, nullptr); 1690 } 1691 1692 bool ValueObject::IsScalarType() { return GetCompilerType().IsScalarType(); } 1693 1694 bool ValueObject::IsIntegerType(bool &is_signed) { 1695 return GetCompilerType().IsIntegerType(is_signed); 1696 } 1697 1698 bool ValueObject::IsPointerOrReferenceType() { 1699 return GetCompilerType().IsPointerOrReferenceType(); 1700 } 1701 1702 bool ValueObject::IsPossibleDynamicType() { 1703 ExecutionContext exe_ctx(GetExecutionContextRef()); 1704 Process *process = exe_ctx.GetProcessPtr(); 1705 if (process) 1706 return process->IsPossibleDynamicValue(*this); 1707 else 1708 return GetCompilerType().IsPossibleDynamicType(nullptr, true, true); 1709 } 1710 1711 bool ValueObject::IsRuntimeSupportValue() { 1712 Process *process(GetProcessSP().get()); 1713 if (!process) 1714 return false; 1715 1716 // We trust the the compiler did the right thing and marked runtime support 1717 // values as artificial. 1718 if (!GetVariable() || !GetVariable()->IsArtificial()) 1719 return false; 1720 1721 if (auto *runtime = process->GetLanguageRuntime(GetVariable()->GetLanguage())) 1722 if (runtime->IsWhitelistedRuntimeValue(GetName())) 1723 return false; 1724 1725 return true; 1726 } 1727 1728 bool ValueObject::IsNilReference() { 1729 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1730 return language->IsNilReference(*this); 1731 } 1732 return false; 1733 } 1734 1735 bool ValueObject::IsUninitializedReference() { 1736 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1737 return language->IsUninitializedReference(*this); 1738 } 1739 return false; 1740 } 1741 1742 // This allows you to create an array member using and index that doesn't not 1743 // fall in the normal bounds of the array. Many times structure can be defined 1744 // as: struct Collection { 1745 // uint32_t item_count; 1746 // Item item_array[0]; 1747 // }; 1748 // The size of the "item_array" is 1, but many times in practice there are more 1749 // items in "item_array". 1750 1751 ValueObjectSP ValueObject::GetSyntheticArrayMember(size_t index, 1752 bool can_create) { 1753 ValueObjectSP synthetic_child_sp; 1754 if (IsPointerType() || IsArrayType()) { 1755 char index_str[64]; 1756 snprintf(index_str, sizeof(index_str), "[%" PRIu64 "]", (uint64_t)index); 1757 ConstString index_const_str(index_str); 1758 // Check if we have already created a synthetic array member in this valid 1759 // object. If we have we will re-use it. 1760 synthetic_child_sp = GetSyntheticChild(index_const_str); 1761 if (!synthetic_child_sp) { 1762 ValueObject *synthetic_child; 1763 // We haven't made a synthetic array member for INDEX yet, so lets make 1764 // one and cache it for any future reference. 1765 synthetic_child = CreateChildAtIndex(0, true, index); 1766 1767 // Cache the value if we got one back... 1768 if (synthetic_child) { 1769 AddSyntheticChild(index_const_str, synthetic_child); 1770 synthetic_child_sp = synthetic_child->GetSP(); 1771 synthetic_child_sp->SetName(ConstString(index_str)); 1772 synthetic_child_sp->m_is_array_item_for_pointer = true; 1773 } 1774 } 1775 } 1776 return synthetic_child_sp; 1777 } 1778 1779 ValueObjectSP ValueObject::GetSyntheticBitFieldChild(uint32_t from, uint32_t to, 1780 bool can_create) { 1781 ValueObjectSP synthetic_child_sp; 1782 if (IsScalarType()) { 1783 char index_str[64]; 1784 snprintf(index_str, sizeof(index_str), "[%i-%i]", from, to); 1785 ConstString index_const_str(index_str); 1786 // Check if we have already created a synthetic array member in this valid 1787 // object. If we have we will re-use it. 1788 synthetic_child_sp = GetSyntheticChild(index_const_str); 1789 if (!synthetic_child_sp) { 1790 uint32_t bit_field_size = to - from + 1; 1791 uint32_t bit_field_offset = from; 1792 if (GetDataExtractor().GetByteOrder() == eByteOrderBig) 1793 bit_field_offset = 1794 GetByteSize() * 8 - bit_field_size - bit_field_offset; 1795 // We haven't made a synthetic array member for INDEX yet, so lets make 1796 // one and cache it for any future reference. 1797 ValueObjectChild *synthetic_child = new ValueObjectChild( 1798 *this, GetCompilerType(), index_const_str, GetByteSize(), 0, 1799 bit_field_size, bit_field_offset, false, false, eAddressTypeInvalid, 1800 0); 1801 1802 // Cache the value if we got one back... 1803 if (synthetic_child) { 1804 AddSyntheticChild(index_const_str, synthetic_child); 1805 synthetic_child_sp = synthetic_child->GetSP(); 1806 synthetic_child_sp->SetName(ConstString(index_str)); 1807 synthetic_child_sp->m_is_bitfield_for_scalar = true; 1808 } 1809 } 1810 } 1811 return synthetic_child_sp; 1812 } 1813 1814 ValueObjectSP ValueObject::GetSyntheticChildAtOffset( 1815 uint32_t offset, const CompilerType &type, bool can_create, 1816 ConstString name_const_str) { 1817 1818 ValueObjectSP synthetic_child_sp; 1819 1820 if (name_const_str.IsEmpty()) { 1821 char name_str[64]; 1822 snprintf(name_str, sizeof(name_str), "@%i", offset); 1823 name_const_str.SetCString(name_str); 1824 } 1825 1826 // Check if we have already created a synthetic array member in this valid 1827 // object. If we have we will re-use it. 1828 synthetic_child_sp = GetSyntheticChild(name_const_str); 1829 1830 if (synthetic_child_sp.get()) 1831 return synthetic_child_sp; 1832 1833 if (!can_create) 1834 return {}; 1835 1836 ExecutionContext exe_ctx(GetExecutionContextRef()); 1837 llvm::Optional<uint64_t> size = 1838 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1839 if (!size) 1840 return {}; 1841 ValueObjectChild *synthetic_child = 1842 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1843 false, false, eAddressTypeInvalid, 0); 1844 if (synthetic_child) { 1845 AddSyntheticChild(name_const_str, synthetic_child); 1846 synthetic_child_sp = synthetic_child->GetSP(); 1847 synthetic_child_sp->SetName(name_const_str); 1848 synthetic_child_sp->m_is_child_at_offset = true; 1849 } 1850 return synthetic_child_sp; 1851 } 1852 1853 ValueObjectSP ValueObject::GetSyntheticBase(uint32_t offset, 1854 const CompilerType &type, 1855 bool can_create, 1856 ConstString name_const_str) { 1857 ValueObjectSP synthetic_child_sp; 1858 1859 if (name_const_str.IsEmpty()) { 1860 char name_str[128]; 1861 snprintf(name_str, sizeof(name_str), "base%s@%i", 1862 type.GetTypeName().AsCString("<unknown>"), offset); 1863 name_const_str.SetCString(name_str); 1864 } 1865 1866 // Check if we have already created a synthetic array member in this valid 1867 // object. If we have we will re-use it. 1868 synthetic_child_sp = GetSyntheticChild(name_const_str); 1869 1870 if (synthetic_child_sp.get()) 1871 return synthetic_child_sp; 1872 1873 if (!can_create) 1874 return {}; 1875 1876 const bool is_base_class = true; 1877 1878 ExecutionContext exe_ctx(GetExecutionContextRef()); 1879 llvm::Optional<uint64_t> size = 1880 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1881 if (!size) 1882 return {}; 1883 ValueObjectChild *synthetic_child = 1884 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1885 is_base_class, false, eAddressTypeInvalid, 0); 1886 if (synthetic_child) { 1887 AddSyntheticChild(name_const_str, synthetic_child); 1888 synthetic_child_sp = synthetic_child->GetSP(); 1889 synthetic_child_sp->SetName(name_const_str); 1890 } 1891 return synthetic_child_sp; 1892 } 1893 1894 // your expression path needs to have a leading . or -> (unless it somehow 1895 // "looks like" an array, in which case it has a leading [ symbol). while the [ 1896 // is meaningful and should be shown to the user, . and -> are just parser 1897 // design, but by no means added information for the user.. strip them off 1898 static const char *SkipLeadingExpressionPathSeparators(const char *expression) { 1899 if (!expression || !expression[0]) 1900 return expression; 1901 if (expression[0] == '.') 