1 //===-- ValueObject.cpp -----------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/Core/ValueObject.h" 11 12 // C Includes 13 #include <stdlib.h> 14 15 // C++ Includes 16 // Other libraries and framework includes 17 #include "llvm/Support/raw_ostream.h" 18 19 // Project includes 20 #include "lldb/Core/DataBufferHeap.h" 21 #include "lldb/Core/Debugger.h" 22 #include "lldb/Core/Log.h" 23 #include "lldb/Core/Module.h" 24 #include "lldb/Core/StreamString.h" 25 #include "lldb/Core/ValueObjectCast.h" 26 #include "lldb/Core/ValueObjectChild.h" 27 #include "lldb/Core/ValueObjectConstResult.h" 28 #include "lldb/Core/ValueObjectDynamicValue.h" 29 #include "lldb/Core/ValueObjectList.h" 30 #include "lldb/Core/ValueObjectMemory.h" 31 #include "lldb/Core/ValueObjectSyntheticFilter.h" 32 33 #include "lldb/DataFormatters/DataVisualization.h" 34 #include "lldb/DataFormatters/StringPrinter.h" 35 #include "lldb/DataFormatters/ValueObjectPrinter.h" 36 37 #include "Plugins/ExpressionParser/Clang/ClangExpressionVariable.h" 38 #include "Plugins/ExpressionParser/Clang/ClangPersistentVariables.h" 39 40 #include "lldb/Host/Endian.h" 41 42 #include "lldb/Interpreter/CommandInterpreter.h" 43 44 #include "lldb/Symbol/CompilerType.h" 45 #include "lldb/Symbol/ClangASTContext.h" 46 #include "lldb/Symbol/CompileUnit.h" 47 #include "lldb/Symbol/Type.h" 48 49 #include "lldb/Target/ExecutionContext.h" 50 #include "lldb/Target/Language.h" 51 #include "lldb/Target/LanguageRuntime.h" 52 #include "lldb/Target/ObjCLanguageRuntime.h" 53 #include "lldb/Target/Process.h" 54 #include "lldb/Target/RegisterContext.h" 55 #include "lldb/Target/SectionLoadList.h" 56 #include "lldb/Target/Target.h" 57 #include "lldb/Target/Thread.h" 58 59 using namespace lldb; 60 using namespace lldb_private; 61 using namespace lldb_utility; 62 63 static user_id_t g_value_obj_uid = 0; 64 65 //---------------------------------------------------------------------- 66 // ValueObject constructor 67 //---------------------------------------------------------------------- 68 ValueObject::ValueObject (ValueObject &parent) : 69 UserID (++g_value_obj_uid), // Unique identifier for every value object 70 m_parent (&parent), 71 m_root (NULL), 72 m_update_point (parent.GetUpdatePoint ()), 73 m_name (), 74 m_data (), 75 m_value (), 76 m_error (), 77 m_value_str (), 78 m_old_value_str (), 79 m_location_str (), 80 m_summary_str (), 81 m_object_desc_str (), 82 m_validation_result(), 83 m_manager(parent.GetManager()), 84 m_children (), 85 m_synthetic_children (), 86 m_dynamic_value (NULL), 87 m_synthetic_value(NULL), 88 m_deref_valobj(NULL), 89 m_format (eFormatDefault), 90 m_last_format (eFormatDefault), 91 m_last_format_mgr_revision(0), 92 m_type_summary_sp(), 93 m_type_format_sp(), 94 m_synthetic_children_sp(), 95 m_type_validator_sp(), 96 m_user_id_of_forced_summary(), 97 m_address_type_of_ptr_or_ref_children(eAddressTypeInvalid), 98 m_value_checksum(), 99 m_preferred_display_language(lldb::eLanguageTypeUnknown), 100 m_language_flags(0), 101 m_value_is_valid (false), 102 m_value_did_change (false), 103 m_children_count_valid (false), 104 m_old_value_valid (false), 105 m_is_deref_of_parent (false), 106 m_is_array_item_for_pointer(false), 107 m_is_bitfield_for_scalar(false), 108 m_is_child_at_offset(false), 109 m_is_getting_summary(false), 110 m_did_calculate_complete_objc_class_type(false), 111 m_is_synthetic_children_generated(parent.m_is_synthetic_children_generated) 112 { 113 m_manager->ManageObject(this); 114 } 115 116 //---------------------------------------------------------------------- 117 // ValueObject constructor 118 //---------------------------------------------------------------------- 119 ValueObject::ValueObject (ExecutionContextScope *exe_scope, 120 AddressType child_ptr_or_ref_addr_type) : 121 UserID (++g_value_obj_uid), // Unique identifier for every value object 122 m_parent (NULL), 123 m_root (NULL), 124 m_update_point (exe_scope), 125 m_name (), 126 m_data (), 127 m_value (), 128 m_error (), 129 m_value_str (), 130 m_old_value_str (), 131 m_location_str (), 132 m_summary_str (), 133 m_object_desc_str (), 134 m_validation_result(), 135 m_manager(), 136 m_children (), 137 m_synthetic_children (), 138 m_dynamic_value (NULL), 139 m_synthetic_value(NULL), 140 m_deref_valobj(NULL), 141 m_format (eFormatDefault), 142 m_last_format (eFormatDefault), 143 m_last_format_mgr_revision(0), 144 m_type_summary_sp(), 145 m_type_format_sp(), 146 m_synthetic_children_sp(), 147 m_type_validator_sp(), 148 m_user_id_of_forced_summary(), 149 m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type), 150 m_value_checksum(), 151 m_preferred_display_language(lldb::eLanguageTypeUnknown), 152 m_language_flags(0), 153 m_value_is_valid (false), 154 m_value_did_change (false), 155 m_children_count_valid (false), 156 m_old_value_valid (false), 157 m_is_deref_of_parent (false), 158 m_is_array_item_for_pointer(false), 159 m_is_bitfield_for_scalar(false), 160 m_is_child_at_offset(false), 161 m_is_getting_summary(false), 162 m_did_calculate_complete_objc_class_type(false), 163 m_is_synthetic_children_generated(false) 164 { 165 m_manager = new ValueObjectManager(); 166 m_manager->ManageObject (this); 167 } 168 169 //---------------------------------------------------------------------- 170 // Destructor 171 //---------------------------------------------------------------------- 172 ValueObject::~ValueObject () 173 { 174 } 175 176 bool 177 ValueObject::UpdateValueIfNeeded (bool update_format) 178 { 179 180 bool did_change_formats = false; 181 182 if (update_format) 183 did_change_formats = UpdateFormatsIfNeeded(); 184 185 // If this is a constant value, then our success is predicated on whether 186 // we have an error or not 187 if (GetIsConstant()) 188 { 189 // if you are constant, things might still have changed behind your back 190 // (e.g. you are a frozen object and things have changed deeper than you cared to freeze-dry yourself) 191 // in this case, your value has not changed, but "computed" entries might have, so you might now have 192 // a different summary, or a different object description. clear these so we will recompute them 193 if (update_format && !did_change_formats) 194 ClearUserVisibleData(eClearUserVisibleDataItemsSummary | eClearUserVisibleDataItemsDescription); 195 return m_error.Success(); 196 } 197 198 bool first_update = IsChecksumEmpty(); 199 200 if (NeedsUpdating()) 201 { 202 m_update_point.SetUpdated(); 203 204 // Save the old value using swap to avoid a string copy which 205 // also will clear our m_value_str 206 if (m_value_str.empty()) 207 { 208 m_old_value_valid = false; 209 } 210 else 211 { 212 m_old_value_valid = true; 213 m_old_value_str.swap (m_value_str); 214 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 215 } 216 217 ClearUserVisibleData(); 218 219 if (IsInScope()) 220 { 221 const bool value_was_valid = GetValueIsValid(); 222 SetValueDidChange (false); 223 224 m_error.Clear(); 225 226 // Call the pure virtual function to update the value 227 228 bool need_compare_checksums = false; 229 llvm::SmallVector<uint8_t, 16> old_checksum; 230 231 if (!first_update && CanProvideValue()) 232 { 233 need_compare_checksums = true; 234 old_checksum.resize(m_value_checksum.size()); 235 std::copy(m_value_checksum.begin(), m_value_checksum.end(), old_checksum.begin()); 236 } 237 238 bool success = UpdateValue (); 239 240 SetValueIsValid (success); 241 242 if (success) 243 { 244 const uint64_t max_checksum_size = 128; 245 m_data.Checksum(m_value_checksum, 246 max_checksum_size); 247 } 248 else 249 { 250 need_compare_checksums = false; 251 m_value_checksum.clear(); 252 } 253 254 assert (!need_compare_checksums || (!old_checksum.empty() && !m_value_checksum.empty())); 255 256 if (first_update) 257 SetValueDidChange (false); 258 else if (!m_value_did_change && success == false) 259 { 260 // The value wasn't gotten successfully, so we mark this 261 // as changed if the value used to be valid and now isn't 262 SetValueDidChange (value_was_valid); 263 } 264 else if (need_compare_checksums) 265 { 266 SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0], m_value_checksum.size())); 267 } 268 269 } 270 else 271 { 272 m_error.SetErrorString("out of scope"); 273 } 274 } 275 return m_error.Success(); 276 } 277 278 bool 279 ValueObject::UpdateFormatsIfNeeded() 280 { 281 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_DATAFORMATTERS)); 282 if (log) 283 log->Printf("[%s %p] checking for FormatManager revisions. ValueObject rev: %d - Global rev: %d", 284 GetName().GetCString(), static_cast<void*>(this), 285 m_last_format_mgr_revision, 286 DataVisualization::GetCurrentRevision()); 287 288 bool any_change = false; 289 290 if ( (m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) 291 { 292 m_last_format_mgr_revision = DataVisualization::GetCurrentRevision(); 293 any_change = true; 294 295 SetValueFormat(DataVisualization::GetFormat (*this, eNoDynamicValues)); 296 SetSummaryFormat(DataVisualization::GetSummaryFormat (*this, GetDynamicValueType())); 297 #ifndef LLDB_DISABLE_PYTHON 298 SetSyntheticChildren(DataVisualization::GetSyntheticChildren (*this, GetDynamicValueType())); 299 #endif 300 SetValidator(DataVisualization::GetValidator(*this, GetDynamicValueType())); 301 } 302 303 return any_change; 304 } 305 306 void 307 ValueObject::SetNeedsUpdate () 308 { 309 m_update_point.SetNeedsUpdate(); 310 // We have to clear the value string here so ConstResult children will notice if their values are 311 // changed by hand (i.e. with SetValueAsCString). 312 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 313 } 314 315 void 316 ValueObject::ClearDynamicTypeInformation () 317 { 318 m_children_count_valid = false; 319 m_did_calculate_complete_objc_class_type = false; 320 m_last_format_mgr_revision = 0; 321 m_override_type = CompilerType(); 322 SetValueFormat(lldb::TypeFormatImplSP()); 323 SetSummaryFormat(lldb::TypeSummaryImplSP()); 324 SetSyntheticChildren(lldb::SyntheticChildrenSP()); 325 } 326 327 CompilerType 328 ValueObject::MaybeCalculateCompleteType () 329 { 330 CompilerType compiler_type(GetCompilerTypeImpl()); 331 332 if (m_did_calculate_complete_objc_class_type) 333 { 334 if (m_override_type.IsValid()) 335 return m_override_type; 336 else 337 return compiler_type; 338 } 339 340 CompilerType class_type; 341 bool is_pointer_type = false; 342 343 if (ClangASTContext::IsObjCObjectPointerType(compiler_type, &class_type)) 344 { 345 is_pointer_type = true; 346 } 347 else if (ClangASTContext::IsObjCObjectOrInterfaceType(compiler_type)) 348 { 349 class_type = compiler_type; 350 } 351 else 352 { 353 return compiler_type; 354 } 355 356 m_did_calculate_complete_objc_class_type = true; 357 358 if (class_type) 359 { 360 ConstString class_name (class_type.GetConstTypeName()); 361 362 if (class_name) 363 { 364 ProcessSP process_sp(GetUpdatePoint().GetExecutionContextRef().GetProcessSP()); 365 366 if (process_sp) 367 { 368 ObjCLanguageRuntime *objc_language_runtime(process_sp->GetObjCLanguageRuntime()); 369 370 if (objc_language_runtime) 371 { 372 TypeSP complete_objc_class_type_sp = objc_language_runtime->LookupInCompleteClassCache(class_name); 373 374 if (complete_objc_class_type_sp) 375 { 376 CompilerType complete_class(complete_objc_class_type_sp->GetFullCompilerType ()); 377 378 if (complete_class.GetCompleteType()) 379 { 380 if (is_pointer_type) 381 { 382 m_override_type = complete_class.GetPointerType(); 383 } 384 else 385 { 386 m_override_type = complete_class; 387 } 388 389 if (m_override_type.IsValid()) 390 return m_override_type; 391 } 392 } 393 } 394 } 395 } 396 } 397 return compiler_type; 398 } 399 400 CompilerType 401 ValueObject::GetCompilerType () 402 { 403 return MaybeCalculateCompleteType(); 404 } 405 406 TypeImpl 407 ValueObject::GetTypeImpl () 408 { 409 return TypeImpl(GetCompilerType()); 410 } 411 412 DataExtractor & 413 ValueObject::GetDataExtractor () 414 { 415 UpdateValueIfNeeded(false); 416 return m_data; 417 } 418 419 const Error & 420 ValueObject::GetError() 421 { 422 UpdateValueIfNeeded(false); 423 return m_error; 424 } 425 426 const ConstString & 427 ValueObject::GetName() const 428 { 429 return m_name; 430 } 431 432 const char * 433 ValueObject::GetLocationAsCString () 434 { 435 return GetLocationAsCStringImpl(m_value, 436 m_data); 437 } 438 439 const char * 440 ValueObject::GetLocationAsCStringImpl (const Value& value, 441 const DataExtractor& data) 442 { 443 if (UpdateValueIfNeeded(false)) 444 { 445 if (m_location_str.empty()) 446 { 447 StreamString sstr; 448 449 Value::ValueType value_type = value.GetValueType(); 450 451 switch (value_type) 452 { 453 case Value::eValueTypeScalar: 454 case Value::eValueTypeVector: 455 if (value.GetContextType() == Value::eContextTypeRegisterInfo) 456 { 457 RegisterInfo *reg_info = value.GetRegisterInfo(); 458 if (reg_info) 459 { 460 if (reg_info->name) 461 m_location_str = reg_info->name; 462 else if (reg_info->alt_name) 463 m_location_str = reg_info->alt_name; 464 if (m_location_str.empty()) 465 m_location_str = (reg_info->encoding == lldb::eEncodingVector) ? "vector" : "scalar"; 466 } 467 } 468 if (m_location_str.empty()) 469 m_location_str = (value_type == Value::eValueTypeVector) ? "vector" : "scalar"; 470 break; 471 472 case Value::eValueTypeLoadAddress: 473 case Value::eValueTypeFileAddress: 474 case Value::eValueTypeHostAddress: 475 { 476 uint32_t addr_nibble_size = data.GetAddressByteSize() * 2; 477 sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS)); 478 m_location_str.swap(sstr.GetString()); 479 } 480 break; 481 } 482 } 483 } 484 return m_location_str.c_str(); 485 } 486 487 Value & 488 ValueObject::GetValue() 489 { 490 return m_value; 491 } 492 493 const Value & 494 ValueObject::GetValue() const 495 { 496 return m_value; 497 } 498 499 bool 500 ValueObject::ResolveValue (Scalar &scalar) 501 { 502 if (UpdateValueIfNeeded(false)) // make sure that you are up to date before returning anything 503 { 504 ExecutionContext exe_ctx (GetExecutionContextRef()); 505 Value tmp_value(m_value); 506 scalar = tmp_value.ResolveValue(&exe_ctx); 507 if (scalar.IsValid()) 508 { 509 const uint32_t bitfield_bit_size = GetBitfieldBitSize(); 510 if (bitfield_bit_size) 511 return scalar.ExtractBitfield (bitfield_bit_size, GetBitfieldBitOffset()); 512 return true; 513 } 514 } 515 return false; 516 } 517 518 bool 519 ValueObject::IsLogicalTrue (Error& error) 520 { 521 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) 522 { 523 LazyBool is_logical_true = language->IsLogicalTrue(*this, error); 524 switch (is_logical_true) 525 { 526 case eLazyBoolYes: 527 case eLazyBoolNo: 528 return (is_logical_true == true); 529 case eLazyBoolCalculate: 530 break; 531 } 532 } 533 534 Scalar scalar_value; 535 536 if (!ResolveValue (scalar_value)) 537 { 538 error.SetErrorString("failed to get a scalar result"); 539 return false; 540 } 541 542 bool ret; 543 if (scalar_value.ULongLong(1) == 0) 544 ret = false; 545 else 546 ret = true; 547 error.Clear(); 548 return ret; 549 } 550 551 bool 552 ValueObject::GetValueIsValid () const 553 { 554 return m_value_is_valid; 555 } 556 557 558 void 559 ValueObject::SetValueIsValid (bool b) 560 { 561 m_value_is_valid = b; 562 } 563 564 bool 565 ValueObject::GetValueDidChange () 566 { 567 return m_value_did_change; 568 } 569 570 void 571 ValueObject::SetValueDidChange (bool value_changed) 572 { 573 m_value_did_change = value_changed; 574 } 575 576 ValueObjectSP 577 ValueObject::GetChildAtIndex (size_t idx, bool can_create) 578 { 579 ValueObjectSP child_sp; 580 // We may need to update our value if we are dynamic 581 if (IsPossibleDynamicType ()) 582 UpdateValueIfNeeded(false); 583 if (idx < GetNumChildren()) 584 { 585 // Check if we have already made the child value object? 586 if (can_create && !m_children.HasChildAtIndex(idx)) 587 { 588 // No we haven't created the child at this index, so lets have our 589 // subclass do it and cache the result for quick future access. 