1 //===-- ValueObject.cpp -----------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/lldb-python.h" 11 12 #include "lldb/Core/ValueObject.h" 13 14 // C Includes 15 #include <stdlib.h> 16 17 // C++ Includes 18 // Other libraries and framework includes 19 #include "llvm/Support/raw_ostream.h" 20 #include "clang/AST/Type.h" 21 22 // Project includes 23 #include "lldb/Core/DataBufferHeap.h" 24 #include "lldb/Core/Debugger.h" 25 #include "lldb/Core/Log.h" 26 #include "lldb/Core/Module.h" 27 #include "lldb/Core/StreamString.h" 28 #include "lldb/Core/ValueObjectCast.h" 29 #include "lldb/Core/ValueObjectChild.h" 30 #include "lldb/Core/ValueObjectConstResult.h" 31 #include "lldb/Core/ValueObjectDynamicValue.h" 32 #include "lldb/Core/ValueObjectList.h" 33 #include "lldb/Core/ValueObjectMemory.h" 34 #include "lldb/Core/ValueObjectSyntheticFilter.h" 35 36 #include "lldb/DataFormatters/DataVisualization.h" 37 #include "lldb/DataFormatters/StringPrinter.h" 38 #include "lldb/DataFormatters/ValueObjectPrinter.h" 39 40 #include "lldb/Expression/ClangExpressionVariable.h" 41 #include "lldb/Expression/ClangPersistentVariables.h" 42 43 #include "lldb/Host/Endian.h" 44 45 #include "lldb/Interpreter/CommandInterpreter.h" 46 #include "lldb/Interpreter/ScriptInterpreterPython.h" 47 48 #include "lldb/Symbol/ClangASTType.h" 49 #include "lldb/Symbol/ClangASTContext.h" 50 #include "lldb/Symbol/CompileUnit.h" 51 #include "lldb/Symbol/Type.h" 52 53 #include "lldb/Target/ExecutionContext.h" 54 #include "lldb/Target/LanguageRuntime.h" 55 #include "lldb/Target/ObjCLanguageRuntime.h" 56 #include "lldb/Target/Process.h" 57 #include "lldb/Target/RegisterContext.h" 58 #include "lldb/Target/SectionLoadList.h" 59 #include "lldb/Target/Target.h" 60 #include "lldb/Target/Thread.h" 61 62 using namespace lldb; 63 using namespace lldb_private; 64 using namespace lldb_utility; 65 66 static user_id_t g_value_obj_uid = 0; 67 68 //---------------------------------------------------------------------- 69 // ValueObject constructor 70 //---------------------------------------------------------------------- 71 ValueObject::ValueObject (ValueObject &parent) : 72 UserID (++g_value_obj_uid), // Unique identifier for every value object 73 m_parent (&parent), 74 m_root (NULL), 75 m_update_point (parent.GetUpdatePoint ()), 76 m_name (), 77 m_data (), 78 m_value (), 79 m_error (), 80 m_value_str (), 81 m_old_value_str (), 82 m_location_str (), 83 m_summary_str (), 84 m_object_desc_str (), 85 m_validation_result(), 86 m_manager(parent.GetManager()), 87 m_children (), 88 m_synthetic_children (), 89 m_dynamic_value (NULL), 90 m_synthetic_value(NULL), 91 m_deref_valobj(NULL), 92 m_format (eFormatDefault), 93 m_last_format (eFormatDefault), 94 m_last_format_mgr_revision(0), 95 m_type_summary_sp(), 96 m_type_format_sp(), 97 m_synthetic_children_sp(), 98 m_type_validator_sp(), 99 m_user_id_of_forced_summary(), 100 m_address_type_of_ptr_or_ref_children(eAddressTypeInvalid), 101 m_value_checksum(), 102 m_preferred_display_language(lldb::eLanguageTypeUnknown), 103 m_value_is_valid (false), 104 m_value_did_change (false), 105 m_children_count_valid (false), 106 m_old_value_valid (false), 107 m_is_deref_of_parent (false), 108 m_is_array_item_for_pointer(false), 109 m_is_bitfield_for_scalar(false), 110 m_is_child_at_offset(false), 111 m_is_getting_summary(false), 112 m_did_calculate_complete_objc_class_type(false), 113 m_is_synthetic_children_generated(parent.m_is_synthetic_children_generated) 114 { 115 m_manager->ManageObject(this); 116 } 117 118 //---------------------------------------------------------------------- 119 // ValueObject constructor 120 //---------------------------------------------------------------------- 121 ValueObject::ValueObject (ExecutionContextScope *exe_scope, 122 AddressType child_ptr_or_ref_addr_type) : 123 UserID (++g_value_obj_uid), // Unique identifier for every value object 124 m_parent (NULL), 125 m_root (NULL), 126 m_update_point (exe_scope), 127 m_name (), 128 m_data (), 129 m_value (), 130 m_error (), 131 m_value_str (), 132 m_old_value_str (), 133 m_location_str (), 134 m_summary_str (), 135 m_object_desc_str (), 136 m_validation_result(), 137 m_manager(), 138 m_children (), 139 m_synthetic_children (), 140 m_dynamic_value (NULL), 141 m_synthetic_value(NULL), 142 m_deref_valobj(NULL), 143 m_format (eFormatDefault), 144 m_last_format (eFormatDefault), 145 m_last_format_mgr_revision(0), 146 m_type_summary_sp(), 147 m_type_format_sp(), 148 m_synthetic_children_sp(), 149 m_type_validator_sp(), 150 m_user_id_of_forced_summary(), 151 m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type), 152 m_value_checksum(), 153 m_preferred_display_language(lldb::eLanguageTypeUnknown), 154 m_value_is_valid (false), 155 m_value_did_change (false), 156 m_children_count_valid (false), 157 m_old_value_valid (false), 158 m_is_deref_of_parent (false), 159 m_is_array_item_for_pointer(false), 160 m_is_bitfield_for_scalar(false), 161 m_is_child_at_offset(false), 162 m_is_getting_summary(false), 163 m_did_calculate_complete_objc_class_type(false), 164 m_is_synthetic_children_generated(false) 165 { 166 m_manager = new ValueObjectManager(); 167 m_manager->ManageObject (this); 168 } 169 170 //---------------------------------------------------------------------- 171 // Destructor 172 //---------------------------------------------------------------------- 173 ValueObject::~ValueObject () 174 { 175 } 176 177 bool 178 