1902 return expression + 1; 1903 if (expression[0] == '-' && expression[1] == '>') 1904 return expression + 2; 1905 return expression; 1906 } 1907 1908 ValueObjectSP 1909 ValueObject::GetSyntheticExpressionPathChild(const char *expression, 1910 bool can_create) { 1911 ValueObjectSP synthetic_child_sp; 1912 ConstString name_const_string(expression); 1913 // Check if we have already created a synthetic array member in this valid 1914 // object. If we have we will re-use it. 1915 synthetic_child_sp = GetSyntheticChild(name_const_string); 1916 if (!synthetic_child_sp) { 1917 // We haven't made a synthetic array member for expression yet, so lets 1918 // make one and cache it for any future reference. 1919 synthetic_child_sp = GetValueForExpressionPath( 1920 expression, nullptr, nullptr, 1921 GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal( 1922 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 1923 None)); 1924 1925 // Cache the value if we got one back... 1926 if (synthetic_child_sp.get()) { 1927 // FIXME: this causes a "real" child to end up with its name changed to 1928 // the contents of expression 1929 AddSyntheticChild(name_const_string, synthetic_child_sp.get()); 1930 synthetic_child_sp->SetName( 1931 ConstString(SkipLeadingExpressionPathSeparators(expression))); 1932 } 1933 } 1934 return synthetic_child_sp; 1935 } 1936 1937 void ValueObject::CalculateSyntheticValue(bool use_synthetic) { 1938 if (!use_synthetic) 1939 return; 1940 1941 TargetSP target_sp(GetTargetSP()); 1942 if (target_sp && !target_sp->GetEnableSyntheticValue()) { 1943 m_synthetic_value = nullptr; 1944 return; 1945 } 1946 1947 lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp); 1948 1949 if (!UpdateFormatsIfNeeded() && m_synthetic_value) 1950 return; 1951 1952 if (m_synthetic_children_sp.get() == nullptr) 1953 return; 1954 1955 if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value) 1956 return; 1957 1958 m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp); 1959 } 1960 1961 void ValueObject::CalculateDynamicValue(DynamicValueType use_dynamic) { 1962 if (use_dynamic == eNoDynamicValues) 1963 return; 1964 1965 if (!m_dynamic_value && !IsDynamic()) { 1966 ExecutionContext exe_ctx(GetExecutionContextRef()); 1967 Process *process = exe_ctx.GetProcessPtr(); 1968 if (process && process->IsPossibleDynamicValue(*this)) { 1969 ClearDynamicTypeInformation(); 1970 m_dynamic_value = new ValueObjectDynamicValue(*this, use_dynamic); 1971 } 1972 } 1973 } 1974 1975 ValueObjectSP ValueObject::GetDynamicValue(DynamicValueType use_dynamic) { 1976 if (use_dynamic == eNoDynamicValues) 1977 return ValueObjectSP(); 1978 1979 if (!IsDynamic() && m_dynamic_value == nullptr) { 1980 CalculateDynamicValue(use_dynamic); 1981 } 1982 if (m_dynamic_value) 1983 return m_dynamic_value->GetSP(); 1984 else 1985 return ValueObjectSP(); 1986 } 1987 1988 ValueObjectSP ValueObject::GetStaticValue() { return GetSP(); } 1989 1990 lldb::ValueObjectSP ValueObject::GetNonSyntheticValue() { return GetSP(); } 1991 1992 ValueObjectSP ValueObject::GetSyntheticValue(bool use_synthetic) { 1993 if (!use_synthetic) 1994 return ValueObjectSP(); 1995 1996 CalculateSyntheticValue(use_synthetic); 1997 1998 if (m_synthetic_value) 1999 return m_synthetic_value->GetSP(); 2000 else 2001 return ValueObjectSP(); 2002 } 2003 2004 bool ValueObject::HasSyntheticValue() { 2005 UpdateFormatsIfNeeded(); 2006 2007 if (m_synthetic_children_sp.get() == nullptr) 2008 return false; 2009 2010 CalculateSyntheticValue(true); 2011 2012 return m_synthetic_value != nullptr; 2013 } 2014 2015 ValueObject *ValueObject::GetNonBaseClassParent() { 2016 if (GetParent()) { 2017 if (GetParent()->IsBaseClass()) 2018 return GetParent()->GetNonBaseClassParent(); 2019 else 2020 return GetParent(); 2021 } 2022 return nullptr; 2023 } 2024 2025 bool ValueObject::IsBaseClass(uint32_t &depth) { 2026 if (!IsBaseClass()) { 2027 depth = 0; 2028 return false; 2029 } 2030 if (GetParent()) { 2031 GetParent()->IsBaseClass(depth); 2032 depth = depth + 1; 2033 return true; 2034 } 2035 // TODO: a base of no parent? weird.. 2036 depth = 1; 2037 return true; 2038 } 2039 2040 void ValueObject::GetExpressionPath(Stream &s, 2041 GetExpressionPathFormat epformat) { 2042 // synthetic children do not actually "exist" as part of the hierarchy, and 2043 // sometimes they are consed up in ways that don't make sense from an 2044 // underlying language/API standpoint. So, use a special code path here to 2045 // return something that can hopefully be used in expression 2046 if (m_is_synthetic_children_generated) { 2047 UpdateValueIfNeeded(); 2048 2049 if (m_value.GetValueType() == Value::eValueTypeLoadAddress) { 2050 if (IsPointerOrReferenceType()) { 2051 s.Printf("((%s)0x%" PRIx64 ")", GetTypeName().AsCString("void"), 2052 GetValueAsUnsigned(0)); 2053 return; 2054 } else { 2055 uint64_t load_addr = 2056 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2057 if (load_addr != LLDB_INVALID_ADDRESS) { 2058 s.Printf("(*( (%s *)0x%" PRIx64 "))", GetTypeName().AsCString("void"), 2059 load_addr); 2060 return; 2061 } 2062 } 2063 } 2064 2065 if (CanProvideValue()) { 2066 s.Printf("((%s)%s)", GetTypeName().AsCString("void"), 2067 GetValueAsCString()); 2068 return; 2069 } 2070 2071 return; 2072 } 2073 2074 const bool is_deref_of_parent = IsDereferenceOfParent(); 2075 2076 if (is_deref_of_parent && 2077 epformat == eGetExpressionPathFormatDereferencePointers) { 2078 // this is the original format of GetExpressionPath() producing code like 2079 // *(a_ptr).memberName, which is entirely fine, until you put this into 2080 // StackFrame::GetValueForVariableExpressionPath() which prefers to see 2081 // a_ptr->memberName. the eHonorPointers mode is meant to produce strings 2082 // in this latter format 2083 s.PutCString("*("); 2084 } 2085 2086 ValueObject *parent = GetParent(); 2087 2088 if (parent) 2089 parent->GetExpressionPath(s, epformat); 2090 2091 // if we are a deref_of_parent just because we are synthetic array members 2092 // made up to allow ptr[%d] syntax to work in variable printing, then add our 2093 // name ([%d]) to the expression path 2094 if (m_is_array_item_for_pointer && 2095 epformat == eGetExpressionPathFormatHonorPointers) 2096 s.PutCString(m_name.AsCString()); 2097 2098 if (!IsBaseClass()) { 2099 if (!is_deref_of_parent) { 2100 ValueObject *non_base_class_parent = GetNonBaseClassParent(); 2101 if (non_base_class_parent && 2102 !non_base_class_parent->GetName().IsEmpty()) { 2103 CompilerType non_base_class_parent_compiler_type = 2104 non_base_class_parent->GetCompilerType(); 2105 if (non_base_class_parent_compiler_type) { 2106 if (parent && parent->IsDereferenceOfParent() && 2107 epformat == eGetExpressionPathFormatHonorPointers) { 2108 s.PutCString("->"); 2109 } else { 2110 const uint32_t non_base_class_parent_type_info = 2111 non_base_class_parent_compiler_type.GetTypeInfo(); 2112 2113 if (non_base_class_parent_type_info & eTypeIsPointer) { 2114 s.PutCString("->"); 2115 } else if ((non_base_class_parent_type_info & eTypeHasChildren) && 2116 !