590 m_children.SetChildAtIndex(idx,CreateChildAtIndex (idx, false, 0)); 591 } 592 593 ValueObject* child = m_children.GetChildAtIndex(idx); 594 if (child != NULL) 595 return child->GetSP(); 596 } 597 return child_sp; 598 } 599 600 ValueObjectSP 601 ValueObject::GetChildAtIndexPath (const std::initializer_list<size_t>& idxs, 602 size_t* index_of_error) 603 { 604 return GetChildAtIndexPath( std::vector<size_t>(idxs), 605 index_of_error ); 606 } 607 608 ValueObjectSP 609 ValueObject::GetChildAtIndexPath (const std::initializer_list< std::pair<size_t, bool> >& idxs, 610 size_t* index_of_error) 611 { 612 return GetChildAtIndexPath( std::vector<std::pair<size_t,bool>>(idxs), 613 index_of_error ); 614 } 615 616 lldb::ValueObjectSP 617 ValueObject::GetChildAtIndexPath (const std::vector<size_t> &idxs, 618 size_t* index_of_error) 619 { 620 if (idxs.size() == 0) 621 return GetSP(); 622 ValueObjectSP root(GetSP()); 623 for (size_t idx : idxs) 624 { 625 root = root->GetChildAtIndex(idx, true); 626 if (!root) 627 { 628 if (index_of_error) 629 *index_of_error = idx; 630 return root; 631 } 632 } 633 return root; 634 } 635 636 lldb::ValueObjectSP 637 ValueObject::GetChildAtIndexPath (const std::vector< std::pair<size_t, bool> > &idxs, 638 size_t* index_of_error) 639 { 640 if (idxs.size() == 0) 641 return GetSP(); 642 ValueObjectSP root(GetSP()); 643 for (std::pair<size_t, bool> idx : idxs) 644 { 645 root = root->GetChildAtIndex(idx.first, idx.second); 646 if (!root) 647 { 648 if (index_of_error) 649 *index_of_error = idx.first; 650 return root; 651 } 652 } 653 return root; 654 } 655 656 lldb::ValueObjectSP 657 ValueObject::GetChildAtNamePath (const std::initializer_list<ConstString> &names, 658 ConstString* name_of_error) 659 { 660 return GetChildAtNamePath( std::vector<ConstString>(names), 661 name_of_error ); 662 } 663 664 lldb::ValueObjectSP 665 ValueObject::GetChildAtNamePath (const std::initializer_list< std::pair<ConstString, bool> > &names, 666 ConstString* name_of_error) 667 { 668 return GetChildAtNamePath( std::vector<std::pair<ConstString,bool>>(names), 669 name_of_error ); 670 } 671 672 lldb::ValueObjectSP 673 ValueObject::GetChildAtNamePath (const std::vector<ConstString> &names, 674 ConstString* name_of_error) 675 { 676 if (names.size() == 0) 677 return GetSP(); 678 ValueObjectSP root(GetSP()); 679 for (ConstString name : names) 680 { 681 root = root->GetChildMemberWithName(name, true); 682 if (!root) 683 { 684 if (name_of_error) 685 *name_of_error = name; 686 return root; 687 } 688 } 689 return root; 690 } 691 692 lldb::ValueObjectSP 693 ValueObject::GetChildAtNamePath (const std::vector< std::pair<ConstString, bool> > &names, 694 ConstString* name_of_error) 695 { 696 if (names.size() == 0) 697 return GetSP(); 698 ValueObjectSP root(GetSP()); 699 for (std::pair<ConstString, bool> name : names) 700 { 701 root = root->GetChildMemberWithName(name.first, name.second); 702 if (!root) 703 { 704 if (name_of_error) 705 *name_of_error = name.first; 706 return root; 707 } 708 } 709 return root; 710 } 711 712 size_t 713 ValueObject::GetIndexOfChildWithName (const ConstString &name) 714 { 715 bool omit_empty_base_classes = true; 716 return GetCompilerType().GetIndexOfChildWithName (name.GetCString(), omit_empty_base_classes); 717 } 718 719 ValueObjectSP 720 ValueObject::GetChildMemberWithName (const ConstString &name, bool can_create) 721 { 722 // when getting a child by name, it could be buried inside some base 723 // classes (which really aren't part of the expression path), so we 724 // need a vector of indexes that can get us down to the correct child 725 ValueObjectSP child_sp; 726 727 // We may need to update our value if we are dynamic 728 if (IsPossibleDynamicType ()) 729 UpdateValueIfNeeded(false); 730 731 std::vector<uint32_t> child_indexes; 732 bool omit_empty_base_classes = true; 733 const size_t num_child_indexes = GetCompilerType().GetIndexOfChildMemberWithName (name.GetCString(), 734 omit_empty_base_classes, 735 child_indexes); 736 if (num_child_indexes > 0) 737 { 738 std::vector<uint32_t>::const_iterator pos = child_indexes.begin (); 739 std::vector<uint32_t>::const_iterator end = child_indexes.end (); 740 741 child_sp = GetChildAtIndex(*pos, can_create); 742 for (++pos; pos != end; ++pos) 743 { 744 if (child_sp) 745 { 746 ValueObjectSP new_child_sp(child_sp->GetChildAtIndex (*pos, can_create)); 747 child_sp = new_child_sp; 748 } 749 else 750 { 751 child_sp.reset(); 752 } 753 754 } 755 } 756 return child_sp; 757 } 758 759 760 size_t 761 ValueObject::GetNumChildren (uint32_t max) 762 { 763 UpdateValueIfNeeded(); 764 765 if (max < UINT32_MAX) 766 { 767 if (m_children_count_valid) 768 { 769 size_t children_count = m_children.GetChildrenCount(); 770 return children_count <= max ? children_count : max; 771 } 772 else 773 return CalculateNumChildren(max); 774 } 775 776 if (!m_children_count_valid) 777 { 778 SetNumChildren (CalculateNumChildren()); 779 } 780 return m_children.GetChildrenCount(); 781 } 782 783 bool 784 ValueObject::MightHaveChildren() 785 { 786 bool has_children = false; 787 const uint32_t type_info = GetTypeInfo(); 788 if (type_info) 789 { 790 if (type_info & (eTypeHasChildren | 791 eTypeIsPointer | 792 eTypeIsReference)) 793 has_children = true; 794 } 795 else 796 { 797 has_children = GetNumChildren () > 0; 798 } 799 return has_children; 800 } 801 802 // Should only be called by ValueObject::GetNumChildren() 803 void 804 ValueObject::SetNumChildren (size_t num_children) 805 { 806 m_children_count_valid = true; 807 m_children.SetChildrenCount(num_children); 808 } 809 810 void 811 ValueObject::SetName (const ConstString &name) 812 { 813 m_name = name; 814 } 815 816 ValueObject * 817 ValueObject::CreateChildAtIndex (size_t idx, bool synthetic_array_member, int32_t synthetic_index) 818 { 819 ValueObject *valobj = NULL; 820 821 bool omit_empty_base_classes = true; 822 bool ignore_array_bounds = synthetic_array_member; 823 std::string child_name_str; 824 uint32_t child_byte_size = 0; 825 int32_t child_byte_offset = 0; 826 uint32_t child_bitfield_bit_size = 0; 827 uint32_t child_bitfield_bit_offset = 0; 828 bool child_is_base_class = false; 829 bool child_is_deref_of_parent = false; 830 uint64_t language_flags = 0; 831 832 const bool transparent_pointers = synthetic_array_member == false; 833 CompilerType child_compiler_type; 834 835 ExecutionContext exe_ctx (GetExecutionContextRef()); 836 837 child_compiler_type = GetCompilerType().GetChildCompilerTypeAtIndex (&exe_ctx, 838 idx, 839 transparent_pointers, 840 omit_empty_base_classes, 841 ignore_array_bounds, 842 child_name_str, 843 child_byte_size, 844 child_byte_offset, 845 child_bitfield_bit_size, 846 child_bitfield_bit_offset, 847 child_is_base_class, 848 child_is_deref_of_parent, 849 this, 850 language_flags); 851 if (child_compiler_type) 852 { 853 if (synthetic_index) 854 child_byte_offset += child_byte_size * synthetic_index; 855 856 ConstString child_name; 857 if (!child_name_str.empty()) 858 child_name.SetCString (child_name_str.c_str()); 859 860 valobj = new ValueObjectChild (*this, 861 child_compiler_type, 862 child_name, 863 child_byte_size, 864 child_byte_offset, 865 child_bitfield_bit_size, 866 child_bitfield_bit_offset, 867 child_is_base_class, 868 child_is_deref_of_parent, 869 eAddressTypeInvalid, 870 language_flags); 871 //if (valobj) 872 // valobj->SetAddressTypeOfChildren(eAddressTypeInvalid); 873 } 874 875 return valobj; 876 } 877 878 bool 879 ValueObject::GetSummaryAsCString (TypeSummaryImpl* summary_ptr, 880 std::string& destination, 881 lldb::LanguageType lang) 882 { 883 return GetSummaryAsCString(summary_ptr, destination, TypeSummaryOptions().SetLanguage(lang)); 884 } 885 886 bool 887 ValueObject::GetSummaryAsCString (TypeSummaryImpl* summary_ptr, 888 std::string& destination, 889 const TypeSummaryOptions& options) 890 { 891 destination.clear(); 892 893 // ideally we would like to bail out if passing NULL, but if we do so 894 // we end up not providing the summary for function pointers anymore 895 if (/*summary_ptr == NULL ||*/ m_is_getting_summary) 896 return false; 897 898 m_is_getting_summary = true; 899 900 TypeSummaryOptions actual_options(options); 901 902 if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown) 903 actual_options.SetLanguage(GetPreferredDisplayLanguage()); 904 905 // this is a hot path in code and we prefer to avoid setting this string all too often also clearing out other 906 // information that we might care to see in a crash log. might be useful in very specific situations though. 907 /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. Summary provider's description is %s", 908 GetTypeName().GetCString(), 909 GetName().GetCString(), 910 summary_ptr->GetDescription().c_str());*/ 911 912 if (UpdateValueIfNeeded (false) && summary_ptr) 913 { 914 if (HasSyntheticValue()) 915 m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on the synthetic children being up-to-date (e.g. ${svar%#}) 916 summary_ptr->FormatObject(this, destination, actual_options); 917 } 918 m_is_getting_summary = false; 919 return !destination.empty(); 920 } 921 922 const char * 923 ValueObject::GetSummaryAsCString (lldb::LanguageType lang) 924 { 925 if (UpdateValueIfNeeded(true) && m_summary_str.empty()) 926 { 927 TypeSummaryOptions summary_options; 928 summary_options.SetLanguage(lang); 929 GetSummaryAsCString(GetSummaryFormat().get(), 930 m_summary_str, 931 summary_options); 932 } 933 if (m_summary_str.empty()) 934 return NULL; 935 return m_summary_str.c_str(); 936 } 937 938 bool 939 ValueObject::GetSummaryAsCString (std::string& destination, 940 const TypeSummaryOptions& options) 941 { 942 return GetSummaryAsCString(GetSummaryFormat().get(), 943 destination, 944 options); 945 } 946 947 bool 948 ValueObject::IsCStringContainer(bool check_pointer) 949 { 950 CompilerType pointee_or_element_compiler_type; 951 const Flags type_flags (GetTypeInfo (&pointee_or_element_compiler_type)); 952 bool is_char_arr_ptr (type_flags.AnySet (eTypeIsArray | eTypeIsPointer) && 953 pointee_or_element_compiler_type.IsCharType ()); 954 if (!is_char_arr_ptr) 955 return false; 956 if (!check_pointer) 957 return true; 958 if (type_flags.Test(eTypeIsArray)) 959 return true; 960 addr_t cstr_address = LLDB_INVALID_ADDRESS; 961 AddressType cstr_address_type = eAddressTypeInvalid; 962 cstr_address = GetAddressOf (true, &cstr_address_type); 963 return (cstr_address != LLDB_INVALID_ADDRESS); 964 } 965 966 size_t 967 ValueObject::GetPointeeData (DataExtractor& data, 968 uint32_t item_idx, 969 uint32_t item_count) 970 { 971 CompilerType pointee_or_element_compiler_type; 972 const uint32_t type_info = GetTypeInfo (&pointee_or_element_compiler_type); 973 const bool is_pointer_type = type_info & eTypeIsPointer; 974 const bool is_array_type = type_info & eTypeIsArray; 975 if (!(is_pointer_type || is_array_type)) 976 return 0; 977 978 if (item_count == 0) 979 return 0; 980 981 ExecutionContext exe_ctx (GetExecutionContextRef()); 982 983 const uint64_t item_type_size = pointee_or_element_compiler_type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 984 const uint64_t bytes = item_count * item_type_size; 985 const uint64_t offset = item_idx * item_type_size; 986 987 if (item_idx == 0 && item_count == 1) // simply a deref 988 { 989 if (is_pointer_type) 990 { 991 Error error; 992 ValueObjectSP pointee_sp = Dereference(error); 993 if (error.Fail() || pointee_sp.get() == NULL) 994 return 0; 995 return pointee_sp->GetData(data, error); 996 } 997 else 998 { 999 ValueObjectSP child_sp = GetChildAtIndex(0, true); 1000 if (child_sp.get() == NULL) 1001 return 0; 1002 Error error; 1003 return child_sp->GetData(data, error); 1004 } 1005 return true; 1006 } 1007 else /* (items > 1) */ 1008 { 1009 Error error; 1010 lldb_private::DataBufferHeap* heap_buf_ptr = NULL; 1011 lldb::DataBufferSP data_sp(heap_buf_ptr = new lldb_private::DataBufferHeap()); 1012 1013 AddressType addr_type; 1014 lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type) : GetAddressOf(true, &addr_type); 1015 1016 switch (addr_type) 1017 { 1018 case eAddressTypeFile: 1019 { 1020 ModuleSP module_sp (GetModule()); 1021 if (module_sp) 1022 { 1023 addr = addr + offset; 1024 Address so_addr; 1025 module_sp->ResolveFileAddress(addr, so_addr); 1026 ExecutionContext exe_ctx (GetExecutionContextRef()); 1027 Target* target = exe_ctx.GetTargetPtr(); 1028 if (target) 1029 { 1030 heap_buf_ptr->SetByteSize(bytes); 1031 size_t bytes_read = target->ReadMemory(so_addr, false, heap_buf_ptr->GetBytes(), bytes, error); 1032 if (error.Success()) 1033 { 1034 data.SetData(data_sp); 1035 return bytes_read; 1036 } 1037 } 1038 } 1039 } 1040 break; 1041 case eAddressTypeLoad: 1042 { 1043 ExecutionContext exe_ctx (GetExecutionContextRef()); 1044 Process *process = exe_ctx.GetProcessPtr(); 1045 if (process) 1046 { 1047 heap_buf_ptr->SetByteSize(bytes); 1048 size_t bytes_read = process->ReadMemory(addr + offset, heap_buf_ptr->GetBytes(), bytes, error); 1049 if (error.Success() || bytes_read > 0) 1050 { 1051 data.SetData(data_sp); 1052 return bytes_read; 1053 } 1054 } 1055 } 1056 break; 1057 case eAddressTypeHost: 1058 { 1059 const uint64_t max_bytes = GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1060 if (max_bytes > offset) 1061 { 1062 size_t bytes_read = std::min<uint64_t>(max_bytes - offset, bytes); 1063 addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1064 if (addr == 0 || addr == LLDB_INVALID_ADDRESS) 1065 break; 1066 heap_buf_ptr->CopyData((uint8_t*)(addr + offset), bytes_read); 1067 data.SetData(data_sp); 1068 return bytes_read; 1069 } 1070 } 1071 break; 1072 case eAddressTypeInvalid: 1073 break; 1074 } 1075 } 1076 return 0; 1077 } 1078 1079 uint64_t 1080 ValueObject::GetData (DataExtractor& data, Error &error) 1081 { 1082 UpdateValueIfNeeded(false); 1083 ExecutionContext exe_ctx (GetExecutionContextRef()); 1084 error = m_value.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 1085 if (error.Fail()) 1086 { 1087 if (m_data.GetByteSize()) 1088 { 1089 data = m_data; 1090 error.Clear(); 1091 return data.GetByteSize(); 1092 } 1093 else 1094 { 1095 return 0; 1096 } 1097 } 1098 data.SetAddressByteSize(m_data.GetAddressByteSize()); 1099 data.SetByteOrder(m_data.GetByteOrder()); 1100 return data.GetByteSize(); 1101 } 1102 1103 bool 1104 ValueObject::SetData (DataExtractor &data, Error &error) 1105 { 1106 error.Clear(); 1107 // Make sure our value is up to date first so that our location and location 1108 // type is valid. 1109 if (!UpdateValueIfNeeded(false)) 1110 { 1111 error.SetErrorString("unable to read value"); 1112 return false; 1113 } 1114 1115 uint64_t count = 0; 1116 const Encoding encoding = GetCompilerType().GetEncoding(count); 1117 1118 const size_t byte_size = GetByteSize(); 1119 1120 Value::ValueType value_type = m_value.GetValueType(); 1121 1122 switch (value_type) 1123 { 1124 case Value::eValueTypeScalar: 1125 { 1126 Error set_error = m_value.GetScalar().SetValueFromData(data, encoding, byte_size); 1127 1128 if (!set_error.Success()) 1129 { 1130 error.SetErrorStringWithFormat("unable to set scalar value: %s", set_error.AsCString()); 1131 return false; 1132 } 1133 } 1134 break; 1135 case Value::eValueTypeLoadAddress: 1136 { 1137 // If it is a load address, then the scalar value is the storage location 1138 // of the data, and we have to shove this value down to that load location. 1139 ExecutionContext exe_ctx (GetExecutionContextRef()); 1140 Process *process = exe_ctx.GetProcessPtr(); 1141 if (process) 1142 { 1143 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1144 size_t bytes_written = process->WriteMemory(target_addr, 1145 data.GetDataStart(), 1146 byte_size, 1147 error); 1148 if (!error.Success()) 1149 return false; 1150 if (bytes_written != byte_size) 1151 { 1152 error.SetErrorString("unable to write value to memory"); 1153 return false; 1154 } 1155 } 1156 } 1157 break; 1158 case Value::eValueTypeHostAddress: 1159 { 1160 // If it is a host address, then we stuff the scalar as a DataBuffer into the Value's data. 1161 DataBufferSP buffer_sp (new DataBufferHeap(byte_size, 0)); 1162 m_data.SetData(buffer_sp, 0); 1163 data.CopyByteOrderedData (0, 1164 byte_size, 1165 const_cast<uint8_t *>(m_data.GetDataStart()), 1166 byte_size, 1167 m_data.GetByteOrder()); 1168 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1169 } 1170 break; 1171 case Value::eValueTypeFileAddress: 1172 case Value::eValueTypeVector: 1173 break; 1174 } 1175 1176 // If we have reached this point, then we have successfully changed the value. 