1 //===-- ValueObject.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Core/ValueObject.h" 10 11 #include "lldb/Core/Address.h" 12 #include "lldb/Core/Module.h" 13 #include "lldb/Core/ValueObjectCast.h" 14 #include "lldb/Core/ValueObjectChild.h" 15 #include "lldb/Core/ValueObjectConstResult.h" 16 #include "lldb/Core/ValueObjectDynamicValue.h" 17 #include "lldb/Core/ValueObjectMemory.h" 18 #include "lldb/Core/ValueObjectSyntheticFilter.h" 19 #include "lldb/DataFormatters/DataVisualization.h" 20 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 21 #include "lldb/DataFormatters/FormatManager.h" 22 #include "lldb/DataFormatters/StringPrinter.h" 23 #include "lldb/DataFormatters/TypeFormat.h" 24 #include "lldb/DataFormatters/TypeSummary.h" 25 #include "lldb/DataFormatters/ValueObjectPrinter.h" 26 #include "lldb/Expression/ExpressionVariable.h" 27 #include "lldb/Host/Config.h" 28 #include "lldb/Symbol/CompileUnit.h" 29 #include "lldb/Symbol/CompilerType.h" 30 #include "lldb/Symbol/Declaration.h" 31 #include "lldb/Symbol/SymbolContext.h" 32 #include "lldb/Symbol/Type.h" 33 #include "lldb/Symbol/Variable.h" 34 #include "lldb/Target/ExecutionContext.h" 35 #include "lldb/Target/Language.h" 36 #include "lldb/Target/LanguageRuntime.h" 37 #include "lldb/Target/Process.h" 38 #include "lldb/Target/StackFrame.h" 39 #include "lldb/Target/Target.h" 40 #include "lldb/Target/Thread.h" 41 #include "lldb/Target/ThreadList.h" 42 #include "lldb/Utility/DataBuffer.h" 43 #include "lldb/Utility/DataBufferHeap.h" 44 #include "lldb/Utility/Flags.h" 45 #include "lldb/Utility/Log.h" 46 #include "lldb/Utility/Logging.h" 47 #include "lldb/Utility/Scalar.h" 48 #include "lldb/Utility/Stream.h" 49 #include "lldb/Utility/StreamString.h" 50 #include "lldb/lldb-private-types.h" 51 52 #include "llvm/Support/Compiler.h" 53 54 #include <algorithm> 55 #include <cstdint> 56 #include <cstdlib> 57 #include <memory> 58 #include <tuple> 59 60 #include <assert.h> 61 #include <inttypes.h> 62 #include <stdio.h> 63 #include <string.h> 64 65 namespace lldb_private { 66 class ExecutionContextScope; 67 } 68 namespace lldb_private { 69 class SymbolContextScope; 70 } 71 72 using namespace lldb; 73 using namespace lldb_private; 74 75 static user_id_t g_value_obj_uid = 0; 76 77 // ValueObject constructor 78 ValueObject::ValueObject(ValueObject &parent) 79 : UserID(++g_value_obj_uid), // Unique identifier for every value object 80 m_parent(&parent), m_root(nullptr), 81 m_update_point(parent.GetUpdatePoint()), m_name(), m_data(), m_value(), 82 m_error(), m_value_str(), m_old_value_str(), m_location_str(), 83 m_summary_str(), m_object_desc_str(), m_manager(parent.GetManager()), 84 m_children(), m_synthetic_children(), m_dynamic_value(nullptr), 85 m_synthetic_value(nullptr), m_deref_valobj(nullptr), 86 m_format(eFormatDefault), m_last_format(eFormatDefault), 87 m_last_format_mgr_revision(0), m_type_summary_sp(), m_type_format_sp(), 88 m_synthetic_children_sp(), m_user_id_of_forced_summary(), 89 m_address_type_of_ptr_or_ref_children(eAddressTypeInvalid), 90 m_value_checksum(), 91 m_preferred_display_language(lldb::eLanguageTypeUnknown), 92 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 93 m_children_count_valid(false), m_old_value_valid(false), 94 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 95 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 96 m_is_getting_summary(false), 97 m_did_calculate_complete_objc_class_type(false), 98 m_is_synthetic_children_generated( 99 parent.m_is_synthetic_children_generated) { 100 m_data.SetByteOrder(parent.GetDataExtractor().GetByteOrder()); 101 m_data.SetAddressByteSize(parent.GetDataExtractor().GetAddressByteSize()); 102 m_manager->ManageObject(this); 103 } 104 105 // ValueObject constructor 106 ValueObject::ValueObject(ExecutionContextScope *exe_scope, 107 ValueObjectManager &manager, 108 AddressType child_ptr_or_ref_addr_type) 109 : UserID(++g_value_obj_uid), // Unique identifier for every value object 110 m_parent(nullptr), m_root(nullptr), m_update_point(exe_scope), m_name(), 111 m_data(), m_value(), m_error(), m_value_str(), m_old_value_str(), 112 m_location_str(), m_summary_str(), m_object_desc_str(), 113 m_manager(&manager), m_children(), m_synthetic_children(), 114 m_dynamic_value(nullptr), m_synthetic_value(nullptr), 115 m_deref_valobj(nullptr), m_format(eFormatDefault), 116 m_last_format(eFormatDefault), m_last_format_mgr_revision(0), 117 m_type_summary_sp(), m_type_format_sp(), m_synthetic_children_sp(), 118 m_user_id_of_forced_summary(), 119 m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type), 120 m_value_checksum(), 121 m_preferred_display_language(lldb::eLanguageTypeUnknown), 122 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 123 m_children_count_valid(false), m_old_value_valid(false), 124 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 125 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 126 m_is_getting_summary(false), 127 m_did_calculate_complete_objc_class_type(false), 128 m_is_synthetic_children_generated(false) { 129 if (exe_scope) { 130 TargetSP target_sp(exe_scope->CalculateTarget()); 131 if (target_sp) { 132 const ArchSpec &arch = target_sp->GetArchitecture(); 133 m_data.SetByteOrder(arch.GetByteOrder()); 134 m_data.SetAddressByteSize(arch.GetAddressByteSize()); 135 } 136 } 137 m_manager->ManageObject(this); 138 } 139 140 // Destructor 141 ValueObject::~ValueObject() {} 142 143 void ValueObject::UpdateChildrenAddressType() { 144 Value::ValueType value_type = m_value.GetValueType(); 145 ExecutionContext exe_ctx(GetExecutionContextRef()); 146 Process *process = exe_ctx.GetProcessPtr(); 147 const bool process_is_alive = process && process->IsAlive(); 148 const uint32_t type_info = GetCompilerType().GetTypeInfo(); 149 const bool is_pointer_or_ref = 150 (type_info & (lldb::eTypeIsPointer | lldb::eTypeIsReference)) != 0; 151 152 switch (value_type) { 153 case Value::eValueTypeFileAddress: 154 // If this type is a pointer, then its children will be considered load 155 // addresses if the pointer or reference is dereferenced, but only if 156 // the process is alive. 157 // 158 // There could be global variables like in the following code: 159 // struct LinkedListNode { Foo* foo; LinkedListNode* next; }; 160 // Foo g_foo1; 161 // Foo g_foo2; 162 // LinkedListNode g_second_node = { &g_foo2, NULL }; 163 // LinkedListNode g_first_node = { &g_foo1, &g_second_node }; 164 // 165 // When we aren't running, we should be able to look at these variables 166 // using the "target variable" command. Children of the "g_first_node" 167 // always will be of the same address type as the parent. But children 168 // of the "next" member of LinkedListNode will become load addresses if 169 // we have a live process, or remain a file address if it was a file 170 // address. 171 if (process_is_alive && is_pointer_or_ref) 172 SetAddressTypeOfChildren(eAddressTypeLoad); 173 else 174 SetAddressTypeOfChildren(eAddressTypeFile); 175 break; 176 case Value::eValueTypeHostAddress: 177 // Same as above for load addresses, except children of pointer or refs 178 // are always load addresses. Host addresses are used to store freeze 179 // dried variables. If this type is a struct, the entire struct 180 // contents will be copied into the heap of the 181 // LLDB process, but we do not currently follow any pointers. 182 if (is_pointer_or_ref) 183 SetAddressTypeOfChildren(eAddressTypeLoad); 184 else 185 SetAddressTypeOfChildren(eAddressTypeHost); 186 break; 187 case Value::eValueTypeLoadAddress: 188 case Value::eValueTypeScalar: 189 case Value::eValueTypeVector: 190 SetAddressTypeOfChildren(eAddressTypeLoad); 191 break; 192 } 193 } 194 195 bool ValueObject::UpdateValueIfNeeded(bool update_format) { 196 197 bool did_change_formats = false; 198 199 if (update_format) 200 did_change_formats = UpdateFormatsIfNeeded(); 201 202 // If this is a constant value, then our success is predicated on whether we 203 // have an error or not 204 if (GetIsConstant()) { 205 // if you are constant, things might still have changed behind your back 206 // (e.g. you are a frozen object and things have changed deeper than you 207 // cared to freeze-dry yourself) in this case, your value has not changed, 208 // but "computed" entries might have, so you might now have a different 209 // summary, or a different object description. clear these so we will 210 // recompute them 211 if (update_format && !did_change_formats) 212 ClearUserVisibleData(eClearUserVisibleDataItemsSummary | 213 eClearUserVisibleDataItemsDescription); 214 return m_error.Success(); 215 } 216 217 bool first_update = IsChecksumEmpty(); 218 219 if (NeedsUpdating()) { 220 m_update_point.SetUpdated(); 221 222 // Save the old value using swap to avoid a string copy which also will 223 // clear our m_value_str 224 if (m_value_str.empty()) { 225 m_old_value_valid = false; 226 } else { 227 m_old_value_valid = true; 228 m_old_value_str.swap(m_value_str); 229 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 230 } 231 232 ClearUserVisibleData(); 233 234 if (IsInScope()) { 235 const bool value_was_valid = GetValueIsValid(); 236 SetValueDidChange(false); 237 238 m_error.Clear(); 239 240 // Call the pure virtual function to update the value 241 242 bool need_compare_checksums = false; 243 llvm::SmallVector<uint8_t, 16> old_checksum; 244 245 if (!first_update && CanProvideValue()) { 246 need_compare_checksums = true; 247 old_checksum.resize(m_value_checksum.size()); 248 std::copy(m_value_checksum.begin(), m_value_checksum.end(), 249 old_checksum.begin()); 250 } 251 252 bool success = UpdateValue(); 253 254 SetValueIsValid(success); 255 256 if (success) { 257 UpdateChildrenAddressType(); 258 const uint64_t max_checksum_size = 128; 259 m_data.Checksum(m_value_checksum, max_checksum_size); 260 } else { 261 need_compare_checksums = false; 262 m_value_checksum.clear(); 263 } 264 265 assert(!need_compare_checksums || 266 (!old_checksum.empty() && !m_value_checksum.empty())); 267 268 if (first_update) 269 SetValueDidChange(false); 270 else if (!m_value_did_change && !success) { 271 // The value wasn't gotten successfully, so we mark this as changed if 272 // the value used to be valid and now isn't 273 SetValueDidChange(value_was_valid); 274 } else if (need_compare_checksums) { 275 SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0], 276 m_value_checksum.size())); 277 } 278 279 } else { 280 m_error.SetErrorString("out of scope"); 281 } 282 } 283 return m_error.Success(); 284 } 285 286 bool ValueObject::UpdateFormatsIfNeeded() { 287 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_DATAFORMATTERS)); 288 LLDB_LOGF(log, 289 "[%s %p] checking for FormatManager revisions. ValueObject " 290 "rev: %d - Global rev: %d", 291 GetName().GetCString(), static_cast<void *>(this), 292 m_last_format_mgr_revision, 293 DataVisualization::GetCurrentRevision()); 294 295 bool any_change = false; 296 297 if ((m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) { 298 m_last_format_mgr_revision = DataVisualization::GetCurrentRevision(); 299 any_change = true; 300 301 SetValueFormat(DataVisualization::GetFormat(*this, eNoDynamicValues)); 302 SetSummaryFormat( 303 DataVisualization::GetSummaryFormat(*this, GetDynamicValueType())); 304 #if LLDB_ENABLE_PYTHON 305 SetSyntheticChildren( 306 DataVisualization::GetSyntheticChildren(*this, GetDynamicValueType())); 307 #endif 308 } 309 310 return any_change; 311 } 312 313 void ValueObject::SetNeedsUpdate() { 314 m_update_point.SetNeedsUpdate(); 315 // We have to clear the value string here so ConstResult children will notice 316 // if their values are changed by hand (i.e. with SetValueAsCString). 317 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 318 } 319 320 void ValueObject::ClearDynamicTypeInformation() { 321 m_children_count_valid = false; 322 m_did_calculate_complete_objc_class_type = false; 323 m_last_format_mgr_revision = 0; 324 m_override_type = CompilerType(); 325 SetValueFormat(lldb::TypeFormatImplSP()); 326 SetSummaryFormat(lldb::TypeSummaryImplSP()); 327 SetSyntheticChildren(lldb::SyntheticChildrenSP()); 328 } 329 330 CompilerType ValueObject::MaybeCalculateCompleteType() { 331 CompilerType compiler_type(GetCompilerTypeImpl()); 332 333 if (m_did_calculate_complete_objc_class_type) { 334 if (m_override_type.IsValid()) 335 return m_override_type; 336 else 337 return compiler_type; 338 } 339 340 m_did_calculate_complete_objc_class_type = true; 341 342 ProcessSP process_sp( 343 GetUpdatePoint().GetExecutionContextRef().GetProcessSP()); 344 345 if (!process_sp) 346 return compiler_type; 347 348 if (auto *runtime = 349 process_sp->GetLanguageRuntime(GetObjectRuntimeLanguage())) { 350 if (llvm::Optional<CompilerType> complete_type = 351 runtime->GetRuntimeType(compiler_type)) { 352 m_override_type = complete_type.getValue(); 353 if (m_override_type.IsValid()) 354 return m_override_type; 355 } 356 } 357 return compiler_type; 358 } 359 360 CompilerType ValueObject::GetCompilerType() { 361 return MaybeCalculateCompleteType(); 362 } 363 364 TypeImpl ValueObject::GetTypeImpl() { return TypeImpl(GetCompilerType()); } 365 366 DataExtractor &ValueObject::GetDataExtractor() { 367 UpdateValueIfNeeded(false); 368 return m_data; 369 } 370 371 const Status &ValueObject::GetError() { 372 UpdateValueIfNeeded(false); 373 return m_error; 374 } 375 376 ConstString ValueObject::GetName() const { return m_name; } 377 378 const char *ValueObject::GetLocationAsCString() { 379 return GetLocationAsCStringImpl(m_value, m_data); 380 } 381 382 const char *ValueObject::GetLocationAsCStringImpl(const Value &value, 383 const DataExtractor &data) { 384 if (UpdateValueIfNeeded(false)) { 385 if (m_location_str.empty()) { 386 StreamString sstr; 387 388 Value::ValueType value_type = value.GetValueType(); 389 390 switch (value_type) { 391 case Value::eValueTypeScalar: 392 case Value::eValueTypeVector: 393 if (value.GetContextType() == Value::eContextTypeRegisterInfo) { 394 RegisterInfo *reg_info = value.GetRegisterInfo(); 395 if (reg_info) { 396 if (reg_info->name) 397 m_location_str = reg_info->name; 398 else if (reg_info->alt_name) 399 m_location_str = reg_info->alt_name; 400 if (m_location_str.empty()) 401 m_location_str = (reg_info->encoding == lldb::eEncodingVector) 402 ? "vector" 403 : "scalar"; 404 } 405 } 406 if (m_location_str.empty()) 407 m_location_str = 