(non_base_class_parent_type_info & eTypeIsArray)) { 2117 s.PutChar('.'); 2118 } 2119 } 2120 } 2121 } 2122 2123 const char *name = GetName().GetCString(); 2124 if (name) 2125 s.PutCString(name); 2126 } 2127 } 2128 2129 if (is_deref_of_parent && 2130 epformat == eGetExpressionPathFormatDereferencePointers) { 2131 s.PutChar(')'); 2132 } 2133 } 2134 2135 ValueObjectSP ValueObject::GetValueForExpressionPath( 2136 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2137 ExpressionPathEndResultType *final_value_type, 2138 const GetValueForExpressionPathOptions &options, 2139 ExpressionPathAftermath *final_task_on_target) { 2140 2141 ExpressionPathScanEndReason dummy_reason_to_stop = 2142 ValueObject::eExpressionPathScanEndReasonUnknown; 2143 ExpressionPathEndResultType dummy_final_value_type = 2144 ValueObject::eExpressionPathEndResultTypeInvalid; 2145 ExpressionPathAftermath dummy_final_task_on_target = 2146 ValueObject::eExpressionPathAftermathNothing; 2147 2148 ValueObjectSP ret_val = GetValueForExpressionPath_Impl( 2149 expression, reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2150 final_value_type ? final_value_type : &dummy_final_value_type, options, 2151 final_task_on_target ? final_task_on_target 2152 : &dummy_final_task_on_target); 2153 2154 if (!final_task_on_target || 2155 *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2156 return ret_val; 2157 2158 if (ret_val.get() && 2159 ((final_value_type ? *final_value_type : dummy_final_value_type) == 2160 eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress 2161 // of plain objects 2162 { 2163 if ((final_task_on_target ? *final_task_on_target 2164 : dummy_final_task_on_target) == 2165 ValueObject::eExpressionPathAftermathDereference) { 2166 Status error; 2167 ValueObjectSP final_value = ret_val->Dereference(error); 2168 if (error.Fail() || !final_value.get()) { 2169 if (reason_to_stop) 2170 *reason_to_stop = 2171 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2172 if (final_value_type) 2173 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2174 return ValueObjectSP(); 2175 } else { 2176 if (final_task_on_target) 2177 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2178 return final_value; 2179 } 2180 } 2181 if (*final_task_on_target == 2182 ValueObject::eExpressionPathAftermathTakeAddress) { 2183 Status error; 2184 ValueObjectSP final_value = ret_val->AddressOf(error); 2185 if (error.Fail() || !final_value.get()) { 2186 if (reason_to_stop) 2187 *reason_to_stop = 2188 ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2189 if (final_value_type) 2190 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2191 return ValueObjectSP(); 2192 } else { 2193 if (final_task_on_target) 2194 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2195 return final_value; 2196 } 2197 } 2198 } 2199 return ret_val; // final_task_on_target will still have its original value, so 2200 // you know I did not do it 2201 } 2202 2203 ValueObjectSP ValueObject::GetValueForExpressionPath_Impl( 2204 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2205 ExpressionPathEndResultType *final_result, 2206 const GetValueForExpressionPathOptions &options, 2207 ExpressionPathAftermath *what_next) { 2208 ValueObjectSP root = GetSP(); 2209 2210 if (!root) 2211 return nullptr; 2212 2213 llvm::StringRef remainder = expression; 2214 2215 while (true) { 2216 llvm::StringRef temp_expression = remainder; 2217 2218 CompilerType root_compiler_type = root->GetCompilerType(); 2219 CompilerType pointee_compiler_type; 2220 Flags pointee_compiler_type_info; 2221 2222 Flags root_compiler_type_info( 2223 root_compiler_type.GetTypeInfo(&pointee_compiler_type)); 2224 if (pointee_compiler_type) 2225 pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo()); 2226 2227 if (temp_expression.empty()) { 2228 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2229 return root; 2230 } 2231 2232 switch (temp_expression.front()) { 2233 case '-': { 2234 temp_expression = temp_expression.drop_front(); 2235 if (options.m_check_dot_vs_arrow_syntax && 2236 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2237 // use -> on a 2238 // non-pointer and I 2239 // must catch the error 2240 { 2241 *reason_to_stop = 2242 ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot; 2243 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2244 return ValueObjectSP(); 2245 } 2246 if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to 2247 // extract an ObjC IVar 2248 // when this is forbidden 2249 root_compiler_type_info.Test(eTypeIsPointer) && 2250 options.m_no_fragile_ivar) { 2251 *reason_to_stop = 2252 ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed; 2253 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2254 return ValueObjectSP(); 2255 } 2256 if (!temp_expression.startswith(">")) { 2257 *reason_to_stop = 2258 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2259 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2260 return ValueObjectSP(); 2261 } 2262 } 2263 LLVM_FALLTHROUGH; 2264 case '.': // or fallthrough from -> 2265 { 2266 if (options.m_check_dot_vs_arrow_syntax && 2267 temp_expression.front() == '.' && 2268 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2269 // use . on a pointer 2270 // and I must catch the 2271 // error 2272 { 2273 *reason_to_stop = 2274 ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow; 2275 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2276 return nullptr; 2277 } 2278 temp_expression = temp_expression.drop_front(); // skip . or > 2279 2280 size_t next_sep_pos = temp_expression.find_first_of("-.[", 1); 2281 ConstString child_name; 2282 if (next_sep_pos == llvm::StringRef::npos) // if no other separator just 2283 // expand this last layer 2284 { 2285 child_name.SetString(temp_expression); 2286 ValueObjectSP child_valobj_sp = 2287 root->GetChildMemberWithName(child_name, true); 2288 2289 if (child_valobj_sp.get()) // we know we are done, so just return 2290 { 2291 *reason_to_stop = 2292 ValueObject::eExpressionPathScanEndReasonEndOfString; 2293 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2294 return child_valobj_sp; 2295 } else { 2296 switch (options.m_synthetic_children_traversal) { 2297 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2298 None: 2299 break; 2300 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2301 FromSynthetic: 2302 if (root->IsSynthetic()) { 2303 child_valobj_sp = root->GetNonSyntheticValue(); 2304 if (child_valobj_sp.get()) 2305 child_valobj_sp = 2306 child_valobj_sp->GetChildMemberWithName(child_name, true); 2307 } 2308 break; 2309 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2310 ToSynthetic: 2311 if (!root->IsSynthetic()) { 2312 child_valobj_sp = root->GetSyntheticValue(); 2313 if (child_valobj_sp.get()) 2314 child_valobj_sp = 2315 child_valobj_sp->GetChildMemberWithName(child_name, true); 2316 } 2317 break; 2318 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2319 Both: 2320 if (root->IsSynthetic()) { 