1177 SetNeedsUpdate(); 1178 return true; 1179 } 1180 1181 static bool 1182 CopyStringDataToBufferSP(const StreamString& source, 1183 lldb::DataBufferSP& destination) 1184 { 1185 destination.reset(new DataBufferHeap(source.GetSize()+1,0)); 1186 memcpy(destination->GetBytes(), source.GetString().c_str(), source.GetSize()); 1187 return true; 1188 } 1189 1190 std::pair<size_t,bool> 1191 ValueObject::ReadPointedString (lldb::DataBufferSP& buffer_sp, 1192 Error& error, 1193 uint32_t max_length, 1194 bool honor_array, 1195 Format item_format) 1196 { 1197 bool was_capped = false; 1198 StreamString s; 1199 ExecutionContext exe_ctx (GetExecutionContextRef()); 1200 Target* target = exe_ctx.GetTargetPtr(); 1201 1202 if (!target) 1203 { 1204 s << "<no target to read from>"; 1205 error.SetErrorString("no target to read from"); 1206 CopyStringDataToBufferSP(s, buffer_sp); 1207 return {0,was_capped}; 1208 } 1209 1210 if (max_length == 0) 1211 max_length = target->GetMaximumSizeOfStringSummary(); 1212 1213 size_t bytes_read = 0; 1214 size_t total_bytes_read = 0; 1215 1216 CompilerType compiler_type = GetCompilerType(); 1217 CompilerType elem_or_pointee_compiler_type; 1218 const Flags type_flags (GetTypeInfo (&elem_or_pointee_compiler_type)); 1219 if (type_flags.AnySet (eTypeIsArray | eTypeIsPointer) && 1220 elem_or_pointee_compiler_type.IsCharType ()) 1221 { 1222 addr_t cstr_address = LLDB_INVALID_ADDRESS; 1223 AddressType cstr_address_type = eAddressTypeInvalid; 1224 1225 size_t cstr_len = 0; 1226 bool capped_data = false; 1227 if (type_flags.Test (eTypeIsArray)) 1228 { 1229 // We have an array 1230 uint64_t array_size = 0; 1231 if (compiler_type.IsArrayType(NULL, &array_size, NULL)) 1232 { 1233 cstr_len = array_size; 1234 if (cstr_len > max_length) 1235 { 1236 capped_data = true; 1237 cstr_len = max_length; 1238 } 1239 } 1240 cstr_address = GetAddressOf (true, &cstr_address_type); 1241 } 1242 else 1243 { 1244 // We have a pointer 1245 cstr_address = GetPointerValue (&cstr_address_type); 1246 } 1247 1248 if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) 1249 { 1250 s << "<invalid address>"; 1251 error.SetErrorString("invalid address"); 1252 CopyStringDataToBufferSP(s, buffer_sp); 1253 return {0,was_capped}; 1254 } 1255 1256 Address cstr_so_addr (cstr_address); 1257 DataExtractor data; 1258 if (cstr_len > 0 && honor_array) 1259 { 1260 // I am using GetPointeeData() here to abstract the fact that some ValueObjects are actually frozen pointers in the host 1261 // but the pointed-to data lives in the debuggee, and GetPointeeData() automatically takes care of this 1262 GetPointeeData(data, 0, cstr_len); 1263 1264 if ((bytes_read = data.GetByteSize()) > 0) 1265 { 1266 total_bytes_read = bytes_read; 1267 for (size_t offset = 0; offset < bytes_read; offset++) 1268 s.Printf("%c", *data.PeekData(offset, 1)); 1269 if (capped_data) 1270 was_capped = true; 1271 } 1272 } 1273 else 1274 { 1275 cstr_len = max_length; 1276 const size_t k_max_buf_size = 64; 1277 1278 size_t offset = 0; 1279 1280 int cstr_len_displayed = -1; 1281 bool capped_cstr = false; 1282 // I am using GetPointeeData() here to abstract the fact that some ValueObjects are actually frozen pointers in the host 1283 // but the pointed-to data lives in the debuggee, and GetPointeeData() automatically takes care of this 1284 while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) 1285 { 1286 total_bytes_read += bytes_read; 1287 const char *cstr = data.PeekCStr(0); 1288 size_t len = strnlen (cstr, k_max_buf_size); 1289 if (cstr_len_displayed < 0) 1290 cstr_len_displayed = len; 1291 1292 if (len == 0) 1293 break; 1294 cstr_len_displayed += len; 1295 if (len > bytes_read) 1296 len = bytes_read; 1297 if (len > cstr_len) 1298 len = cstr_len; 1299 1300 for (size_t offset = 0; offset < bytes_read; offset++) 1301 s.Printf("%c", *data.PeekData(offset, 1)); 1302 1303 if (len < k_max_buf_size) 1304 break; 1305 1306 if (len >= cstr_len) 1307 { 1308 capped_cstr = true; 1309 break; 1310 } 1311 1312 cstr_len -= len; 1313 offset += len; 1314 } 1315 1316 if (cstr_len_displayed >= 0) 1317 { 1318 if (capped_cstr) 1319 was_capped = true; 1320 } 1321 } 1322 } 1323 else 1324 { 1325 error.SetErrorString("not a string object"); 1326 s << "<not a string object>"; 1327 } 1328 CopyStringDataToBufferSP(s, buffer_sp); 1329 return {total_bytes_read,was_capped}; 1330 } 1331 1332 std::pair<TypeValidatorResult, std::string> 1333 ValueObject::GetValidationStatus () 1334 { 1335 if (!UpdateValueIfNeeded(true)) 1336 return {TypeValidatorResult::Success,""}; // not the validator's job to discuss update problems 1337 1338 if (m_validation_result.hasValue()) 1339 return m_validation_result.getValue(); 1340 1341 if (!m_type_validator_sp) 1342 return {TypeValidatorResult::Success,""}; // no validator no failure 1343 1344 auto outcome = m_type_validator_sp->FormatObject(this); 1345 1346 return (m_validation_result = {outcome.m_result,outcome.m_message}).getValue(); 1347 } 1348 1349 const char * 1350 ValueObject::GetObjectDescription () 1351 { 1352 1353 if (!UpdateValueIfNeeded (true)) 1354 return NULL; 1355 1356 if (!m_object_desc_str.empty()) 1357 return m_object_desc_str.c_str(); 1358 1359 ExecutionContext exe_ctx (GetExecutionContextRef()); 1360 Process *process = exe_ctx.GetProcessPtr(); 1361 if (process == NULL) 1362 return NULL; 1363 1364 StreamString s; 1365 1366 LanguageType language = GetObjectRuntimeLanguage(); 1367 LanguageRuntime *runtime = process->GetLanguageRuntime(language); 1368 1369 if (runtime == NULL) 1370 { 1371 // Aw, hell, if the things a pointer, or even just an integer, let's try ObjC anyway... 1372 CompilerType compiler_type = GetCompilerType(); 1373 if (compiler_type) 1374 { 1375 bool is_signed; 1376 if (compiler_type.IsIntegerType (is_signed) || compiler_type.IsPointerType ()) 1377 { 1378 runtime = process->GetLanguageRuntime(eLanguageTypeObjC); 1379 } 1380 } 1381 } 1382 1383 if (runtime && runtime->GetObjectDescription(s, *this)) 1384 { 1385 m_object_desc_str.append (s.GetData()); 1386 } 1387 1388 if (m_object_desc_str.empty()) 1389 return NULL; 1390 else 1391 return m_object_desc_str.c_str(); 1392 } 1393 1394 bool 1395 ValueObject::GetValueAsCString (const lldb_private::TypeFormatImpl& format, 1396 std::string& destination) 1397 { 1398 if (UpdateValueIfNeeded(false)) 1399 return format.FormatObject(this,destination); 1400 else 1401 return false; 1402 } 1403 1404 bool 1405 ValueObject::GetValueAsCString (lldb::Format format, 1406 std::string& destination) 1407 { 1408 return GetValueAsCString(TypeFormatImpl_Format(format),destination); 1409 } 1410 1411 const char * 1412 ValueObject::GetValueAsCString () 1413 { 1414 if (UpdateValueIfNeeded(true)) 1415 { 1416 lldb::TypeFormatImplSP format_sp; 1417 lldb::Format my_format = GetFormat(); 1418 if (my_format == lldb::eFormatDefault) 1419 { 1420 if (m_type_format_sp) 1421 format_sp = m_type_format_sp; 1422 else 1423 { 1424 if (m_is_bitfield_for_scalar) 1425 my_format = eFormatUnsigned; 1426 else 1427 { 1428 if (m_value.GetContextType() == Value::eContextTypeRegisterInfo) 1429 { 1430 const RegisterInfo *reg_info = m_value.GetRegisterInfo(); 1431 if (reg_info) 1432 my_format = reg_info->format; 1433 } 1434 else 1435 { 1436 my_format = GetValue().GetCompilerType().GetFormat(); 1437 } 1438 } 1439 } 1440 } 1441 if (my_format != m_last_format || m_value_str.empty()) 1442 { 1443 m_last_format = my_format; 1444 if (!format_sp) 1445 format_sp.reset(new TypeFormatImpl_Format(my_format)); 1446 if (GetValueAsCString(*format_sp.get(), m_value_str)) 1447 { 1448 if (!m_value_did_change && m_old_value_valid) 1449 { 1450 // The value was gotten successfully, so we consider the 1451 // value as changed if the value string differs 1452 SetValueDidChange (m_old_value_str != m_value_str); 1453 } 1454 } 1455 } 1456 } 1457 if (m_value_str.empty()) 1458 return NULL; 1459 return m_value_str.c_str(); 1460 } 1461 1462 // if > 8bytes, 0 is returned. this method should mostly be used 1463 // to read address values out of pointers 1464 uint64_t 1465 ValueObject::GetValueAsUnsigned (uint64_t fail_value, bool *success) 1466 { 1467 // If our byte size is zero this is an aggregate type that has children 1468 if (CanProvideValue()) 1469 { 1470 Scalar scalar; 1471 if (ResolveValue (scalar)) 1472 { 1473 if (success) 1474 *success = true; 1475 return scalar.ULongLong(fail_value); 1476 } 1477 // fallthrough, otherwise... 1478 } 1479 1480 if (success) 1481 *success = false; 1482 return fail_value; 1483 } 1484 1485 int64_t 1486 ValueObject::GetValueAsSigned (int64_t fail_value, bool *success) 1487 { 1488 // If our byte size is zero this is an aggregate type that has children 1489 if (CanProvideValue()) 1490 { 1491 Scalar scalar; 1492 if (ResolveValue (scalar)) 1493 { 1494 if (success) 1495 *success = true; 1496 return scalar.SLongLong(fail_value); 1497 } 1498 // fallthrough, otherwise... 1499 } 1500 1501 if (success) 1502 *success = false; 1503 return fail_value; 1504 } 1505 1506 // if any more "special cases" are added to ValueObject::DumpPrintableRepresentation() please keep 1507 // this call up to date by returning true for your new special cases. We will eventually move 1508 // to checking this call result before trying to display special cases 1509 bool 1510 ValueObject::HasSpecialPrintableRepresentation(ValueObjectRepresentationStyle val_obj_display, 1511 Format custom_format) 1512 { 1513 Flags flags(GetTypeInfo()); 1514 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) 1515 && val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) 1516 { 1517 if (IsCStringContainer(true) && 1518 (custom_format == eFormatCString || 1519 custom_format == eFormatCharArray || 1520 custom_format == eFormatChar || 1521 custom_format == eFormatVectorOfChar)) 1522 return true; 1523 1524 if (flags.Test(eTypeIsArray)) 1525 { 1526 if ((custom_format == eFormatBytes) || 1527 (custom_format == eFormatBytesWithASCII)) 1528 return true; 1529 1530 if ((custom_format == eFormatVectorOfChar) || 1531 (custom_format == eFormatVectorOfFloat32) || 1532 (custom_format == eFormatVectorOfFloat64) || 1533 (custom_format == eFormatVectorOfSInt16) || 1534 (custom_format == eFormatVectorOfSInt32) || 1535 (custom_format == eFormatVectorOfSInt64) || 1536 (custom_format == eFormatVectorOfSInt8) || 1537 (custom_format == eFormatVectorOfUInt128) || 1538 (custom_format == eFormatVectorOfUInt16) || 1539 (custom_format == eFormatVectorOfUInt32) || 1540 (custom_format == eFormatVectorOfUInt64) || 1541 (custom_format == eFormatVectorOfUInt8)) 1542 return true; 1543 } 1544 } 1545 return false; 1546 } 1547 1548 bool 1549 ValueObject::DumpPrintableRepresentation(Stream& s, 1550 ValueObjectRepresentationStyle val_obj_display, 1551 Format custom_format, 1552 PrintableRepresentationSpecialCases special, 1553 bool do_dump_error) 1554 { 1555 1556 Flags flags(GetTypeInfo()); 1557 1558 bool allow_special = ((special & ePrintableRepresentationSpecialCasesAllow) == ePrintableRepresentationSpecialCasesAllow); 1559 bool only_special = ((special & ePrintableRepresentationSpecialCasesOnly) == ePrintableRepresentationSpecialCasesOnly); 1560 1561 if (allow_special) 1562 { 1563 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) 1564 && val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) 1565 { 1566 // when being asked to get a printable display an array or pointer type directly, 1567 // try to "do the right thing" 1568 1569 if (IsCStringContainer(true) && 1570 (custom_format == eFormatCString || 1571 custom_format == eFormatCharArray || 1572 custom_format == eFormatChar || 1573 custom_format == eFormatVectorOfChar)) // print char[] & char* directly 1574 { 1575 Error error; 1576 lldb::DataBufferSP buffer_sp; 1577 std::pair<size_t, bool> read_string = ReadPointedString(buffer_sp, 1578 error, 1579 0, 1580 (custom_format == eFormatVectorOfChar) || 1581 (custom_format == eFormatCharArray)); 1582 lldb_private::formatters::StringPrinter::ReadBufferAndDumpToStreamOptions options(*this); 1583 options.SetData(DataExtractor(buffer_sp, lldb::eByteOrderInvalid, 8)); // none of this matters for a string - pass some defaults 1584 options.SetStream(&s); 1585 options.SetPrefixToken(0); 1586 options.SetQuote('"'); 1587 options.SetSourceSize(buffer_sp->GetByteSize()); 1588 options.SetIsTruncated(read_string.second); 1589 formatters::StringPrinter::ReadBufferAndDumpToStream<lldb_private::formatters::StringPrinter::StringElementType::ASCII>(options); 1590 return !error.Fail(); 1591 } 1592 1593 if (custom_format == eFormatEnum) 1594 return false; 1595 1596 // this only works for arrays, because I have no way to know when 1597 // the pointed memory ends, and no special \0 end of data marker 1598 if (flags.Test(eTypeIsArray)) 1599 { 1600 if ((custom_format == eFormatBytes) || 1601 (custom_format == eFormatBytesWithASCII)) 1602 { 1603 const size_t count = GetNumChildren(); 1604 1605 s << '['; 1606 for (size_t low = 0; low < count; low++) 1607 { 1608 1609 if (low) 1610 s << ','; 1611 1612 ValueObjectSP child = GetChildAtIndex(low,true); 1613 if (!child.get()) 1614 { 1615 s << "<invalid child>"; 1616 continue; 1617 } 1618 child->DumpPrintableRepresentation(s, ValueObject::eValueObjectRepresentationStyleValue, custom_format); 1619 } 1620 1621 s << ']'; 1622 1623 return true; 1624 } 1625 1626 if ((custom_format == eFormatVectorOfChar) || 1627 (custom_format == eFormatVectorOfFloat32) || 1628 (custom_format == eFormatVectorOfFloat64) || 1629 (custom_format == eFormatVectorOfSInt16) || 1630 (custom_format == eFormatVectorOfSInt32) || 1631 (custom_format == eFormatVectorOfSInt64) || 1632 (custom_format == eFormatVectorOfSInt8) || 1633 (custom_format == eFormatVectorOfUInt128) || 1634 (custom_format == eFormatVectorOfUInt16) || 1635 (custom_format == eFormatVectorOfUInt32) || 1636 (custom_format == eFormatVectorOfUInt64) || 1637 (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes with ASCII or any vector format should be printed directly 1638 { 1639 const size_t count = GetNumChildren(); 1640 1641 Format format = FormatManager::GetSingleItemFormat(custom_format); 1642 1643 s << '['; 1644 for (size_t low = 0; low < count; low++) 1645 { 1646 1647 if (low) 1648 s << ','; 1649 1650 ValueObjectSP child = GetChildAtIndex(low,true); 1651 if (!child.get()) 1652 { 1653 s << "<invalid child>"; 1654 continue; 1655 } 1656 child->DumpPrintableRepresentation(s, ValueObject::eValueObjectRepresentationStyleValue, format); 1657 } 1658 1659 s << ']'; 1660 1661 return true; 1662 } 1663 } 1664 1665 if ((custom_format == eFormatBoolean) || 1666 (custom_format == eFormatBinary) || 1667 (custom_format == eFormatChar) || 1668 (custom_format == eFormatCharPrintable) || 1669 (custom_format == eFormatComplexFloat) || 1670 (custom_format == eFormatDecimal) || 1671 (custom_format == eFormatHex) || 1672 (custom_format == eFormatHexUppercase) || 1673 (custom_format == eFormatFloat) || 1674 (custom_format == eFormatOctal) || 1675 (custom_format == eFormatOSType) || 1676 (custom_format == eFormatUnicode16) || 1677 (custom_format == eFormatUnicode32) || 1678 (custom_format == eFormatUnsigned) || 1679 (custom_format == eFormatPointer) || 1680 (custom_format == eFormatComplexInteger) || 1681 (custom_format == eFormatComplex) || 1682 (custom_format == eFormatDefault)) // use the [] operator 1683 return false; 1684 } 1685 } 1686 1687 if (only_special) 1688 return false; 1689 1690 bool var_success = false; 1691 1692 { 1693 const char *cstr = NULL; 1694 1695 // this is a local stream that we are using to ensure that the data pointed to by cstr survives 1696 // long enough for us to copy it to its destination - it is necessary to have this temporary storage 1697 // area for cases where our desired output is not backed by some other longer-term storage 1698 StreamString strm; 1699 1700 if (custom_format != eFormatInvalid) 1701 SetFormat(custom_format); 