408 (value_type == Value::eValueTypeVector) ? "vector" : "scalar"; 409 break; 410 411 case Value::eValueTypeLoadAddress: 412 case Value::eValueTypeFileAddress: 413 case Value::eValueTypeHostAddress: { 414 uint32_t addr_nibble_size = data.GetAddressByteSize() * 2; 415 sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, 416 value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS)); 417 m_location_str = std::string(sstr.GetString()); 418 } break; 419 } 420 } 421 } 422 return m_location_str.c_str(); 423 } 424 425 Value &ValueObject::GetValue() { return m_value; } 426 427 const Value &ValueObject::GetValue() const { return m_value; } 428 429 bool ValueObject::ResolveValue(Scalar &scalar) { 430 if (UpdateValueIfNeeded( 431 false)) // make sure that you are up to date before returning anything 432 { 433 ExecutionContext exe_ctx(GetExecutionContextRef()); 434 Value tmp_value(m_value); 435 scalar = tmp_value.ResolveValue(&exe_ctx); 436 if (scalar.IsValid()) { 437 const uint32_t bitfield_bit_size = GetBitfieldBitSize(); 438 if (bitfield_bit_size) 439 return scalar.ExtractBitfield(bitfield_bit_size, 440 GetBitfieldBitOffset()); 441 return true; 442 } 443 } 444 return false; 445 } 446 447 bool ValueObject::IsLogicalTrue(Status &error) { 448 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 449 LazyBool is_logical_true = language->IsLogicalTrue(*this, error); 450 switch (is_logical_true) { 451 case eLazyBoolYes: 452 case eLazyBoolNo: 453 return (is_logical_true == true); 454 case eLazyBoolCalculate: 455 break; 456 } 457 } 458 459 Scalar scalar_value; 460 461 if (!ResolveValue(scalar_value)) { 462 error.SetErrorString("failed to get a scalar result"); 463 return false; 464 } 465 466 bool ret; 467 ret = scalar_value.ULongLong(1) != 0; 468 error.Clear(); 469 return ret; 470 } 471 472 bool ValueObject::GetValueIsValid() const { return m_value_is_valid; } 473 474 void ValueObject::SetValueIsValid(bool b) { m_value_is_valid = b; } 475 476 bool ValueObject::GetValueDidChange() { return m_value_did_change; } 477 478 void ValueObject::SetValueDidChange(bool value_changed) { 479 m_value_did_change = value_changed; 480 } 481 482 ValueObjectSP ValueObject::GetChildAtIndex(size_t idx, bool can_create) { 483 ValueObjectSP child_sp; 484 // We may need to update our value if we are dynamic 485 if (IsPossibleDynamicType()) 486 UpdateValueIfNeeded(false); 487 if (idx < GetNumChildren()) { 488 // Check if we have already made the child value object? 489 if (can_create && !m_children.HasChildAtIndex(idx)) { 490 // No we haven't created the child at this index, so lets have our 491 // subclass do it and cache the result for quick future access. 492 m_children.SetChildAtIndex(idx, CreateChildAtIndex(idx, false, 0)); 493 } 494 495 ValueObject *child = m_children.GetChildAtIndex(idx); 496 if (child != nullptr) 497 return child->GetSP(); 498 } 499 return child_sp; 500 } 501 502 lldb::ValueObjectSP 503 ValueObject::GetChildAtIndexPath(llvm::ArrayRef<size_t> idxs, 504 size_t *index_of_error) { 505 if (idxs.size() == 0) 506 return GetSP(); 507 ValueObjectSP root(GetSP()); 508 for (size_t idx : idxs) { 509 root = root->GetChildAtIndex(idx, true); 510 if (!root) { 511 if (index_of_error) 512 *index_of_error = idx; 513 return root; 514 } 515 } 516 return root; 517 } 518 519 lldb::ValueObjectSP ValueObject::GetChildAtIndexPath( 520 llvm::ArrayRef<std::pair<size_t, bool>> idxs, size_t *index_of_error) { 521 if (idxs.size() == 0) 522 return GetSP(); 523 ValueObjectSP root(GetSP()); 524 for (std::pair<size_t, bool> idx : idxs) { 525 root = root->GetChildAtIndex(idx.first, idx.second); 526 if (!root) { 527 if (index_of_error) 528 *index_of_error = idx.first; 529 return root; 530 } 531 } 532 return root; 533 } 534 535 lldb::ValueObjectSP 536 ValueObject::GetChildAtNamePath(llvm::ArrayRef<ConstString> names, 537 ConstString *name_of_error) { 538 if (names.size() == 0) 539 return GetSP(); 540 ValueObjectSP root(GetSP()); 541 for (ConstString name : names) { 542 root = root->GetChildMemberWithName(name, true); 543 if (!root) { 544 if (name_of_error) 545 *name_of_error = name; 546 return root; 547 } 548 } 549 return root; 550 } 551 552 lldb::ValueObjectSP ValueObject::GetChildAtNamePath( 553 llvm::ArrayRef<std::pair<ConstString, bool>> names, 554 ConstString *name_of_error) { 555 if (names.size() == 0) 556 return GetSP(); 557 ValueObjectSP root(GetSP()); 558 for (std::pair<ConstString, bool> name : names) { 559 root = root->GetChildMemberWithName(name.first, name.second); 560 if (!root) { 561 if (name_of_error) 562 *name_of_error = name.first; 563 return root; 564 } 565 } 566 return root; 567 } 568 569 size_t ValueObject::GetIndexOfChildWithName(ConstString name) { 570 bool omit_empty_base_classes = true; 571 return GetCompilerType().GetIndexOfChildWithName(name.GetCString(), 572 omit_empty_base_classes); 573 } 574 575 ValueObjectSP ValueObject::GetChildMemberWithName(ConstString name, 576 bool can_create) { 577 // when getting a child by name, it could be buried inside some base classes 578 // (which really aren't part of the expression path), so we need a vector of 579 // indexes that can get us down to the correct child 580 ValueObjectSP child_sp; 581 582 // We may need to update our value if we are dynamic 583 if (IsPossibleDynamicType()) 584 UpdateValueIfNeeded(false); 585 586 std::vector<uint32_t> child_indexes; 587 bool omit_empty_base_classes = true; 588 589 if (!GetCompilerType().IsValid()) 590 return ValueObjectSP(); 591 592 const size_t num_child_indexes = 593 GetCompilerType().GetIndexOfChildMemberWithName( 594 name.GetCString(), omit_empty_base_classes, child_indexes); 595 if (num_child_indexes > 0) { 596 std::vector<uint32_t>::const_iterator pos = child_indexes.begin(); 597 std::vector<uint32_t>::const_iterator end = child_indexes.end(); 598 599 child_sp = GetChildAtIndex(*pos, can_create); 600 for (++pos; pos != end; ++pos) { 601 if (child_sp) { 602 ValueObjectSP new_child_sp(child_sp->GetChildAtIndex(*pos, can_create)); 603 child_sp = new_child_sp; 604 } else { 605 child_sp.reset(); 606 } 607 } 608 } 609 return child_sp; 610 } 611 612 size_t ValueObject::GetNumChildren(uint32_t max) { 613 UpdateValueIfNeeded(); 614 615 if (max < UINT32_MAX) { 616 if (m_children_count_valid) { 617 size_t children_count = m_children.GetChildrenCount(); 618 return children_count <= max ? children_count : max; 619 } else 620 return CalculateNumChildren(max); 621 } 622 623 if (!m_children_count_valid) { 624 SetNumChildren(CalculateNumChildren()); 625 } 626 return m_children.GetChildrenCount(); 627 } 628 629 bool ValueObject::MightHaveChildren() { 630 bool has_children = false; 631 const uint32_t type_info = GetTypeInfo(); 632 if (type_info) { 633 if (type_info & (eTypeHasChildren | eTypeIsPointer | eTypeIsReference)) 634 has_children = true; 635 } else { 636 has_children = GetNumChildren() > 0; 637 } 638 return has_children; 639 } 640 641 // Should only be called by ValueObject::GetNumChildren() 642 void ValueObject::SetNumChildren(size_t num_children) { 643 m_children_count_valid = true; 644 m_children.SetChildrenCount(num_children); 645 } 646 647 void ValueObject::SetName(ConstString name) { m_name = name; } 648 649 ValueObject *ValueObject::CreateChildAtIndex(size_t idx, 650 bool synthetic_array_member, 651 int32_t synthetic_index) { 652 ValueObject *valobj = nullptr; 653 654 bool omit_empty_base_classes = true; 655 bool ignore_array_bounds = synthetic_array_member; 656 std::string child_name_str; 657 uint32_t child_byte_size = 0; 658 int32_t child_byte_offset = 0; 659 uint32_t child_bitfield_bit_size = 0; 660 uint32_t child_bitfield_bit_offset = 0; 661 bool child_is_base_class = false; 662 bool child_is_deref_of_parent = false; 663 uint64_t language_flags = 0; 664 665 const bool transparent_pointers = !synthetic_array_member; 666 CompilerType child_compiler_type; 667 668 ExecutionContext exe_ctx(GetExecutionContextRef()); 669 670 child_compiler_type = GetCompilerType().GetChildCompilerTypeAtIndex( 671 &exe_ctx, idx, transparent_pointers, omit_empty_base_classes, 672 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 673 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 674 child_is_deref_of_parent, this, language_flags); 675 if (child_compiler_type) { 676 if (synthetic_index) 677 child_byte_offset += child_byte_size * synthetic_index; 678 679 ConstString child_name; 680 if (!child_name_str.empty()) 681 child_name.SetCString(child_name_str.c_str()); 682 683 valobj = new ValueObjectChild( 684 *this, child_compiler_type, child_name, child_byte_size, 685 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 686 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 687 language_flags); 688 } 689 690 // In case of an incomplete type, LLDB will try to use the ValueObject's 691 // synthetic value to create the child ValueObject. 692 if (!valobj && synthetic_array_member) { 693 if (ValueObjectSP synth_valobj_sp = GetSyntheticValue()) { 694 valobj = synth_valobj_sp 695 ->GetChildAtIndex(synthetic_index, synthetic_array_member) 696 .get(); 697 } 698 } 699 700 return valobj; 701 } 702 703 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 704 std::string &destination, 705 lldb::LanguageType lang) { 706 return GetSummaryAsCString(summary_ptr, destination, 707 TypeSummaryOptions().SetLanguage(lang)); 708 } 709 710 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 711 std::string &destination, 712 const TypeSummaryOptions &options) { 713 destination.clear(); 714 715 // ideally we would like to bail out if passing NULL, but if we do so we end 716 // up not providing the summary for function pointers anymore 717 if (/*summary_ptr == NULL ||*/ m_is_getting_summary) 718 return false; 719 720 m_is_getting_summary = true; 721 722 TypeSummaryOptions actual_options(options); 723 724 if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown) 725 actual_options.SetLanguage(GetPreferredDisplayLanguage()); 726 727 // this is a hot path in code and we prefer to avoid setting this string all 728 // too often also clearing out other information that we might care to see in 729 // a crash log. might be useful in very specific situations though. 730 /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. 731 Summary provider's description is %s", 732 GetTypeName().GetCString(), 733 GetName().GetCString(), 734 summary_ptr->GetDescription().c_str());*/ 735 736 if (UpdateValueIfNeeded(false) && summary_ptr) { 737 if (HasSyntheticValue()) 738 m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on 739 // the synthetic children being 740 // up-to-date (e.g. ${svar%#}) 741 summary_ptr->FormatObject(this, destination, actual_options); 742 } 743 m_is_getting_summary = false; 744 return !destination.empty(); 745 } 746 747 const char *ValueObject::GetSummaryAsCString(lldb::LanguageType lang) { 748 if (UpdateValueIfNeeded(true) && m_summary_str.empty()) { 749 TypeSummaryOptions summary_options; 750 summary_options.SetLanguage(lang); 751 GetSummaryAsCString(GetSummaryFormat().get(), m_summary_str, 752 summary_options); 753 } 754 if (m_summary_str.empty()) 755 return nullptr; 756 return m_summary_str.c_str(); 757 } 758 759 bool ValueObject::GetSummaryAsCString(std::string &destination, 760 const TypeSummaryOptions &options) { 761 return GetSummaryAsCString(GetSummaryFormat().get(), destination, options); 762 } 763 764 bool ValueObject::IsCStringContainer(bool check_pointer) { 765 CompilerType pointee_or_element_compiler_type; 766 const Flags type_flags(GetTypeInfo(&pointee_or_element_compiler_type)); 767 bool is_char_arr_ptr(type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 768 pointee_or_element_compiler_type.IsCharType()); 769 if (!is_char_arr_ptr) 770 return false; 771 if (!check_pointer) 772 return true; 773 if (type_flags.Test(eTypeIsArray)) 774 return true; 775 addr_t cstr_address = LLDB_INVALID_ADDRESS; 776 AddressType cstr_address_type = eAddressTypeInvalid; 777 cstr_address = GetPointerValue(&cstr_address_type); 778 return (cstr_address != LLDB_INVALID_ADDRESS); 779 } 780 781 size_t ValueObject::GetPointeeData(DataExtractor &data, uint32_t item_idx, 782 uint32_t item_count) { 783 CompilerType pointee_or_element_compiler_type; 784 const uint32_t type_info = GetTypeInfo(&pointee_or_element_compiler_type); 785 const bool is_pointer_type = type_info & eTypeIsPointer; 786 const bool is_array_type = type_info & eTypeIsArray; 787 if (!(is_pointer_type || is_array_type)) 788 return 0; 789 790 if (item_count == 0) 791 return 0; 792 793 ExecutionContext exe_ctx(GetExecutionContextRef()); 794 795 llvm::Optional<uint64_t> item_type_size = 796 pointee_or_element_compiler_type.GetByteSize( 797 exe_ctx.GetBestExecutionContextScope()); 798 if (!item_type_size) 799 return 0; 800 const uint64_t bytes = item_count * *item_type_size; 801 const uint64_t offset = item_idx * *item_type_size; 802 803 if (item_idx == 0 && item_count == 1) // simply a deref 804 { 805 if (is_pointer_type) { 806 Status error; 807 ValueObjectSP pointee_sp = Dereference(error); 808 if (error.Fail() || pointee_sp.get() == nullptr) 809 return 0; 810 return pointee_sp->GetData(data, error); 811 } else { 812 ValueObjectSP child_sp = GetChildAtIndex(0, true); 813 if (child_sp.get() == nullptr) 814 return 0; 815 Status error; 816 return child_sp->GetData(data, error); 817 } 818 return true; 819 } else /* (items > 1) */ 820 { 821 Status error; 822 lldb_private::DataBufferHeap *heap_buf_ptr = nullptr; 823 lldb::DataBufferSP data_sp(heap_buf_ptr = 824 new lldb_private::DataBufferHeap()); 825 826 AddressType addr_type; 827 lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type) 828 : GetAddressOf(true, &addr_type); 829 830 switch (addr_type) { 831 case eAddressTypeFile: { 832 ModuleSP module_sp(GetModule()); 833 if (module_sp) { 834 addr = addr + offset; 835 Address so_addr; 836 module_sp->ResolveFileAddress(addr, so_addr); 837 ExecutionContext exe_ctx(GetExecutionContextRef()); 838 Target *target = exe_ctx.GetTargetPtr(); 839 if (target) { 840 heap_buf_ptr->SetByteSize(bytes); 841 size_t bytes_read = target->ReadMemory( 842 so_addr, false, heap_buf_ptr->GetBytes(), bytes, error); 843 if (error.Success()) { 844 data.SetData(data_sp); 845 return bytes_read; 846 } 847 } 848 } 849 } break; 850 case eAddressTypeLoad: { 851 ExecutionContext exe_ctx(GetExecutionContextRef()); 852 Process *process = exe_ctx.GetProcessPtr(); 853 if (process) { 854 heap_buf_ptr->SetByteSize(bytes); 855 size_t bytes_read = process->ReadMemory( 856 addr + offset, heap_buf_ptr->GetBytes(), bytes, error); 857 if (error.Success() || bytes_read > 0) { 858 data.SetData(data_sp); 859 return bytes_read; 860 } 861 } 862 } break; 863 case eAddressTypeHost: { 864 auto max_bytes = 865 GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope()); 866 if (max_bytes && *max_bytes > offset) { 867 size_t bytes_read = std::min<uint64_t>(*max_bytes - offset, bytes); 868 addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 869 if (addr == 0 || addr == LLDB_INVALID_ADDRESS) 870 break; 871 heap_buf_ptr->CopyData((uint8_t *)(addr + offset), bytes_read); 872 data.SetData(data_sp); 873 return bytes_read; 874 } 875 } break; 876 case eAddressTypeInvalid: 877 break; 878 } 879 } 880 return 0; 881 } 882 883 uint64_t ValueObject::GetData(DataExtractor &data, Status &error) { 884 UpdateValueIfNeeded(false); 885 ExecutionContext exe_ctx(GetExecutionContextRef()); 886 error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get()); 887 if (error.Fail()) { 888 if (m_data.GetByteSize()) { 889 data = m_data; 890 error.Clear(); 891 return data.GetByteSize(); 892 } else { 893 return 0; 894 } 895 } 896 data.SetAddressByteSize(m_data.GetAddressByteSize()); 897 data.SetByteOrder(m_data.GetByteOrder()); 898 return data.GetByteSize(); 899 } 900 901 bool ValueObject::SetData(DataExtractor &data, Status &error) { 902 error.Clear(); 903 // Make sure our value is up to date first so that our location and location 904 // type is valid. 