2321 child_valobj_sp = root->GetNonSyntheticValue(); 2322 if (child_valobj_sp.get()) 2323 child_valobj_sp = 2324 child_valobj_sp->GetChildMemberWithName(child_name, true); 2325 } else { 2326 child_valobj_sp = root->GetSyntheticValue(); 2327 if (child_valobj_sp.get()) 2328 child_valobj_sp = 2329 child_valobj_sp->GetChildMemberWithName(child_name, true); 2330 } 2331 break; 2332 } 2333 } 2334 2335 // if we are here and options.m_no_synthetic_children is true, 2336 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2337 // branch, and return an error 2338 if (child_valobj_sp.get()) // if it worked, just return 2339 { 2340 *reason_to_stop = 2341 ValueObject::eExpressionPathScanEndReasonEndOfString; 2342 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2343 return child_valobj_sp; 2344 } else { 2345 *reason_to_stop = 2346 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2347 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2348 return nullptr; 2349 } 2350 } else // other layers do expand 2351 { 2352 llvm::StringRef next_separator = temp_expression.substr(next_sep_pos); 2353 2354 child_name.SetString(temp_expression.slice(0, next_sep_pos)); 2355 2356 ValueObjectSP child_valobj_sp = 2357 root->GetChildMemberWithName(child_name, true); 2358 if (child_valobj_sp.get()) // store the new root and move on 2359 { 2360 root = child_valobj_sp; 2361 remainder = next_separator; 2362 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2363 continue; 2364 } else { 2365 switch (options.m_synthetic_children_traversal) { 2366 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2367 None: 2368 break; 2369 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2370 FromSynthetic: 2371 if (root->IsSynthetic()) { 2372 child_valobj_sp = root->GetNonSyntheticValue(); 2373 if (child_valobj_sp.get()) 2374 child_valobj_sp = 2375 child_valobj_sp->GetChildMemberWithName(child_name, true); 2376 } 2377 break; 2378 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2379 ToSynthetic: 2380 if (!root->IsSynthetic()) { 2381 child_valobj_sp = root->GetSyntheticValue(); 2382 if (child_valobj_sp.get()) 2383 child_valobj_sp = 2384 child_valobj_sp->GetChildMemberWithName(child_name, true); 2385 } 2386 break; 2387 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2388 Both: 2389 if (root->IsSynthetic()) { 2390 child_valobj_sp = root->GetNonSyntheticValue(); 2391 if (child_valobj_sp.get()) 2392 child_valobj_sp = 2393 child_valobj_sp->GetChildMemberWithName(child_name, true); 2394 } else { 2395 child_valobj_sp = root->GetSyntheticValue(); 2396 if (child_valobj_sp.get()) 2397 child_valobj_sp = 2398 child_valobj_sp->GetChildMemberWithName(child_name, true); 2399 } 2400 break; 2401 } 2402 } 2403 2404 // if we are here and options.m_no_synthetic_children is true, 2405 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2406 // branch, and return an error 2407 if (child_valobj_sp.get()) // if it worked, move on 2408 { 2409 root = child_valobj_sp; 2410 remainder = next_separator; 2411 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2412 continue; 2413 } else { 2414 *reason_to_stop = 2415 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2416 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2417 return nullptr; 2418 } 2419 } 2420 break; 2421 } 2422 case '[': { 2423 if (!root_compiler_type_info.Test(eTypeIsArray) && 2424 !root_compiler_type_info.Test(eTypeIsPointer) && 2425 !root_compiler_type_info.Test( 2426 eTypeIsVector)) // if this is not a T[] nor a T* 2427 { 2428 if (!root_compiler_type_info.Test( 2429 eTypeIsScalar)) // if this is not even a scalar... 2430 { 2431 if (options.m_synthetic_children_traversal == 2432 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2433 None) // ...only chance left is synthetic 2434 { 2435 *reason_to_stop = 2436 ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 2437 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2438 return ValueObjectSP(); 2439 } 2440 } else if (!options.m_allow_bitfields_syntax) // if this is a scalar, 2441 // check that we can 2442 // expand bitfields 2443 { 2444 *reason_to_stop = 2445 ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 2446 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2447 return ValueObjectSP(); 2448 } 2449 } 2450 if (temp_expression[1] == 2451 ']') // if this is an unbounded range it only works for arrays 2452 { 2453 if (!root_compiler_type_info.Test(eTypeIsArray)) { 2454 *reason_to_stop = 2455 ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 2456 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2457 return nullptr; 2458 } else // even if something follows, we cannot expand unbounded ranges, 2459 // just let the caller do it 2460 { 2461 *reason_to_stop = 2462 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2463 *final_result = 2464 ValueObject::eExpressionPathEndResultTypeUnboundedRange; 2465 return root; 2466 } 2467 } 2468 2469 size_t close_bracket_position = temp_expression.find(']', 1); 2470 if (close_bracket_position == 2471 llvm::StringRef::npos) // if there is no ], this is a syntax error 2472 { 2473 *reason_to_stop = 2474 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2475 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2476 return nullptr; 2477 } 2478 2479 llvm::StringRef bracket_expr = 2480 temp_expression.slice(1, close_bracket_position); 2481 2482 // If this was an empty expression it would have been caught by the if 2483 // above. 2484 assert(!bracket_expr.empty()); 2485 2486 if (!bracket_expr.contains('-')) { 2487 // if no separator, this is of the form [N]. Note that this cannot be 2488 // an unbounded range of the form [], because that case was handled 2489 // above with an unconditional return. 2490 unsigned long index = 0; 2491 if (bracket_expr.getAsInteger(0, index)) { 2492 *reason_to_stop = 2493 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2494 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2495 return nullptr; 2496 } 2497 2498 // from here on we do have a valid index 2499 if (root_compiler_type_info.Test(eTypeIsArray)) { 2500 ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true); 2501 if (!child_valobj_sp) 2502 child_valobj_sp = root->GetSyntheticArrayMember(index, true); 2503 if (!child_valobj_sp) 2504 if (root->HasSyntheticValue() && 2505 root->GetSyntheticValue()->GetNumChildren() > index) 2506 child_valobj_sp = 2507 root->GetSyntheticValue()->GetChildAtIndex(index, true); 2508 if (child_valobj_sp) { 2509 root = child_valobj_sp; 2510 remainder = 2511 temp_expression.substr(close_bracket_position + 1); // skip ] 2512 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2513 continue; 2514 } else { 2515 *reason_to_stop = 2516 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2517 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2518 return nullptr; 2519 } 2520 } else if (root_compiler_type_info.Test(eTypeIsPointer)) { 2521 if (*what_next == 2522 ValueObject:: 2523 eExpressionPathAftermathDereference && // if this is a 2524 // ptr-to-scalar, I 2525 // am accessing it 2526 // by index and I 2527 // would have 2528 // deref'ed anyway, 2529 // then do it now 2530 // and use this as 2531 // a bitfield 2532 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2533 Status error; 