1702 1703 switch(val_obj_display) 1704 { 1705 case eValueObjectRepresentationStyleValue: 1706 cstr = GetValueAsCString(); 1707 break; 1708 1709 case eValueObjectRepresentationStyleSummary: 1710 cstr = GetSummaryAsCString(); 1711 break; 1712 1713 case eValueObjectRepresentationStyleLanguageSpecific: 1714 cstr = GetObjectDescription(); 1715 break; 1716 1717 case eValueObjectRepresentationStyleLocation: 1718 cstr = GetLocationAsCString(); 1719 break; 1720 1721 case eValueObjectRepresentationStyleChildrenCount: 1722 strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren()); 1723 cstr = strm.GetString().c_str(); 1724 break; 1725 1726 case eValueObjectRepresentationStyleType: 1727 cstr = GetTypeName().AsCString(); 1728 break; 1729 1730 case eValueObjectRepresentationStyleName: 1731 cstr = GetName().AsCString(); 1732 break; 1733 1734 case eValueObjectRepresentationStyleExpressionPath: 1735 GetExpressionPath(strm, false); 1736 cstr = strm.GetString().c_str(); 1737 break; 1738 } 1739 1740 if (!cstr) 1741 { 1742 if (val_obj_display == eValueObjectRepresentationStyleValue) 1743 cstr = GetSummaryAsCString(); 1744 else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1745 { 1746 if (!CanProvideValue()) 1747 { 1748 strm.Printf("%s @ %s", GetTypeName().AsCString(), GetLocationAsCString()); 1749 cstr = strm.GetString().c_str(); 1750 } 1751 else 1752 cstr = GetValueAsCString(); 1753 } 1754 } 1755 1756 if (cstr) 1757 s.PutCString(cstr); 1758 else 1759 { 1760 if (m_error.Fail()) 1761 { 1762 if (do_dump_error) 1763 s.Printf("<%s>", m_error.AsCString()); 1764 else 1765 return false; 1766 } 1767 else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1768 s.PutCString("<no summary available>"); 1769 else if (val_obj_display == eValueObjectRepresentationStyleValue) 1770 s.PutCString("<no value available>"); 1771 else if (val_obj_display == eValueObjectRepresentationStyleLanguageSpecific) 1772 s.PutCString("<not a valid Objective-C object>"); // edit this if we have other runtimes that support a description 1773 else 1774 s.PutCString("<no printable representation>"); 1775 } 1776 1777 // we should only return false here if we could not do *anything* 1778 // even if we have an error message as output, that's a success 1779 // from our callers' perspective, so return true 1780 var_success = true; 1781 1782 if (custom_format != eFormatInvalid) 1783 SetFormat(eFormatDefault); 1784 } 1785 1786 return var_success; 1787 } 1788 1789 addr_t 1790 ValueObject::GetAddressOf (bool scalar_is_load_address, AddressType *address_type) 1791 { 1792 if (!UpdateValueIfNeeded(false)) 1793 return LLDB_INVALID_ADDRESS; 1794 1795 switch (m_value.GetValueType()) 1796 { 1797 case Value::eValueTypeScalar: 1798 case Value::eValueTypeVector: 1799 if (scalar_is_load_address) 1800 { 1801 if(address_type) 1802 *address_type = eAddressTypeLoad; 1803 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1804 } 1805 break; 1806 1807 case Value::eValueTypeLoadAddress: 1808 case Value::eValueTypeFileAddress: 1809 { 1810 if(address_type) 1811 *address_type = m_value.GetValueAddressType (); 1812 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1813 } 1814 break; 1815 case Value::eValueTypeHostAddress: 1816 { 1817 if(address_type) 1818 *address_type = m_value.GetValueAddressType (); 1819 return LLDB_INVALID_ADDRESS; 1820 } 1821 break; 1822 } 1823 if (address_type) 1824 *address_type = eAddressTypeInvalid; 1825 return LLDB_INVALID_ADDRESS; 1826 } 1827 1828 addr_t 1829 ValueObject::GetPointerValue (AddressType *address_type) 1830 { 1831 addr_t address = LLDB_INVALID_ADDRESS; 1832 if(address_type) 1833 *address_type = eAddressTypeInvalid; 1834 1835 if (!UpdateValueIfNeeded(false)) 1836 return address; 1837 1838 switch (m_value.GetValueType()) 1839 { 1840 case Value::eValueTypeScalar: 1841 case Value::eValueTypeVector: 1842 address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1843 break; 1844 1845 case Value::eValueTypeHostAddress: 1846 case Value::eValueTypeLoadAddress: 1847 case Value::eValueTypeFileAddress: 1848 { 1849 lldb::offset_t data_offset = 0; 1850 address = m_data.GetPointer(&data_offset); 1851 } 1852 break; 1853 } 1854 1855 if (address_type) 1856 *address_type = GetAddressTypeOfChildren(); 1857 1858 return address; 1859 } 1860 1861 bool 1862 ValueObject::SetValueFromCString (const char *value_str, Error& error) 1863 { 1864 error.Clear(); 1865 // Make sure our value is up to date first so that our location and location 1866 // type is valid. 1867 if (!UpdateValueIfNeeded(false)) 1868 { 1869 error.SetErrorString("unable to read value"); 1870 return false; 1871 } 1872 1873 uint64_t count = 0; 1874 const Encoding encoding = GetCompilerType().GetEncoding (count); 1875 1876 const size_t byte_size = GetByteSize(); 1877 1878 Value::ValueType value_type = m_value.GetValueType(); 1879 1880 if (value_type == Value::eValueTypeScalar) 1881 { 1882 // If the value is already a scalar, then let the scalar change itself: 1883 m_value.GetScalar().SetValueFromCString (value_str, encoding, byte_size); 1884 } 1885 else if (byte_size <= 16) 1886 { 1887 // If the value fits in a scalar, then make a new scalar and again let the 1888 // scalar code do the conversion, then figure out where to put the new value. 1889 Scalar new_scalar; 1890 error = new_scalar.SetValueFromCString (value_str, encoding, byte_size); 1891 if (error.Success()) 1892 { 1893 switch (value_type) 1894 { 1895 case Value::eValueTypeLoadAddress: 1896 { 1897 // If it is a load address, then the scalar value is the storage location 1898 // of the data, and we have to shove this value down to that load location. 1899 ExecutionContext exe_ctx (GetExecutionContextRef()); 1900 Process *process = exe_ctx.GetProcessPtr(); 1901 if (process) 1902 { 1903 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1904 size_t bytes_written = process->WriteScalarToMemory (target_addr, 1905 new_scalar, 1906 byte_size, 1907 error); 1908 if (!error.Success()) 1909 return false; 1910 if (bytes_written != byte_size) 1911 { 1912 error.SetErrorString("unable to write value to memory"); 1913 return false; 1914 } 1915 } 1916 } 1917 break; 1918 case Value::eValueTypeHostAddress: 1919 { 1920 // If it is a host address, then we stuff the scalar as a DataBuffer into the Value's data. 1921 DataExtractor new_data; 1922 new_data.SetByteOrder (m_data.GetByteOrder()); 1923 1924 DataBufferSP buffer_sp (new DataBufferHeap(byte_size, 0)); 1925 m_data.SetData(buffer_sp, 0); 1926 bool success = new_scalar.GetData(new_data); 1927 if (success) 1928 { 1929 new_data.CopyByteOrderedData (0, 1930 byte_size, 1931 const_cast<uint8_t *>(m_data.GetDataStart()), 1932 byte_size, 1933 m_data.GetByteOrder()); 1934 } 1935 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1936 1937 } 1938 break; 1939 case Value::eValueTypeFileAddress: 1940 case Value::eValueTypeScalar: 1941 case Value::eValueTypeVector: 1942 break; 1943 } 1944 } 1945 else 1946 { 1947 return false; 1948 } 1949 } 1950 else 1951 { 1952 // We don't support setting things bigger than a scalar at present. 1953 error.SetErrorString("unable to write aggregate data type"); 1954 return false; 1955 } 1956 1957 // If we have reached this point, then we have successfully changed the value. 1958 SetNeedsUpdate(); 1959 return true; 1960 } 1961 1962 bool 1963 ValueObject::GetDeclaration (Declaration &decl) 1964 { 1965 decl.Clear(); 1966 return false; 1967 } 1968 1969 ConstString 1970 ValueObject::GetTypeName() 1971 { 1972 return GetCompilerType().GetConstTypeName(); 1973 } 1974 1975 ConstString 1976 ValueObject::GetDisplayTypeName() 1977 { 1978 return GetTypeName(); 1979 } 1980 1981 ConstString 1982 ValueObject::GetQualifiedTypeName() 1983 { 1984 return GetCompilerType().GetConstQualifiedTypeName(); 1985 } 1986 1987 1988 LanguageType 1989 ValueObject::GetObjectRuntimeLanguage () 1990 { 1991 return GetCompilerType().GetMinimumLanguage (); 1992 } 1993 1994 void 1995 ValueObject::AddSyntheticChild (const ConstString &key, ValueObject *valobj) 1996 { 1997 m_synthetic_children[key] = valobj; 1998 } 1999 2000 ValueObjectSP 2001 ValueObject::GetSyntheticChild (const ConstString &key) const 2002 { 2003 ValueObjectSP synthetic_child_sp; 2004 std::map<ConstString, ValueObject *>::const_iterator pos = m_synthetic_children.find (key); 2005 if (pos != m_synthetic_children.end()) 2006 synthetic_child_sp = pos->second->GetSP(); 2007 return synthetic_child_sp; 2008 } 2009 2010 uint32_t 2011 ValueObject::GetTypeInfo (CompilerType *pointee_or_element_compiler_type) 2012 { 2013 return GetCompilerType().GetTypeInfo (pointee_or_element_compiler_type); 2014 } 2015 2016 bool 2017 ValueObject::IsPointerType () 2018 { 2019 return GetCompilerType().IsPointerType(); 2020 } 2021 2022 bool 2023 ValueObject::IsArrayType () 2024 { 2025 return GetCompilerType().IsArrayType (NULL, NULL, NULL); 2026 } 2027 2028 bool 2029 ValueObject::IsScalarType () 2030 { 2031 return GetCompilerType().IsScalarType (); 2032 } 2033 2034 bool 2035 ValueObject::IsIntegerType (bool &is_signed) 2036 { 2037 return GetCompilerType().IsIntegerType (is_signed); 2038 } 2039 2040 bool 2041 ValueObject::IsPointerOrReferenceType () 2042 { 2043 return GetCompilerType().IsPointerOrReferenceType (); 2044 } 2045 2046 bool 2047 ValueObject::IsPossibleDynamicType () 2048 { 2049 ExecutionContext exe_ctx (GetExecutionContextRef()); 2050 Process *process = exe_ctx.GetProcessPtr(); 2051 if (process) 2052 return process->IsPossibleDynamicValue(*this); 2053 else 2054 return GetCompilerType().IsPossibleDynamicType (NULL, true, true); 2055 } 2056 2057 bool 2058 ValueObject::IsRuntimeSupportValue () 2059 { 2060 Process *process(GetProcessSP().get()); 2061 if (process) 2062 { 2063 LanguageRuntime *runtime = process->GetLanguageRuntime(GetObjectRuntimeLanguage()); 2064 if (!runtime) 2065 runtime = process->GetObjCLanguageRuntime(); 2066 if (runtime) 2067 return runtime->IsRuntimeSupportValue(*this); 2068 } 2069 return false; 2070 } 2071 2072 bool 2073 ValueObject::IsNilReference () 2074 { 2075 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) 2076 { 2077 return language->IsNilReference(*this); 2078 } 2079 return false; 2080 } 2081 2082 bool 2083 ValueObject::IsUninitializedReference () 2084 { 2085 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) 2086 { 2087 return language->IsUninitializedReference(*this); 2088 } 2089 return false; 2090 } 2091 2092 // This allows you to create an array member using and index 2093 // that doesn't not fall in the normal bounds of the array. 2094 // Many times structure can be defined as: 2095 // struct Collection 2096 // { 2097 // uint32_t item_count; 2098 // Item item_array[0]; 2099 // }; 2100 // The size of the "item_array" is 1, but many times in practice 2101 // there are more items in "item_array". 2102 2103 ValueObjectSP 2104 ValueObject::GetSyntheticArrayMember (size_t index, bool can_create) 2105 { 2106 ValueObjectSP synthetic_child_sp; 2107 if (IsPointerType () || IsArrayType()) 2108 { 2109 char index_str[64]; 2110 snprintf(index_str, sizeof(index_str), "[%" PRIu64 "]", (uint64_t)index); 2111 ConstString index_const_str(index_str); 2112 // Check if we have already created a synthetic array member in this 2113 // valid object. If we have we will re-use it. 2114 synthetic_child_sp = GetSyntheticChild (index_const_str); 2115 if (!synthetic_child_sp) 2116 { 2117 ValueObject *synthetic_child; 2118 // We haven't made a synthetic array member for INDEX yet, so 2119 // lets make one and cache it for any future reference. 2120 synthetic_child = CreateChildAtIndex(0, true, index); 2121 2122 // Cache the value if we got one back... 2123 if (synthetic_child) 2124 { 2125 AddSyntheticChild(index_const_str, synthetic_child); 2126 synthetic_child_sp = synthetic_child->GetSP(); 2127 synthetic_child_sp->SetName(ConstString(index_str)); 2128 synthetic_child_sp->m_is_array_item_for_pointer = true; 2129 } 2130 } 2131 } 2132 return synthetic_child_sp; 2133 } 2134 2135 ValueObjectSP 2136 ValueObject::GetSyntheticBitFieldChild (uint32_t from, uint32_t to, bool can_create) 2137 { 2138 ValueObjectSP synthetic_child_sp; 2139 if (IsScalarType ()) 2140 { 2141 char index_str[64]; 2142 snprintf(index_str, sizeof(index_str), "[%i-%i]", from, to); 2143 ConstString index_const_str(index_str); 2144 // Check if we have already created a synthetic array member in this 2145 // valid object. If we have we will re-use it. 2146 synthetic_child_sp = GetSyntheticChild (index_const_str); 2147 if (!synthetic_child_sp) 2148 { 2149 uint32_t bit_field_size = to - from + 1; 2150 uint32_t bit_field_offset = from; 2151 if (GetDataExtractor().GetByteOrder() == eByteOrderBig) 2152 bit_field_offset = GetByteSize() * 8 - bit_field_size - bit_field_offset; 2153 // We haven't made a synthetic array member for INDEX yet, so 2154 // lets make one and cache it for any future reference. 2155 ValueObjectChild *synthetic_child = new ValueObjectChild (*this, 2156 GetCompilerType(), 2157 index_const_str, 2158 GetByteSize(), 2159 0, 2160 bit_field_size, 2161 bit_field_offset, 2162 false, 2163 false, 2164 eAddressTypeInvalid, 2165 0); 2166 2167 // Cache the value if we got one back... 2168 if (synthetic_child) 2169 { 2170 AddSyntheticChild(index_const_str, synthetic_child); 2171 synthetic_child_sp = synthetic_child->GetSP(); 2172 synthetic_child_sp->SetName(ConstString(index_str)); 2173 synthetic_child_sp->m_is_bitfield_for_scalar = true; 2174 } 2175 } 2176 } 2177 return synthetic_child_sp; 2178 } 2179 2180 ValueObjectSP 2181 ValueObject::GetSyntheticChildAtOffset(uint32_t offset, 2182 const CompilerType& type, 2183 bool can_create, 2184 ConstString name_const_str) 2185 { 2186 2187 ValueObjectSP synthetic_child_sp; 2188 2189 if (name_const_str.IsEmpty()) 2190 { 2191 char name_str[64]; 2192 snprintf(name_str, sizeof(name_str), "@%i", offset); 2193 name_const_str.SetCString(name_str); 2194 } 2195 2196 // Check if we have already created a synthetic array member in this 2197 // valid object. If we have we will re-use it. 2198 synthetic_child_sp = GetSyntheticChild (name_const_str); 2199 2200 if (synthetic_child_sp.get()) 2201 return synthetic_child_sp; 2202 2203 if (!can_create) 2204 return ValueObjectSP(); 2205 2206 ExecutionContext exe_ctx (GetExecutionContextRef()); 2207 2208 ValueObjectChild *synthetic_child = new ValueObjectChild(*this, 2209 type, 2210 name_const_str, 2211 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()), 2212 offset, 2213 0, 2214 0, 2215 false, 2216 false, 2217 eAddressTypeInvalid, 2218 0); 2219 if (synthetic_child) 2220 { 2221 AddSyntheticChild(name_const_str, synthetic_child); 2222 synthetic_child_sp = synthetic_child->GetSP(); 2223 synthetic_child_sp->SetName(name_const_str); 2224 synthetic_child_sp->m_is_child_at_offset = true; 2225 } 2226 return synthetic_child_sp; 2227 } 2228 2229 ValueObjectSP 2230 ValueObject::GetSyntheticBase (uint32_t offset, 2231 const CompilerType& type, 2232 bool can_create, 2233 ConstString name_const_str) 2234 { 2235 ValueObjectSP synthetic_child_sp; 2236 2237 if (name_const_str.IsEmpty()) 2238 { 2239 char name_str[128]; 2240 snprintf(name_str, sizeof(name_str), "base%s@%i", type.GetTypeName().AsCString("<unknown>"), offset); 2241 name_const_str.SetCString(name_str); 2242 } 2243 2244 // Check if we have already created a synthetic array member in this 2245 // valid object. If we have we will re-use it. 2246 synthetic_child_sp = GetSyntheticChild (name_const_str); 2247 2248 if (synthetic_child_sp.get()) 2249 return synthetic_child_sp; 2250 2251 if (!can_create) 2252 return ValueObjectSP(); 2253 2254 const bool is_base_class = true; 2255 2256 ExecutionContext exe_ctx (GetExecutionContextRef()); 2257 2258 ValueObjectChild *synthetic_child = new ValueObjectChild(*this, 2259 type, 2260 name_const_str, 2261 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()), 2262 offset, 2263 0, 2264 0, 2265 is_base_class, 2266 false, 2267 eAddressTypeInvalid, 2268 0); 2269 if (synthetic_child) 2270 { 2271 AddSyntheticChild(name_const_str, synthetic_child); 2272 synthetic_child_sp = synthetic_child->GetSP(); 2273 synthetic_child_sp->SetName(name_const_str); 2274 } 2275 return synthetic_child_sp; 2276 } 2277 2278 2279 // your expression path needs to have a leading . or -> 2280 // (unless it somehow "looks like" an array, in which case it has 2281 // a leading [ symbol). while the [ is meaningful and should be shown 2282 // to the user, . and -> are just parser design, but by no means 2283 // added information for the user.. strip them off 2284 static const char* 2285 SkipLeadingExpressionPathSeparators(const char* expression) 2286 { 2287 if (!expression || !expression[0]) 2288 return expression; 2289 if (expression[0] == '.') 