ValueObject::UpdateValueIfNeeded (bool update_format) 179 { 180 181 bool did_change_formats = false; 182 183 if (update_format) 184 did_change_formats = UpdateFormatsIfNeeded(); 185 186 // If this is a constant value, then our success is predicated on whether 187 // we have an error or not 188 if (GetIsConstant()) 189 { 190 // if you are constant, things might still have changed behind your back 191 // (e.g. you are a frozen object and things have changed deeper than you cared to freeze-dry yourself) 192 // in this case, your value has not changed, but "computed" entries might have, so you might now have 193 // a different summary, or a different object description. clear these so we will recompute them 194 if (update_format && !did_change_formats) 195 ClearUserVisibleData(eClearUserVisibleDataItemsSummary | eClearUserVisibleDataItemsDescription); 196 return m_error.Success(); 197 } 198 199 bool first_update = IsChecksumEmpty(); 200 201 if (m_update_point.NeedsUpdating()) 202 { 203 m_update_point.SetUpdated(); 204 205 // Save the old value using swap to avoid a string copy which 206 // also will clear our m_value_str 207 if (m_value_str.empty()) 208 { 209 m_old_value_valid = false; 210 } 211 else 212 { 213 m_old_value_valid = true; 214 m_old_value_str.swap (m_value_str); 215 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 216 } 217 218 ClearUserVisibleData(); 219 220 if (IsInScope()) 221 { 222 const bool value_was_valid = GetValueIsValid(); 223 SetValueDidChange (false); 224 225 m_error.Clear(); 226 227 // Call the pure virtual function to update the value 228 229 bool need_compare_checksums = false; 230 llvm::SmallVector<uint8_t, 16> old_checksum; 231 232 if (!first_update && CanProvideValue()) 233 { 234 need_compare_checksums = true; 235 old_checksum.resize(m_value_checksum.size()); 236 std::copy(m_value_checksum.begin(), m_value_checksum.end(), old_checksum.begin()); 237 } 238 239 bool success = UpdateValue (); 240 241 SetValueIsValid (success); 242 243 if (success) 244 { 245 const uint64_t max_checksum_size = 128; 246 m_data.Checksum(m_value_checksum, 247 max_checksum_size); 248 } 249 else 250 { 251 need_compare_checksums = false; 252 m_value_checksum.clear(); 253 } 254 255 assert (!need_compare_checksums || (!old_checksum.empty() && !m_value_checksum.empty())); 256 257 if (first_update) 258 SetValueDidChange (false); 259 else if (!m_value_did_change && success == false) 260 { 261 // The value wasn't gotten successfully, so we mark this 262 // as changed if the value used to be valid and now isn't 263 SetValueDidChange (value_was_valid); 264 } 265 else if (need_compare_checksums) 266 { 267 SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0], m_value_checksum.size())); 268 } 269 270 } 271 else 272 { 273 m_error.SetErrorString("out of scope"); 274 } 275 } 276 return m_error.Success(); 277 } 278 279 bool 280 ValueObject::UpdateFormatsIfNeeded() 281 { 282 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_TYPES)); 283 if (log) 284 log->Printf("[%s %p] checking for FormatManager revisions. ValueObject rev: %d - Global rev: %d", 285 GetName().GetCString(), static_cast<void*>(this), 286 m_last_format_mgr_revision, 287 DataVisualization::GetCurrentRevision()); 288 289 bool any_change = false; 290 291 if ( (m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) 292 { 293 m_last_format_mgr_revision = DataVisualization::GetCurrentRevision(); 294 any_change = true; 295 296 SetValueFormat(DataVisualization::GetFormat (*this, eNoDynamicValues)); 297 SetSummaryFormat(DataVisualization::GetSummaryFormat (*this, GetDynamicValueType())); 298 #ifndef LLDB_DISABLE_PYTHON 299 SetSyntheticChildren(DataVisualization::GetSyntheticChildren (*this, GetDynamicValueType())); 300 #endif 301 SetValidator(DataVisualization::GetValidator(*this, GetDynamicValueType())); 302 } 303 304 return any_change; 305 } 306 307 void 308 ValueObject::SetNeedsUpdate () 309 { 310 m_update_point.SetNeedsUpdate(); 311 // We have to clear the value string here so ConstResult children will notice if their values are 312 // changed by hand (i.e. with SetValueAsCString). 313 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 314 } 315 316 void 317 ValueObject::ClearDynamicTypeInformation () 318 { 319 m_children_count_valid = false; 320 m_did_calculate_complete_objc_class_type = false; 321 m_last_format_mgr_revision = 0; 322 m_override_type = ClangASTType(); 323 SetValueFormat(lldb::TypeFormatImplSP()); 324 SetSummaryFormat(lldb::TypeSummaryImplSP()); 325 SetSyntheticChildren(lldb::SyntheticChildrenSP()); 326 } 327 328 ClangASTType 329 ValueObject::MaybeCalculateCompleteType () 330 { 331 ClangASTType clang_type(GetClangTypeImpl()); 332 333 if (m_did_calculate_complete_objc_class_type) 334 { 335 if (m_override_type.IsValid()) 336 return m_override_type; 337 else 338 return clang_type; 339 } 340 341 ClangASTType class_type; 342 bool is_pointer_type = false; 343 344 if (clang_type.IsObjCObjectPointerType(&class_type)) 345 { 346 is_pointer_type = true; 347 } 348 else if (clang_type.IsObjCObjectOrInterfaceType()) 349 { 350 class_type = clang_type; 351 } 352 else 353 { 354 return clang_type; 355 } 356 357 m_did_calculate_complete_objc_class_type = true; 358 359 if (class_type) 360 { 361 ConstString class_name (class_type.GetConstTypeName()); 362 363 if (class_name) 364 { 365 ProcessSP process_sp(GetUpdatePoint().GetExecutionContextRef().GetProcessSP()); 366 367 if (process_sp) 368 { 369 ObjCLanguageRuntime *objc_language_runtime(process_sp->GetObjCLanguageRuntime()); 370 371 if (objc_language_runtime) 372 { 373 TypeSP complete_objc_class_type_sp = objc_language_runtime->LookupInCompleteClassCache(class_name); 374 375 if (complete_objc_class_type_sp) 376 { 377 ClangASTType complete_class(complete_objc_class_type_sp->GetClangFullType()); 378 379 if (complete_class.GetCompleteType()) 380 { 381 if (is_pointer_type) 382 { 383 m_override_type = complete_class.GetPointerType(); 384 } 385 else 386 { 387 m_override_type = complete_class; 388 } 389 390 if (m_override_type.IsValid()) 391 return m_override_type; 392 } 393 } 394 } 395 } 396 } 397 } 398 return clang_type; 399 } 400 401 ClangASTType 402 ValueObject::GetClangType () 403 { 404 return MaybeCalculateCompleteType(); 405 } 406 407 TypeImpl 408 ValueObject::GetTypeImpl () 409 { 410 return TypeImpl(GetClangType()); 411 } 412 413 DataExtractor & 414 ValueObject::GetDataExtractor () 415 { 416 UpdateValueIfNeeded(false); 417 return m_data; 418 } 419 420 const Error & 421 ValueObject::GetError() 422 { 423 UpdateValueIfNeeded(false); 424 return m_error; 425 } 426 427 const ConstString & 428 ValueObject::GetName() const 429 { 430 return m_name; 431 } 432 433 const char * 434 ValueObject::GetLocationAsCString () 435 { 436 return GetLocationAsCStringImpl(m_value, 437 m_data); 438 } 439 440 const char * 441 ValueObject::GetLocationAsCStringImpl (const Value& value, 442 const DataExtractor& data) 443 { 444 if (UpdateValueIfNeeded(false)) 445 { 446 if (m_location_str.empty()) 447 { 448 StreamString sstr; 449 450 Value::ValueType value_type = value.GetValueType(); 451 452 switch (value_type) 453 { 454 case Value::eValueTypeScalar: 455 case Value::eValueTypeVector: 456 if (value.GetContextType() == Value::eContextTypeRegisterInfo) 457 { 458 RegisterInfo *reg_info = value.GetRegisterInfo(); 459 if (reg_info) 460 { 461 if (reg_info->name) 462 m_location_str = reg_info->name; 463 else if (reg_info->alt_name) 464 m_location_str = reg_info->alt_name; 465 if (m_location_str.empty()) 466 m_location_str = (reg_info->encoding == lldb::eEncodingVector) ? "vector" : "scalar"; 467 } 468 } 469 if (m_location_str.empty()) 470 m_location_str = (value_type == Value::eValueTypeVector) ? "vector" : "scalar"; 471 break; 472 473 case Value::eValueTypeLoadAddress: 474 case Value::eValueTypeFileAddress: 475 case Value::eValueTypeHostAddress: 476 { 477 uint32_t addr_nibble_size = data.GetAddressByteSize() * 2; 478 sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS)); 479 m_location_str.swap(sstr.GetString()); 480 } 481 break; 482 } 483 } 484 } 485 return m_location_str.c_str(); 486 } 487 488 Value & 489 ValueObject::GetValue() 490 { 491 return m_value; 492 } 493 494 const Value & 495 ValueObject::GetValue() const 496 { 497 return m_value; 498 } 499 500 bool 501 ValueObject::ResolveValue (Scalar &scalar) 502 { 503 if (UpdateValueIfNeeded(false)) // make sure that you are up to date before returning anything 504 { 505 ExecutionContext exe_ctx (GetExecutionContextRef()); 506 Value tmp_value(m_value); 507 scalar = tmp_value.ResolveValue(&exe_ctx); 508 if (scalar.IsValid()) 509 { 510 const uint32_t bitfield_bit_size = GetBitfieldBitSize(); 511 if (bitfield_bit_size) 512 return scalar.ExtractBitfield (bitfield_bit_size, GetBitfieldBitOffset()); 513 return true; 514 } 515 } 516 return false; 517 } 518 519 bool 520 ValueObject::GetValueIsValid () const 521 { 522 return m_value_is_valid; 523 } 524 525 526 void 527 ValueObject::SetValueIsValid (bool b) 528 { 529 m_value_is_valid = b; 530 } 531 532 bool 533 ValueObject::GetValueDidChange () 534 { 535 return m_value_did_change; 536 } 537 538 void 539 ValueObject::SetValueDidChange (bool value_changed) 540 { 541 m_value_did_change = value_changed; 542 } 543 544 ValueObjectSP 545 ValueObject::GetChildAtIndex (size_t idx, bool can_create) 546 { 547 ValueObjectSP child_sp; 548 // We may need to update our value if we are dynamic 549 if (IsPossibleDynamicType ()) 550 UpdateValueIfNeeded(false); 551 if (idx < GetNumChildren()) 552 { 553 // Check if we have already made the child value object? 554 if (can_create && !m_children.HasChildAtIndex(idx)) 555 { 556 // No we haven't created the child at this index, so lets have our 557 // subclass do it and cache the result for quick future access. 558 m_children.SetChildAtIndex(idx,CreateChildAtIndex (idx, false, 0)); 559 } 560 561 ValueObject* child = m_children.GetChildAtIndex(idx); 562 if (child != NULL) 563 return child->GetSP(); 564 } 565 return child_sp; 566 } 567 568 ValueObjectSP 569 ValueObject::GetChildAtIndexPath (const std::initializer_list<size_t>& idxs, 570 size_t* index_of_error) 571 { 572 if (idxs.size() == 0) 573 return GetSP(); 574 ValueObjectSP root(GetSP()); 575 for (size_t idx : idxs) 576 { 577 root = root->GetChildAtIndex(idx, true); 578 if (!root) 579 { 580 if (index_of_error) 581 *index_of_error = idx; 582 return root; 583 } 584 } 585 return root; 586 } 587 588 ValueObjectSP 589 ValueObject::GetChildAtIndexPath (const std::initializer_list< std::pair<size_t, bool> >& idxs, 590 size_t* index_of_error) 591 { 592 if (idxs.size() == 0) 593 return GetSP(); 594 ValueObjectSP root(GetSP()); 595 for (std::pair<size_t, bool> idx : idxs) 596 { 597 root = root->GetChildAtIndex(idx.first, idx.second); 598 if (!root) 599 { 600 if (index_of_error) 601 *index_of_error = idx.first; 602 return root; 603 } 604 } 605 return root; 606 } 607 608 lldb::ValueObjectSP 609 ValueObject::GetChildAtIndexPath (const