905 if (!UpdateValueIfNeeded(false)) { 906 error.SetErrorString("unable to read value"); 907 return false; 908 } 909 910 uint64_t count = 0; 911 const Encoding encoding = GetCompilerType().GetEncoding(count); 912 913 const size_t byte_size = GetByteSize(); 914 915 Value::ValueType value_type = m_value.GetValueType(); 916 917 switch (value_type) { 918 case Value::eValueTypeScalar: { 919 Status set_error = 920 m_value.GetScalar().SetValueFromData(data, encoding, byte_size); 921 922 if (!set_error.Success()) { 923 error.SetErrorStringWithFormat("unable to set scalar value: %s", 924 set_error.AsCString()); 925 return false; 926 } 927 } break; 928 case Value::eValueTypeLoadAddress: { 929 // If it is a load address, then the scalar value is the storage location 930 // of the data, and we have to shove this value down to that load location. 931 ExecutionContext exe_ctx(GetExecutionContextRef()); 932 Process *process = exe_ctx.GetProcessPtr(); 933 if (process) { 934 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 935 size_t bytes_written = process->WriteMemory( 936 target_addr, data.GetDataStart(), byte_size, error); 937 if (!error.Success()) 938 return false; 939 if (bytes_written != byte_size) { 940 error.SetErrorString("unable to write value to memory"); 941 return false; 942 } 943 } 944 } break; 945 case Value::eValueTypeHostAddress: { 946 // If it is a host address, then we stuff the scalar as a DataBuffer into 947 // the Value's data. 948 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 949 m_data.SetData(buffer_sp, 0); 950 data.CopyByteOrderedData(0, byte_size, 951 const_cast<uint8_t *>(m_data.GetDataStart()), 952 byte_size, m_data.GetByteOrder()); 953 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 954 } break; 955 case Value::eValueTypeFileAddress: 956 case Value::eValueTypeVector: 957 break; 958 } 959 960 // If we have reached this point, then we have successfully changed the 961 // value. 962 SetNeedsUpdate(); 963 return true; 964 } 965 966 static bool CopyStringDataToBufferSP(const StreamString &source, 967 lldb::DataBufferSP &destination) { 968 destination = std::make_shared<DataBufferHeap>(source.GetSize() + 1, 0); 969 memcpy(destination->GetBytes(), source.GetString().data(), source.GetSize()); 970 return true; 971 } 972 973 std::pair<size_t, bool> 974 ValueObject::ReadPointedString(lldb::DataBufferSP &buffer_sp, Status &error, 975 uint32_t max_length, bool honor_array, 976 Format item_format) { 977 bool was_capped = false; 978 StreamString s; 979 ExecutionContext exe_ctx(GetExecutionContextRef()); 980 Target *target = exe_ctx.GetTargetPtr(); 981 982 if (!target) { 983 s << "<no target to read from>"; 984 error.SetErrorString("no target to read from"); 985 CopyStringDataToBufferSP(s, buffer_sp); 986 return {0, was_capped}; 987 } 988 989 if (max_length == 0) 990 max_length = target->GetMaximumSizeOfStringSummary(); 991 992 size_t bytes_read = 0; 993 size_t total_bytes_read = 0; 994 995 CompilerType compiler_type = GetCompilerType(); 996 CompilerType elem_or_pointee_compiler_type; 997 const Flags type_flags(GetTypeInfo(&elem_or_pointee_compiler_type)); 998 if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 999 elem_or_pointee_compiler_type.IsCharType()) { 1000 addr_t cstr_address = LLDB_INVALID_ADDRESS; 1001 AddressType cstr_address_type = eAddressTypeInvalid; 1002 1003 size_t cstr_len = 0; 1004 bool capped_data = false; 1005 const bool is_array = type_flags.Test(eTypeIsArray); 1006 if (is_array) { 1007 // We have an array 1008 uint64_t array_size = 0; 1009 if (compiler_type.IsArrayType(nullptr, &array_size, nullptr)) { 1010 cstr_len = array_size; 1011 if (cstr_len > max_length) { 1012 capped_data = true; 1013 cstr_len = max_length; 1014 } 1015 } 1016 cstr_address = GetAddressOf(true, &cstr_address_type); 1017 } else { 1018 // We have a pointer 1019 cstr_address = GetPointerValue(&cstr_address_type); 1020 } 1021 1022 if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) { 1023 if (cstr_address_type == eAddressTypeHost && is_array) { 1024 const char *cstr = GetDataExtractor().PeekCStr(0); 1025 if (cstr == nullptr) { 1026 s << "<invalid address>"; 1027 error.SetErrorString("invalid address"); 1028 CopyStringDataToBufferSP(s, buffer_sp); 1029 return {0, was_capped}; 1030 } 1031 buffer_sp = std::make_shared<DataBufferHeap>(cstr_len, 0); 1032 memcpy(buffer_sp->GetBytes(), cstr, cstr_len); 1033 return {cstr_len, was_capped}; 1034 } else { 1035 s << "<invalid address>"; 1036 error.SetErrorString("invalid address"); 1037 CopyStringDataToBufferSP(s, buffer_sp); 1038 return {0, was_capped}; 1039 } 1040 } 1041 1042 Address cstr_so_addr(cstr_address); 1043 DataExtractor data; 1044 if (cstr_len > 0 && honor_array) { 1045 // I am using GetPointeeData() here to abstract the fact that some 1046 // ValueObjects are actually frozen pointers in the host but the pointed- 1047 // to data lives in the debuggee, and GetPointeeData() automatically 1048 // takes care of this 1049 GetPointeeData(data, 0, cstr_len); 1050 1051 if ((bytes_read = data.GetByteSize()) > 0) { 1052 total_bytes_read = bytes_read; 1053 for (size_t offset = 0; offset < bytes_read; offset++) 1054 s.Printf("%c", *data.PeekData(offset, 1)); 1055 if (capped_data) 1056 was_capped = true; 1057 } 1058 } else { 1059 cstr_len = max_length; 1060 const size_t k_max_buf_size = 64; 1061 1062 size_t offset = 0; 1063 1064 int cstr_len_displayed = -1; 1065 bool capped_cstr = false; 1066 // I am using GetPointeeData() here to abstract the fact that some 1067 // ValueObjects are actually frozen pointers in the host but the pointed- 1068 // to data lives in the debuggee, and GetPointeeData() automatically 1069 // takes care of this 1070 while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) { 1071 total_bytes_read += bytes_read; 1072 const char *cstr = data.PeekCStr(0); 1073 size_t len = strnlen(cstr, k_max_buf_size); 1074 if (cstr_len_displayed < 0) 1075 cstr_len_displayed = len; 1076 1077 if (len == 0) 1078 break; 1079 cstr_len_displayed += len; 1080 if (len > bytes_read) 1081 len = bytes_read; 1082 if (len > cstr_len) 1083 len = cstr_len; 1084 1085 for (size_t offset = 0; offset < bytes_read; offset++) 1086 s.Printf("%c", *data.PeekData(offset, 1)); 1087 1088 if (len < k_max_buf_size) 1089 break; 1090 1091 if (len >= cstr_len) { 1092 capped_cstr = true; 1093 break; 1094 } 1095 1096 cstr_len -= len; 1097 offset += len; 1098 } 1099 1100 if (cstr_len_displayed >= 0) { 1101 if (capped_cstr) 1102 was_capped = true; 1103 } 1104 } 1105 } else { 1106 error.SetErrorString("not a string object"); 1107 s << "<not a string object>"; 1108 } 1109 CopyStringDataToBufferSP(s, buffer_sp); 1110 return {total_bytes_read, was_capped}; 1111 } 1112 1113 const char *ValueObject::GetObjectDescription() { 1114 if (!UpdateValueIfNeeded(true)) 1115 return nullptr; 1116 1117 // Return cached value. 1118 if (!m_object_desc_str.empty()) 1119 return m_object_desc_str.c_str(); 1120 1121 ExecutionContext exe_ctx(GetExecutionContextRef()); 1122 Process *process = exe_ctx.GetProcessPtr(); 1123 if (!process) 1124 return nullptr; 1125 1126 // Returns the object description produced by one language runtime. 1127 auto get_object_description = [&](LanguageType language) -> const char * { 1128 if (LanguageRuntime *runtime = process->GetLanguageRuntime(language)) { 1129 StreamString s; 1130 if (runtime->GetObjectDescription(s, *this)) { 1131 m_object_desc_str.append(std::string(s.GetString())); 1132 return m_object_desc_str.c_str(); 1133 } 1134 } 1135 return nullptr; 1136 }; 1137 1138 // Try the native language runtime first. 1139 LanguageType native_language = GetObjectRuntimeLanguage(); 1140 if (const char *desc = get_object_description(native_language)) 1141 return desc; 1142 1143 // Try the Objective-C language runtime. This fallback is necessary 1144 // for Objective-C++ and mixed Objective-C / C++ programs. 1145 if (Language::LanguageIsCFamily(native_language)) 1146 return get_object_description(eLanguageTypeObjC); 1147 return nullptr; 1148 } 1149 1150 bool ValueObject::GetValueAsCString(const lldb_private::TypeFormatImpl &format, 1151 std::string &destination) { 1152 if (UpdateValueIfNeeded(false)) 1153 return format.FormatObject(this, destination); 1154 else 1155 return false; 1156 } 1157 1158 bool ValueObject::GetValueAsCString(lldb::Format format, 1159 std::string &destination) { 1160 return GetValueAsCString(TypeFormatImpl_Format(format), destination); 1161 } 1162 1163 const char *ValueObject::GetValueAsCString() { 1164 if (UpdateValueIfNeeded(true)) { 1165 lldb::TypeFormatImplSP format_sp; 1166 lldb::Format my_format = GetFormat(); 1167 if (my_format == lldb::eFormatDefault) { 1168 if (m_type_format_sp) 1169 format_sp = m_type_format_sp; 1170 else { 1171 if (m_is_bitfield_for_scalar) 1172 my_format = eFormatUnsigned; 1173 else { 1174 if (m_value.GetContextType() == Value::eContextTypeRegisterInfo) { 1175 const RegisterInfo *reg_info = m_value.GetRegisterInfo(); 1176 if (reg_info) 1177 my_format = reg_info->format; 1178 } else { 1179 my_format = GetValue().GetCompilerType().GetFormat(); 1180 } 1181 } 1182 } 1183 } 1184 if (my_format != m_last_format || m_value_str.empty()) { 1185 m_last_format = my_format; 1186 if (!format_sp) 1187 format_sp = std::make_shared<TypeFormatImpl_Format>(my_format); 1188 if (GetValueAsCString(*format_sp.get(), m_value_str)) { 1189 if (!m_value_did_change && m_old_value_valid) { 1190 // The value was gotten successfully, so we consider the value as 1191 // changed if the value string differs 1192 SetValueDidChange(m_old_value_str != m_value_str); 1193 } 1194 } 1195 } 1196 } 1197 if (m_value_str.empty()) 1198 return nullptr; 1199 return m_value_str.c_str(); 1200 } 1201 1202 // if > 8bytes, 0 is returned. this method should mostly be used to read 1203 // address values out of pointers 1204 uint64_t ValueObject::GetValueAsUnsigned(uint64_t fail_value, bool *success) { 1205 // If our byte size is zero this is an aggregate type that has children 1206 if (CanProvideValue()) { 1207 Scalar scalar; 1208 if (ResolveValue(scalar)) { 1209 if (success) 1210 *success = true; 1211 scalar.MakeUnsigned(); 1212 return scalar.ULongLong(fail_value); 1213 } 1214 // fallthrough, otherwise... 1215 } 1216 1217 if (success) 1218 *success = false; 1219 return fail_value; 1220 } 1221 1222 int64_t ValueObject::GetValueAsSigned(int64_t fail_value, bool *success) { 1223 // If our byte size is zero this is an aggregate type that has children 1224 if (CanProvideValue()) { 1225 Scalar scalar; 1226 if (ResolveValue(scalar)) { 1227 if (success) 1228 *success = true; 1229 scalar.MakeSigned(); 1230 return scalar.SLongLong(fail_value); 1231 } 1232 // fallthrough, otherwise... 