2290 return expression+1; 2291 if (expression[0] == '-' && expression[1] == '>') 2292 return expression+2; 2293 return expression; 2294 } 2295 2296 ValueObjectSP 2297 ValueObject::GetSyntheticExpressionPathChild(const char* expression, bool can_create) 2298 { 2299 ValueObjectSP synthetic_child_sp; 2300 ConstString name_const_string(expression); 2301 // Check if we have already created a synthetic array member in this 2302 // valid object. If we have we will re-use it. 2303 synthetic_child_sp = GetSyntheticChild (name_const_string); 2304 if (!synthetic_child_sp) 2305 { 2306 // We haven't made a synthetic array member for expression yet, so 2307 // lets make one and cache it for any future reference. 2308 synthetic_child_sp = GetValueForExpressionPath(expression, 2309 NULL, NULL, NULL, 2310 GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal(GetValueForExpressionPathOptions::SyntheticChildrenTraversal::None)); 2311 2312 // Cache the value if we got one back... 2313 if (synthetic_child_sp.get()) 2314 { 2315 // FIXME: this causes a "real" child to end up with its name changed to the contents of expression 2316 AddSyntheticChild(name_const_string, synthetic_child_sp.get()); 2317 synthetic_child_sp->SetName(ConstString(SkipLeadingExpressionPathSeparators(expression))); 2318 } 2319 } 2320 return synthetic_child_sp; 2321 } 2322 2323 void 2324 ValueObject::CalculateSyntheticValue (bool use_synthetic) 2325 { 2326 if (use_synthetic == false) 2327 return; 2328 2329 TargetSP target_sp(GetTargetSP()); 2330 if (target_sp && target_sp->GetEnableSyntheticValue() == false) 2331 { 2332 m_synthetic_value = NULL; 2333 return; 2334 } 2335 2336 lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp); 2337 2338 if (!UpdateFormatsIfNeeded() && m_synthetic_value) 2339 return; 2340 2341 if (m_synthetic_children_sp.get() == NULL) 2342 return; 2343 2344 if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value) 2345 return; 2346 2347 m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp); 2348 } 2349 2350 void 2351 ValueObject::CalculateDynamicValue (DynamicValueType use_dynamic) 2352 { 2353 if (use_dynamic == eNoDynamicValues) 2354 return; 2355 2356 if (!m_dynamic_value && !IsDynamic()) 2357 { 2358 ExecutionContext exe_ctx (GetExecutionContextRef()); 2359 Process *process = exe_ctx.GetProcessPtr(); 2360 if (process && process->IsPossibleDynamicValue(*this)) 2361 { 2362 ClearDynamicTypeInformation (); 2363 m_dynamic_value = new ValueObjectDynamicValue (*this, use_dynamic); 2364 } 2365 } 2366 } 2367 2368 ValueObjectSP 2369 ValueObject::GetDynamicValue (DynamicValueType use_dynamic) 2370 { 2371 if (use_dynamic == eNoDynamicValues) 2372 return ValueObjectSP(); 2373 2374 if (!IsDynamic() && m_dynamic_value == NULL) 2375 { 2376 CalculateDynamicValue(use_dynamic); 2377 } 2378 if (m_dynamic_value) 2379 return m_dynamic_value->GetSP(); 2380 else 2381 return ValueObjectSP(); 2382 } 2383 2384 ValueObjectSP 2385 ValueObject::GetStaticValue() 2386 { 2387 return GetSP(); 2388 } 2389 2390 lldb::ValueObjectSP 2391 ValueObject::GetNonSyntheticValue () 2392 { 2393 return GetSP(); 2394 } 2395 2396 ValueObjectSP 2397 ValueObject::GetSyntheticValue (bool use_synthetic) 2398 { 2399 if (use_synthetic == false) 2400 return ValueObjectSP(); 2401 2402 CalculateSyntheticValue(use_synthetic); 2403 2404 if (m_synthetic_value) 2405 return m_synthetic_value->GetSP(); 2406 else 2407 return ValueObjectSP(); 2408 } 2409 2410 bool 2411 ValueObject::HasSyntheticValue() 2412 { 2413 UpdateFormatsIfNeeded(); 2414 2415 if (m_synthetic_children_sp.get() == NULL) 2416 return false; 2417 2418 CalculateSyntheticValue(true); 2419 2420 if (m_synthetic_value) 2421 return true; 2422 else 2423 return false; 2424 } 2425 2426 bool 2427 ValueObject::GetBaseClassPath (Stream &s) 2428 { 2429 if (IsBaseClass()) 2430 { 2431 bool parent_had_base_class = GetParent() && GetParent()->GetBaseClassPath (s); 2432 CompilerType compiler_type = GetCompilerType(); 2433 std::string cxx_class_name; 2434 bool this_had_base_class = ClangASTContext::GetCXXClassName (compiler_type, cxx_class_name); 2435 if (this_had_base_class) 2436 { 2437 if (parent_had_base_class) 2438 s.PutCString("::"); 2439 s.PutCString(cxx_class_name.c_str()); 2440 } 2441 return parent_had_base_class || this_had_base_class; 2442 } 2443 return false; 2444 } 2445 2446 2447 ValueObject * 2448 ValueObject::GetNonBaseClassParent() 2449 { 2450 if (GetParent()) 2451 { 2452 if (GetParent()->IsBaseClass()) 2453 return GetParent()->GetNonBaseClassParent(); 2454 else 2455 return GetParent(); 2456 } 2457 return NULL; 2458 } 2459 2460 2461 bool 2462 ValueObject::IsBaseClass (uint32_t& depth) 2463 { 2464 if (!IsBaseClass()) 2465 { 2466 depth = 0; 2467 return false; 2468 } 2469 if (GetParent()) 2470 { 2471 GetParent()->IsBaseClass(depth); 2472 depth = depth + 1; 2473 return true; 2474 } 2475 // TODO: a base of no parent? weird.. 2476 depth = 1; 2477 return true; 2478 } 2479 2480 void 2481 ValueObject::GetExpressionPath (Stream &s, bool qualify_cxx_base_classes, GetExpressionPathFormat epformat) 2482 { 2483 // synthetic children do not actually "exist" as part of the hierarchy, and sometimes they are consed up in ways 2484 // that don't make sense from an underlying language/API standpoint. So, use a special code path here to return 2485 // something that can hopefully be used in expression 2486 if (m_is_synthetic_children_generated) 2487 { 2488 UpdateValueIfNeeded(); 2489 2490 if (m_value.GetValueType() == Value::eValueTypeLoadAddress) 2491 { 2492 if (IsPointerOrReferenceType()) 2493 { 2494 s.Printf("((%s)0x%" PRIx64 ")", 2495 GetTypeName().AsCString("void"), 2496 GetValueAsUnsigned(0)); 2497 return; 2498 } 2499 else 2500 { 2501 uint64_t load_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2502 if (load_addr != LLDB_INVALID_ADDRESS) 2503 { 2504 s.Printf("(*( (%s *)0x%" PRIx64 "))", 2505 GetTypeName().AsCString("void"), 2506 load_addr); 2507 return; 2508 } 2509 } 2510 } 2511 2512 if (CanProvideValue()) 2513 { 2514 s.Printf("((%s)%s)", 2515 GetTypeName().AsCString("void"), 2516 GetValueAsCString()); 2517 return; 2518 } 2519 2520 return; 2521 } 2522 2523 const bool is_deref_of_parent = IsDereferenceOfParent (); 2524 2525 if (is_deref_of_parent && epformat == eGetExpressionPathFormatDereferencePointers) 2526 { 2527 // this is the original format of GetExpressionPath() producing code like *(a_ptr).memberName, which is entirely 2528 // fine, until you put this into StackFrame::GetValueForVariableExpressionPath() which prefers to see a_ptr->memberName. 2529 // the eHonorPointers mode is meant to produce strings in this latter format 2530 s.PutCString("*("); 2531 } 2532 2533 ValueObject* parent = GetParent(); 2534 2535 if (parent) 2536 parent->GetExpressionPath (s, qualify_cxx_base_classes, epformat); 2537 2538 // if we are a deref_of_parent just because we are synthetic array 2539 // members made up to allow ptr[%d] syntax to work in variable 2540 // printing, then add our name ([%d]) to the expression path 2541 if (m_is_array_item_for_pointer && epformat == eGetExpressionPathFormatHonorPointers) 2542 s.PutCString(m_name.AsCString()); 2543 2544 if (!IsBaseClass()) 2545 { 2546 if (!is_deref_of_parent) 2547 { 2548 ValueObject *non_base_class_parent = GetNonBaseClassParent(); 2549 if (non_base_class_parent && !non_base_class_parent->GetName().IsEmpty()) 2550 { 2551 CompilerType non_base_class_parent_compiler_type = non_base_class_parent->GetCompilerType(); 2552 if (non_base_class_parent_compiler_type) 2553 { 2554 if (parent && parent->IsDereferenceOfParent() && epformat == eGetExpressionPathFormatHonorPointers) 2555 { 2556 s.PutCString("->"); 2557 } 2558 else 2559 { 2560 const uint32_t non_base_class_parent_type_info = non_base_class_parent_compiler_type.GetTypeInfo(); 2561 2562 if (non_base_class_parent_type_info & eTypeIsPointer) 2563 { 2564 s.PutCString("->"); 2565 } 2566 else if ((non_base_class_parent_type_info & eTypeHasChildren) && 2567 !(non_base_class_parent_type_info & eTypeIsArray)) 2568 { 2569 s.PutChar('.'); 2570 } 2571 } 2572 } 2573 } 2574 2575 const char *name = GetName().GetCString(); 2576 if (name) 2577 { 2578 if (qualify_cxx_base_classes) 2579 { 2580 if (GetBaseClassPath (s)) 2581 s.PutCString("::"); 2582 } 2583 s.PutCString(name); 2584 } 2585 } 2586 } 2587 2588 if (is_deref_of_parent && epformat == eGetExpressionPathFormatDereferencePointers) 2589 { 2590 s.PutChar(')'); 2591 } 2592 } 2593 2594 ValueObjectSP 2595 ValueObject::GetValueForExpressionPath(const char* expression, 2596 const char** first_unparsed, 2597 ExpressionPathScanEndReason* reason_to_stop, 2598 ExpressionPathEndResultType* final_value_type, 2599 const GetValueForExpressionPathOptions& options, 2600 ExpressionPathAftermath* final_task_on_target) 2601 { 2602 2603 const char* dummy_first_unparsed; 2604 ExpressionPathScanEndReason dummy_reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnknown; 2605 ExpressionPathEndResultType dummy_final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2606 ExpressionPathAftermath dummy_final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2607 2608 ValueObjectSP ret_val = GetValueForExpressionPath_Impl(expression, 2609 first_unparsed ? first_unparsed : &dummy_first_unparsed, 2610 reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2611 final_value_type ? final_value_type : &dummy_final_value_type, 2612 options, 2613 final_task_on_target ? final_task_on_target : &dummy_final_task_on_target); 2614 2615 if (!final_task_on_target || *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2616 return ret_val; 2617 2618 if (ret_val.get() && ((final_value_type ? *final_value_type : dummy_final_value_type) == eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress of plain objects 2619 { 2620 if ( (final_task_on_target ? *final_task_on_target : dummy_final_task_on_target) == ValueObject::eExpressionPathAftermathDereference) 2621 { 2622 Error error; 2623 ValueObjectSP final_value = ret_val->Dereference(error); 2624 if (error.Fail() || !final_value.get()) 2625 { 2626 if (reason_to_stop) 2627 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2628 if (final_value_type) 2629 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2630 return ValueObjectSP(); 2631 } 2632 else 2633 { 2634 if (final_task_on_target) 2635 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2636 return final_value; 2637 } 2638 } 2639 if (*final_task_on_target == ValueObject::eExpressionPathAftermathTakeAddress) 2640 { 2641 Error error; 2642 ValueObjectSP final_value = ret_val->AddressOf(error); 2643 if (error.Fail() || !final_value.get()) 2644 { 2645 if (reason_to_stop) 2646 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2647 if (final_value_type) 2648 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2649 return ValueObjectSP(); 2650 } 2651 else 2652 { 2653 if (final_task_on_target) 2654 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2655 return final_value; 2656 } 2657 } 2658 } 2659 return ret_val; // final_task_on_target will still have its original value, so you know I did not do it 2660 } 2661 2662 int 2663 ValueObject::GetValuesForExpressionPath(const char* expression, 2664 ValueObjectListSP& list, 2665 const char** first_unparsed, 2666 ExpressionPathScanEndReason* reason_to_stop, 2667 ExpressionPathEndResultType* final_value_type, 2668 const GetValueForExpressionPathOptions& options, 2669 ExpressionPathAftermath* final_task_on_target) 2670 { 2671 const char* dummy_first_unparsed; 2672 ExpressionPathScanEndReason dummy_reason_to_stop; 2673 ExpressionPathEndResultType dummy_final_value_type; 2674 ExpressionPathAftermath dummy_final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2675 2676 ValueObjectSP ret_val = GetValueForExpressionPath_Impl(expression, 2677 first_unparsed ? first_unparsed : &dummy_first_unparsed, 2678 reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2679 final_value_type ? final_value_type : &dummy_final_value_type, 2680 options, 2681 final_task_on_target ? final_task_on_target : &dummy_final_task_on_target); 2682 2683 if (!ret_val.get()) // if there are errors, I add nothing to the list 2684 return 0; 2685 2686 if ( (reason_to_stop ? *reason_to_stop : dummy_reason_to_stop) != eExpressionPathScanEndReasonArrayRangeOperatorMet) 2687 { 2688 // I need not expand a range, just post-process the final value and return 2689 if (!final_task_on_target || *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2690 { 2691 list->Append(ret_val); 2692 return 1; 2693 } 2694 if (ret_val.get() && (final_value_type ? *final_value_type : dummy_final_value_type) == eExpressionPathEndResultTypePlain) // I can only deref and takeaddress of plain objects 2695 { 2696 if (*final_task_on_target == ValueObject::eExpressionPathAftermathDereference) 2697 { 2698 Error error; 2699 ValueObjectSP final_value = ret_val->Dereference(error); 2700 if (error.Fail() || !final_value.get()) 2701 { 2702 if (reason_to_stop) 2703 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2704 if (final_value_type) 2705 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2706 return 0; 2707 } 2708 else 2709 { 2710 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2711 list->Append(final_value); 2712 return 1; 2713 } 2714 } 2715 if (*final_task_on_target == ValueObject::eExpressionPathAftermathTakeAddress) 2716 { 2717 Error error; 2718 ValueObjectSP final_value = ret_val->AddressOf(error); 2719 if (error.Fail() || !final_value.get()) 2720 { 2721 if (reason_to_stop) 2722 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2723 if (final_value_type) 2724 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2725 return 0; 2726 } 2727 else 2728 { 2729 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2730 list->Append(final_value); 2731 return 1; 2732 } 2733 } 2734 } 2735 } 2736 else 2737 { 2738 return ExpandArraySliceExpression(first_unparsed ? *first_unparsed : dummy_first_unparsed, 2739 first_unparsed ? first_unparsed : &dummy_first_unparsed, 2740 ret_val, 2741 list, 2742 reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2743 final_value_type ? final_value_type : &dummy_final_value_type, 2744 options, 2745 final_task_on_target ? final_task_on_target : &dummy_final_task_on_target); 2746 } 2747 // in any non-covered case, just do the obviously right thing 2748 list->Append(ret_val); 2749 return 1; 2750 } 2751 2752 ValueObjectSP 2753 ValueObject::GetValueForExpressionPath_Impl(const char* expression_cstr, 2754 const char** first_unparsed, 2755 ExpressionPathScanEndReason* reason_to_stop, 2756 ExpressionPathEndResultType* final_result, 2757 const GetValueForExpressionPathOptions& options, 2758 ExpressionPathAftermath* what_next) 2759 { 2760 ValueObjectSP root = GetSP(); 2761 2762 if (!root.get()) 2763 return ValueObjectSP(); 2764 2765 *first_unparsed = expression_cstr; 2766 2767 while (true) 2768 { 2769 2770 const char* expression_cstr = *first_unparsed; // hide the top level expression_cstr 2771 2772 CompilerType root_compiler_type = root->GetCompilerType(); 2773 CompilerType pointee_compiler_type; 2774 Flags pointee_compiler_type_info; 2775 2776 Flags root_compiler_type_info(root_compiler_type.GetTypeInfo(&pointee_compiler_type)); 2777 if (pointee_compiler_type) 2778 pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo()); 2779 2780 if (!expression_cstr || *expression_cstr == '\0') 2781 { 2782 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2783 return root; 2784 } 2785 2786 switch (*expression_cstr) 2787 { 2788 case '-': 2789 { 2790 if (options.m_check_dot_vs_arrow_syntax && 2791 root_compiler_type_info.Test(eTypeIsPointer) ) // if you are trying to use -> on a non-pointer and I must catch the error 2792 { 2793 *first_unparsed = expression_cstr; 2794 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot; 2795 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2796 return ValueObjectSP(); 2797 } 2798 if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to extract an ObjC IVar when this is forbidden 2799 root_compiler_type_info.Test(eTypeIsPointer) && 2800 options.m_no_fragile_ivar) 2801 { 2802 *first_unparsed = expression_cstr; 2803 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed; 2804 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2805 return ValueObjectSP(); 2806 } 2807 if (expression_cstr[1] != '>') 2808 { 2809 *first_unparsed = expression_cstr; 2810 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2811 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2812 return ValueObjectSP(); 2813 } 2814 expression_cstr++; // skip the - 2815 } 2816 LLVM_FALLTHROUGH; 2817 case '.': // or fallthrough from -> 2818 { 2819 if (options.m_check_dot_vs_arrow_syntax && *expression_cstr == '.' && 2820 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to use . on a pointer and I must catch the error 2821 { 2822 *first_unparsed = expression_cstr; 2823 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow; 2824 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2825 return ValueObjectSP(); 2826 } 2827 expression_cstr++; // skip . 