2534 root = root->Dereference(error); 2535 if (error.Fail() || !root) { 2536 *reason_to_stop = 2537 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2538 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2539 return nullptr; 2540 } else { 2541 *what_next = eExpressionPathAftermathNothing; 2542 continue; 2543 } 2544 } else { 2545 if (root->GetCompilerType().GetMinimumLanguage() == 2546 eLanguageTypeObjC && 2547 pointee_compiler_type_info.AllClear(eTypeIsPointer) && 2548 root->HasSyntheticValue() && 2549 (options.m_synthetic_children_traversal == 2550 GetValueForExpressionPathOptions:: 2551 SyntheticChildrenTraversal::ToSynthetic || 2552 options.m_synthetic_children_traversal == 2553 GetValueForExpressionPathOptions:: 2554 SyntheticChildrenTraversal::Both)) { 2555 root = root->GetSyntheticValue()->GetChildAtIndex(index, true); 2556 } else 2557 root = root->GetSyntheticArrayMember(index, true); 2558 if (!root) { 2559 *reason_to_stop = 2560 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2561 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2562 return nullptr; 2563 } else { 2564 remainder = 2565 temp_expression.substr(close_bracket_position + 1); // skip ] 2566 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2567 continue; 2568 } 2569 } 2570 } else if (root_compiler_type_info.Test(eTypeIsScalar)) { 2571 root = root->GetSyntheticBitFieldChild(index, index, true); 2572 if (!root) { 2573 *reason_to_stop = 2574 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2575 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2576 return nullptr; 2577 } else // we do not know how to expand members of bitfields, so we 2578 // just return and let the caller do any further processing 2579 { 2580 *reason_to_stop = ValueObject:: 2581 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2582 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2583 return root; 2584 } 2585 } else if (root_compiler_type_info.Test(eTypeIsVector)) { 2586 root = root->GetChildAtIndex(index, true); 2587 if (!root) { 2588 *reason_to_stop = 2589 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2590 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2591 return ValueObjectSP(); 2592 } else { 2593 remainder = 2594 temp_expression.substr(close_bracket_position + 1); // skip ] 2595 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2596 continue; 2597 } 2598 } else if (options.m_synthetic_children_traversal == 2599 GetValueForExpressionPathOptions:: 2600 SyntheticChildrenTraversal::ToSynthetic || 2601 options.m_synthetic_children_traversal == 2602 GetValueForExpressionPathOptions:: 2603 SyntheticChildrenTraversal::Both) { 2604 if (root->HasSyntheticValue()) 2605 root = root->GetSyntheticValue(); 2606 else if (!root->IsSynthetic()) { 2607 *reason_to_stop = 2608 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2609 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2610 return nullptr; 2611 } 2612 // if we are here, then root itself is a synthetic VO.. should be 2613 // good to go 2614 2615 if (!root) { 2616 *reason_to_stop = 2617 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2618 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2619 return nullptr; 2620 } 2621 root = root->GetChildAtIndex(index, true); 2622 if (!root) { 2623 *reason_to_stop = 2624 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2625 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2626 return nullptr; 2627 } else { 2628 remainder = 2629 temp_expression.substr(close_bracket_position + 1); // skip ] 2630 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2631 continue; 2632 } 2633 } else { 2634 *reason_to_stop = 2635 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2636 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2637 return nullptr; 2638 } 2639 } else { 2640 // we have a low and a high index 2641 llvm::StringRef sleft, sright; 2642 unsigned long low_index, high_index; 2643 std::tie(sleft, sright) = bracket_expr.split('-'); 2644 if (sleft.getAsInteger(0, low_index) || 2645 sright.getAsInteger(0, high_index)) { 2646 *reason_to_stop = 2647 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2648 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2649 return nullptr; 2650 } 2651 2652 if (low_index > high_index) // swap indices if required 2653 std::swap(low_index, high_index); 2654 2655 if (root_compiler_type_info.Test( 2656 eTypeIsScalar)) // expansion only works for scalars 2657 { 2658 root = root->GetSyntheticBitFieldChild(low_index, high_index, true); 2659 if (!root) { 2660 *reason_to_stop = 2661 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2662 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2663 return nullptr; 2664 } else { 2665 *reason_to_stop = ValueObject:: 2666 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2667 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2668 return root; 2669 } 2670 } else if (root_compiler_type_info.Test( 2671 eTypeIsPointer) && // if this is a ptr-to-scalar, I am 2672 // accessing it by index and I would 2673 // have deref'ed anyway, then do it 2674 // now and use this as a bitfield 2675 *what_next == 2676 ValueObject::eExpressionPathAftermathDereference && 2677 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2678 Status error; 2679 root = root->Dereference(error); 2680 if (error.Fail() || !root) { 2681 *reason_to_stop = 2682 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2683 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2684 return nullptr; 2685 } else { 2686 *what_next = ValueObject::eExpressionPathAftermathNothing; 2687 continue; 2688 } 2689 } else { 2690 *reason_to_stop = 2691 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2692 *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange; 2693 return root; 2694 } 2695 } 2696 break; 2697 } 2698 default: // some non-separator is in the way 2699 { 2700 *reason_to_stop = 2701 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2702 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2703 return nullptr; 2704 } 2705 } 2706 } 2707 } 2708 2709 void ValueObject::LogValueObject(Log *log) { 2710 if (log) 2711 return LogValueObject(log, DumpValueObjectOptions(*this)); 2712 } 2713 2714 void ValueObject::LogValueObject(Log *log, 2715 const DumpValueObjectOptions &options) { 2716 if (log) { 2717 StreamString s; 2718 Dump(s, options); 2719 if (s.GetSize()) 2720 log->PutCString(s.GetData()); 2721 } 2722 } 2723 2724 void ValueObject::Dump(Stream &s) { Dump(s, DumpValueObjectOptions(*this)); } 2725 2726 void ValueObject::Dump(Stream &s, const DumpValueObjectOptions &options) { 2727 ValueObjectPrinter printer(this, &s, options); 2728 printer.PrintValueObject(); 2729 } 2730 2731 ValueObjectSP ValueObject::CreateConstantValue(ConstString name) { 2732 ValueObjectSP valobj_sp; 2733 2734 if (UpdateValueIfNeeded(false) && m_error.Success()) { 2735 ExecutionContext exe_ctx(GetExecutionContextRef()); 2736 2737 DataExtractor data; 2738 data.SetByteOrder(m_data.GetByteOrder()); 2739 data.SetAddressByteSize(m_data.GetAddressByteSize()); 2740 2741 if (IsBitfield()) { 2742 Value v(Scalar(GetValueAsUnsigned(UINT64_MAX))); 2743 m_error = v.GetValueAsData(&exe_ctx, data, GetModule().get()); 2744 } else 2745 