std::vector<size_t> &idxs, 610 size_t* index_of_error) 611 { 612 if (idxs.size() == 0) 613 return GetSP(); 614 ValueObjectSP root(GetSP()); 615 for (size_t idx : idxs) 616 { 617 root = root->GetChildAtIndex(idx, true); 618 if (!root) 619 { 620 if (index_of_error) 621 *index_of_error = idx; 622 return root; 623 } 624 } 625 return root; 626 } 627 628 lldb::ValueObjectSP 629 ValueObject::GetChildAtIndexPath (const std::vector< std::pair<size_t, bool> > &idxs, 630 size_t* index_of_error) 631 { 632 if (idxs.size() == 0) 633 return GetSP(); 634 ValueObjectSP root(GetSP()); 635 for (std::pair<size_t, bool> idx : idxs) 636 { 637 root = root->GetChildAtIndex(idx.first, idx.second); 638 if (!root) 639 { 640 if (index_of_error) 641 *index_of_error = idx.first; 642 return root; 643 } 644 } 645 return root; 646 } 647 648 lldb::ValueObjectSP 649 ValueObject::GetChildAtNamePath (const std::initializer_list<ConstString> &names, 650 ConstString* name_of_error) 651 { 652 if (names.size() == 0) 653 return GetSP(); 654 ValueObjectSP root(GetSP()); 655 for (ConstString name : names) 656 { 657 root = root->GetChildMemberWithName(name, true); 658 if (!root) 659 { 660 if (name_of_error) 661 *name_of_error = name; 662 return root; 663 } 664 } 665 return root; 666 } 667 668 lldb::ValueObjectSP 669 ValueObject::GetChildAtNamePath (const std::vector<ConstString> &names, 670 ConstString* name_of_error) 671 { 672 if (names.size() == 0) 673 return GetSP(); 674 ValueObjectSP root(GetSP()); 675 for (ConstString name : names) 676 { 677 root = root->GetChildMemberWithName(name, true); 678 if (!root) 679 { 680 if (name_of_error) 681 *name_of_error = name; 682 return root; 683 } 684 } 685 return root; 686 } 687 688 lldb::ValueObjectSP 689 ValueObject::GetChildAtNamePath (const std::initializer_list< std::pair<ConstString, bool> > &names, 690 ConstString* name_of_error) 691 { 692 if (names.size() == 0) 693 return GetSP(); 694 ValueObjectSP root(GetSP()); 695 for (std::pair<ConstString, bool> name : names) 696 { 697 root = root->GetChildMemberWithName(name.first, name.second); 698 if (!root) 699 { 700 if (name_of_error) 701 *name_of_error = name.first; 702 return root; 703 } 704 } 705 return root; 706 } 707 708 lldb::ValueObjectSP 709 ValueObject::GetChildAtNamePath (const std::vector< std::pair<ConstString, bool> > &names, 710 ConstString* name_of_error) 711 { 712 if (names.size() == 0) 713 return GetSP(); 714 ValueObjectSP root(GetSP()); 715 for (std::pair<ConstString, bool> name : names) 716 { 717 root = root->GetChildMemberWithName(name.first, name.second); 718 if (!root) 719 { 720 if (name_of_error) 721 *name_of_error = name.first; 722 return root; 723 } 724 } 725 return root; 726 } 727 728 size_t 729 ValueObject::GetIndexOfChildWithName (const ConstString &name) 730 { 731 bool omit_empty_base_classes = true; 732 return GetClangType().GetIndexOfChildWithName (name.GetCString(), omit_empty_base_classes); 733 } 734 735 ValueObjectSP 736 ValueObject::GetChildMemberWithName (const ConstString &name, bool can_create) 737 { 738 // when getting a child by name, it could be buried inside some base 739 // classes (which really aren't part of the expression path), so we 740 // need a vector of indexes that can get us down to the correct child 741 ValueObjectSP child_sp; 742 743 // We may need to update our value if we are dynamic 744 if (IsPossibleDynamicType ()) 745 UpdateValueIfNeeded(false); 746 747 std::vector<uint32_t> child_indexes; 748 bool omit_empty_base_classes = true; 749 const size_t num_child_indexes = GetClangType().GetIndexOfChildMemberWithName (name.GetCString(), 750 omit_empty_base_classes, 751 child_indexes); 752 if (num_child_indexes > 0) 753 { 754 std::vector<uint32_t>::const_iterator pos = child_indexes.begin (); 755 std::vector<uint32_t>::const_iterator end = child_indexes.end (); 756 757 child_sp = GetChildAtIndex(*pos, can_create); 758 for (++pos; pos != end; ++pos) 759 { 760 if (child_sp) 761 { 762 ValueObjectSP new_child_sp(child_sp->GetChildAtIndex (*pos, can_create)); 763 child_sp = new_child_sp; 764 } 765 else 766 { 767 child_sp.reset(); 768 } 769 770 } 771 } 772 return child_sp; 773 } 774 775 776 size_t 777 ValueObject::GetNumChildren () 778 { 779 UpdateValueIfNeeded(); 780 if (!m_children_count_valid) 781 { 782 SetNumChildren (CalculateNumChildren()); 783 } 784 return m_children.GetChildrenCount(); 785 } 786 787 bool 788 ValueObject::MightHaveChildren() 789 { 790 bool has_children = false; 791 const uint32_t type_info = GetTypeInfo(); 792 if (type_info) 793 { 794 if (type_info & (eTypeHasChildren | 795 eTypeIsPointer | 796 eTypeIsReference)) 797 has_children = true; 798 } 799 else 800 { 801 has_children = GetNumChildren () > 0; 802 } 803 return has_children; 804 } 805 806 // Should only be called by ValueObject::GetNumChildren() 807 void 808 ValueObject::SetNumChildren (size_t num_children) 809 { 810 m_children_count_valid = true; 811 m_children.SetChildrenCount(num_children); 812 } 813 814 void 815 ValueObject::SetName (const ConstString &name) 816 { 817 m_name = name; 818 } 819 820 ValueObject * 821 ValueObject::CreateChildAtIndex (size_t idx, bool synthetic_array_member, int32_t synthetic_index) 822 { 823 ValueObject *valobj = NULL; 824 825 bool omit_empty_base_classes = true; 826 bool ignore_array_bounds = synthetic_array_member; 827 std::string child_name_str; 828 uint32_t child_byte_size = 0; 829 int32_t child_byte_offset = 0; 830 uint32_t child_bitfield_bit_size = 0; 831 uint32_t child_bitfield_bit_offset = 0; 832 bool child_is_base_class = false; 833 bool child_is_deref_of_parent = false; 834 835 const bool transparent_pointers = synthetic_array_member == false; 836 ClangASTType child_clang_type; 837 838 ExecutionContext exe_ctx (GetExecutionContextRef()); 839 840 child_clang_type = GetClangType().GetChildClangTypeAtIndex (&exe_ctx, 841 idx, 842 transparent_pointers, 843 omit_empty_base_classes, 844 ignore_array_bounds, 845 child_name_str, 846 child_byte_size, 847 child_byte_offset, 848 child_bitfield_bit_size, 849 child_bitfield_bit_offset, 850 child_is_base_class, 851 child_is_deref_of_parent, 852 this); 853 if (child_clang_type) 854 { 855 if (synthetic_index) 856 child_byte_offset += child_byte_size * synthetic_index; 857 858 ConstString child_name; 859 if (!child_name_str.empty()) 860 child_name.SetCString (child_name_str.c_str()); 861 862 valobj = new ValueObjectChild (*this, 863 child_clang_type, 864 child_name, 865 child_byte_size, 866 child_byte_offset, 867 child_bitfield_bit_size, 868 child_bitfield_bit_offset, 869 child_is_base_class, 870 child_is_deref_of_parent, 871 eAddressTypeInvalid); 872 //if (valobj) 873 // valobj->SetAddressTypeOfChildren(eAddressTypeInvalid); 874 } 875 876 return valobj; 877 } 878 879 bool 880 ValueObject::GetSummaryAsCString (TypeSummaryImpl* summary_ptr, 881 std::string& destination) 882 { 883 return GetSummaryAsCString(summary_ptr, destination, TypeSummaryOptions()); 884 } 885 886 bool 887 ValueObject::GetSummaryAsCString (TypeSummaryImpl* summary_ptr, 888 std::string& destination, 889 const TypeSummaryOptions& options) 890 { 891 destination.clear(); 892 893 // ideally we would like to bail out if passing NULL, but if we do so 894 // we end up not providing the summary for function pointers anymore 895 if (/*summary_ptr == NULL ||*/ m_is_getting_summary) 896 return false; 897 898 m_is_getting_summary = true; 899 900 // this is a hot path in code and we prefer to avoid setting this string all too often also clearing out other 901 // information that we might care to see in a crash log. might be useful in very specific situations though. 902 /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. Summary provider's description is %s", 903 GetTypeName().GetCString(), 904 GetName().GetCString(), 905 summary_ptr->GetDescription().c_str());*/ 906 907 if (UpdateValueIfNeeded (false) && summary_ptr) 908 { 909 if (HasSyntheticValue()) 910 m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on the synthetic children being up-to-date (e.g. ${svar%#}) 911 summary_ptr->FormatObject(this, destination, options); 912 } 913 m_is_getting_summary = false; 914 return !destination.empty(); 915 } 916 917 const char * 918 ValueObject::GetSummaryAsCString () 919 { 920 if (UpdateValueIfNeeded(true) && m_summary_str.empty()) 921 { 922 GetSummaryAsCString(GetSummaryFormat().get(), 923 m_summary_str, 924 TypeSummaryOptions()); 925 } 926 if (m_summary_str.empty()) 927 return NULL; 928 return m_summary_str.c_str(); 929 } 930 931 bool 932 ValueObject::GetSummaryAsCString (std::string& destination, 933 const TypeSummaryOptions& options) 934 { 935 return GetSummaryAsCString(GetSummaryFormat().get(), 936 destination, 937 options); 938 } 939 940 bool 941 ValueObject::IsCStringContainer(bool check_pointer) 942 { 943 ClangASTType pointee_or_element_clang_type; 944 const Flags type_flags (GetTypeInfo (&pointee_or_element_clang_type)); 945 bool is_char_arr_ptr (type_flags.AnySet (eTypeIsArray | eTypeIsPointer) && 946 pointee_or_element_clang_type.IsCharType ()); 947 if (!is_char_arr_ptr) 948 return false; 949 if (!check_pointer) 950 return true; 951 if (type_flags.Test(eTypeIsArray)) 952 return true; 953 addr_t cstr_address = LLDB_INVALID_ADDRESS; 954 AddressType cstr_address_type = eAddressTypeInvalid; 955 cstr_address = GetAddressOf (true, &cstr_address_type); 956 return (cstr_address != LLDB_INVALID_ADDRESS); 957 } 958 959 size_t 960 ValueObject::GetPointeeData (DataExtractor& data, 961 uint32_t item_idx, 962 uint32_t item_count) 963 { 964 ClangASTType pointee_or_element_clang_type; 965 const uint32_t type_info = GetTypeInfo (&pointee_or_element_clang_type); 966 const bool is_pointer_type = type_info & eTypeIsPointer; 967 const bool is_array_type = type_info & eTypeIsArray; 968 if (!(is_pointer_type || is_array_type)) 969 return 0; 970 971 if (item_count == 0) 972 return 0; 973 974 ExecutionContext exe_ctx (GetExecutionContextRef()); 975 976 const uint64_t item_type_size = pointee_or_element_clang_type.GetByteSize(&exe_ctx); 977 const uint64_t bytes = item_count * item_type_size; 978 const uint64_t offset = item_idx * item_type_size; 979 980 if (item_idx == 0 && item_count == 1) // simply a deref 981 { 982 if (is_pointer_type) 983 { 984 Error error; 985 ValueObjectSP pointee_sp = Dereference(error); 986 if (error.Fail() || pointee_sp.get() == NULL) 987 return 0; 988 return pointee_sp->GetData(data, error); 989 } 990 else 991 { 992 ValueObjectSP child_sp = GetChildAtIndex(0, true); 993 if (child_sp.get() == NULL) 994 return 0; 995 Error error; 996 return child_sp->GetData(data, error); 997 } 998 return true; 999 } 1000 else /* (items > 1) */ 1001 { 1002 Error error; 1003 lldb_private::DataBufferHeap* heap_buf_ptr = NULL; 1004 lldb::DataBufferSP data_sp(heap_buf_ptr = new lldb_private::DataBufferHeap()); 1005 1006 AddressType addr_type; 1007 lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type) : GetAddressOf(true, &addr_type); 1008 1009 switch (addr_type) 1010 { 1011 case eAddressTypeFile: 1012 { 1013 ModuleSP module_sp (GetModule()); 1014 if (module_sp) 1015 { 1016 addr = addr + offset; 1017 Address so_addr; 1018 module_sp->ResolveFileAddress(addr, so_addr); 1019 ExecutionContext exe_ctx (GetExecutionContextRef()); 1020 Target* target = exe_ctx.GetTargetPtr(); 1021 if (target) 1022 { 1023 heap_buf_ptr->SetByteSize(bytes); 1024 size_t bytes_read = target->ReadMemory(so_addr, false, heap_buf_ptr->GetBytes(), bytes, error); 1025 if (error.Success()) 1026 { 1027 data.SetData(data_sp); 1028 return bytes_read; 1029 } 1030 } 1031 } 1032 } 1033 break; 1034 case eAddressTypeLoad: 1035 { 1036 ExecutionContext exe_ctx (GetExecutionContextRef()); 1037 Process *process = exe_ctx.GetProcessPtr(); 1038 if (process) 1039 { 1040 heap_buf_ptr->SetByteSize(bytes); 1041 size_t bytes_read = process->ReadMemory(addr + offset, heap_buf_ptr->GetBytes(), bytes, error); 1042 if (error.Success() || bytes_read > 0) 1043 { 1044 data.SetData(data_sp); 1045 return bytes_read; 1046 } 1047 } 1048 } 1049 break; 1050 case eAddressTypeHost: 1051 { 1052 const uint64_t max_bytes = GetClangType().GetByteSize(&exe_ctx); 1053 if (max_bytes > offset) 1054 { 1055 size_t bytes_read = std::min<uint64_t>(max_bytes - offset, bytes); 1056 heap_buf_ptr->CopyData((uint8_t*)(addr + offset), bytes_read); 1057 data.SetData(data_sp); 1058 return bytes_read; 1059 } 1060 } 1061 break; 1062 case eAddressTypeInvalid: 1063 break; 1064 } 1065 } 1066 return 0; 1067 } 1068 1069 uint64_t 1070 ValueObject::GetData (DataExtractor& data, Error &error) 1071 { 1072 UpdateValueIfNeeded(false); 1073 ExecutionContext exe_ctx (GetExecutionContextRef()); 1074 error = m_value.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 1075 if (error.Fail()) 1076 { 1077 if (m_data.GetByteSize()) 1078 { 1079 data = m_data; 1080 return data.GetByteSize(); 1081 } 1082 else 1083 { 1084 return 0; 1085 } 1086 } 1087 data.SetAddressByteSize(m_data.GetAddressByteSize()); 1088 data.SetByteOrder(m_data.GetByteOrder()); 1089 return data.GetByteSize(); 1090 } 1091 1092 bool 1093 ValueObject::SetData (DataExtractor &data, Error &error) 1094 { 1095 error.Clear(); 1096 // Make sure our value is up to date first so that our location and location 1097 // type is valid. 1098 if (!UpdateValueIfNeeded(false)) 1099 { 1100 error.SetErrorString("unable to read value"); 1101 return false; 1102 } 1103 1104 uint64_t count = 0; 1105 const Encoding encoding = GetClangType().GetEncoding(count); 1106 1107 const size_t byte_size = GetByteSize(); 1108 1109 Value::ValueType value_type = m_value.GetValueType(); 1110 1111 switch (value_type) 1112 { 1113 case Value::eValueTypeScalar: 1114 { 1115 Error set_error = m_value.GetScalar().SetValueFromData(data, encoding, byte_size); 1116 1117 if (!set_error.Success()) 1118 { 1119 error.SetErrorStringWithFormat("unable to set scalar value: %s", set_error.AsCString()); 1120 return false; 1121 } 1122 } 1123 break; 1124 case Value::eValueTypeLoadAddress: 1125 { 1126 // If it is a load address, then the scalar value is the storage location 1127 // of the data, and we have to shove this value down to that load location. 1128 ExecutionContext exe_ctx (GetExecutionContextRef()); 1129 Process *process = exe_ctx.GetProcessPtr(); 1130 if (process) 1131 { 1132 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1133 size_t bytes_written = process->WriteMemory(target_addr, 1134 data.GetDataStart(), 1135 byte_size, 1136 error); 1137 if (!error.Success()) 1138 return false; 1139 if (bytes_written != byte_size) 1140 { 1141 error.SetErrorString("unable to write value to memory"); 1142 return false; 1143 } 1144 } 1145 } 1146 break; 1147 case Value::eValueTypeHostAddress: 1148 { 1149 // If it is a host address, then we stuff the scalar as a DataBuffer into the Value's data. 1150 DataBufferSP buffer_sp (new DataBufferHeap(byte_size, 0)); 1151 m_data.SetData(buffer_sp, 0); 1152 data.CopyByteOrderedData (0, 1153 byte_size, 1154 const_cast<uint8_t *>(m_data.GetDataStart()), 1155 byte_size, 1156 m_data.GetByteOrder()); 1157 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1158 } 1159 break; 1160 case Value::eValueTypeFileAddress: 1161 case Value::eValueTypeVector: 1162 break; 1163 } 1164 1165 // If we have reached this point, then we have successfully changed the value. 1166 SetNeedsUpdate(); 1167 return true; 1168 } 1169 1170 // will compute strlen(str), but without consuming more than 1171 // maxlen bytes out of str (this serves the purpose of reading 1172 // chunks of a string without having to worry about 1173 // missing NULL terminators in the chunk) 1174 // of course, if strlen(str) > maxlen, the function will return 1175 // maxlen_value (which should be != maxlen, because that allows you 1176 // to know whether strlen(str) == maxlen or strlen(str) > maxlen) 1177 static uint32_t 1178 strlen_or_inf (const char* str, 1179 uint32_t maxlen, 1180 uint32_t maxlen_value) 1181 { 1182 uint32_t len = 0; 1183 if (str) 1184 { 1185 while(*str) 1186 { 1187 len++;str++; 1188 if (len >= maxlen) 1189 return maxlen_value; 1190 } 1191 } 1192 return len; 1193 } 1194 1195 static bool 1196 CopyStringDataToBufferSP(const StreamString& source, 1197 lldb::DataBufferSP& destination) 1198 { 1199 destination.reset(new DataBufferHeap(source.GetSize()+1,0)); 1200 memcpy(destination->GetBytes(), source.GetString().c_str(), source.GetSize()); 1201 return true; 1202 } 1203 1204 size_t 1205 ValueObject::ReadPointedString (lldb::DataBufferSP& buffer_sp, 