2828 const char *next_separator = strpbrk(expression_cstr+1,"-.["); 2829 ConstString child_name; 2830 if (!next_separator) // if no other separator just expand this last layer 2831 { 2832 child_name.SetCString (expression_cstr); 2833 ValueObjectSP child_valobj_sp = root->GetChildMemberWithName(child_name, true); 2834 2835 if (child_valobj_sp.get()) // we know we are done, so just return 2836 { 2837 *first_unparsed = ""; 2838 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2839 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2840 return child_valobj_sp; 2841 } 2842 else 2843 { 2844 switch (options.m_synthetic_children_traversal) 2845 { 2846 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::None: 2847 break; 2848 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::FromSynthetic: 2849 if (root->IsSynthetic()) 2850 { 2851 child_valobj_sp = root->GetNonSyntheticValue(); 2852 if (child_valobj_sp.get()) 2853 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2854 } 2855 break; 2856 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::ToSynthetic: 2857 if (!root->IsSynthetic()) 2858 { 2859 child_valobj_sp = root->GetSyntheticValue(); 2860 if (child_valobj_sp.get()) 2861 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2862 } 2863 break; 2864 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::Both: 2865 if (root->IsSynthetic()) 2866 { 2867 child_valobj_sp = root->GetNonSyntheticValue(); 2868 if (child_valobj_sp.get()) 2869 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2870 } 2871 else 2872 { 2873 child_valobj_sp = root->GetSyntheticValue(); 2874 if (child_valobj_sp.get()) 2875 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2876 } 2877 break; 2878 } 2879 } 2880 2881 // if we are here and options.m_no_synthetic_children is true, child_valobj_sp is going to be a NULL SP, 2882 // so we hit the "else" branch, and return an error 2883 if(child_valobj_sp.get()) // if it worked, just return 2884 { 2885 *first_unparsed = ""; 2886 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2887 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2888 return child_valobj_sp; 2889 } 2890 else 2891 { 2892 *first_unparsed = expression_cstr; 2893 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2894 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2895 return ValueObjectSP(); 2896 } 2897 } 2898 else // other layers do expand 2899 { 2900 child_name.SetCStringWithLength(expression_cstr, next_separator - expression_cstr); 2901 ValueObjectSP child_valobj_sp = root->GetChildMemberWithName(child_name, true); 2902 if (child_valobj_sp.get()) // store the new root and move on 2903 { 2904 root = child_valobj_sp; 2905 *first_unparsed = next_separator; 2906 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2907 continue; 2908 } 2909 else 2910 { 2911 switch (options.m_synthetic_children_traversal) 2912 { 2913 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::None: 2914 break; 2915 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::FromSynthetic: 2916 if (root->IsSynthetic()) 2917 { 2918 child_valobj_sp = root->GetNonSyntheticValue(); 2919 if (child_valobj_sp.get()) 2920 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2921 } 2922 break; 2923 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::ToSynthetic: 2924 if (!root->IsSynthetic()) 2925 { 2926 child_valobj_sp = root->GetSyntheticValue(); 2927 if (child_valobj_sp.get()) 2928 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2929 } 2930 break; 2931 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::Both: 2932 if (root->IsSynthetic()) 2933 { 2934 child_valobj_sp = root->GetNonSyntheticValue(); 2935 if (child_valobj_sp.get()) 2936 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2937 } 2938 else 2939 { 2940 child_valobj_sp = root->GetSyntheticValue(); 2941 if (child_valobj_sp.get()) 2942 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2943 } 2944 break; 2945 } 2946 } 2947 2948 // if we are here and options.m_no_synthetic_children is true, child_valobj_sp is going to be a NULL SP, 2949 // so we hit the "else" branch, and return an error 2950 if(child_valobj_sp.get()) // if it worked, move on 2951 { 2952 root = child_valobj_sp; 2953 *first_unparsed = next_separator; 2954 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2955 continue; 2956 } 2957 else 2958 { 2959 *first_unparsed = expression_cstr; 2960 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2961 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2962 return ValueObjectSP(); 2963 } 2964 } 2965 break; 2966 } 2967 case '[': 2968 { 2969 if (!root_compiler_type_info.Test(eTypeIsArray) && !root_compiler_type_info.Test(eTypeIsPointer) && !root_compiler_type_info.Test(eTypeIsVector)) // if this is not a T[] nor a T* 2970 { 2971 if (!root_compiler_type_info.Test(eTypeIsScalar)) // if this is not even a scalar... 2972 { 2973 if (options.m_synthetic_children_traversal == GetValueForExpressionPathOptions::SyntheticChildrenTraversal::None) // ...only chance left is synthetic 2974 { 2975 *first_unparsed = expression_cstr; 2976 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 2977 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2978 return ValueObjectSP(); 2979 } 2980 } 2981 else if (!options.m_allow_bitfields_syntax) // if this is a scalar, check that we can expand bitfields 2982 { 2983 *first_unparsed = expression_cstr; 2984 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 2985 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2986 return ValueObjectSP(); 2987 } 2988 } 2989 if (*(expression_cstr+1) == ']') // if this is an unbounded range it only works for arrays 2990 { 2991 if (!root_compiler_type_info.Test(eTypeIsArray)) 2992 { 2993 *first_unparsed = expression_cstr; 2994 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 2995 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2996 return ValueObjectSP(); 2997 } 2998 else // even if something follows, we cannot expand unbounded ranges, just let the caller do it 2999 { 3000 *first_unparsed = expression_cstr+2; 3001 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 3002 *final_result = ValueObject::eExpressionPathEndResultTypeUnboundedRange; 3003 return root; 3004 } 3005 } 3006 const char *separator_position = ::strchr(expression_cstr+1,'-'); 3007 const char *close_bracket_position = ::strchr(expression_cstr+1,']'); 3008 if (!close_bracket_position) // if there is no ], this is a syntax error 3009 { 3010 *first_unparsed = expression_cstr; 3011 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3012 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3013 return ValueObjectSP(); 3014 } 3015 if (!separator_position || separator_position > close_bracket_position) // if no separator, this is either [] or [N] 3016 { 3017 char *end = NULL; 3018 unsigned long index = ::strtoul (expression_cstr+1, &end, 0); 3019 if (!end || end != close_bracket_position) // if something weird is in our way return an error 3020 { 3021 *first_unparsed = expression_cstr; 3022 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3023 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3024 return ValueObjectSP(); 3025 } 3026 if (end - expression_cstr == 1) // if this is [], only return a valid value for arrays 3027 { 3028 if (root_compiler_type_info.Test(eTypeIsArray)) 3029 { 3030 *first_unparsed = expression_cstr+2; 3031 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 3032 *final_result = ValueObject::eExpressionPathEndResultTypeUnboundedRange; 3033 return root; 3034 } 3035 else 3036 { 3037 *first_unparsed = expression_cstr; 3038 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 3039 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3040 return ValueObjectSP(); 3041 } 3042 } 3043 // from here on we do have a valid index 3044 if (root_compiler_type_info.Test(eTypeIsArray)) 3045 { 3046 ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true); 3047 if (!child_valobj_sp) 3048 child_valobj_sp = root->GetSyntheticArrayMember(index, true); 3049 if (!child_valobj_sp) 3050 if (root->HasSyntheticValue() && root->GetSyntheticValue()->GetNumChildren() > index) 3051 child_valobj_sp = root->GetSyntheticValue()->GetChildAtIndex(index, true); 3052 if (child_valobj_sp) 3053 { 3054 root = child_valobj_sp; 3055 *first_unparsed = end+1; // skip ] 3056 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 3057 continue; 3058 } 3059 else 3060 { 3061 *first_unparsed = expression_cstr; 3062 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3063 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3064 return ValueObjectSP(); 3065 } 3066 } 3067 else if (root_compiler_type_info.Test(eTypeIsPointer)) 3068 { 3069 if (*what_next == ValueObject::eExpressionPathAftermathDereference && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield 3070 pointee_compiler_type_info.Test(eTypeIsScalar)) 3071 { 3072 Error error; 3073 root = root->Dereference(error); 3074 if (error.Fail() || !root.get()) 3075 { 3076 *first_unparsed = expression_cstr; 3077 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 3078 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3079 return ValueObjectSP(); 3080 } 3081 else 3082 { 3083 *what_next = eExpressionPathAftermathNothing; 3084 continue; 3085 } 3086 } 3087 else 3088 { 3089 if (root->GetCompilerType().GetMinimumLanguage() == eLanguageTypeObjC 3090 && pointee_compiler_type_info.AllClear(eTypeIsPointer) 3091 && root->HasSyntheticValue() 3092 && (options.m_synthetic_children_traversal == GetValueForExpressionPathOptions::SyntheticChildrenTraversal::ToSynthetic || 3093 options.m_synthetic_children_traversal == GetValueForExpressionPathOptions::SyntheticChildrenTraversal::Both)) 3094 { 3095 root = root->GetSyntheticValue()->GetChildAtIndex(index, true); 3096 } 3097 else 3098 root = root->GetSyntheticArrayMember(index, true); 3099 if (!root.get()) 3100 { 3101 *first_unparsed = expression_cstr; 3102 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3103 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3104 return ValueObjectSP(); 3105 } 3106 else 3107 { 3108 *first_unparsed = end+1; // skip ] 3109 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 3110 continue; 3111 } 3112 } 3113 } 3114 else if (root_compiler_type_info.Test(eTypeIsScalar)) 3115 { 3116 root = root->GetSyntheticBitFieldChild(index, index, true); 3117 if (!root.get()) 3118 { 3119 *first_unparsed = expression_cstr; 3120 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3121 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3122 return ValueObjectSP(); 3123 } 3124 else // we do not know how to expand members of bitfields, so we just return and let the caller do any further processing 3125 { 3126 *first_unparsed = end+1; // skip ] 3127 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 3128 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 3129 return root; 3130 } 3131 } 3132 else if (root_compiler_type_info.Test(eTypeIsVector)) 3133 { 3134 root = root->GetChildAtIndex(index, true); 3135 if (!root.get()) 3136 { 3137 *first_unparsed = expression_cstr; 3138 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3139 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3140 return ValueObjectSP(); 3141 } 3142 else 3143 { 3144 *first_unparsed = end+1; // skip ] 3145 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 3146 continue; 3147 } 3148 } 3149 else if (options.m_synthetic_children_traversal == GetValueForExpressionPathOptions::SyntheticChildrenTraversal::ToSynthetic || 3150 options.m_synthetic_children_traversal == GetValueForExpressionPathOptions::SyntheticChildrenTraversal::Both) 3151 { 3152 if (root->HasSyntheticValue()) 3153 root = root->GetSyntheticValue(); 3154 else if (!root->IsSynthetic()) 3155 { 3156 *first_unparsed = expression_cstr; 3157 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 3158 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3159 return ValueObjectSP(); 3160 } 3161 // if we are here, then root itself is a synthetic VO.. should be good to go 3162 3163 if (!root.get()) 3164 { 3165 *first_unparsed = expression_cstr; 3166 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 3167 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3168 return ValueObjectSP(); 3169 } 3170 root = root->GetChildAtIndex(index, true); 3171 if (!root.get()) 3172 { 3173 *first_unparsed = expression_cstr; 3174 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3175 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3176 return ValueObjectSP(); 3177 } 3178 else 3179 { 3180 *first_unparsed = end+1; // skip ] 3181 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 3182 continue; 3183 } 3184 } 3185 else 3186 { 3187 *first_unparsed = expression_cstr; 3188 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3189 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3190 return ValueObjectSP(); 3191 } 3192 } 3193 else // we have a low and a high index 3194 { 3195 char *end = NULL; 3196 unsigned long index_lower = ::strtoul (expression_cstr+1, &end, 0); 3197 if (!end || end != separator_position) // if something weird is in our way return an error 3198 { 3199 *first_unparsed = expression_cstr; 3200 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3201 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3202 return ValueObjectSP(); 3203 } 3204 unsigned long index_higher = ::strtoul (separator_position+1, &end, 0); 3205 if (!end || end != close_bracket_position) // if something weird is in our way return an error 3206 { 3207 *first_unparsed = expression_cstr; 3208 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3209 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3210 return ValueObjectSP(); 3211 } 3212 if (index_lower > index_higher) // swap indices if required 3213 { 3214 unsigned long temp = index_lower; 3215 index_lower = index_higher; 3216 index_higher = temp; 3217 } 3218 if (root_compiler_type_info.Test(eTypeIsScalar)) // expansion only works for scalars 3219 { 3220 root = root->GetSyntheticBitFieldChild(index_lower, index_higher, true); 3221 if (!root.get()) 3222 { 3223 *first_unparsed = expression_cstr; 3224 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3225 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3226 return ValueObjectSP(); 3227 } 3228 else 3229 { 3230 *first_unparsed = end+1; // skip ] 3231 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 3232 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 3233 return root; 3234 } 3235 } 3236 else if (root_compiler_type_info.Test(eTypeIsPointer) && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield 3237 *what_next == ValueObject::eExpressionPathAftermathDereference && 3238 pointee_compiler_type_info.Test(eTypeIsScalar)) 3239 { 3240 Error error; 3241 root = root->Dereference(error); 3242 if (error.Fail() || !root.get()) 3243 { 3244 *first_unparsed = expression_cstr; 3245 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 3246 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3247 return ValueObjectSP(); 3248 } 3249 else 3250 { 3251 *what_next = ValueObject::eExpressionPathAftermathNothing; 3252 continue; 3253 } 3254 } 3255 else 3256 { 3257 *first_unparsed = expression_cstr; 3258 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 3259 *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange; 3260 return root; 3261 } 3262 } 3263 break; 3264 } 3265 default: // some non-separator is in the way 3266 { 3267 *first_unparsed = expression_cstr; 3268 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3269 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3270 return ValueObjectSP(); 3271 break; 3272 } 3273 } 3274 } 3275 } 3276 3277 int 3278 ValueObject::ExpandArraySliceExpression(const char* expression_cstr, 3279 const char** first_unparsed, 3280 ValueObjectSP root, 3281 ValueObjectListSP& list, 3282 ExpressionPathScanEndReason* reason_to_stop, 3283 ExpressionPathEndResultType* final_result, 3284 const GetValueForExpressionPathOptions& options, 3285 ExpressionPathAftermath* what_next) 3286 { 3287 if (!root.get()) 3288 return 0; 3289 3290 *first_unparsed = expression_cstr; 3291 3292 while (true) 3293 { 3294 3295 const char* expression_cstr = *first_unparsed; // hide the top level expression_cstr 3296 3297 CompilerType root_compiler_type = root->GetCompilerType(); 3298 CompilerType pointee_compiler_type; 3299 Flags pointee_compiler_type_info; 3300 Flags root_compiler_type_info(root_compiler_type.GetTypeInfo(&pointee_compiler_type)); 3301 if (pointee_compiler_type) 3302 pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo()); 3303 3304 if (!expression_cstr || *expression_cstr == '\0') 3305 { 3306 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 3307 list->Append(root); 3308 return 1; 3309 } 3310 3311 switch (*expression_cstr) 3312 { 3313 case '[': 3314 { 3315 if (!root_compiler_type_info.Test(eTypeIsArray) && !root_compiler_type_info.Test(eTypeIsPointer)) // if this is not a T[] nor a T* 3316 { 3317 if (!root_compiler_type_info.Test(eTypeIsScalar)) // if this is not even a scalar, this syntax is just plain wrong! 3318 { 3319 *first_unparsed = expression_cstr; 3320 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 3321 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3322 return 0; 3323 } 3324 else if (!options.m_allow_bitfields_syntax) // if this is a scalar, check that we can expand bitfields 3325 { 3326 *first_unparsed = expression_cstr; 3327 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 3328 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3329 return 0; 3330 } 3331 } 3332 if (*(expression_cstr+1) == ']') // if this is an unbounded range it only works for arrays 3333 { 3334 if (!root_compiler_type_info.Test(eTypeIsArray)) 3335 { 3336 *first_unparsed = expression_cstr; 3337 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 3338 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3339 return 0; 3340 } 3341 else // expand this into list 3342 { 3343 const size_t max_index = root->GetNumChildren() - 1; 3344 for (size_t index = 0; index < max_index; index++) 3345 { 3346 ValueObjectSP child = 3347 root->GetChildAtIndex(index, true); 3348 list->Append(child); 3349 } 3350 *first_unparsed = expression_cstr+2; 3351 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3352 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3353 return max_index; // tell me number of items I added to the VOList 3354 } 3355 } 3356 const char *separator_position = ::strchr(expression_cstr+1,'-'); 3357 const char *close_bracket_position = ::strchr(expression_cstr+1,']'); 3358 if (!close_bracket_position) // if there is no ], this is a syntax error 3359 { 3360 *first_unparsed = expression_cstr; 3361 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3362 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3363 return 0; 3364 } 3365 if (!separator_position || separator_position > close_bracket_position) // if no separator, this is either [] or [N] 3366 { 3367 char *end = NULL; 3368 unsigned long index = ::strtoul (expression_cstr+1, &end, 0); 3369 if (!end || end != close_bracket_position) // if something weird is in our way return an error 3370 { 3371 *first_unparsed = expression_cstr; 3372 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3373 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3374 return 0; 3375 } 3376 if (end - expression_cstr == 1) // if this is [], only return a valid value for arrays 3377 { 3378 if (root_compiler_type_info.Test(eTypeIsArray)) 3379 { 3380 const size_t max_index = root->GetNumChildren() - 1; 3381 for (size_t index = 0; index < max_index; index++) 3382 { 3383 ValueObjectSP child = 3384 root->GetChildAtIndex(index, true); 3385 list->Append(child); 3386 } 3387 *first_unparsed = expression_cstr+2; 3388 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3389 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3390 return max_index; // tell me number of items I added to the VOList 3391 } 3392 else 3393 { 3394 *first_unparsed = expression_cstr; 3395 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 3396 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3397 return 0; 3398 } 3399 } 3400 // from here on we do have a valid index 3401 if (root_compiler_type_info.Test(eTypeIsArray)) 3402 { 3403 root = root->GetChildAtIndex(index, true); 3404 if (!root.get()) 3405 { 3406 *first_unparsed = expression_cstr; 3407 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3408 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3409 return 0; 3410 } 3411 else 3412 { 3413 list->Append(root); 3414 *first_unparsed = end+1; // skip ] 3415 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3416 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3417 return 1; 3418 } 3419 } 3420 else if (root_compiler_type_info.Test(eTypeIsPointer)) 3421 { 3422 if (*what_next == ValueObject::eExpressionPathAftermathDereference && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield 3423 pointee_compiler_type_info.Test(eTypeIsScalar)) 3424 { 3425 Error error; 3426 root = root->Dereference(error); 3427 if (error.Fail() || !root.get()) 3428 { 3429 *first_unparsed = expression_cstr; 3430 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 3431 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3432 return 0; 3433 } 3434 else 3435 { 3436 *what_next = eExpressionPathAftermathNothing; 3437 continue; 3438 } 3439 } 3440 else 3441 { 3442 root = root->GetSyntheticArrayMember(index, true); 3443 if (!root.get()) 3444 { 3445 *first_unparsed = expression_cstr; 3446 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3447 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3448 return 0; 3449 } 3450 else 3451 { 3452 list->Append(root); 3453 *first_unparsed = end+1; // skip ] 3454 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3455 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3456 return 1; 3457 } 3458 } 3459 } 3460 else /*if (ClangASTContext::IsScalarType(root_compiler_type))*/ 3461 { 3462 root = root->GetSyntheticBitFieldChild(index, index, true); 3463 if (!root.get()) 3464 { 3465 *first_unparsed = expression_cstr; 3466 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3467 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3468 return 0; 3469 } 3470 else // we do not know how to expand members of bitfields, so we just return and let the caller do any further processing 3471 { 3472 list->Append(root); 3473 *first_unparsed = end+1; // skip ] 3474 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3475 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3476 return 1; 3477 } 3478 } 3479 } 3480 else // we have a low and a high index 3481 { 3482 char *end = NULL; 3483 unsigned long index_lower = ::strtoul (expression_cstr+1, &end, 0); 3484 if (!end || end != separator_position) // if something weird is in our way return an error 3485 { 3486 *first_unparsed = expression_cstr; 3487 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3488 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3489 return 0; 3490 } 3491 unsigned long index_higher = ::strtoul (separator_position+1, &end, 0); 3492 if (!end || end != close_bracket_position) // if something weird is in our way return an error 3493 { 3494 *first_unparsed = expression_cstr; 3495 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3496 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3497 return 0; 3498 } 3499 if (index_lower > index_higher) // swap indices if required 3500 { 3501 unsigned long temp = index_lower; 3502 index_lower = index_higher; 3503 index_higher = temp; 3504 } 3505 if (root_compiler_type_info.Test(eTypeIsScalar)) // expansion only works for scalars 3506 { 3507 root = root->GetSyntheticBitFieldChild(index_lower, index_higher, true); 3508 if (!root.get()) 3509 { 3510 *first_unparsed = expression_cstr; 3511 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3512 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3513 return 0; 3514 } 3515 else 3516 { 3517 list->Append(root); 3518 *first_unparsed = end+1; // skip ] 3519 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3520 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3521 return 1; 3522 } 3523 } 3524 else if (root_compiler_type_info.Test(eTypeIsPointer) && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield 3525 *what_next == ValueObject::eExpressionPathAftermathDereference && 3526 pointee_compiler_type_info.Test(eTypeIsScalar)) 3527 { 3528 Error error; 3529 root = root->Dereference(error); 3530 if (error.Fail() || !root.get()) 3531 { 3532 *first_unparsed = expression_cstr; 3533 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 3534 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3535 return 0; 3536 } 3537 else 3538 { 3539 *what_next = ValueObject::eExpressionPathAftermathNothing; 3540 continue; 3541 } 3542 } 3543 else 3544 { 3545 for (unsigned long index = index_lower; 3546 index <= index_higher; index++) 3547 { 3548 ValueObjectSP child = 3549 root->GetChildAtIndex(index, true); 3550 list->Append(child); 3551 } 3552 *first_unparsed = end+1; 3553 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3554 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3555 return index_higher-index_lower+1; // tell me number of items I added to the VOList 3556 } 3557 } 3558 break; 3559 } 3560 default: // some non-[ separator, or something entirely wrong, is in the way 3561 { 3562 *first_unparsed = expression_cstr; 3563 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3564 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3565 return 0; 3566 break; 3567 } 3568 } 3569 } 3570 } 3571 3572 void 3573 ValueObject::LogValueObject (Log *log) 3574 { 3575 if (log) 3576 return LogValueObject (log, DumpValueObjectOptions(*this)); 3577 } 3578 3579 void 3580 ValueObject::LogValueObject (Log *log, const DumpValueObjectOptions& options) 3581 { 3582 if (log) 3583 { 3584 StreamString s; 3585 Dump (s, options); 3586 if (s.GetSize()) 3587 log->PutCString(s.GetData()); 3588 } 3589 } 3590 3591 void 3592 ValueObject::Dump (Stream &s) 3593 { 3594 Dump (s, DumpValueObjectOptions(*this)); 3595 } 3596 3597 void 3598 ValueObject::Dump (Stream &s, 3599 const DumpValueObjectOptions& options) 3600 { 3601 ValueObjectPrinter printer(this,&s,options); 3602 printer.PrintValueObject(); 3603 } 3604 3605 ValueObjectSP 3606 ValueObject::CreateConstantValue (const ConstString &name) 3607 { 3608 ValueObjectSP valobj_sp; 3609 3610 if (UpdateValueIfNeeded(false) && m_error.Success()) 3611 { 3612 ExecutionContext exe_ctx (GetExecutionContextRef()); 3613 3614 DataExtractor data; 3615 data.SetByteOrder (m_data.GetByteOrder()); 3616 data.SetAddressByteSize(m_data.GetAddressByteSize()); 3617 3618 if (IsBitfield()) 3619 { 3620 Value v(Scalar(GetValueAsUnsigned(UINT64_MAX))); 3621 m_error = v.GetValueAsData (&exe_ctx, data, 0, GetModule().get()); 3622 } 3623 else 3624 m_error = m_value.GetValueAsData (&exe_ctx, data, 0, GetModule().get()); 3625 3626 valobj_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), 3627 GetCompilerType(), 3628 name, 3629 data, 3630 GetAddressOf()); 3631 } 3632 3633 if (!valobj_sp) 3634 { 3635 ExecutionContext exe_ctx (GetExecutionContextRef()); 3636 valobj_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), m_error); 3637 } 3638 return valobj_sp; 3639 } 3640 3641 ValueObjectSP 3642 ValueObject::GetQualifiedRepresentationIfAvailable (lldb::DynamicValueType dynValue, 3643 bool synthValue) 3644 { 3645 ValueObjectSP result_sp(GetSP()); 3646 3647 switch (dynValue) 3648 { 3649 case lldb::eDynamicCanRunTarget: 3650 case lldb::eDynamicDontRunTarget: 3651 { 3652 if (!result_sp->IsDynamic()) 3653 { 3654 if (result_sp->GetDynamicValue(dynValue)) 3655 result_sp = result_sp->GetDynamicValue(dynValue); 3656 } 3657 } 3658 break; 3659 case lldb::eNoDynamicValues: 3660 { 3661 if (result_sp->IsDynamic()) 3662 { 3663 if (result_sp->GetStaticValue()) 3664 result_sp = result_sp->GetStaticValue(); 3665 } 3666 } 3667 break; 3668 } 3669 3670 if (synthValue) 3671 { 3672 if (!result_sp->IsSynthetic()) 3673 { 3674 if (result_sp->GetSyntheticValue()) 3675 result_sp = result_sp->GetSyntheticValue(); 3676 } 3677 } 3678 else 3679 { 3680 if (result_sp->IsSynthetic()) 3681 { 3682 if (result_sp->GetNonSyntheticValue()) 3683 result_sp = result_sp->GetNonSyntheticValue(); 3684 } 3685 } 3686 3687 return result_sp; 3688 } 3689 3690 lldb::addr_t 3691 ValueObject::GetCPPVTableAddress (AddressType &address_type) 3692 { 3693 CompilerType pointee_type; 3694 CompilerType this_type(GetCompilerType()); 3695 uint32_t type_info = this_type.GetTypeInfo(&pointee_type); 3696 if (type_info) 3697 { 3698 bool ptr_or_ref = false; 3699 if (type_info & (eTypeIsPointer | eTypeIsReference)) 3700 { 3701 ptr_or_ref = true; 3702 type_info = pointee_type.GetTypeInfo(); 3703 } 3704 3705 const uint32_t cpp_class = eTypeIsClass | eTypeIsCPlusPlus; 3706 if ((type_info & cpp_class) == cpp_class) 3707 { 3708 if (ptr_or_ref) 3709 { 3710 address_type = GetAddressTypeOfChildren(); 3711 return GetValueAsUnsigned(LLDB_INVALID_ADDRESS); 3712 } 3713 else 3714 return GetAddressOf (false, &address_type); 3715 } 3716 } 3717 3718 address_type = eAddressTypeInvalid; 3719 return LLDB_INVALID_ADDRESS; 3720 } 3721 3722 ValueObjectSP 3723 ValueObject::Dereference (Error &error) 3724 { 3725 if (m_deref_valobj) 3726 return m_deref_valobj->GetSP(); 3727 3728 const bool is_pointer_or_reference_type = IsPointerOrReferenceType(); 3729 if (is_pointer_or_reference_type) 3730 { 3731 bool omit_empty_base_classes = true; 3732 bool ignore_array_bounds = false; 3733 3734 std::string child_name_str; 3735 uint32_t child_byte_size = 0; 3736 int32_t child_byte_offset = 0; 3737 uint32_t child_bitfield_bit_size = 0; 3738 uint32_t child_bitfield_bit_offset = 0; 3739 bool child_is_base_class = false; 3740 bool child_is_deref_of_parent = false; 3741 const bool transparent_pointers = false; 3742 CompilerType compiler_type = GetCompilerType(); 3743 CompilerType child_compiler_type; 3744 uint64_t language_flags; 3745 3746 ExecutionContext exe_ctx (GetExecutionContextRef()); 3747 3748 child_compiler_type = compiler_type.GetChildCompilerTypeAtIndex (&exe_ctx, 3749 0, 3750 transparent_pointers, 3751 omit_empty_base_classes, 3752 ignore_array_bounds, 3753 child_name_str, 3754 child_byte_size, 3755 child_byte_offset, 3756 child_bitfield_bit_size, 3757 child_bitfield_bit_offset, 3758 child_is_base_class, 3759 child_is_deref_of_parent, 3760 this, 3761 language_flags); 3762 if (child_compiler_type && child_byte_size) 3763 { 3764 ConstString child_name; 3765 if (!child_name_str.empty()) 3766 child_name.SetCString (child_name_str.c_str()); 3767 3768 m_deref_valobj = new ValueObjectChild (*this, 3769 child_compiler_type, 3770 child_name, 3771 child_byte_size, 3772 child_byte_offset, 3773 child_bitfield_bit_size, 