1233 } 1234 1235 if (success) 1236 *success = false; 1237 return fail_value; 1238 } 1239 1240 // if any more "special cases" are added to 1241 // ValueObject::DumpPrintableRepresentation() please keep this call up to date 1242 // by returning true for your new special cases. We will eventually move to 1243 // checking this call result before trying to display special cases 1244 bool ValueObject::HasSpecialPrintableRepresentation( 1245 ValueObjectRepresentationStyle val_obj_display, Format custom_format) { 1246 Flags flags(GetTypeInfo()); 1247 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1248 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1249 if (IsCStringContainer(true) && 1250 (custom_format == eFormatCString || custom_format == eFormatCharArray || 1251 custom_format == eFormatChar || custom_format == eFormatVectorOfChar)) 1252 return true; 1253 1254 if (flags.Test(eTypeIsArray)) { 1255 if ((custom_format == eFormatBytes) || 1256 (custom_format == eFormatBytesWithASCII)) 1257 return true; 1258 1259 if ((custom_format == eFormatVectorOfChar) || 1260 (custom_format == eFormatVectorOfFloat32) || 1261 (custom_format == eFormatVectorOfFloat64) || 1262 (custom_format == eFormatVectorOfSInt16) || 1263 (custom_format == eFormatVectorOfSInt32) || 1264 (custom_format == eFormatVectorOfSInt64) || 1265 (custom_format == eFormatVectorOfSInt8) || 1266 (custom_format == eFormatVectorOfUInt128) || 1267 (custom_format == eFormatVectorOfUInt16) || 1268 (custom_format == eFormatVectorOfUInt32) || 1269 (custom_format == eFormatVectorOfUInt64) || 1270 (custom_format == eFormatVectorOfUInt8)) 1271 return true; 1272 } 1273 } 1274 return false; 1275 } 1276 1277 bool ValueObject::DumpPrintableRepresentation( 1278 Stream &s, ValueObjectRepresentationStyle val_obj_display, 1279 Format custom_format, PrintableRepresentationSpecialCases special, 1280 bool do_dump_error) { 1281 1282 Flags flags(GetTypeInfo()); 1283 1284 bool allow_special = 1285 (special == ValueObject::PrintableRepresentationSpecialCases::eAllow); 1286 const bool only_special = false; 1287 1288 if (allow_special) { 1289 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1290 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1291 // when being asked to get a printable display an array or pointer type 1292 // directly, try to "do the right thing" 1293 1294 if (IsCStringContainer(true) && 1295 (custom_format == eFormatCString || 1296 custom_format == eFormatCharArray || custom_format == eFormatChar || 1297 custom_format == 1298 eFormatVectorOfChar)) // print char[] & char* directly 1299 { 1300 Status error; 1301 lldb::DataBufferSP buffer_sp; 1302 std::pair<size_t, bool> read_string = ReadPointedString( 1303 buffer_sp, error, 0, (custom_format == eFormatVectorOfChar) || 1304 (custom_format == eFormatCharArray)); 1305 lldb_private::formatters::StringPrinter:: 1306 ReadBufferAndDumpToStreamOptions options(*this); 1307 options.SetData(DataExtractor( 1308 buffer_sp, lldb::eByteOrderInvalid, 1309 8)); // none of this matters for a string - pass some defaults 1310 options.SetStream(&s); 1311 options.SetPrefixToken(nullptr); 1312 options.SetQuote('"'); 1313 options.SetSourceSize(buffer_sp->GetByteSize()); 1314 options.SetIsTruncated(read_string.second); 1315 formatters::StringPrinter::ReadBufferAndDumpToStream< 1316 lldb_private::formatters::StringPrinter::StringElementType::ASCII>( 1317 options); 1318 return !error.Fail(); 1319 } 1320 1321 if (custom_format == eFormatEnum) 1322 return false; 1323 1324 // this only works for arrays, because I have no way to know when the 1325 // pointed memory ends, and no special \0 end of data marker 1326 if (flags.Test(eTypeIsArray)) { 1327 if ((custom_format == eFormatBytes) || 1328 (custom_format == eFormatBytesWithASCII)) { 1329 const size_t count = GetNumChildren(); 1330 1331 s << '['; 1332 for (size_t low = 0; low < count; low++) { 1333 1334 if (low) 1335 s << ','; 1336 1337 ValueObjectSP child = GetChildAtIndex(low, true); 1338 if (!child.get()) { 1339 s << "<invalid child>"; 1340 continue; 1341 } 1342 child->DumpPrintableRepresentation( 1343 s, ValueObject::eValueObjectRepresentationStyleValue, 1344 custom_format); 1345 } 1346 1347 s << ']'; 1348 1349 return true; 1350 } 1351 1352 if ((custom_format == eFormatVectorOfChar) || 1353 (custom_format == eFormatVectorOfFloat32) || 1354 (custom_format == eFormatVectorOfFloat64) || 1355 (custom_format == eFormatVectorOfSInt16) || 1356 (custom_format == eFormatVectorOfSInt32) || 1357 (custom_format == eFormatVectorOfSInt64) || 1358 (custom_format == eFormatVectorOfSInt8) || 1359 (custom_format == eFormatVectorOfUInt128) || 1360 (custom_format == eFormatVectorOfUInt16) || 1361 (custom_format == eFormatVectorOfUInt32) || 1362 (custom_format == eFormatVectorOfUInt64) || 1363 (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes 1364 // with ASCII or any vector 1365 // format should be printed 1366 // directly 1367 { 1368 const size_t count = GetNumChildren(); 1369 1370 Format format = FormatManager::GetSingleItemFormat(custom_format); 1371 1372 s << '['; 1373 for (size_t low = 0; low < count; low++) { 1374 1375 if (low) 1376 s << ','; 1377 1378 ValueObjectSP child = GetChildAtIndex(low, true); 1379 if (!child.get()) { 1380 s << "<invalid child>"; 1381 continue; 1382 } 1383 child->DumpPrintableRepresentation( 1384 s, ValueObject::eValueObjectRepresentationStyleValue, format); 1385 } 1386 1387 s << ']'; 1388 1389 return true; 1390 } 1391 } 1392 1393 if ((custom_format == eFormatBoolean) || 1394 (custom_format == eFormatBinary) || (custom_format == eFormatChar) || 1395 (custom_format == eFormatCharPrintable) || 1396 (custom_format == eFormatComplexFloat) || 1397 (custom_format == eFormatDecimal) || (custom_format == eFormatHex) || 1398 (custom_format == eFormatHexUppercase) || 1399 (custom_format == eFormatFloat) || (custom_format == eFormatOctal) || 1400 (custom_format == eFormatOSType) || 1401 (custom_format == eFormatUnicode16) || 1402 (custom_format == eFormatUnicode32) || 1403 (custom_format == eFormatUnsigned) || 1404 (custom_format == eFormatPointer) || 1405 (custom_format == eFormatComplexInteger) || 1406 (custom_format == eFormatComplex) || 1407 (custom_format == eFormatDefault)) // use the [] operator 1408 return false; 1409 } 1410 } 1411 1412 if (only_special) 1413 return false; 1414 1415 bool var_success = false; 1416 1417 { 1418 llvm::StringRef str; 1419 1420 // this is a local stream that we are using to ensure that the data pointed 1421 // to by cstr survives long enough for us to copy it to its destination - 1422 // it is necessary to have this temporary storage area for cases where our 1423 // desired output is not backed by some other longer-term storage 1424 StreamString strm; 1425 1426 if (custom_format != eFormatInvalid) 1427 SetFormat(custom_format); 1428 1429 switch (val_obj_display) { 1430 case eValueObjectRepresentationStyleValue: 1431 str = GetValueAsCString(); 1432 break; 1433 1434 case eValueObjectRepresentationStyleSummary: 1435 str = GetSummaryAsCString(); 1436 break; 1437 1438 case eValueObjectRepresentationStyleLanguageSpecific: 1439 str = GetObjectDescription(); 1440 break; 1441 1442 case eValueObjectRepresentationStyleLocation: 1443 str = GetLocationAsCString(); 1444 break; 1445 1446 case eValueObjectRepresentationStyleChildrenCount: 1447 strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren()); 1448 str = strm.GetString(); 1449 break; 1450 1451 case eValueObjectRepresentationStyleType: 1452 str = GetTypeName().GetStringRef(); 1453 break; 1454 1455 case eValueObjectRepresentationStyleName: 1456 str = GetName().GetStringRef(); 1457 break; 1458 1459 case eValueObjectRepresentationStyleExpressionPath: 1460 GetExpressionPath(strm); 1461 str = strm.GetString(); 1462 break; 1463 } 1464 1465 if (str.empty()) { 1466 if (val_obj_display == eValueObjectRepresentationStyleValue) 1467 str = GetSummaryAsCString(); 1468 else if (val_obj_display == eValueObjectRepresentationStyleSummary) { 1469 if (!CanProvideValue()) { 1470 strm.Printf("%s @ %s", GetTypeName().AsCString(), 1471 GetLocationAsCString()); 1472 str = strm.GetString(); 1473 } else 1474 str = GetValueAsCString(); 1475 } 1476 } 1477 1478 if (!str.empty()) 1479 s << str; 1480 else { 1481 if (m_error.Fail()) { 1482 if (do_dump_error) 1483 s.Printf("<%s>", m_error.AsCString()); 1484 else 1485 return false; 1486 } else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1487 s.PutCString("<no summary available>"); 1488 else if (val_obj_display == eValueObjectRepresentationStyleValue) 1489 s.PutCString("<no value available>"); 1490 else if (val_obj_display == 1491 eValueObjectRepresentationStyleLanguageSpecific) 1492 s.PutCString("<not a valid Objective-C object>"); // edit this if we 1493 // have other runtimes 1494 // that support a 1495 // description 1496 else 1497 s.PutCString("<no printable representation>"); 1498 } 1499 1500 // we should only return false here if we could not do *anything* even if 1501 // we have an error message as output, that's a success from our callers' 1502 // perspective, so return true 1503 var_success = true; 1504 1505 if (custom_format != eFormatInvalid) 1506 SetFormat(eFormatDefault); 1507 } 1508 1509 return var_success; 1510 } 1511 1512 addr_t ValueObject::GetAddressOf(bool scalar_is_load_address, 1513 AddressType *address_type) { 1514 // Can't take address of a bitfield 1515 if (IsBitfield()) 1516 return LLDB_INVALID_ADDRESS; 1517 1518 if (!UpdateValueIfNeeded(false)) 1519 return LLDB_INVALID_ADDRESS; 1520 1521 switch (m_value.GetValueType()) { 1522 case Value::eValueTypeScalar: 1523 case Value::eValueTypeVector: 1524 if (scalar_is_load_address) { 1525 if (address_type) 1526 *address_type = eAddressTypeLoad; 1527 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1528 } 1529 break; 1530 1531 case Value::eValueTypeLoadAddress: 1532 case Value::eValueTypeFileAddress: { 1533 if (address_type) 1534 *address_type = m_value.GetValueAddressType(); 1535 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1536 } break; 1537 case Value::eValueTypeHostAddress: { 1538 if (address_type) 1539 *address_type = m_value.GetValueAddressType(); 1540 return LLDB_INVALID_ADDRESS; 1541 } break; 1542 } 1543 if (address_type) 1544 *address_type = eAddressTypeInvalid; 1545 return LLDB_INVALID_ADDRESS; 1546 } 1547 1548 addr_t ValueObject::GetPointerValue(AddressType *address_type) { 1549 addr_t address = LLDB_INVALID_ADDRESS; 1550 if (address_type) 1551 *address_type = eAddressTypeInvalid; 1552 1553 if (!UpdateValueIfNeeded(false)) 1554 return address; 1555 1556 switch (m_value.GetValueType()) { 1557 case Value::eValueTypeScalar: 1558 case Value::eValueTypeVector: 1559 address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1560 break; 1561 1562 case Value::eValueTypeHostAddress: 1563 case Value::eValueTypeLoadAddress: 1564 case Value::eValueTypeFileAddress: { 1565 lldb::offset_t data_offset = 0; 1566 address = m_data.GetAddress(&data_offset); 1567 } break; 1568 } 1569 1570 if (address_type) 1571 *address_type = GetAddressTypeOfChildren(); 1572 1573 return address; 1574 } 1575 1576 bool ValueObject::SetValueFromCString(const char *value_str, Status &error) { 1577 error.Clear(); 1578 // Make sure our value is up to date first so that our location and location 1579 // type is valid. 1580 if (!UpdateValueIfNeeded(false)) { 1581 error.SetErrorString("unable to read value"); 1582 return false; 1583 } 1584 1585 uint64_t count = 0; 1586 const Encoding encoding = GetCompilerType().GetEncoding(count); 1587 1588 const size_t byte_size = GetByteSize(); 1589 1590 Value::ValueType value_type = m_value.GetValueType(); 1591 1592 if (value_type == Value::eValueTypeScalar) { 1593 // If the value is already a scalar, then let the scalar change itself: 1594 m_value.GetScalar().SetValueFromCString(value_str, encoding, byte_size); 1595 } else if (byte_size <= 16) { 1596 // If the value fits in a scalar, then make a new scalar and again let the 1597 // scalar code do the conversion, then figure out where to put the new 1598 // value. 1599 Scalar new_scalar; 1600 error = new_scalar.SetValueFromCString(value_str, encoding, byte_size); 1601 if (error.Success()) { 1602 switch (value_type) { 1603 case Value::eValueTypeLoadAddress: { 1604 // If it is a load address, then the scalar value is the storage 1605 // location of the data, and we have to shove this value down to that 1606 // load location. 1607 ExecutionContext exe_ctx(GetExecutionContextRef()); 1608 Process *process = exe_ctx.GetProcessPtr(); 1609 if (process) { 1610 addr_t target_addr = 1611 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1612 size_t bytes_written = process->WriteScalarToMemory( 1613 target_addr, new_scalar, byte_size, error); 1614 if (!error.Success()) 1615 return false; 1616 if (bytes_written != byte_size) { 1617 error.SetErrorString("unable to write value to memory"); 1618 return false; 1619 } 1620 } 1621 } break; 1622 case Value::eValueTypeHostAddress: { 1623 // If it is a host address, then we stuff the scalar as a DataBuffer 1624 // into the Value's data. 1625 DataExtractor new_data; 1626 new_data.SetByteOrder(m_data.GetByteOrder()); 1627 1628 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 1629 m_data.SetData(buffer_sp, 0); 1630 bool success = new_scalar.GetData(new_data); 1631 if (success) { 1632 new_data.CopyByteOrderedData( 1633 0, byte_size, const_cast<uint8_t *>(m_data.GetDataStart()), 1634 byte_size, m_data.GetByteOrder()); 1635 } 1636 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1637 1638 } break; 1639 case Value::eValueTypeFileAddress: 1640 case Value::eValueTypeScalar: 1641 case Value::eValueTypeVector: 1642 break; 1643 } 1644 } else { 1645 return false; 1646 } 1647 } else { 1648 // We don't support setting things bigger than a scalar at present. 1649 error.SetErrorString("unable to write aggregate data type"); 1650 return false; 1651 } 1652 1653 // If we have reached this point, then we have successfully changed the 1654 // value. 1655 SetNeedsUpdate(); 1656 return true; 1657 } 1658 1659 bool ValueObject::GetDeclaration(Declaration &decl) { 1660 decl.Clear(); 1661 return false; 1662 } 1663 1664 ConstString ValueObject::GetTypeName() { 1665 return GetCompilerType().GetTypeName(); 1666 } 1667 1668 ConstString ValueObject::GetDisplayTypeName() { return GetTypeName(); } 1669 1670 ConstString ValueObject::GetQualifiedTypeName() { 1671 return GetCompilerType().GetTypeName(); 1672 } 1673 1674 LanguageType ValueObject::GetObjectRuntimeLanguage() { 1675 return GetCompilerType().GetMinimumLanguage(); 1676 } 1677 1678 void ValueObject::AddSyntheticChild(ConstString key, 1679 ValueObject *valobj) { 1680 m_synthetic_children[key] = valobj; 1681 } 1682 1683 ValueObjectSP ValueObject::GetSyntheticChild(ConstString key) const { 1684 ValueObjectSP synthetic_child_sp; 1685 std::map<ConstString, ValueObject *>::const_iterator pos = 1686 m_synthetic_children.find(key); 1687 if (pos != m_synthetic_children.end()) 1688 synthetic_child_sp = pos->second->GetSP(); 1689 return synthetic_child_sp; 1690 } 1691 1692 uint32_t 1693 ValueObject::GetTypeInfo(CompilerType *pointee_or_element_compiler_type) { 1694 return GetCompilerType().GetTypeInfo(pointee_or_element_compiler_type); 1695 } 1696 1697 bool ValueObject::IsPointerType() { return GetCompilerType().IsPointerType(); } 1698 1699 bool ValueObject::IsArrayType() { 1700 return GetCompilerType().IsArrayType(nullptr, nullptr, nullptr); 1701 } 1702 1703 bool ValueObject::IsScalarType() { return GetCompilerType().IsScalarType(); } 1704 1705 bool ValueObject::IsIntegerType(bool &is_signed) { 1706 return GetCompilerType().IsIntegerType(is_signed); 1707 } 1708 1709 bool ValueObject::IsPointerOrReferenceType() { 1710 return GetCompilerType().IsPointerOrReferenceType(); 1711 } 1712 1713 bool ValueObject::IsPossibleDynamicType() { 1714 ExecutionContext exe_ctx(GetExecutionContextRef()); 1715 Process *process = exe_ctx.GetProcessPtr(); 1716 if (process) 1717 return process->IsPossibleDynamicValue(*this); 1718 else 1719 return GetCompilerType().IsPossibleDynamicType(nullptr, true, true); 1720 } 1721 1722 bool ValueObject::IsRuntimeSupportValue() { 1723 Process *process(GetProcessSP().get()); 1724 if (!process) 1725 return false; 1726 1727 // We trust the the compiler did the right thing and marked runtime support 1728 // values as artificial. 