m_error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get()); 2746 2747 valobj_sp = ValueObjectConstResult::Create( 2748 exe_ctx.GetBestExecutionContextScope(), GetCompilerType(), name, data, 2749 GetAddressOf()); 2750 } 2751 2752 if (!valobj_sp) { 2753 ExecutionContext exe_ctx(GetExecutionContextRef()); 2754 valobj_sp = ValueObjectConstResult::Create( 2755 exe_ctx.GetBestExecutionContextScope(), m_error); 2756 } 2757 return valobj_sp; 2758 } 2759 2760 ValueObjectSP ValueObject::GetQualifiedRepresentationIfAvailable( 2761 lldb::DynamicValueType dynValue, bool synthValue) { 2762 ValueObjectSP result_sp(GetSP()); 2763 2764 switch (dynValue) { 2765 case lldb::eDynamicCanRunTarget: 2766 case lldb::eDynamicDontRunTarget: { 2767 if (!result_sp->IsDynamic()) { 2768 if (result_sp->GetDynamicValue(dynValue)) 2769 result_sp = result_sp->GetDynamicValue(dynValue); 2770 } 2771 } break; 2772 case lldb::eNoDynamicValues: { 2773 if (result_sp->IsDynamic()) { 2774 if (result_sp->GetStaticValue()) 2775 result_sp = result_sp->GetStaticValue(); 2776 } 2777 } break; 2778 } 2779 2780 if (synthValue) { 2781 if (!result_sp->IsSynthetic()) { 2782 if (result_sp->GetSyntheticValue()) 2783 result_sp = result_sp->GetSyntheticValue(); 2784 } 2785 } else { 2786 if (result_sp->IsSynthetic()) { 2787 if (result_sp->GetNonSyntheticValue()) 2788 result_sp = result_sp->GetNonSyntheticValue(); 2789 } 2790 } 2791 2792 return result_sp; 2793 } 2794 2795 ValueObjectSP ValueObject::Dereference(Status &error) { 2796 if (m_deref_valobj) 2797 return m_deref_valobj->GetSP(); 2798 2799 const bool is_pointer_or_reference_type = IsPointerOrReferenceType(); 2800 if (is_pointer_or_reference_type) { 2801 bool omit_empty_base_classes = true; 2802 bool ignore_array_bounds = false; 2803 2804 std::string child_name_str; 2805 uint32_t child_byte_size = 0; 2806 int32_t child_byte_offset = 0; 2807 uint32_t child_bitfield_bit_size = 0; 2808 uint32_t child_bitfield_bit_offset = 0; 2809 bool child_is_base_class = false; 2810 bool child_is_deref_of_parent = false; 2811 const bool transparent_pointers = false; 2812 CompilerType compiler_type = GetCompilerType(); 2813 CompilerType child_compiler_type; 2814 uint64_t language_flags; 2815 2816 ExecutionContext exe_ctx(GetExecutionContextRef()); 2817 2818 child_compiler_type = compiler_type.GetChildCompilerTypeAtIndex( 2819 &exe_ctx, 0, transparent_pointers, omit_empty_base_classes, 2820 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 2821 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 2822 child_is_deref_of_parent, this, language_flags); 2823 if (child_compiler_type && child_byte_size) { 2824 ConstString child_name; 2825 if (!child_name_str.empty()) 2826 child_name.SetCString(child_name_str.c_str()); 2827 2828 m_deref_valobj = new ValueObjectChild( 2829 *this, child_compiler_type, child_name, child_byte_size, 2830 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 2831 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 2832 language_flags); 2833 } 2834 } else if (HasSyntheticValue()) { 2835 m_deref_valobj = 2836 GetSyntheticValue() 2837 ->GetChildMemberWithName(ConstString("$$dereference$$"), true) 2838 .get(); 2839 } else if (IsSynthetic()) { 2840 m_deref_valobj = 2841 GetChildMemberWithName(ConstString("$$dereference$$"), true).get(); 2842 } 2843 2844 if (m_deref_valobj) { 2845 error.Clear(); 2846 return m_deref_valobj->GetSP(); 2847 } else { 2848 StreamString strm; 2849 GetExpressionPath(strm); 2850 2851 if (is_pointer_or_reference_type) 2852 error.SetErrorStringWithFormat("dereference failed: (%s) %s", 2853 GetTypeName().AsCString("<invalid type>"), 2854 strm.GetData()); 2855 else 2856 error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s", 2857 GetTypeName().AsCString("<invalid type>"), 2858 strm.GetData()); 2859 return ValueObjectSP(); 2860 } 2861 } 2862 2863 ValueObjectSP ValueObject::AddressOf(Status &error) { 2864 if (m_addr_of_valobj_sp) 2865 return m_addr_of_valobj_sp; 2866 2867 AddressType address_type = eAddressTypeInvalid; 2868 const bool scalar_is_load_address = false; 2869 addr_t addr = GetAddressOf(scalar_is_load_address, &address_type); 2870 error.Clear(); 2871 if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) { 2872 switch (address_type) { 2873 case eAddressTypeInvalid: { 2874 StreamString expr_path_strm; 2875 GetExpressionPath(expr_path_strm); 2876 error.SetErrorStringWithFormat("'%s' is not in memory", 2877 expr_path_strm.GetData()); 2878 } break; 2879 2880 case eAddressTypeFile: 2881 case eAddressTypeLoad: { 2882 CompilerType compiler_type = GetCompilerType(); 2883 if (compiler_type) { 2884 std::string name(1, '&'); 2885 name.append(m_name.AsCString("")); 2886 ExecutionContext exe_ctx(GetExecutionContextRef()); 2887 m_addr_of_valobj_sp = ValueObjectConstResult::Create( 2888 exe_ctx.GetBestExecutionContextScope(), 2889 compiler_type.GetPointerType(), ConstString(name.c_str()), addr, 2890 eAddressTypeInvalid, m_data.GetAddressByteSize()); 2891 } 2892 } break; 2893 default: 2894 break; 2895 } 2896 } else { 2897 StreamString expr_path_strm; 2898 GetExpressionPath(expr_path_strm); 2899 error.SetErrorStringWithFormat("'%s' doesn't have a valid address", 2900 expr_path_strm.GetData()); 2901 } 2902 2903 return m_addr_of_valobj_sp; 2904 } 2905 2906 ValueObjectSP ValueObject::Cast(const CompilerType &compiler_type) { 2907 return ValueObjectCast::Create(*this, GetName(), compiler_type); 2908 } 2909 2910 lldb::ValueObjectSP ValueObject::Clone(ConstString new_name) { 2911 return ValueObjectCast::Create(*this, new_name, GetCompilerType()); 2912 } 2913 2914 ValueObjectSP ValueObject::CastPointerType(const char *name, 2915 CompilerType &compiler_type) { 2916 ValueObjectSP valobj_sp; 2917 AddressType address_type; 2918 addr_t ptr_value = GetPointerValue(&address_type); 2919 2920 if (ptr_value != LLDB_INVALID_ADDRESS) { 2921 Address ptr_addr(ptr_value); 2922 ExecutionContext exe_ctx(GetExecutionContextRef()); 2923 valobj_sp = ValueObjectMemory::Create( 2924 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, compiler_type); 2925 } 2926 return valobj_sp; 2927 } 2928 2929 ValueObjectSP ValueObject::CastPointerType(const char *name, TypeSP &type_sp) { 2930 ValueObjectSP valobj_sp; 2931 AddressType address_type; 2932 addr_t ptr_value = GetPointerValue(&address_type); 2933 2934 if (ptr_value != LLDB_INVALID_ADDRESS) { 2935 Address ptr_addr(ptr_value); 2936 ExecutionContext exe_ctx(GetExecutionContextRef()); 2937 valobj_sp = ValueObjectMemory::Create( 2938 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, type_sp); 2939 } 2940 return valobj_sp; 2941 } 2942 2943 ValueObject::EvaluationPoint::EvaluationPoint() 2944 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) {} 2945 2946 ValueObject::EvaluationPoint::EvaluationPoint(ExecutionContextScope *exe_scope, 2947 bool use_selected) 2948 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) { 2949 ExecutionContext exe_ctx(exe_scope); 2950 TargetSP target_sp(exe_ctx.GetTargetSP()); 2951 if (target_sp) { 2952 m_exe_ctx_ref.SetTargetSP(target_sp); 2953 ProcessSP process_sp(exe_ctx.GetProcessSP()); 2954 if (!process_sp) 2955 process_sp = target_sp->GetProcessSP(); 2956 2957 if (process_sp) { 2958 m_mod_id = process_sp->GetModID(); 2959 m_exe_ctx_ref.SetProcessSP(process_sp); 2960 2961 ThreadSP thread_sp(exe_ctx.GetThreadSP()); 2962 2963 if (!thread_sp) { 2964 if (use_selected) 2965 thread_sp = process_sp->GetThreadList().GetSelectedThread(); 2966 } 2967 2968 if (thread_sp) { 2969 m_exe_ctx_ref.SetThreadSP(thread_sp); 2970 2971 StackFrameSP frame_sp(exe_ctx.GetFrameSP()); 2972 if (!frame_sp) { 2973 if (use_selected) 2974 frame_sp = thread_sp->GetSelectedFrame(); 2975 } 2976 if (frame_sp) 2977 m_exe_ctx_ref.SetFrameSP(frame_sp); 2978 } 2979 } 2980 } 2981 } 2982 2983 ValueObject::EvaluationPoint::EvaluationPoint( 2984 const ValueObject::EvaluationPoint &rhs) 2985 : m_mod_id(), m_exe_ctx_ref(rhs.m_exe_ctx_ref), m_needs_update(true) {} 2986 2987 ValueObject::EvaluationPoint::~EvaluationPoint() {} 2988 2989 // This function checks the EvaluationPoint against the current process state. 