3774 child_bitfield_bit_offset, 3775 child_is_base_class, 3776 child_is_deref_of_parent, 3777 eAddressTypeInvalid, 3778 language_flags); 3779 } 3780 } 3781 3782 if (m_deref_valobj) 3783 { 3784 error.Clear(); 3785 return m_deref_valobj->GetSP(); 3786 } 3787 else 3788 { 3789 StreamString strm; 3790 GetExpressionPath(strm, true); 3791 3792 if (is_pointer_or_reference_type) 3793 error.SetErrorStringWithFormat("dereference failed: (%s) %s", GetTypeName().AsCString("<invalid type>"), strm.GetString().c_str()); 3794 else 3795 error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s", GetTypeName().AsCString("<invalid type>"), strm.GetString().c_str()); 3796 return ValueObjectSP(); 3797 } 3798 } 3799 3800 ValueObjectSP 3801 ValueObject::AddressOf (Error &error) 3802 { 3803 if (m_addr_of_valobj_sp) 3804 return m_addr_of_valobj_sp; 3805 3806 AddressType address_type = eAddressTypeInvalid; 3807 const bool scalar_is_load_address = false; 3808 addr_t addr = GetAddressOf (scalar_is_load_address, &address_type); 3809 error.Clear(); 3810 if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) 3811 { 3812 switch (address_type) 3813 { 3814 case eAddressTypeInvalid: 3815 { 3816 StreamString expr_path_strm; 3817 GetExpressionPath(expr_path_strm, true); 3818 error.SetErrorStringWithFormat("'%s' is not in memory", expr_path_strm.GetString().c_str()); 3819 } 3820 break; 3821 3822 case eAddressTypeFile: 3823 case eAddressTypeLoad: 3824 { 3825 CompilerType compiler_type = GetCompilerType(); 3826 if (compiler_type) 3827 { 3828 std::string name (1, '&'); 3829 name.append (m_name.AsCString("")); 3830 ExecutionContext exe_ctx (GetExecutionContextRef()); 3831 m_addr_of_valobj_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), 3832 compiler_type.GetPointerType(), 3833 ConstString (name.c_str()), 3834 addr, 3835 eAddressTypeInvalid, 3836 m_data.GetAddressByteSize()); 3837 } 3838 } 3839 break; 3840 default: 3841 break; 3842 } 3843 } 3844 else 3845 { 3846 StreamString expr_path_strm; 3847 GetExpressionPath(expr_path_strm, true); 3848 error.SetErrorStringWithFormat("'%s' doesn't have a valid address", expr_path_strm.GetString().c_str()); 3849 } 3850 3851 return m_addr_of_valobj_sp; 3852 } 3853 3854 ValueObjectSP 3855 ValueObject::Cast (const CompilerType &compiler_type) 3856 { 3857 return ValueObjectCast::Create (*this, GetName(), compiler_type); 3858 } 3859 3860 ValueObjectSP 3861 ValueObject::CastPointerType (const char *name, CompilerType &compiler_type) 3862 { 3863 ValueObjectSP valobj_sp; 3864 AddressType address_type; 3865 addr_t ptr_value = GetPointerValue (&address_type); 3866 3867 if (ptr_value != LLDB_INVALID_ADDRESS) 3868 { 3869 Address ptr_addr (ptr_value); 3870 ExecutionContext exe_ctx (GetExecutionContextRef()); 3871 valobj_sp = ValueObjectMemory::Create (exe_ctx.GetBestExecutionContextScope(), 3872 name, 3873 ptr_addr, 3874 compiler_type); 3875 } 3876 return valobj_sp; 3877 } 3878 3879 ValueObjectSP 3880 ValueObject::CastPointerType (const char *name, TypeSP &type_sp) 3881 { 3882 ValueObjectSP valobj_sp; 3883 AddressType address_type; 3884 addr_t ptr_value = GetPointerValue (&address_type); 3885 3886 if (ptr_value != LLDB_INVALID_ADDRESS) 3887 { 3888 Address ptr_addr (ptr_value); 3889 ExecutionContext exe_ctx (GetExecutionContextRef()); 3890 valobj_sp = ValueObjectMemory::Create (exe_ctx.GetBestExecutionContextScope(), 3891 name, 3892 ptr_addr, 3893 type_sp); 3894 } 3895 return valobj_sp; 3896 } 3897 3898 ValueObject::EvaluationPoint::EvaluationPoint () : 3899 m_mod_id(), 3900 m_exe_ctx_ref(), 3901 m_needs_update (true) 3902 { 3903 } 3904 3905 ValueObject::EvaluationPoint::EvaluationPoint (ExecutionContextScope *exe_scope, bool use_selected): 3906 m_mod_id(), 3907 m_exe_ctx_ref(), 3908 m_needs_update (true) 3909 { 3910 ExecutionContext exe_ctx(exe_scope); 3911 TargetSP target_sp (exe_ctx.GetTargetSP()); 3912 if (target_sp) 3913 { 3914 m_exe_ctx_ref.SetTargetSP (target_sp); 3915 ProcessSP process_sp (exe_ctx.GetProcessSP()); 3916 if (!process_sp) 3917 process_sp = target_sp->GetProcessSP(); 3918 3919 if (process_sp) 3920 { 3921 m_mod_id = process_sp->GetModID(); 3922 m_exe_ctx_ref.SetProcessSP (process_sp); 3923 3924 ThreadSP thread_sp (exe_ctx.GetThreadSP()); 3925 3926 if (!thread_sp) 3927 { 3928 if (use_selected) 3929 thread_sp = process_sp->GetThreadList().GetSelectedThread(); 3930 } 3931 3932 if (thread_sp) 3933 { 3934 m_exe_ctx_ref.SetThreadSP(thread_sp); 3935 3936 StackFrameSP frame_sp (exe_ctx.GetFrameSP()); 3937 if (!frame_sp) 3938 { 3939 if (use_selected) 3940 frame_sp = thread_sp->GetSelectedFrame(); 3941 } 3942 if (frame_sp) 3943 m_exe_ctx_ref.SetFrameSP(frame_sp); 3944 } 3945 } 3946 } 3947 } 3948 3949 ValueObject::EvaluationPoint::EvaluationPoint (const ValueObject::EvaluationPoint &rhs) : 3950 m_mod_id(), 3951 m_exe_ctx_ref(rhs.m_exe_ctx_ref), 3952 m_needs_update (true) 3953 { 3954 } 3955 3956 ValueObject::EvaluationPoint::~EvaluationPoint () 3957 { 3958 } 3959 3960 // This function checks the EvaluationPoint against the current process state. If the current 3961 // state matches the evaluation point, or the evaluation point is already invalid, then we return 3962 // false, meaning "no change". If the current state is different, we update our state, and return 3963 // true meaning "yes, change". If we did see a change, we also set m_needs_update to true, so 3964 // future calls to NeedsUpdate will return true. 3965 // exe_scope will be set to the current execution context scope. 3966 3967 bool 3968 ValueObject::EvaluationPoint::SyncWithProcessState(bool accept_invalid_exe_ctx) 3969 { 3970 // Start with the target, if it is NULL, then we're obviously not going to get any further: 3971 const bool thread_and_frame_only_if_stopped = true; 3972 ExecutionContext exe_ctx(m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped)); 3973 3974 if (exe_ctx.GetTargetPtr() == NULL) 3975 return false; 3976 3977 // If we don't have a process nothing can change. 3978 Process *process = exe_ctx.GetProcessPtr(); 3979 if (process == NULL) 3980 return false; 3981 3982 // If our stop id is the current stop ID, nothing has changed: 3983 ProcessModID current_mod_id = process->GetModID(); 3984 3985 // If the current stop id is 0, either we haven't run yet, or the process state has been cleared. 3986 // In either case, we aren't going to be able to sync with the process state. 3987 if (current_mod_id.GetStopID() == 0) 3988 return false; 3989 3990 bool changed = false; 3991 const bool was_valid = m_mod_id.IsValid(); 3992 if (was_valid) 3993 { 3994 if (m_mod_id == current_mod_id) 3995 { 3996 // Everything is already up to date in this object, no need to 3997 // update the execution context scope. 3998 changed = false; 3999 } 4000 else 4001 { 4002 m_mod_id = current_mod_id; 4003 m_needs_update = true; 4004 changed = true; 4005 } 4006 } 4007 4008 // Now re-look up the thread and frame in case the underlying objects have gone away & been recreated. 4009 // That way we'll be sure to return a valid exe_scope. 4010 // If we used to have a thread or a frame but can't find it anymore, then mark ourselves as invalid. 4011 4012 if (!accept_invalid_exe_ctx) 4013 { 4014 if (m_exe_ctx_ref.HasThreadRef()) 4015 { 4016 ThreadSP thread_sp (m_exe_ctx_ref.GetThreadSP()); 4017 if (thread_sp) 4018 { 4019 if (m_exe_ctx_ref.HasFrameRef()) 4020 { 4021 StackFrameSP frame_sp (m_exe_ctx_ref.GetFrameSP()); 4022 if (!frame_sp) 4023 { 4024 // We used to have a frame, but now it is gone 4025 SetInvalid(); 4026 changed = was_valid; 4027 } 4028 } 4029 } 4030 else 4031 { 4032 // We used to have a thread, but now it is gone 4033 SetInvalid(); 4034 changed = was_valid; 4035 } 4036 } 4037 } 4038 4039 return changed; 4040 } 4041 4042 void 4043 ValueObject::EvaluationPoint::SetUpdated () 4044 { 4045 ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP()); 4046 if (process_sp) 4047 m_mod_id = process_sp->GetModID(); 4048 m_needs_update = false; 4049 } 4050 4051 4052 4053 void 4054 ValueObject::ClearUserVisibleData(uint32_t clear_mask) 4055 { 4056 if ((clear_mask & eClearUserVisibleDataItemsValue) == eClearUserVisibleDataItemsValue) 4057 m_value_str.clear(); 4058 4059 if ((clear_mask & eClearUserVisibleDataItemsLocation) == eClearUserVisibleDataItemsLocation) 4060 m_location_str.clear(); 4061 4062 if ((clear_mask & eClearUserVisibleDataItemsSummary) == eClearUserVisibleDataItemsSummary) 4063 m_summary_str.clear(); 4064 4065 if ((clear_mask & eClearUserVisibleDataItemsDescription) == eClearUserVisibleDataItemsDescription) 4066 m_object_desc_str.clear(); 4067 4068 if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == eClearUserVisibleDataItemsSyntheticChildren) 4069 { 4070 if (m_synthetic_value) 4071 m_synthetic_value = NULL; 4072 } 4073 4074 if ((clear_mask & eClearUserVisibleDataItemsValidator) == eClearUserVisibleDataItemsValidator) 4075 m_validation_result.reset(); 4076 } 4077 4078 SymbolContextScope * 4079 ValueObject::GetSymbolContextScope() 4080 { 4081 if (m_parent) 4082 { 4083 if (!m_parent->IsPointerOrReferenceType()) 4084 return m_parent->GetSymbolContextScope(); 4085 } 4086 return NULL; 4087 } 4088 4089 lldb::ValueObjectSP 4090 ValueObject::CreateValueObjectFromExpression (const char* name, 4091 const char* expression, 4092 const ExecutionContext& exe_ctx) 4093 { 4094 return CreateValueObjectFromExpression(name, expression, exe_ctx, EvaluateExpressionOptions()); 4095 } 4096 4097 4098 lldb::ValueObjectSP 4099 ValueObject::CreateValueObjectFromExpression (const char* name, 4100 const char* expression, 4101 const ExecutionContext& exe_ctx, 4102 const EvaluateExpressionOptions& options) 4103 { 4104 lldb::ValueObjectSP retval_sp; 4105 lldb::TargetSP target_sp(exe_ctx.GetTargetSP()); 4106 if (!target_sp) 4107 return retval_sp; 4108 if (!expression || !*expression) 4109 return retval_sp; 4110 target_sp->EvaluateExpression (expression, 4111 exe_ctx.GetFrameSP().get(), 4112 retval_sp, 4113 options); 4114 if (retval_sp && name && *name) 4115 retval_sp->SetName(ConstString(name)); 4116 return retval_sp; 4117 } 4118 4119 lldb::ValueObjectSP 4120 ValueObject::CreateValueObjectFromAddress (const char* name, 4121 uint64_t address, 4122 const ExecutionContext& exe_ctx, 4123 CompilerType type) 4124 { 4125 if (type) 4126 { 4127 CompilerType pointer_type(type.GetPointerType()); 4128 if (pointer_type) 4129 { 4130 lldb::DataBufferSP buffer(new lldb_private::DataBufferHeap(&address,sizeof(lldb::addr_t))); 4131 lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), 4132 pointer_type, 4133 ConstString(name), 4134 buffer, 4135 exe_ctx.GetByteOrder(), 4136 exe_ctx.GetAddressByteSize())); 4137 if (ptr_result_valobj_sp) 4138 { 4139 ptr_result_valobj_sp->GetValue().SetValueType(Value::eValueTypeLoadAddress); 4140 Error err; 4141 ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err); 4142 if (ptr_result_valobj_sp && name && *name) 4143 ptr_result_valobj_sp->SetName(ConstString(name)); 4144 } 4145 return ptr_result_valobj_sp; 4146 } 4147 } 4148 return lldb::ValueObjectSP(); 4149 } 4150 4151 lldb::ValueObjectSP 4152 ValueObject::CreateValueObjectFromData (const char* name, 4153 const DataExtractor& data, 4154 const ExecutionContext& exe_ctx, 4155 CompilerType type) 4156 { 4157 lldb::ValueObjectSP new_value_sp; 4158 new_value_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), 4159 type, 4160 ConstString(name), 4161 data, 4162 LLDB_INVALID_ADDRESS); 4163 new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad); 4164 if (new_value_sp && name && *name) 4165 new_value_sp->SetName(ConstString(name)); 4166 return new_value_sp; 4167 } 4168 4169 ModuleSP 4170 ValueObject::GetModule () 4171 { 4172 ValueObject* root(GetRoot()); 4173 if (root != this) 4174 return root->GetModule(); 4175 return lldb::ModuleSP(); 4176 } 4177 4178 ValueObject* 4179 ValueObject::GetRoot () 4180 { 4181 if (m_root) 4182 return m_root; 4183 return (m_root = FollowParentChain( [] (ValueObject* vo) -> bool { 4184 return (vo->m_parent != nullptr); 4185 })); 4186 } 4187 4188 ValueObject* 4189 ValueObject::FollowParentChain (std::function<bool(ValueObject*)> f) 4190 { 4191 ValueObject* vo = this; 4192 while (vo) 4193 { 4194 if (f(vo) == false) 4195 break; 4196 vo = vo->m_parent; 4197 } 4198 return vo; 4199 } 4200 4201 AddressType 4202 ValueObject::GetAddressTypeOfChildren() 4203 { 4204 if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) 4205 { 4206 ValueObject* root(GetRoot()); 4207 if (root != this) 4208 return root->GetAddressTypeOfChildren(); 4209 } 4210 return m_address_type_of_ptr_or_ref_children; 4211 } 4212 4213 lldb::DynamicValueType 4214 ValueObject::GetDynamicValueType () 4215 { 4216 ValueObject* with_dv_info = this; 4217 while (with_dv_info) 4218 { 4219 if (with_dv_info->HasDynamicValueTypeInfo()) 4220 return with_dv_info->GetDynamicValueTypeImpl(); 4221 with_dv_info = with_dv_info->m_parent; 4222 } 4223 return lldb::eNoDynamicValues; 4224 } 4225 4226 lldb::Format 4227 ValueObject::GetFormat () const 4228 { 4229 const ValueObject* with_fmt_info = this; 4230 while (with_fmt_info) 4231 { 4232 if (with_fmt_info->m_format != lldb::eFormatDefault) 4233 return with_fmt_info->m_format; 4234 with_fmt_info = with_fmt_info->m_parent; 4235 } 4236 return m_format; 4237 } 4238 4239 lldb::LanguageType 4240 ValueObject::GetPreferredDisplayLanguage () 4241 { 4242 lldb::LanguageType type = m_preferred_display_language; 4243 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 4244 { 4245 if (GetRoot()) 4246 { 4247 if (GetRoot() == this) 4248 { 4249 if (StackFrameSP frame_sp = GetFrameSP()) 4250 { 4251 const SymbolContext& sc(frame_sp->GetSymbolContext(eSymbolContextCompUnit)); 4252 if (CompileUnit* cu = sc.comp_unit) 4253 type = cu->GetLanguage(); 4254 } 4255 } 4256 else 4257 { 4258 type = GetRoot()->GetPreferredDisplayLanguage(); 4259 } 4260 } 4261 } 4262 return (m_preferred_display_language = type); // only compute it once 4263 } 4264 4265 void 4266 ValueObject::SetPreferredDisplayLanguage (lldb::LanguageType lt) 4267 { 4268 m_preferred_display_language = lt; 4269 } 4270 4271 void 4272 ValueObject::SetPreferredDisplayLanguageIfNeeded (lldb::LanguageType lt) 4273 { 4274 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 4275 SetPreferredDisplayLanguage(lt); 4276 } 4277 4278 bool 4279 ValueObject::CanProvideValue () 4280 { 4281 // we need to support invalid types as providers of values because some bare-board 4282 // debugging scenarios have no notion of types, but still manage to have raw numeric 4283 // values for things like registers. sigh. 4284 const CompilerType &type(GetCompilerType()); 4285 return (false == type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue)); 4286 } 4287 4288 bool 4289 ValueObject::IsChecksumEmpty () 4290 { 4291 return m_value_checksum.empty(); 4292 } 4293 4294 ValueObjectSP 4295 ValueObject::Persist () 4296 { 4297 if (!UpdateValueIfNeeded()) 4298 return nullptr; 4299 4300 TargetSP target_sp(GetTargetSP()); 4301 if (!target_sp) 4302 return nullptr; 4303 4304 PersistentExpressionState *persistent_state = target_sp->GetPersistentExpressionStateForLanguage(GetPreferredDisplayLanguage()); 4305 4306 if (!persistent_state) 4307 return nullptr; 4308 4309 ConstString name(persistent_state->GetNextPersistentVariableName()); 4310 4311 ValueObjectSP const_result_sp = ValueObjectConstResult::Create (target_sp.get(), GetValue(), name); 4312 4313 ExpressionVariableSP clang_var_sp = persistent_state->CreatePersistentVariable(const_result_sp); 4314 clang_var_sp->m_live_sp = clang_var_sp->m_frozen_sp; 4315 clang_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference; 4316 4317 return clang_var_sp->GetValueObject(); 4318 } 4319 4320 bool 4321 ValueObject::IsSyntheticChildrenGenerated () 4322 { 4323 return m_is_synthetic_children_generated; 4324 } 4325 4326 void 4327 ValueObject::SetSyntheticChildrenGenerated (bool b) 4328 { 4329 m_is_synthetic_children_generated = b; 4330 } 4331 4332 uint64_t 4333 ValueObject::GetLanguageFlags () 4334 { 4335 return m_language_flags; 4336 } 4337 4338 void 4339 ValueObject::SetLanguageFlags (uint64_t flags) 4340 { 4341 m_language_flags = flags; 4342 } 4343