1729 if (!GetVariable() || !GetVariable()->IsArtificial()) 1730 return false; 1731 1732 if (auto *runtime = process->GetLanguageRuntime(GetVariable()->GetLanguage())) 1733 if (runtime->IsAllowedRuntimeValue(GetName())) 1734 return false; 1735 1736 return true; 1737 } 1738 1739 bool ValueObject::IsNilReference() { 1740 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1741 return language->IsNilReference(*this); 1742 } 1743 return false; 1744 } 1745 1746 bool ValueObject::IsUninitializedReference() { 1747 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1748 return language->IsUninitializedReference(*this); 1749 } 1750 return false; 1751 } 1752 1753 // This allows you to create an array member using and index that doesn't not 1754 // fall in the normal bounds of the array. Many times structure can be defined 1755 // as: struct Collection { 1756 // uint32_t item_count; 1757 // Item item_array[0]; 1758 // }; 1759 // The size of the "item_array" is 1, but many times in practice there are more 1760 // items in "item_array". 1761 1762 ValueObjectSP ValueObject::GetSyntheticArrayMember(size_t index, 1763 bool can_create) { 1764 ValueObjectSP synthetic_child_sp; 1765 if (IsPointerType() || IsArrayType()) { 1766 char index_str[64]; 1767 snprintf(index_str, sizeof(index_str), "[%" PRIu64 "]", (uint64_t)index); 1768 ConstString index_const_str(index_str); 1769 // Check if we have already created a synthetic array member in this valid 1770 // object. If we have we will re-use it. 1771 synthetic_child_sp = GetSyntheticChild(index_const_str); 1772 if (!synthetic_child_sp) { 1773 ValueObject *synthetic_child; 1774 // We haven't made a synthetic array member for INDEX yet, so lets make 1775 // one and cache it for any future reference. 1776 synthetic_child = CreateChildAtIndex(0, true, index); 1777 1778 // Cache the value if we got one back... 1779 if (synthetic_child) { 1780 AddSyntheticChild(index_const_str, synthetic_child); 1781 synthetic_child_sp = synthetic_child->GetSP(); 1782 synthetic_child_sp->SetName(ConstString(index_str)); 1783 synthetic_child_sp->m_is_array_item_for_pointer = true; 1784 } 1785 } 1786 } 1787 return synthetic_child_sp; 1788 } 1789 1790 ValueObjectSP ValueObject::GetSyntheticBitFieldChild(uint32_t from, uint32_t to, 1791 bool can_create) { 1792 ValueObjectSP synthetic_child_sp; 1793 if (IsScalarType()) { 1794 char index_str[64]; 1795 snprintf(index_str, sizeof(index_str), "[%i-%i]", from, to); 1796 ConstString index_const_str(index_str); 1797 // Check if we have already created a synthetic array member in this valid 1798 // object. If we have we will re-use it. 1799 synthetic_child_sp = GetSyntheticChild(index_const_str); 1800 if (!synthetic_child_sp) { 1801 uint32_t bit_field_size = to - from + 1; 1802 uint32_t bit_field_offset = from; 1803 if (GetDataExtractor().GetByteOrder() == eByteOrderBig) 1804 bit_field_offset = 1805 GetByteSize() * 8 - bit_field_size - bit_field_offset; 1806 // We haven't made a synthetic array member for INDEX yet, so lets make 1807 // one and cache it for any future reference. 1808 ValueObjectChild *synthetic_child = new ValueObjectChild( 1809 *this, GetCompilerType(), index_const_str, GetByteSize(), 0, 1810 bit_field_size, bit_field_offset, false, false, eAddressTypeInvalid, 1811 0); 1812 1813 // Cache the value if we got one back... 1814 if (synthetic_child) { 1815 AddSyntheticChild(index_const_str, synthetic_child); 1816 synthetic_child_sp = synthetic_child->GetSP(); 1817 synthetic_child_sp->SetName(ConstString(index_str)); 1818 synthetic_child_sp->m_is_bitfield_for_scalar = true; 1819 } 1820 } 1821 } 1822 return synthetic_child_sp; 1823 } 1824 1825 ValueObjectSP ValueObject::GetSyntheticChildAtOffset( 1826 uint32_t offset, const CompilerType &type, bool can_create, 1827 ConstString name_const_str) { 1828 1829 ValueObjectSP synthetic_child_sp; 1830 1831 if (name_const_str.IsEmpty()) { 1832 char name_str[64]; 1833 snprintf(name_str, sizeof(name_str), "@%i", offset); 1834 name_const_str.SetCString(name_str); 1835 } 1836 1837 // Check if we have already created a synthetic array member in this valid 1838 // object. If we have we will re-use it. 1839 synthetic_child_sp = GetSyntheticChild(name_const_str); 1840 1841 if (synthetic_child_sp.get()) 1842 return synthetic_child_sp; 1843 1844 if (!can_create) 1845 return {}; 1846 1847 ExecutionContext exe_ctx(GetExecutionContextRef()); 1848 llvm::Optional<uint64_t> size = 1849 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1850 if (!size) 1851 return {}; 1852 ValueObjectChild *synthetic_child = 1853 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1854 false, false, eAddressTypeInvalid, 0); 1855 if (synthetic_child) { 1856 AddSyntheticChild(name_const_str, synthetic_child); 1857 synthetic_child_sp = synthetic_child->GetSP(); 1858 synthetic_child_sp->SetName(name_const_str); 1859 synthetic_child_sp->m_is_child_at_offset = true; 1860 } 1861 return synthetic_child_sp; 1862 } 1863 1864 ValueObjectSP ValueObject::GetSyntheticBase(uint32_t offset, 1865 const CompilerType &type, 1866 bool can_create, 1867 ConstString name_const_str) { 1868 ValueObjectSP synthetic_child_sp; 1869 1870 if (name_const_str.IsEmpty()) { 1871 char name_str[128]; 1872 snprintf(name_str, sizeof(name_str), "base%s@%i", 1873 type.GetTypeName().AsCString("<unknown>"), offset); 1874 name_const_str.SetCString(name_str); 1875 } 1876 1877 // Check if we have already created a synthetic array member in this valid 1878 // object. If we have we will re-use it. 1879 synthetic_child_sp = GetSyntheticChild(name_const_str); 1880 1881 if (synthetic_child_sp.get()) 1882 return synthetic_child_sp; 1883 1884 if (!can_create) 1885 return {}; 1886 1887 const bool is_base_class = true; 1888 1889 ExecutionContext exe_ctx(GetExecutionContextRef()); 1890 llvm::Optional<uint64_t> size = 1891 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1892 if (!size) 1893 return {}; 1894 ValueObjectChild *synthetic_child = 1895 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1896 is_base_class, false, eAddressTypeInvalid, 0); 1897 if (synthetic_child) { 1898 AddSyntheticChild(name_const_str, synthetic_child); 1899 synthetic_child_sp = synthetic_child->GetSP(); 1900 synthetic_child_sp->SetName(name_const_str); 1901 } 1902 return synthetic_child_sp; 1903 } 1904 1905 // your expression path needs to have a leading . or -> (unless it somehow 1906 // "looks like" an array, in which case it has a leading [ symbol). while the [ 1907 // is meaningful and should be shown to the user, . and -> are just parser 1908 // design, but by no means added information for the user.. strip them off 1909 static const char *SkipLeadingExpressionPathSeparators(const char *expression) { 1910 if (!expression || !expression[0]) 1911 return expression; 1912 if (expression[0] == '.') 1913 return expression + 1; 1914 if (expression[0] == '-' && expression[1] == '>') 1915 return expression + 2; 1916 return expression; 1917 } 1918 1919 ValueObjectSP 1920 ValueObject::GetSyntheticExpressionPathChild(const char *expression, 1921 bool can_create) { 1922 ValueObjectSP synthetic_child_sp; 1923 ConstString name_const_string(expression); 1924 // Check if we have already created a synthetic array member in this valid 1925 // object. If we have we will re-use it. 1926 synthetic_child_sp = GetSyntheticChild(name_const_string); 1927 if (!synthetic_child_sp) { 1928 // We haven't made a synthetic array member for expression yet, so lets 1929 // make one and cache it for any future reference. 1930 synthetic_child_sp = GetValueForExpressionPath( 1931 expression, nullptr, nullptr, 1932 GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal( 1933 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 1934 None)); 1935 1936 // Cache the value if we got one back... 1937 if (synthetic_child_sp.get()) { 1938 // FIXME: this causes a "real" child to end up with its name changed to 1939 // the contents of expression 1940 AddSyntheticChild(name_const_string, synthetic_child_sp.get()); 1941 synthetic_child_sp->SetName( 1942 ConstString(SkipLeadingExpressionPathSeparators(expression))); 1943 } 1944 } 1945 return synthetic_child_sp; 1946 } 1947 1948 void ValueObject::CalculateSyntheticValue() { 1949 TargetSP target_sp(GetTargetSP()); 1950 if (target_sp && !target_sp->GetEnableSyntheticValue()) { 1951 m_synthetic_value = nullptr; 1952 return; 1953 } 1954 1955 lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp); 1956 1957 if (!UpdateFormatsIfNeeded() && m_synthetic_value) 1958 return; 1959 1960 if (m_synthetic_children_sp.get() == nullptr) 1961 return; 1962 1963 if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value) 1964 return; 1965 1966 m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp); 1967 } 1968 1969 void ValueObject::CalculateDynamicValue(DynamicValueType use_dynamic) { 1970 if (use_dynamic == eNoDynamicValues) 1971 return; 1972 1973 if (!m_dynamic_value && !IsDynamic()) { 1974 ExecutionContext exe_ctx(GetExecutionContextRef()); 1975 Process *process = exe_ctx.GetProcessPtr(); 1976 if (process && process->IsPossibleDynamicValue(*this)) { 1977 ClearDynamicTypeInformation(); 1978 m_dynamic_value = new ValueObjectDynamicValue(*this, use_dynamic); 1979 } 1980 } 1981 } 1982 1983 ValueObjectSP ValueObject::GetDynamicValue(DynamicValueType use_dynamic) { 1984 if (use_dynamic == eNoDynamicValues) 1985 return ValueObjectSP(); 1986 1987 if (!IsDynamic() && m_dynamic_value == nullptr) { 1988 CalculateDynamicValue(use_dynamic); 1989 } 1990 if (m_dynamic_value) 1991 return m_dynamic_value->GetSP(); 1992 else 1993 return ValueObjectSP(); 1994 } 1995 1996 ValueObjectSP ValueObject::GetStaticValue() { return GetSP(); } 1997 1998 lldb::ValueObjectSP ValueObject::GetNonSyntheticValue() { return GetSP(); } 1999 2000 ValueObjectSP ValueObject::GetSyntheticValue() { 2001 CalculateSyntheticValue(); 2002 2003 if (m_synthetic_value) 2004 return m_synthetic_value->GetSP(); 2005 else 2006 return ValueObjectSP(); 2007 } 2008 2009 bool ValueObject::HasSyntheticValue() { 2010 UpdateFormatsIfNeeded(); 2011 2012 if (m_synthetic_children_sp.get() == nullptr) 2013 return false; 2014 2015 CalculateSyntheticValue(); 2016 2017 return m_synthetic_value != nullptr; 2018 } 2019 2020 ValueObject *ValueObject::GetNonBaseClassParent() { 2021 if (GetParent()) { 2022 if (GetParent()->IsBaseClass()) 2023 return GetParent()->GetNonBaseClassParent(); 2024 else 2025 return GetParent(); 2026 } 2027 return nullptr; 2028 } 2029 2030 bool ValueObject::IsBaseClass(uint32_t &depth) { 2031 if (!IsBaseClass()) { 2032 depth = 0; 2033 return false; 2034 } 2035 if (GetParent()) { 2036 GetParent()->IsBaseClass(depth); 2037 depth = depth + 1; 2038 return true; 2039 } 2040 // TODO: a base of no parent? weird.. 2041 depth = 1; 2042 return true; 2043 } 2044 2045 void ValueObject::GetExpressionPath(Stream &s, 2046 GetExpressionPathFormat epformat) { 2047 // synthetic children do not actually "exist" as part of the hierarchy, and 2048 // sometimes they are consed up in ways that don't make sense from an 2049 // underlying language/API standpoint. So, use a special code path here to 2050 // return something that can hopefully be used in expression 2051 if (m_is_synthetic_children_generated) { 2052 UpdateValueIfNeeded(); 2053 2054 if (m_value.GetValueType() == Value::eValueTypeLoadAddress) { 2055 if (IsPointerOrReferenceType()) { 2056 s.Printf("((%s)0x%" PRIx64 ")", GetTypeName().AsCString("void"), 2057 GetValueAsUnsigned(0)); 2058 return; 2059 } else { 2060 uint64_t load_addr = 2061 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2062 if (load_addr != LLDB_INVALID_ADDRESS) { 2063 s.Printf("(*( (%s *)0x%" PRIx64 "))", GetTypeName().AsCString("void"), 2064 load_addr); 2065 return; 2066 } 2067 } 2068 } 2069 2070 if (CanProvideValue()) { 2071 s.Printf("((%s)%s)", GetTypeName().AsCString("void"), 2072 GetValueAsCString()); 2073 return; 2074 } 2075 2076 return; 2077 } 2078 2079 const bool is_deref_of_parent = IsDereferenceOfParent(); 2080 2081 if (is_deref_of_parent && 2082 epformat == eGetExpressionPathFormatDereferencePointers) { 2083 // this is the original format of GetExpressionPath() producing code like 2084 // *(a_ptr).memberName, which is entirely fine, until you put this into 2085 // StackFrame::GetValueForVariableExpressionPath() which prefers to see 2086 // a_ptr->memberName. the eHonorPointers mode is meant to produce strings 2087 // in this latter format 2088 s.PutCString("*("); 2089 } 2090 2091 ValueObject *parent = GetParent(); 2092 2093 if (parent) 2094 parent->GetExpressionPath(s, epformat); 2095 2096 // if we are a deref_of_parent just because we are synthetic array members 2097 // made up to allow ptr[%d] syntax to work in variable printing, then add our 2098 // name ([%d]) to the expression path 2099 if (m_is_array_item_for_pointer && 2100 epformat == eGetExpressionPathFormatHonorPointers) 2101 s.PutCString(m_name.GetStringRef()); 2102 2103 if (!IsBaseClass()) { 2104 if (!is_deref_of_parent) { 2105 ValueObject *non_base_class_parent = GetNonBaseClassParent(); 2106 if (non_base_class_parent && 2107 !non_base_class_parent->GetName().IsEmpty()) { 2108 CompilerType non_base_class_parent_compiler_type = 2109 non_base_class_parent->GetCompilerType(); 2110 if (non_base_class_parent_compiler_type) { 2111 if (parent && parent->IsDereferenceOfParent() && 2112 epformat == eGetExpressionPathFormatHonorPointers) { 2113 s.PutCString("->"); 2114 } else { 2115 const uint32_t non_base_class_parent_type_info = 2116 non_base_class_parent_compiler_type.GetTypeInfo(); 2117 2118 if (non_base_class_parent_type_info & eTypeIsPointer) { 2119 s.PutCString("->"); 2120 } else if ((non_base_class_parent_type_info & eTypeHasChildren) && 2121 !