2990 // If the current state matches the evaluation point, or the evaluation point 2991 // is already invalid, then we return false, meaning "no change". If the 2992 // current state is different, we update our state, and return true meaning 2993 // "yes, change". If we did see a change, we also set m_needs_update to true, 2994 // so future calls to NeedsUpdate will return true. exe_scope will be set to 2995 // the current execution context scope. 2996 2997 bool ValueObject::EvaluationPoint::SyncWithProcessState( 2998 bool accept_invalid_exe_ctx) { 2999 // Start with the target, if it is NULL, then we're obviously not going to 3000 // get any further: 3001 const bool thread_and_frame_only_if_stopped = true; 3002 ExecutionContext exe_ctx( 3003 m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped)); 3004 3005 if (exe_ctx.GetTargetPtr() == nullptr) 3006 return false; 3007 3008 // If we don't have a process nothing can change. 3009 Process *process = exe_ctx.GetProcessPtr(); 3010 if (process == nullptr) 3011 return false; 3012 3013 // If our stop id is the current stop ID, nothing has changed: 3014 ProcessModID current_mod_id = process->GetModID(); 3015 3016 // If the current stop id is 0, either we haven't run yet, or the process 3017 // state has been cleared. In either case, we aren't going to be able to sync 3018 // with the process state. 3019 if (current_mod_id.GetStopID() == 0) 3020 return false; 3021 3022 bool changed = false; 3023 const bool was_valid = m_mod_id.IsValid(); 3024 if (was_valid) { 3025 if (m_mod_id == current_mod_id) { 3026 // Everything is already up to date in this object, no need to update the 3027 // execution context scope. 3028 changed = false; 3029 } else { 3030 m_mod_id = current_mod_id; 3031 m_needs_update = true; 3032 changed = true; 3033 } 3034 } 3035 3036 // Now re-look up the thread and frame in case the underlying objects have 3037 // gone away & been recreated. That way we'll be sure to return a valid 3038 // exe_scope. If we used to have a thread or a frame but can't find it 3039 // anymore, then mark ourselves as invalid. 3040 3041 if (!accept_invalid_exe_ctx) { 3042 if (m_exe_ctx_ref.HasThreadRef()) { 3043 ThreadSP thread_sp(m_exe_ctx_ref.GetThreadSP()); 3044 if (thread_sp) { 3045 if (m_exe_ctx_ref.HasFrameRef()) { 3046 StackFrameSP frame_sp(m_exe_ctx_ref.GetFrameSP()); 3047 if (!frame_sp) { 3048 // We used to have a frame, but now it is gone 3049 SetInvalid(); 3050 changed = was_valid; 3051 } 3052 } 3053 } else { 3054 // We used to have a thread, but now it is gone 3055 SetInvalid(); 3056 changed = was_valid; 3057 } 3058 } 3059 } 3060 3061 return changed; 3062 } 3063 3064 void ValueObject::EvaluationPoint::SetUpdated() { 3065 ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP()); 3066 if (process_sp) 3067 m_mod_id = process_sp->GetModID(); 3068 m_needs_update = false; 3069 } 3070 3071 void ValueObject::ClearUserVisibleData(uint32_t clear_mask) { 3072 if ((clear_mask & eClearUserVisibleDataItemsValue) == 3073 eClearUserVisibleDataItemsValue) 3074 m_value_str.clear(); 3075 3076 if ((clear_mask & eClearUserVisibleDataItemsLocation) == 3077 eClearUserVisibleDataItemsLocation) 3078 m_location_str.clear(); 3079 3080 if ((clear_mask & eClearUserVisibleDataItemsSummary) == 3081 eClearUserVisibleDataItemsSummary) 3082 m_summary_str.clear(); 3083 3084 if ((clear_mask & eClearUserVisibleDataItemsDescription) == 3085 eClearUserVisibleDataItemsDescription) 3086 m_object_desc_str.clear(); 3087 3088 if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == 3089 eClearUserVisibleDataItemsSyntheticChildren) { 3090 if (m_synthetic_value) 3091 m_synthetic_value = nullptr; 3092 } 3093 } 3094 3095 SymbolContextScope *ValueObject::GetSymbolContextScope() { 3096 if (m_parent) { 3097 if (!m_parent->IsPointerOrReferenceType()) 3098 return m_parent->GetSymbolContextScope(); 3099 } 3100 return nullptr; 3101 } 3102 3103 lldb::ValueObjectSP 3104 ValueObject::CreateValueObjectFromExpression(llvm::StringRef name, 3105 llvm::StringRef expression, 3106 const ExecutionContext &exe_ctx) { 3107 return CreateValueObjectFromExpression(name, expression, exe_ctx, 3108 EvaluateExpressionOptions()); 3109 } 3110 3111 lldb::ValueObjectSP ValueObject::CreateValueObjectFromExpression( 3112 llvm::StringRef name, llvm::StringRef expression, 3113 const ExecutionContext &exe_ctx, const EvaluateExpressionOptions &options) { 3114 lldb::ValueObjectSP retval_sp; 3115 lldb::TargetSP target_sp(exe_ctx.GetTargetSP()); 3116 if (!target_sp) 3117 return retval_sp; 3118 if (expression.empty()) 3119 return retval_sp; 3120 target_sp->EvaluateExpression(expression, exe_ctx.GetFrameSP().get(), 3121 retval_sp, options); 3122 if (retval_sp && !name.empty()) 3123 retval_sp->SetName(ConstString(name)); 3124 return retval_sp; 3125 } 3126 3127 lldb::ValueObjectSP ValueObject::CreateValueObjectFromAddress( 3128 llvm::StringRef name, uint64_t address, const ExecutionContext &exe_ctx, 3129 CompilerType type) { 3130 if (type) { 3131 CompilerType pointer_type(type.GetPointerType()); 3132 if (pointer_type) { 3133 lldb::DataBufferSP buffer( 3134 new lldb_private::DataBufferHeap(&address, sizeof(lldb::addr_t))); 3135 lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create( 3136 exe_ctx.GetBestExecutionContextScope(), pointer_type, 3137 ConstString(name), buffer, exe_ctx.GetByteOrder(), 3138 exe_ctx.GetAddressByteSize())); 3139 if (ptr_result_valobj_sp) { 3140 ptr_result_valobj_sp->GetValue().SetValueType( 3141 Value::eValueTypeLoadAddress); 3142 Status err; 3143 ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err); 3144 if (ptr_result_valobj_sp && !name.empty()) 3145 ptr_result_valobj_sp->SetName(ConstString(name)); 3146 } 3147 return ptr_result_valobj_sp; 3148 } 3149 } 3150 return lldb::ValueObjectSP(); 3151 } 3152 3153 lldb::ValueObjectSP ValueObject::CreateValueObjectFromData( 3154 llvm::StringRef name, const DataExtractor &data, 3155 const ExecutionContext &exe_ctx, CompilerType type) { 3156 lldb::ValueObjectSP new_value_sp; 3157 new_value_sp = ValueObjectConstResult::Create( 3158 exe_ctx.GetBestExecutionContextScope(), type, ConstString(name), data, 3159 LLDB_INVALID_ADDRESS); 3160 new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad); 3161 if (new_value_sp && !name.empty()) 3162 new_value_sp->SetName(ConstString(name)); 3163 return new_value_sp; 3164 } 3165 3166 ModuleSP ValueObject::GetModule() { 3167 ValueObject *root(GetRoot()); 