1206 Error& error, 1207 uint32_t max_length, 1208 bool honor_array, 1209 Format item_format) 1210 { 1211 StreamString s; 1212 ExecutionContext exe_ctx (GetExecutionContextRef()); 1213 Target* target = exe_ctx.GetTargetPtr(); 1214 1215 if (!target) 1216 { 1217 s << "<no target to read from>"; 1218 error.SetErrorString("no target to read from"); 1219 CopyStringDataToBufferSP(s, buffer_sp); 1220 return 0; 1221 } 1222 1223 if (max_length == 0) 1224 max_length = target->GetMaximumSizeOfStringSummary(); 1225 1226 size_t bytes_read = 0; 1227 size_t total_bytes_read = 0; 1228 1229 ClangASTType clang_type = GetClangType(); 1230 ClangASTType elem_or_pointee_clang_type; 1231 const Flags type_flags (GetTypeInfo (&elem_or_pointee_clang_type)); 1232 if (type_flags.AnySet (eTypeIsArray | eTypeIsPointer) && 1233 elem_or_pointee_clang_type.IsCharType ()) 1234 { 1235 addr_t cstr_address = LLDB_INVALID_ADDRESS; 1236 AddressType cstr_address_type = eAddressTypeInvalid; 1237 1238 size_t cstr_len = 0; 1239 bool capped_data = false; 1240 if (type_flags.Test (eTypeIsArray)) 1241 { 1242 // We have an array 1243 uint64_t array_size = 0; 1244 if (clang_type.IsArrayType(NULL, &array_size, NULL)) 1245 { 1246 cstr_len = array_size; 1247 if (cstr_len > max_length) 1248 { 1249 capped_data = true; 1250 cstr_len = max_length; 1251 } 1252 } 1253 cstr_address = GetAddressOf (true, &cstr_address_type); 1254 } 1255 else 1256 { 1257 // We have a pointer 1258 cstr_address = GetPointerValue (&cstr_address_type); 1259 } 1260 1261 if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) 1262 { 1263 s << "<invalid address>"; 1264 error.SetErrorString("invalid address"); 1265 CopyStringDataToBufferSP(s, buffer_sp); 1266 return 0; 1267 } 1268 1269 Address cstr_so_addr (cstr_address); 1270 DataExtractor data; 1271 if (cstr_len > 0 && honor_array) 1272 { 1273 // I am using GetPointeeData() here to abstract the fact that some ValueObjects are actually frozen pointers in the host 1274 // but the pointed-to data lives in the debuggee, and GetPointeeData() automatically takes care of this 1275 GetPointeeData(data, 0, cstr_len); 1276 1277 if ((bytes_read = data.GetByteSize()) > 0) 1278 { 1279 total_bytes_read = bytes_read; 1280 for (size_t offset = 0; offset < bytes_read; offset++) 1281 s.Printf("%c", *data.PeekData(offset, 1)); 1282 if (capped_data) 1283 s << "..."; 1284 } 1285 } 1286 else 1287 { 1288 cstr_len = max_length; 1289 const size_t k_max_buf_size = 64; 1290 1291 size_t offset = 0; 1292 1293 int cstr_len_displayed = -1; 1294 bool capped_cstr = false; 1295 // I am using GetPointeeData() here to abstract the fact that some ValueObjects are actually frozen pointers in the host 1296 // but the pointed-to data lives in the debuggee, and GetPointeeData() automatically takes care of this 1297 while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) 1298 { 1299 total_bytes_read += bytes_read; 1300 const char *cstr = data.PeekCStr(0); 1301 size_t len = strlen_or_inf (cstr, k_max_buf_size, k_max_buf_size+1); 1302 if (len > k_max_buf_size) 1303 len = k_max_buf_size; 1304 1305 if (cstr_len_displayed < 0) 1306 cstr_len_displayed = len; 1307 1308 if (len == 0) 1309 break; 1310 cstr_len_displayed += len; 1311 if (len > bytes_read) 1312 len = bytes_read; 1313 if (len > cstr_len) 1314 len = cstr_len; 1315 1316 for (size_t offset = 0; offset < bytes_read; offset++) 1317 s.Printf("%c", *data.PeekData(offset, 1)); 1318 1319 if (len < k_max_buf_size) 1320 break; 1321 1322 if (len >= cstr_len) 1323 { 1324 capped_cstr = true; 1325 break; 1326 } 1327 1328 cstr_len -= len; 1329 offset += len; 1330 } 1331 1332 if (cstr_len_displayed >= 0) 1333 { 1334 if (capped_cstr) 1335 s << "..."; 1336 } 1337 } 1338 } 1339 else 1340 { 1341 error.SetErrorString("not a string object"); 1342 s << "<not a string object>"; 1343 } 1344 CopyStringDataToBufferSP(s, buffer_sp); 1345 return total_bytes_read; 1346 } 1347 1348 std::pair<TypeValidatorResult, std::string> 1349 ValueObject::GetValidationStatus () 1350 { 1351 if (!UpdateValueIfNeeded(true)) 1352 return {TypeValidatorResult::Success,""}; // not the validator's job to discuss update problems 1353 1354 if (m_validation_result.hasValue()) 1355 return m_validation_result.getValue(); 1356 1357 if (!m_type_validator_sp) 1358 return {TypeValidatorResult::Success,""}; // no validator no failure 1359 1360 auto outcome = m_type_validator_sp->FormatObject(this); 1361 1362 return (m_validation_result = {outcome.m_result,outcome.m_message}).getValue(); 1363 } 1364 1365 const char * 1366 ValueObject::GetObjectDescription () 1367 { 1368 1369 if (!UpdateValueIfNeeded (true)) 1370 return NULL; 1371 1372 if (!m_object_desc_str.empty()) 1373 return m_object_desc_str.c_str(); 1374 1375 ExecutionContext exe_ctx (GetExecutionContextRef()); 1376 Process *process = exe_ctx.GetProcessPtr(); 1377 if (process == NULL) 1378 return NULL; 1379 1380 StreamString s; 1381 1382 LanguageType language = GetObjectRuntimeLanguage(); 1383 LanguageRuntime *runtime = process->GetLanguageRuntime(language); 1384 1385 if (runtime == NULL) 1386 { 1387 // Aw, hell, if the things a pointer, or even just an integer, let's try ObjC anyway... 