(non_base_class_parent_type_info & eTypeIsArray)) { 2122 s.PutChar('.'); 2123 } 2124 } 2125 } 2126 } 2127 2128 const char *name = GetName().GetCString(); 2129 if (name) 2130 s.PutCString(name); 2131 } 2132 } 2133 2134 if (is_deref_of_parent && 2135 epformat == eGetExpressionPathFormatDereferencePointers) { 2136 s.PutChar(')'); 2137 } 2138 } 2139 2140 ValueObjectSP ValueObject::GetValueForExpressionPath( 2141 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2142 ExpressionPathEndResultType *final_value_type, 2143 const GetValueForExpressionPathOptions &options, 2144 ExpressionPathAftermath *final_task_on_target) { 2145 2146 ExpressionPathScanEndReason dummy_reason_to_stop = 2147 ValueObject::eExpressionPathScanEndReasonUnknown; 2148 ExpressionPathEndResultType dummy_final_value_type = 2149 ValueObject::eExpressionPathEndResultTypeInvalid; 2150 ExpressionPathAftermath dummy_final_task_on_target = 2151 ValueObject::eExpressionPathAftermathNothing; 2152 2153 ValueObjectSP ret_val = GetValueForExpressionPath_Impl( 2154 expression, reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2155 final_value_type ? final_value_type : &dummy_final_value_type, options, 2156 final_task_on_target ? final_task_on_target 2157 : &dummy_final_task_on_target); 2158 2159 if (!final_task_on_target || 2160 *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2161 return ret_val; 2162 2163 if (ret_val.get() && 2164 ((final_value_type ? *final_value_type : dummy_final_value_type) == 2165 eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress 2166 // of plain objects 2167 { 2168 if ((final_task_on_target ? *final_task_on_target 2169 : dummy_final_task_on_target) == 2170 ValueObject::eExpressionPathAftermathDereference) { 2171 Status error; 2172 ValueObjectSP final_value = ret_val->Dereference(error); 2173 if (error.Fail() || !final_value.get()) { 2174 if (reason_to_stop) 2175 *reason_to_stop = 2176 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2177 if (final_value_type) 2178 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2179 return ValueObjectSP(); 2180 } else { 2181 if (final_task_on_target) 2182 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2183 return final_value; 2184 } 2185 } 2186 if (*final_task_on_target == 2187 ValueObject::eExpressionPathAftermathTakeAddress) { 2188 Status error; 2189 ValueObjectSP final_value = ret_val->AddressOf(error); 2190 if (error.Fail() || !final_value.get()) { 2191 if (reason_to_stop) 2192 *reason_to_stop = 2193 ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2194 if (final_value_type) 2195 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2196 return ValueObjectSP(); 2197 } else { 2198 if (final_task_on_target) 2199 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2200 return final_value; 2201 } 2202 } 2203 } 2204 return ret_val; // final_task_on_target will still have its original value, so 2205 // you know I did not do it 2206 } 2207 2208 ValueObjectSP ValueObject::GetValueForExpressionPath_Impl( 2209 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2210 ExpressionPathEndResultType *final_result, 2211 const GetValueForExpressionPathOptions &options, 2212 ExpressionPathAftermath *what_next) { 2213 ValueObjectSP root = GetSP(); 2214 2215 if (!root) 2216 return nullptr; 2217 2218 llvm::StringRef remainder = expression; 2219 2220 while (true) { 2221 llvm::StringRef temp_expression = remainder; 2222 2223 CompilerType root_compiler_type = root->GetCompilerType(); 2224 CompilerType pointee_compiler_type; 2225 Flags pointee_compiler_type_info; 2226 2227 Flags root_compiler_type_info( 2228 root_compiler_type.GetTypeInfo(&pointee_compiler_type)); 2229 if (pointee_compiler_type) 2230 pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo()); 2231 2232 if (temp_expression.empty()) { 2233 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2234 return root; 2235 } 2236 2237 switch (temp_expression.front()) { 2238 case '-': { 2239 temp_expression = temp_expression.drop_front(); 2240 if (options.m_check_dot_vs_arrow_syntax && 2241 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2242 // use -> on a 2243 // non-pointer and I 2244 // must catch the error 2245 { 2246 *reason_to_stop = 2247 ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot; 2248 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2249 return ValueObjectSP(); 2250 } 2251 if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to 2252 // extract an ObjC IVar 2253 // when this is forbidden 2254 root_compiler_type_info.Test(eTypeIsPointer) && 2255 options.m_no_fragile_ivar) { 2256 *reason_to_stop = 2257 ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed; 2258 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2259 return ValueObjectSP(); 2260 } 2261 if (!temp_expression.startswith(">")) { 2262 *reason_to_stop = 2263 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2264 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2265 return ValueObjectSP(); 2266 } 2267 } 2268 LLVM_FALLTHROUGH; 2269 case '.': // or fallthrough from -> 2270 { 2271 if (options.m_check_dot_vs_arrow_syntax && 2272 temp_expression.front() == '.' && 2273 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2274 // use . on a pointer 2275 // and I must catch the 2276 // error 2277 { 2278 *reason_to_stop = 2279 ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow; 2280 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2281 return nullptr; 2282 } 2283 temp_expression = temp_expression.drop_front(); // skip . or > 2284 2285 size_t next_sep_pos = temp_expression.find_first_of("-.[", 1); 2286 ConstString child_name; 2287 if (next_sep_pos == llvm::StringRef::npos) // if no other separator just 2288 // expand this last layer 2289 { 2290 child_name.SetString(temp_expression); 2291 ValueObjectSP child_valobj_sp = 2292 root->GetChildMemberWithName(child_name, true); 2293 2294 if (child_valobj_sp.get()) // we know we are done, so just return 2295 { 2296 *reason_to_stop = 2297 ValueObject::eExpressionPathScanEndReasonEndOfString; 2298 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2299 return child_valobj_sp; 2300 } else { 2301 switch (options.m_synthetic_children_traversal) { 2302 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2303 None: 2304 break; 2305 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2306 FromSynthetic: 2307 if (root->IsSynthetic()) { 2308 child_valobj_sp = root->GetNonSyntheticValue(); 2309 if (child_valobj_sp.get()) 2310 child_valobj_sp = 2311 child_valobj_sp->GetChildMemberWithName(child_name, true); 2312 } 2313 break; 2314 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2315 ToSynthetic: 2316 if (!root->IsSynthetic()) { 2317 child_valobj_sp = root->GetSyntheticValue(); 2318 if (child_valobj_sp.get()) 2319 child_valobj_sp = 2320 child_valobj_sp->GetChildMemberWithName(child_name, true); 2321 } 2322 break; 2323 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2324 Both: 2325 if (root->IsSynthetic()) { 2326 child_valobj_sp = root->GetNonSyntheticValue(); 2327 if (child_valobj_sp.get()) 2328 child_valobj_sp = 2329 child_valobj_sp->GetChildMemberWithName(child_name, true); 2330 } else { 2331 child_valobj_sp = root->GetSyntheticValue(); 2332 if (child_valobj_sp.get()) 2333 child_valobj_sp = 2334 child_valobj_sp->GetChildMemberWithName(child_name, true); 2335 } 2336 break; 2337 } 2338 } 2339 2340 // if we are here and options.m_no_synthetic_children is true, 2341 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2342 // branch, and return an error 2343 if (child_valobj_sp.get()) // if it worked, just return 2344 { 2345 *reason_to_stop = 2346 ValueObject::eExpressionPathScanEndReasonEndOfString; 2347 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2348 return child_valobj_sp; 2349 } else { 2350 *reason_to_stop = 2351 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2352 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2353 return nullptr; 2354 } 2355 } else // other layers do expand 2356 { 2357 llvm::StringRef next_separator = temp_expression.substr(next_sep_pos); 2358 2359 child_name.SetString(temp_expression.slice(0, next_sep_pos)); 2360 2361 ValueObjectSP child_valobj_sp = 2362 root->GetChildMemberWithName(child_name, true); 2363 if (child_valobj_sp.get()) // store the new root and move on 2364 { 2365 root = child_valobj_sp; 2366 remainder = next_separator; 2367 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2368 continue; 2369 } else { 2370 switch (options.m_synthetic_children_traversal) { 2371 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2372 None: 2373 break; 2374 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2375 FromSynthetic: 2376 if (root->IsSynthetic()) { 2377 child_valobj_sp = root->GetNonSyntheticValue(); 2378 if (child_valobj_sp.get()) 2379 child_valobj_sp = 2380 child_valobj_sp->GetChildMemberWithName(child_name, true); 2381 } 2382 break; 2383 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2384 ToSynthetic: 2385 if (!root->IsSynthetic()) { 2386 child_valobj_sp = root->GetSyntheticValue(); 2387 if (child_valobj_sp.get()) 2388 child_valobj_sp = 2389 child_valobj_sp->GetChildMemberWithName(child_name, true); 2390 } 2391 break; 2392 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2393 Both: 2394 if (root->IsSynthetic()) { 2395 child_valobj_sp = root->GetNonSyntheticValue(); 2396 if (child_valobj_sp.get()) 2397 child_valobj_sp = 2398 child_valobj_sp->GetChildMemberWithName(child_name, true); 2399 } else { 2400 child_valobj_sp = root->GetSyntheticValue(); 2401 if (child_valobj_sp.get()) 2402 child_valobj_sp = 2403 child_valobj_sp->GetChildMemberWithName(child_name, true); 2404 } 2405 break; 2406 } 2407 } 2408 2409 // if we are here and options.m_no_synthetic_children is true, 2410 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2411 // branch, and return an error 2412 if (child_valobj_sp.get()) // if it worked, move on 2413 { 2414 root = child_valobj_sp; 2415 remainder = next_separator; 2416 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2417 continue; 2418 } else { 2419 *reason_to_stop = 2420 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2421 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2422 return nullptr; 2423 } 2424 } 2425 break; 2426 } 2427 case '[': { 2428 if (!root_compiler_type_info.Test(eTypeIsArray) && 2429 !root_compiler_type_info.Test(eTypeIsPointer) && 2430 !root_compiler_type_info.Test( 2431 eTypeIsVector)) // if this is not a T[] nor a T* 2432 { 2433 if (!root_compiler_type_info.Test( 2434 eTypeIsScalar)) // if this is not even a scalar... 2435 { 2436 if (options.m_synthetic_children_traversal == 2437 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2438 None) // ...only chance left is synthetic 2439 { 2440 *reason_to_stop = 2441 ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 2442 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2443 return ValueObjectSP(); 2444 } 2445 } else if (!options.m_allow_bitfields_syntax) // if this is a scalar, 2446 // check that we can 2447 // expand bitfields 2448 { 2449 *reason_to_stop = 2450 ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 2451 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2452 return ValueObjectSP(); 2453 } 2454 } 2455 if (temp_expression[1] == 2456 ']') // if this is an unbounded range it only works for arrays 2457 { 2458 if (!root_compiler_type_info.Test(eTypeIsArray)) { 2459 *reason_to_stop = 2460 ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 2461 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2462 return nullptr; 2463 } else // even if something follows, we cannot expand unbounded ranges, 2464 // just let the caller do it 2465 { 2466 *reason_to_stop = 2467 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2468 *final_result = 2469 ValueObject::eExpressionPathEndResultTypeUnboundedRange; 2470 return root; 2471 } 2472 } 2473 2474 size_t close_bracket_position = temp_expression.find(']', 1); 2475 if (close_bracket_position == 2476 llvm::StringRef::npos) // if there is no ], this is a syntax error 2477 { 2478 *reason_to_stop = 2479 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2480 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2481 return nullptr; 2482 } 2483 2484 llvm::StringRef bracket_expr = 2485 temp_expression.slice(1, close_bracket_position); 2486 2487 // If this was an empty expression it would have been caught by the if 2488 // above. 2489 assert(!bracket_expr.empty()); 2490 2491 if (!bracket_expr.contains('-')) { 2492 // if no separator, this is of the form [N]. Note that this cannot be 2493 // an unbounded range of the form [], because that case was handled 2494 // above with an unconditional return. 2495 unsigned long index = 0; 2496 if (bracket_expr.getAsInteger(0, index)) { 2497 *reason_to_stop = 2498 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2499 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2500 return nullptr; 2501 } 2502 2503 // from here on we do have a valid index 2504 if (root_compiler_type_info.Test(eTypeIsArray)) { 2505 ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true); 2506 if (!child_valobj_sp) 2507 child_valobj_sp = root->GetSyntheticArrayMember(index, true); 2508 if (!child_valobj_sp) 2509 if (root->HasSyntheticValue() && 2510 root->GetSyntheticValue()->GetNumChildren() > index) 2511 child_valobj_sp = 2512 root->GetSyntheticValue()->GetChildAtIndex(index, true); 2513 if (child_valobj_sp) { 2514 root = child_valobj_sp; 2515 remainder = 2516 temp_expression.substr(close_bracket_position + 1); // skip ] 2517 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2518 continue; 2519 } else { 2520 *reason_to_stop = 2521 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2522 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2523 return nullptr; 2524 } 2525 } else if (root_compiler_type_info.Test(eTypeIsPointer)) { 2526 if (*what_next == 2527 ValueObject:: 2528 eExpressionPathAftermathDereference && // if this is a 2529 // ptr-to-scalar, I 2530 // am accessing it 2531 // by index and I 2532 // would have 2533 // deref'ed anyway, 2534 // then do it now 2535 // and use this as 2536 // a bitfield 2537 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2538 Status error; 2539 root = root->Dereference(error); 2540 if (error.Fail() || !root) { 2541 *reason_to_stop = 2542 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2543 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2544 return nullptr; 2545 } else { 2546 *what_next = eExpressionPathAftermathNothing; 2547 continue; 2548 } 2549 } else { 2550 if (root->GetCompilerType().GetMinimumLanguage() == 2551 eLanguageTypeObjC && 2552 pointee_compiler_type_info.AllClear(eTypeIsPointer) && 2553 root->HasSyntheticValue() && 2554 (options.m_synthetic_children_traversal == 2555 GetValueForExpressionPathOptions:: 2556 SyntheticChildrenTraversal::ToSynthetic || 2557 options.m_synthetic_children_traversal == 2558 GetValueForExpressionPathOptions:: 2559 SyntheticChildrenTraversal::Both)) { 2560 root = root->GetSyntheticValue()->GetChildAtIndex(index, true); 2561 } else 2562 root = root->GetSyntheticArrayMember(index, true); 