3168 if (root != this) 3169 return root->GetModule(); 3170 return lldb::ModuleSP(); 3171 } 3172 3173 ValueObject *ValueObject::GetRoot() { 3174 if (m_root) 3175 return m_root; 3176 return (m_root = FollowParentChain([](ValueObject *vo) -> bool { 3177 return (vo->m_parent != nullptr); 3178 })); 3179 } 3180 3181 ValueObject * 3182 ValueObject::FollowParentChain(std::function<bool(ValueObject *)> f) { 3183 ValueObject *vo = this; 3184 while (vo) { 3185 if (!f(vo)) 3186 break; 3187 vo = vo->m_parent; 3188 } 3189 return vo; 3190 } 3191 3192 AddressType ValueObject::GetAddressTypeOfChildren() { 3193 if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) { 3194 ValueObject *root(GetRoot()); 3195 if (root != this) 3196 return root->GetAddressTypeOfChildren(); 3197 } 3198 return m_address_type_of_ptr_or_ref_children; 3199 } 3200 3201 lldb::DynamicValueType ValueObject::GetDynamicValueType() { 3202 ValueObject *with_dv_info = this; 3203 while (with_dv_info) { 3204 if (with_dv_info->HasDynamicValueTypeInfo()) 3205 return with_dv_info->GetDynamicValueTypeImpl(); 3206 with_dv_info = with_dv_info->m_parent; 3207 } 3208 return lldb::eNoDynamicValues; 3209 } 3210 3211 lldb::Format ValueObject::GetFormat() const { 3212 const ValueObject *with_fmt_info = this; 3213 while (with_fmt_info) { 3214 if (with_fmt_info->m_format != lldb::eFormatDefault) 3215 return with_fmt_info->m_format; 3216 with_fmt_info = with_fmt_info->m_parent; 3217 } 3218 return m_format; 3219 } 3220 3221 lldb::LanguageType ValueObject::GetPreferredDisplayLanguage() { 3222 lldb::LanguageType type = m_preferred_display_language; 3223 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) { 3224 if (GetRoot()) { 3225 if (GetRoot() == this) { 3226 if (StackFrameSP frame_sp = GetFrameSP()) { 3227 const SymbolContext &sc( 3228 frame_sp->GetSymbolContext(eSymbolContextCompUnit)); 3229 if (CompileUnit *cu = sc.comp_unit) 3230 type = cu->GetLanguage(); 3231 } 3232 } else { 3233 type = GetRoot()->GetPreferredDisplayLanguage(); 3234 } 3235 } 3236 } 3237 return (m_preferred_display_language = type); // only compute it once 3238 } 3239 3240 void ValueObject::SetPreferredDisplayLanguage(lldb::LanguageType lt) { 3241 m_preferred_display_language = lt; 3242 } 3243 3244 void ValueObject::SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType lt) { 3245 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 3246 SetPreferredDisplayLanguage(lt); 3247 } 3248 3249 bool ValueObject::CanProvideValue() { 3250 // we need to support invalid types as providers of values because some bare- 3251 // board debugging scenarios have no notion of types, but still manage to 3252 // have raw numeric values for things like registers. sigh. 3253 const CompilerType &type(GetCompilerType()); 3254 return (!type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue)); 3255 } 3256 3257 bool ValueObject::IsChecksumEmpty() { return m_value_checksum.empty(); } 3258 3259 ValueObjectSP ValueObject::Persist() { 3260 if (!UpdateValueIfNeeded()) 3261 return nullptr; 3262 3263 TargetSP target_sp(GetTargetSP()); 3264 if (!target_sp) 3265 return nullptr; 3266 3267 PersistentExpressionState *persistent_state = 3268 target_sp->GetPersistentExpressionStateForLanguage( 3269 GetPreferredDisplayLanguage()); 3270 3271 if (!persistent_state) 3272 return nullptr; 3273 3274 auto prefix = persistent_state->GetPersistentVariablePrefix(); 3275 ConstString name = 3276 persistent_state->GetNextPersistentVariableName(*target_sp, prefix); 3277 3278 ValueObjectSP const_result_sp = 3279 ValueObjectConstResult::Create(target_sp.get(), GetValue(), name); 3280 3281 ExpressionVariableSP persistent_var_sp = 3282 persistent_state->CreatePersistentVariable(const_result_sp); 3283 persistent_var_sp->m_live_sp = persistent_var_sp->m_frozen_sp; 3284 persistent_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference; 3285 3286 return persistent_var_sp->GetValueObject(); 3287 } 3288 3289 bool ValueObject::IsSyntheticChildrenGenerated() { 3290 return m_is_synthetic_children_generated; 3291 } 3292 3293 void ValueObject::SetSyntheticChildrenGenerated(bool b) { 3294 m_is_synthetic_children_generated = b; 3295 } 3296 3297 uint64_t ValueObject::GetLanguageFlags() { return m_language_flags; } 3298 3299 void ValueObject::SetLanguageFlags(uint64_t flags) { m_language_flags = flags; } 3300 3301 ValueObjectManager::ValueObjectManager(lldb::ValueObjectSP in_valobj_sp, 3302 lldb::DynamicValueType use_dynamic, 3303 bool use_synthetic) : m_root_valobj_sp(), 3304 m_user_valobj_sp(), m_use_dynamic(use_dynamic), m_stop_id(UINT32_MAX), 3305 m_use_synthetic(use_synthetic) { 3306 if (!in_valobj_sp) 3307 return; 3308 // If the user passes in a value object that is dynamic or synthetic, then 3309 // water it down to the static type. 3310 m_root_valobj_sp = in_valobj_sp->GetQualifiedRepresentationIfAvailable(lldb::eNoDynamicValues, false); 3311 } 3312 3313 bool ValueObjectManager::IsValid() const { 3314 if (!m_root_valobj_sp) 3315 return false; 3316 lldb::TargetSP target_sp = GetTargetSP(); 3317 if (target_sp) 3318 return target_sp->IsValid(); 3319 return false; 3320 } 3321 3322 lldb::ValueObjectSP ValueObjectManager::GetSP() { 3323 lldb::ProcessSP process_sp = GetProcessSP(); 3324 if (!process_sp) 3325 return lldb::ValueObjectSP(); 3326 3327 const uint32_t current_stop_id = process_sp->GetLastNaturalStopID(); 3328 if (current_stop_id == m_stop_id) 3329 return m_user_valobj_sp; 3330 3331 m_stop_id = current_stop_id; 3332 3333 if (!m_root_valobj_sp) { 3334 m_user_valobj_sp.reset(); 3335 return m_root_valobj_sp; 3336 } 3337 3338 m_user_valobj_sp = m_root_valobj_sp; 3339 3340 if (m_use_dynamic != lldb::eNoDynamicValues) { 3341 lldb::ValueObjectSP dynamic_sp = m_user_valobj_sp->GetDynamicValue(m_use_dynamic); 3342 if (dynamic_sp) 3343 m_user_valobj_sp = dynamic_sp; 3344 } 3345 3346 if (m_use_synthetic) { 3347 lldb::ValueObjectSP synthetic_sp = m_user_valobj_sp->GetSyntheticValue(m_use_synthetic); 3348 if (synthetic_sp) 3349 m_user_valobj_sp = synthetic_sp; 3350 } 3351 3352 return m_user_valobj_sp; 3353 } 3354 3355 void ValueObjectManager::SetUseDynamic(lldb::DynamicValueType use_dynamic) { 3356 if (use_dynamic != m_use_dynamic) { 3357 m_use_dynamic = use_dynamic; 3358 m_user_valobj_sp.reset(); 3359 m_stop_id = UINT32_MAX; 3360 } 3361 } 3362 3363 void ValueObjectManager::SetUseSynthetic(bool use_synthetic) { 3364 if (m_use_synthetic != use_synthetic) { 3365 m_use_synthetic = use_synthetic; 3366 m_user_valobj_sp.reset(); 3367 m_stop_id = UINT32_MAX; 3368 } 3369 } 3370 3371 lldb::TargetSP ValueObjectManager::GetTargetSP() const { 3372 if (!m_root_valobj_sp) 3373 return m_root_valobj_sp->GetTargetSP(); 3374 return lldb::TargetSP(); 3375 } 3376 3377 lldb::ProcessSP ValueObjectManager::GetProcessSP() const { 3378 if (m_root_valobj_sp) 3379 return m_root_valobj_sp->GetProcessSP(); 3380 return lldb::ProcessSP(); 3381 } 3382 3383 lldb::ThreadSP ValueObjectManager::GetThreadSP() const { 3384 if (m_root_valobj_sp) 3385 return m_root_valobj_sp->GetThreadSP(); 3386 return lldb::ThreadSP(); 3387 } 3388 3389 lldb::StackFrameSP ValueObjectManager::GetFrameSP() const { 3390 if (m_root_valobj_sp) 3391 return m_root_valobj_sp->GetFrameSP(); 3392 return lldb::StackFrameSP(); 3393 } 3394