2563 if (!root) { 2564 *reason_to_stop = 2565 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2566 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2567 return nullptr; 2568 } else { 2569 remainder = 2570 temp_expression.substr(close_bracket_position + 1); // skip ] 2571 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2572 continue; 2573 } 2574 } 2575 } else if (root_compiler_type_info.Test(eTypeIsScalar)) { 2576 root = root->GetSyntheticBitFieldChild(index, index, true); 2577 if (!root) { 2578 *reason_to_stop = 2579 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2580 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2581 return nullptr; 2582 } else // we do not know how to expand members of bitfields, so we 2583 // just return and let the caller do any further processing 2584 { 2585 *reason_to_stop = ValueObject:: 2586 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2587 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2588 return root; 2589 } 2590 } else if (root_compiler_type_info.Test(eTypeIsVector)) { 2591 root = root->GetChildAtIndex(index, true); 2592 if (!root) { 2593 *reason_to_stop = 2594 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2595 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2596 return ValueObjectSP(); 2597 } else { 2598 remainder = 2599 temp_expression.substr(close_bracket_position + 1); // skip ] 2600 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2601 continue; 2602 } 2603 } else if (options.m_synthetic_children_traversal == 2604 GetValueForExpressionPathOptions:: 2605 SyntheticChildrenTraversal::ToSynthetic || 2606 options.m_synthetic_children_traversal == 2607 GetValueForExpressionPathOptions:: 2608 SyntheticChildrenTraversal::Both) { 2609 if (root->HasSyntheticValue()) 2610 root = root->GetSyntheticValue(); 2611 else if (!root->IsSynthetic()) { 2612 *reason_to_stop = 2613 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2614 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2615 return nullptr; 2616 } 2617 // if we are here, then root itself is a synthetic VO.. should be 2618 // good to go 2619 2620 if (!root) { 2621 *reason_to_stop = 2622 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2623 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2624 return nullptr; 2625 } 2626 root = root->GetChildAtIndex(index, true); 2627 if (!root) { 2628 *reason_to_stop = 2629 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2630 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2631 return nullptr; 2632 } else { 2633 remainder = 2634 temp_expression.substr(close_bracket_position + 1); // skip ] 2635 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2636 continue; 2637 } 2638 } else { 2639 *reason_to_stop = 2640 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2641 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2642 return nullptr; 2643 } 2644 } else { 2645 // we have a low and a high index 2646 llvm::StringRef sleft, sright; 2647 unsigned long low_index, high_index; 2648 std::tie(sleft, sright) = bracket_expr.split('-'); 2649 if (sleft.getAsInteger(0, low_index) || 2650 sright.getAsInteger(0, high_index)) { 2651 *reason_to_stop = 2652 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2653 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2654 return nullptr; 2655 } 2656 2657 if (low_index > high_index) // swap indices if required 2658 std::swap(low_index, high_index); 2659 2660 if (root_compiler_type_info.Test( 2661 eTypeIsScalar)) // expansion only works for scalars 2662 { 2663 root = root->GetSyntheticBitFieldChild(low_index, high_index, true); 2664 if (!root) { 2665 *reason_to_stop = 2666 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2667 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2668 return nullptr; 2669 } else { 2670 *reason_to_stop = ValueObject:: 2671 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2672 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2673 return root; 2674 } 2675 } else if (root_compiler_type_info.Test( 2676 eTypeIsPointer) && // if this is a ptr-to-scalar, I am 2677 // accessing it by index and I would 2678 // have deref'ed anyway, then do it 2679 // now and use this as a bitfield 2680 *what_next == 2681 ValueObject::eExpressionPathAftermathDereference && 2682 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2683 Status error; 2684 root = root->Dereference(error); 2685 if (error.Fail() || !root) { 2686 *reason_to_stop = 2687 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2688 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2689 return nullptr; 2690 } else { 2691 *what_next = ValueObject::eExpressionPathAftermathNothing; 2692 continue; 2693 } 2694 } else { 2695 *reason_to_stop = 2696 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2697 *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange; 2698 return root; 2699 } 2700 } 2701 break; 2702 } 2703 default: // some non-separator is in the way 2704 { 2705 *reason_to_stop = 2706 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2707 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2708 return nullptr; 2709 } 2710 } 2711 } 2712 } 2713 2714 void ValueObject::LogValueObject(Log *log) { 2715 if (log) 2716 return LogValueObject(log, DumpValueObjectOptions(*this)); 2717 } 2718 2719 void ValueObject::LogValueObject(Log *log, 2720 const DumpValueObjectOptions &options) { 2721 if (log) { 2722 StreamString s; 2723 Dump(s, options); 2724 if (s.GetSize()) 2725 log->PutCString(s.GetData()); 2726 } 2727 } 2728 2729 void ValueObject::Dump(Stream &s) { Dump(s, DumpValueObjectOptions(*this)); } 2730 2731 void ValueObject::Dump(Stream &s, const DumpValueObjectOptions &options) { 2732 ValueObjectPrinter printer(this, &s, options); 2733 printer.PrintValueObject(); 2734 } 2735 2736 ValueObjectSP ValueObject::CreateConstantValue(ConstString name) { 2737 ValueObjectSP valobj_sp; 2738 2739 if (UpdateValueIfNeeded(false) && m_error.Success()) { 2740 ExecutionContext exe_ctx(GetExecutionContextRef()); 2741 2742 DataExtractor data; 2743 data.SetByteOrder(m_data.GetByteOrder()); 2744 data.SetAddressByteSize(m_data.GetAddressByteSize()); 2745 2746 if (IsBitfield()) { 2747 Value v(Scalar(GetValueAsUnsigned(UINT64_MAX))); 2748 m_error = v.GetValueAsData(&exe_ctx, data, GetModule().get()); 2749 } else 2750 m_error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get()); 2751 2752 valobj_sp = ValueObjectConstResult::Create( 2753 exe_ctx.GetBestExecutionContextScope(), GetCompilerType(), name, data, 2754 GetAddressOf()); 2755 } 2756 2757 if (!valobj_sp) { 2758 ExecutionContext exe_ctx(GetExecutionContextRef()); 2759 valobj_sp = ValueObjectConstResult::Create( 2760 exe_ctx.GetBestExecutionContextScope(), m_error); 2761 } 2762 return valobj_sp; 2763 } 2764 2765 ValueObjectSP ValueObject::GetQualifiedRepresentationIfAvailable( 2766 lldb::DynamicValueType dynValue, bool synthValue) { 2767 ValueObjectSP result_sp(GetSP()); 2768 2769 switch (dynValue) { 2770 case lldb::eDynamicCanRunTarget: 2771 case lldb::eDynamicDontRunTarget: { 2772 if (!result_sp->IsDynamic()) { 2773 if (result_sp->GetDynamicValue(dynValue)) 2774 result_sp = result_sp->GetDynamicValue(dynValue); 2775 } 2776 } break; 2777 case lldb::eNoDynamicValues: { 2778 if (result_sp->IsDynamic()) { 2779 if (result_sp->GetStaticValue()) 2780 result_sp = result_sp->GetStaticValue(); 2781 } 2782 } break; 2783 } 2784 2785 if (synthValue) { 2786 if (!result_sp->IsSynthetic()) { 2787 if (result_sp->GetSyntheticValue()) 2788 result_sp = result_sp->GetSyntheticValue(); 2789 } 2790 } else { 2791 if (result_sp->IsSynthetic()) { 2792 if (result_sp->GetNonSyntheticValue()) 2793 result_sp = result_sp->GetNonSyntheticValue(); 2794 } 2795 } 2796 2797 return result_sp; 2798 } 2799 2800 ValueObjectSP ValueObject::Dereference(Status &error) { 2801 if (m_deref_valobj) 2802 return m_deref_valobj->GetSP(); 2803 2804 const bool is_pointer_or_reference_type = IsPointerOrReferenceType(); 2805 if (is_pointer_or_reference_type) { 2806 bool omit_empty_base_classes = true; 2807 bool ignore_array_bounds = false; 2808 2809 std::string child_name_str; 2810 uint32_t child_byte_size = 0; 2811 int32_t child_byte_offset = 0; 2812 uint32_t child_bitfield_bit_size = 0; 2813 uint32_t child_bitfield_bit_offset = 0; 2814 bool child_is_base_class = false; 2815 bool child_is_deref_of_parent = false; 2816 const bool transparent_pointers = false; 2817 CompilerType compiler_type = GetCompilerType(); 2818 CompilerType child_compiler_type; 2819 uint64_t language_flags = 0; 2820 2821 ExecutionContext exe_ctx(GetExecutionContextRef()); 2822 2823 child_compiler_type = compiler_type.GetChildCompilerTypeAtIndex( 2824 &exe_ctx, 0, transparent_pointers, omit_empty_base_classes, 2825 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 2826 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 2827 child_is_deref_of_parent, this, language_flags); 2828 if (child_compiler_type && child_byte_size) { 2829 ConstString child_name; 2830 if (!child_name_str.empty()) 2831 child_name.SetCString(child_name_str.c_str()); 2832 2833 m_deref_valobj = new ValueObjectChild( 2834 *this, child_compiler_type, child_name, child_byte_size, 2835 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 2836 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 2837 language_flags); 2838 } 2839 2840 // In case of incomplete child compiler type, use the pointee type and try 2841 // to recreate a new ValueObjectChild using it. 2842 if (!m_deref_valobj) { 2843 if (HasSyntheticValue()) { 2844 child_compiler_type = compiler_type.GetPointeeType(); 2845 2846 if (child_compiler_type) { 2847 ConstString child_name; 2848 if (!child_name_str.empty()) 2849 child_name.SetCString(child_name_str.c_str()); 2850 2851 m_deref_valobj = new ValueObjectChild( 2852 *this, child_compiler_type, child_name, child_byte_size, 2853 child_byte_offset, child_bitfield_bit_size, 2854 child_bitfield_bit_offset, child_is_base_class, 2855 child_is_deref_of_parent, eAddressTypeInvalid, language_flags); 2856 } 2857 } 2858 } 2859 2860 } else if (HasSyntheticValue()) { 2861 m_deref_valobj = 2862 GetSyntheticValue() 2863 ->GetChildMemberWithName(ConstString("$$dereference$$"), true) 2864 .get(); 2865 } else if (IsSynthetic()) { 2866 m_deref_valobj = 2867 GetChildMemberWithName(ConstString("$$dereference$$"), true).get(); 2868 } 2869 2870 if (m_deref_valobj) { 2871 error.Clear(); 2872 return m_deref_valobj->GetSP(); 2873 } else { 2874 StreamString strm; 2875 GetExpressionPath(strm); 2876 2877 if (is_pointer_or_reference_type) 2878 error.SetErrorStringWithFormat("dereference failed: (%s) %s", 2879 GetTypeName().AsCString("<invalid type>"), 2880 strm.GetData()); 2881 else 2882 error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s", 2883 GetTypeName().AsCString("<invalid type>"), 2884 strm.GetData()); 2885 return ValueObjectSP(); 2886 } 2887 } 2888 2889 ValueObjectSP ValueObject::AddressOf(Status &error) { 2890 if (m_addr_of_valobj_sp) 2891 return m_addr_of_valobj_sp; 2892 2893 AddressType address_type = eAddressTypeInvalid; 2894 const bool scalar_is_load_address = false; 2895 addr_t addr = GetAddressOf(scalar_is_load_address, &address_type); 2896 error.Clear(); 2897 if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) { 2898 switch (address_type) { 2899 case eAddressTypeInvalid: { 2900 StreamString expr_path_strm; 2901 GetExpressionPath(expr_path_strm); 2902 error.SetErrorStringWithFormat("'%s' is not in memory", 2903 expr_path_strm.GetData()); 2904 } break; 2905 2906 case eAddressTypeFile: 2907 case eAddressTypeLoad: { 2908 CompilerType compiler_type = GetCompilerType(); 2909 if (compiler_type) { 2910 std::string name(1, '&'); 2911 name.append(m_name.AsCString("")); 2912 ExecutionContext exe_ctx(GetExecutionContextRef()); 2913 m_addr_of_valobj_sp = ValueObjectConstResult::Create( 2914 exe_ctx.GetBestExecutionContextScope(), 2915 compiler_type.GetPointerType(), ConstString(name.c_str()), addr, 2916 eAddressTypeInvalid, m_data.GetAddressByteSize()); 2917 } 2918 } break; 2919 default: 2920 break; 2921 } 2922 } else { 2923 StreamString expr_path_strm; 2924 GetExpressionPath(expr_path_strm); 2925 error.SetErrorStringWithFormat("'%s' doesn't have a valid address", 2926 expr_path_strm.GetData()); 2927 } 2928 2929 return m_addr_of_valobj_sp; 2930 } 2931 2932 ValueObjectSP ValueObject::Cast(const CompilerType &compiler_type) { 2933 return ValueObjectCast::Create(*this, GetName(), compiler_type); 2934 } 2935 2936 lldb::ValueObjectSP ValueObject::Clone(ConstString new_name) { 2937 return ValueObjectCast::Create(*this, new_name, GetCompilerType()); 2938 } 2939 2940 ValueObjectSP ValueObject::CastPointerType(const char *name, 2941 CompilerType &compiler_type) { 2942 ValueObjectSP valobj_sp; 2943 AddressType address_type; 2944 addr_t ptr_value = GetPointerValue(&address_type); 2945 2946 if (ptr_value != LLDB_INVALID_ADDRESS) { 2947 Address ptr_addr(ptr_value); 2948 ExecutionContext exe_ctx(GetExecutionContextRef()); 2949 valobj_sp = ValueObjectMemory::Create( 2950 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, compiler_type); 2951 } 2952 return valobj_sp; 2953 } 2954 2955 ValueObjectSP ValueObject::CastPointerType(const char *name, TypeSP &type_sp) { 2956 ValueObjectSP valobj_sp; 2957 AddressType address_type; 2958 addr_t ptr_value = GetPointerValue(&address_type); 2959 2960 if (ptr_value != LLDB_INVALID_ADDRESS) { 2961 Address ptr_addr(ptr_value); 2962 ExecutionContext exe_ctx(GetExecutionContextRef()); 2963 valobj_sp = ValueObjectMemory::Create( 2964 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, type_sp); 2965 } 2966 return valobj_sp; 2967 } 2968 2969 ValueObject::EvaluationPoint::EvaluationPoint() 2970 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) {} 2971 2972 ValueObject::EvaluationPoint::EvaluationPoint(ExecutionContextScope *exe_scope, 2973 bool use_selected) 2974 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) { 2975 ExecutionContext exe_ctx(exe_scope); 2976 TargetSP target_sp(exe_ctx.GetTargetSP()); 2977 if (target_sp) { 2978 m_exe_ctx_ref.SetTargetSP(target_sp); 2979 ProcessSP process_sp(exe_ctx.GetProcessSP()); 2980 if (!process_sp) 2981 process_sp = target_sp->GetProcessSP(); 2982 2983 if (process_sp) { 2984 m_mod_id = process_sp->GetModID(); 2985 m_exe_ctx_ref.SetProcessSP(process_sp); 2986 2987 ThreadSP thread_sp(exe_ctx.GetThreadSP()); 2988 2989 if (!thread_sp) { 2990 if (use_selected) 2991 thread_sp = process_sp->GetThreadList().GetSelectedThread(); 2992 } 2993 2994 if (thread_sp) { 2995 m_exe_ctx_ref.SetThreadSP(thread_sp); 2996 2997 StackFrameSP frame_sp(exe_ctx.GetFrameSP()); 2998 if (!frame_sp) { 2999 if (use_selected) 3000 frame_sp = thread_sp->GetSelectedFrame(); 3001 } 3002 if (frame_sp) 3003 m_exe_ctx_ref.SetFrameSP(frame_sp); 3004 } 3005 } 3006 } 3007 } 3008 3009 ValueObject::EvaluationPoint::EvaluationPoint( 3010 const ValueObject::EvaluationPoint &rhs) 3011 : m_mod_id(), m_exe_ctx_ref(rhs.m_exe_ctx_ref), m_needs_update(true) {} 3012 3013 ValueObject::EvaluationPoint::~EvaluationPoint() {} 3014 3015 // This function checks the EvaluationPoint against the current process state. 3016 // If the current state matches the evaluation point, or the evaluation point 3017 // is already invalid, then we return false, meaning "no change". If the 3018 // current state is different, we update our state, and return true meaning 3019 // "yes, change". If we did see a change, we also set m_needs_update to true, 3020 // so future calls to NeedsUpdate will return true. exe_scope will be set to 3021 // the current execution context scope. 3022 3023 bool ValueObject::EvaluationPoint::SyncWithProcessState( 3024 bool accept_invalid_exe_ctx) { 3025 // Start with the target, if it is NULL, then we're obviously not going to 3026 // get any further: 3027 const bool thread_and_frame_only_if_stopped = true; 3028 ExecutionContext exe_ctx( 3029 m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped)); 3030 3031 if (exe_ctx.GetTargetPtr() == nullptr) 3032 return false; 3033 3034 // If we don't have a process nothing can change. 3035 Process *process = exe_ctx.GetProcessPtr(); 3036 if (process == nullptr) 3037 return false; 3038 3039 // If our stop id is the current stop ID, nothing has changed: 3040 ProcessModID current_mod_id = process->GetModID(); 3041 3042 // If the current stop id is 0, either we haven't run yet, or the process 3043 // state has been cleared. In either case, we aren't going to be able to sync 3044 // with the process state. 3045 if (current_mod_id.GetStopID() == 0) 3046 return false; 3047 3048 bool changed = false; 3049 const bool was_valid = m_mod_id.IsValid(); 3050 if (was_valid) { 3051 if (m_mod_id == current_mod_id) { 3052 // Everything is already up to date in this object, no need to update the 3053 // execution context scope. 3054 changed = false; 3055 } else { 3056 m_mod_id = current_mod_id; 3057 m_needs_update = true; 3058 changed = true; 3059 } 3060 } 3061 3062 // Now re-look up the thread and frame in case the underlying objects have 3063 // gone away & been recreated. That way we'll be sure to return a valid 3064 // exe_scope. If we used to have a thread or a frame but can't find it 3065 // anymore, then mark ourselves as invalid. 3066 3067 if (!accept_invalid_exe_ctx) { 3068 if (m_exe_ctx_ref.HasThreadRef()) { 3069 ThreadSP thread_sp(m_exe_ctx_ref.GetThreadSP()); 3070 if (thread_sp) { 3071 if (m_exe_ctx_ref.HasFrameRef()) { 3072 StackFrameSP frame_sp(m_exe_ctx_ref.GetFrameSP()); 3073 if (!frame_sp) { 3074 // We used to have a frame, but now it is gone 3075 SetInvalid(); 3076 changed = was_valid; 3077 } 3078 } 3079 } else { 3080 // We used to have a thread, but now it is gone 3081 SetInvalid(); 3082 changed = was_valid; 3083 } 3084 } 3085 } 3086 3087 return changed; 3088 } 3089 3090 void ValueObject::EvaluationPoint::SetUpdated() { 3091 ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP()); 3092 if (process_sp) 3093 m_mod_id = process_sp->GetModID(); 3094 m_needs_update = false; 3095 } 3096 3097 void ValueObject::ClearUserVisibleData(uint32_t clear_mask) { 3098 if ((clear_mask & eClearUserVisibleDataItemsValue) == 3099 eClearUserVisibleDataItemsValue) 3100 m_value_str.clear(); 3101 3102 if ((clear_mask & eClearUserVisibleDataItemsLocation) == 3103 eClearUserVisibleDataItemsLocation) 3104 m_location_str.clear(); 3105 3106 if ((clear_mask & eClearUserVisibleDataItemsSummary) == 3107 eClearUserVisibleDataItemsSummary) 3108 m_summary_str.clear(); 3109 3110 if ((clear_mask & eClearUserVisibleDataItemsDescription) == 3111 eClearUserVisibleDataItemsDescription) 3112 m_object_desc_str.clear(); 3113 3114 if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == 3115 eClearUserVisibleDataItemsSyntheticChildren) { 3116 if (m_synthetic_value) 3117 m_synthetic_value = nullptr; 3118 } 3119 } 3120 3121 SymbolContextScope *ValueObject::GetSymbolContextScope() { 3122 if (m_parent) { 3123 if (!m_parent->IsPointerOrReferenceType()) 3124 return m_parent->GetSymbolContextScope(); 3125 } 3126 return nullptr; 3127 } 3128 3129 lldb::ValueObjectSP 3130 ValueObject::CreateValueObjectFromExpression(llvm::StringRef name, 3131 llvm::StringRef expression, 3132 const ExecutionContext &exe_ctx) { 3133 return CreateValueObjectFromExpression(name, expression, exe_ctx, 3134 EvaluateExpressionOptions()); 3135 } 3136 3137 lldb::ValueObjectSP ValueObject::CreateValueObjectFromExpression( 3138 llvm::StringRef name, llvm::StringRef expression, 3139 const ExecutionContext &exe_ctx, const EvaluateExpressionOptions &options) { 3140 lldb::ValueObjectSP retval_sp; 3141 lldb::TargetSP target_sp(exe_ctx.GetTargetSP()); 3142 if (!target_sp) 3143 return retval_sp; 3144 if (expression.empty()) 3145 return retval_sp; 3146 target_sp->EvaluateExpression(expression, exe_ctx.GetFrameSP().get(), 3147 retval_sp, options); 3148 if (retval_sp && !name.empty()) 3149 retval_sp->SetName(ConstString(name)); 3150 return retval_sp; 3151 } 3152 3153 lldb::ValueObjectSP ValueObject::CreateValueObjectFromAddress( 3154 llvm::StringRef name, uint64_t address, const ExecutionContext &exe_ctx, 3155 CompilerType type) { 3156 if (type) { 3157 CompilerType pointer_type(type.GetPointerType()); 3158 if (pointer_type) { 3159 lldb::DataBufferSP buffer( 3160 new lldb_private::DataBufferHeap(&address, sizeof(lldb::addr_t))); 3161 lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create( 3162 exe_ctx.GetBestExecutionContextScope(), pointer_type, 3163 ConstString(name), buffer, exe_ctx.GetByteOrder(), 3164 exe_ctx.GetAddressByteSize())); 3165 if (ptr_result_valobj_sp) { 3166 ptr_result_valobj_sp->GetValue().SetValueType( 3167 Value::eValueTypeLoadAddress); 3168 Status err; 3169 ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err); 3170 if (ptr_result_valobj_sp && !name.empty()) 3171 ptr_result_valobj_sp->SetName(ConstString(name)); 3172 } 3173 return ptr_result_valobj_sp; 3174 } 3175 } 3176 return lldb::ValueObjectSP(); 3177 } 3178 3179 lldb::ValueObjectSP ValueObject::CreateValueObjectFromData( 3180 llvm::StringRef name, const DataExtractor &data, 3181 const ExecutionContext &exe_ctx, CompilerType type) { 3182 lldb::ValueObjectSP new_value_sp; 3183 new_value_sp = ValueObjectConstResult::Create( 3184 exe_ctx.GetBestExecutionContextScope(), type, ConstString(name), data, 3185 LLDB_INVALID_ADDRESS); 3186 new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad); 3187 if (new_value_sp && !name.empty()) 3188 new_value_sp->SetName(ConstString(name)); 3189 return new_value_sp; 3190 } 3191 3192 ModuleSP ValueObject::GetModule() { 3193 ValueObject *root(GetRoot()); 3194 if (root != this) 3195 return root->GetModule(); 3196 return lldb::ModuleSP(); 3197 } 3198 3199 ValueObject *ValueObject::GetRoot() { 3200 if (m_root) 3201 return m_root; 3202 return (m_root = FollowParentChain([](ValueObject *vo) -> bool { 3203 return (vo->m_parent != nullptr); 3204 })); 3205 } 3206 3207 ValueObject * 3208 ValueObject::FollowParentChain(std::function<bool(ValueObject *)> f) { 3209 ValueObject *vo = this; 3210 while (vo) { 3211 if (!f(vo)) 3212 break; 3213 vo = vo->m_parent; 3214 } 3215 return vo; 3216 } 3217 3218 AddressType ValueObject::GetAddressTypeOfChildren() { 3219 if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) { 3220 ValueObject *root(GetRoot()); 3221 if (root != this) 3222 return root->GetAddressTypeOfChildren(); 3223 } 3224 return m_address_type_of_ptr_or_ref_children; 3225 } 3226 3227 lldb::DynamicValueType ValueObject::GetDynamicValueType() { 3228 ValueObject *with_dv_info = this; 3229 while (with_dv_info) { 3230 if (with_dv_info->HasDynamicValueTypeInfo()) 3231 return with_dv_info->GetDynamicValueTypeImpl(); 3232 with_dv_info = with_dv_info->m_parent; 3233 } 3234 return lldb::eNoDynamicValues; 3235 } 3236 3237 lldb::Format ValueObject::GetFormat() const { 3238 const ValueObject *with_fmt_info = this; 3239 while (with_fmt_info) { 3240 if (with_fmt_info->m_format != lldb::eFormatDefault) 3241 return with_fmt_info->m_format; 3242 with_fmt_info = with_fmt_info->m_parent; 3243 } 3244 return m_format; 3245 } 3246 3247 lldb::LanguageType ValueObject::GetPreferredDisplayLanguage() { 3248 lldb::LanguageType type = m_preferred_display_language; 3249 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) { 3250 if (GetRoot()) { 3251 if (GetRoot() == this) { 3252 if (StackFrameSP frame_sp = GetFrameSP()) { 3253 const SymbolContext &sc( 3254 frame_sp->GetSymbolContext(eSymbolContextCompUnit)); 3255 if (CompileUnit *cu = sc.comp_unit) 3256 type = cu->GetLanguage(); 3257 } 3258 } else { 3259 type = GetRoot()->GetPreferredDisplayLanguage(); 3260 } 3261 } 3262 } 3263 return (m_preferred_display_language = type); // only compute it once 3264 } 3265 3266 void ValueObject::SetPreferredDisplayLanguage(lldb::LanguageType lt) { 3267 m_preferred_display_language = lt; 3268 } 3269 3270 void ValueObject::SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType lt) { 3271 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 3272 SetPreferredDisplayLanguage(lt); 3273 } 3274 3275 bool ValueObject::CanProvideValue() { 3276 // we need to support invalid types as providers of values because some bare- 3277 // board debugging scenarios have no notion of types, but still manage to 3278 // have raw numeric values for things like registers. sigh. 3279 const CompilerType &type(GetCompilerType()); 3280 return (!type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue)); 3281 } 3282 3283 bool ValueObject::IsChecksumEmpty() { return m_value_checksum.empty(); } 3284 3285 ValueObjectSP ValueObject::Persist() { 3286 if (!UpdateValueIfNeeded()) 3287 return nullptr; 3288 3289 TargetSP target_sp(GetTargetSP()); 3290 if (!target_sp) 3291 return nullptr; 3292 3293 PersistentExpressionState *persistent_state = 3294 target_sp->GetPersistentExpressionStateForLanguage( 3295 GetPreferredDisplayLanguage()); 3296 3297 if (!persistent_state) 3298 return nullptr; 3299 3300 ConstString name = persistent_state->GetNextPersistentVariableName(); 3301 3302 ValueObjectSP const_result_sp = 3303 ValueObjectConstResult::Create(target_sp.get(), GetValue(), name); 3304 3305 ExpressionVariableSP persistent_var_sp = 3306 persistent_state->CreatePersistentVariable(const_result_sp); 3307 persistent_var_sp->m_live_sp = persistent_var_sp->m_frozen_sp; 3308 persistent_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference; 3309 3310 return persistent_var_sp->GetValueObject(); 3311 } 3312 3313 bool ValueObject::IsSyntheticChildrenGenerated() { 3314 return m_is_synthetic_children_generated; 3315 } 3316 3317 void ValueObject::SetSyntheticChildrenGenerated(bool b) { 3318 m_is_synthetic_children_generated = b; 3319 } 3320 3321 uint64_t ValueObject::GetLanguageFlags() { return m_language_flags; } 3322 3323 void ValueObject::SetLanguageFlags(uint64_t flags) { m_language_flags = flags; } 3324 3325 ValueObjectManager::ValueObjectManager(lldb::ValueObjectSP in_valobj_sp, 3326 lldb::DynamicValueType use_dynamic, 3327 bool use_synthetic) : m_root_valobj_sp(), 3328 m_user_valobj_sp(), m_use_dynamic(use_dynamic), m_stop_id(UINT32_MAX), 3329 m_use_synthetic(use_synthetic) { 3330 if (!in_valobj_sp) 3331 return; 3332 // If the user passes in a value object that is dynamic or synthetic, then 3333 // water it down to the static type. 3334 m_root_valobj_sp = in_valobj_sp->GetQualifiedRepresentationIfAvailable(lldb::eNoDynamicValues, false); 3335 } 3336 3337 bool ValueObjectManager::IsValid() const { 3338 if (!m_root_valobj_sp) 3339 return false; 3340 lldb::TargetSP target_sp = GetTargetSP(); 3341 if (target_sp) 3342 return target_sp->IsValid(); 3343 return false; 3344 } 3345 3346 lldb::ValueObjectSP ValueObjectManager::GetSP() { 3347 lldb::ProcessSP process_sp = GetProcessSP(); 3348 if (!process_sp) 3349 return lldb::ValueObjectSP(); 3350 3351 const uint32_t current_stop_id = process_sp->GetLastNaturalStopID(); 3352 if (current_stop_id == m_stop_id) 3353 return m_user_valobj_sp; 3354 3355 m_stop_id = current_stop_id; 3356 3357 if (!m_root_valobj_sp) { 3358 m_user_valobj_sp.reset(); 3359 return m_root_valobj_sp; 3360 } 3361 3362 m_user_valobj_sp = m_root_valobj_sp; 3363 3364 if (m_use_dynamic != lldb::eNoDynamicValues) { 3365 lldb::ValueObjectSP dynamic_sp = m_user_valobj_sp->GetDynamicValue(m_use_dynamic); 3366 if (dynamic_sp) 3367 m_user_valobj_sp = dynamic_sp; 3368 } 3369 3370 if (m_use_synthetic) { 3371 lldb::ValueObjectSP synthetic_sp = m_user_valobj_sp->GetSyntheticValue(); 3372 if (synthetic_sp) 3373 m_user_valobj_sp = synthetic_sp; 3374 } 3375 3376 return m_user_valobj_sp; 3377 } 3378 3379 void ValueObjectManager::SetUseDynamic(lldb::DynamicValueType use_dynamic) { 3380 if (use_dynamic != m_use_dynamic) { 3381 m_use_dynamic = use_dynamic; 3382 m_user_valobj_sp.reset(); 3383 m_stop_id = UINT32_MAX; 3384 } 3385 } 3386 3387 void ValueObjectManager::SetUseSynthetic(bool use_synthetic) { 3388 if (m_use_synthetic != use_synthetic) { 3389 m_use_synthetic = use_synthetic; 3390 m_user_valobj_sp.reset(); 3391 m_stop_id = UINT32_MAX; 3392 } 3393 } 3394 3395 lldb::TargetSP ValueObjectManager::GetTargetSP() const { 3396 if (!m_root_valobj_sp) 3397 return m_root_valobj_sp->GetTargetSP(); 3398 return lldb::TargetSP(); 3399 } 3400 3401 lldb::ProcessSP ValueObjectManager::GetProcessSP() const { 3402 if (m_root_valobj_sp) 3403 return m_root_valobj_sp->GetProcessSP(); 3404 return lldb::ProcessSP(); 3405 } 3406 3407 lldb::ThreadSP ValueObjectManager::GetThreadSP() const { 3408 if (m_root_valobj_sp) 3409 return m_root_valobj_sp->GetThreadSP(); 3410 return lldb::ThreadSP(); 3411 } 3412 3413 lldb::StackFrameSP ValueObjectManager::GetFrameSP() const { 3414 if (m_root_valobj_sp) 3415 return m_root_valobj_sp->GetFrameSP(); 3416 return lldb::StackFrameSP(); 3417 } 3418