1388 ClangASTType clang_type = GetClangType(); 1389 if (clang_type) 1390 { 1391 bool is_signed; 1392 if (clang_type.IsIntegerType (is_signed) || clang_type.IsPointerType ()) 1393 { 1394 runtime = process->GetLanguageRuntime(eLanguageTypeObjC); 1395 } 1396 } 1397 } 1398 1399 if (runtime && runtime->GetObjectDescription(s, *this)) 1400 { 1401 m_object_desc_str.append (s.GetData()); 1402 } 1403 1404 if (m_object_desc_str.empty()) 1405 return NULL; 1406 else 1407 return m_object_desc_str.c_str(); 1408 } 1409 1410 bool 1411 ValueObject::GetValueAsCString (const lldb_private::TypeFormatImpl& format, 1412 std::string& destination) 1413 { 1414 if (UpdateValueIfNeeded(false)) 1415 return format.FormatObject(this,destination); 1416 else 1417 return false; 1418 } 1419 1420 bool 1421 ValueObject::GetValueAsCString (lldb::Format format, 1422 std::string& destination) 1423 { 1424 return GetValueAsCString(TypeFormatImpl_Format(format),destination); 1425 } 1426 1427 const char * 1428 ValueObject::GetValueAsCString () 1429 { 1430 if (UpdateValueIfNeeded(true)) 1431 { 1432 lldb::TypeFormatImplSP format_sp; 1433 lldb::Format my_format = GetFormat(); 1434 if (my_format == lldb::eFormatDefault) 1435 { 1436 if (m_type_format_sp) 1437 format_sp = m_type_format_sp; 1438 else 1439 { 1440 if (m_is_bitfield_for_scalar) 1441 my_format = eFormatUnsigned; 1442 else 1443 { 1444 if (m_value.GetContextType() == Value::eContextTypeRegisterInfo) 1445 { 1446 const RegisterInfo *reg_info = m_value.GetRegisterInfo(); 1447 if (reg_info) 1448 my_format = reg_info->format; 1449 } 1450 else 1451 { 1452 my_format = GetValue().GetClangType().GetFormat(); 1453 } 1454 } 1455 } 1456 } 1457 if (my_format != m_last_format || m_value_str.empty()) 1458 { 1459 m_last_format = my_format; 1460 if (!format_sp) 1461 format_sp.reset(new TypeFormatImpl_Format(my_format)); 1462 if (GetValueAsCString(*format_sp.get(), m_value_str)) 1463 { 1464 if (!m_value_did_change && m_old_value_valid) 1465 { 1466 // The value was gotten successfully, so we consider the 1467 // value as changed if the value string differs 1468 SetValueDidChange (m_old_value_str != m_value_str); 1469 } 1470 } 1471 } 1472 } 1473 if (m_value_str.empty()) 1474 return NULL; 1475 return m_value_str.c_str(); 1476 } 1477 1478 // if > 8bytes, 0 is returned. this method should mostly be used 1479 // to read address values out of pointers 1480 uint64_t 1481 ValueObject::GetValueAsUnsigned (uint64_t fail_value, bool *success) 1482 { 1483 // If our byte size is zero this is an aggregate type that has children 1484 if (CanProvideValue()) 1485 { 1486 Scalar scalar; 1487 if (ResolveValue (scalar)) 1488 { 1489 if (success) 1490 *success = true; 1491 return scalar.ULongLong(fail_value); 1492 } 1493 // fallthrough, otherwise... 1494 } 1495 1496 if (success) 1497 *success = false; 1498 return fail_value; 1499 } 1500 1501 int64_t 1502 ValueObject::GetValueAsSigned (int64_t fail_value, bool *success) 1503 { 1504 // If our byte size is zero this is an aggregate type that has children 1505 if (CanProvideValue()) 1506 { 1507 Scalar scalar; 1508 if (ResolveValue (scalar)) 1509 { 1510 if (success) 1511 *success = true; 1512 return scalar.SLongLong(fail_value); 1513 } 1514 // fallthrough, otherwise... 1515 } 1516 1517 if (success) 1518 *success = false; 1519 return fail_value; 1520 } 1521 1522 // if any more "special cases" are added to ValueObject::DumpPrintableRepresentation() please keep 1523 // this call up to date by returning true for your new special cases. We will eventually move 1524 // to checking this call result before trying to display special cases 1525 bool 1526 ValueObject::HasSpecialPrintableRepresentation(ValueObjectRepresentationStyle val_obj_display, 1527 Format custom_format) 1528 { 1529 Flags flags(GetTypeInfo()); 1530 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) 1531 && val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) 1532 { 1533 if (IsCStringContainer(true) && 1534 (custom_format == eFormatCString || 1535 custom_format == eFormatCharArray || 1536 custom_format == eFormatChar || 1537 custom_format == eFormatVectorOfChar)) 1538 return true; 1539 1540 if (flags.Test(eTypeIsArray)) 1541 { 1542 if ((custom_format == eFormatBytes) || 1543 (custom_format == eFormatBytesWithASCII)) 1544 return true; 1545 1546 if ((custom_format == eFormatVectorOfChar) || 1547 (custom_format == eFormatVectorOfFloat32) || 1548 (custom_format == eFormatVectorOfFloat64) || 1549 (custom_format == eFormatVectorOfSInt16) || 1550 (custom_format == eFormatVectorOfSInt32) || 1551 (custom_format == eFormatVectorOfSInt64) || 1552 (custom_format == eFormatVectorOfSInt8) || 1553 (custom_format == eFormatVectorOfUInt128) || 1554 (custom_format == eFormatVectorOfUInt16) || 1555 (custom_format == eFormatVectorOfUInt32) || 1556 (custom_format == eFormatVectorOfUInt64) || 1557 (custom_format == eFormatVectorOfUInt8)) 1558 return true; 1559 } 1560 } 1561 return false; 1562 } 1563 1564 bool 1565 ValueObject::DumpPrintableRepresentation(Stream& s, 1566 ValueObjectRepresentationStyle val_obj_display, 1567 Format custom_format, 1568 PrintableRepresentationSpecialCases special, 1569 bool do_dump_error) 1570 { 1571 1572 Flags flags(GetTypeInfo()); 1573 1574 bool allow_special = ((special & ePrintableRepresentationSpecialCasesAllow) == ePrintableRepresentationSpecialCasesAllow); 1575 bool only_special = ((special & ePrintableRepresentationSpecialCasesOnly) == ePrintableRepresentationSpecialCasesOnly); 1576 1577 if (allow_special) 1578 { 1579 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) 1580 && val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) 1581 { 1582 // when being asked to get a printable display an array or pointer type directly, 1583 // try to "do the right thing" 1584 1585 if (IsCStringContainer(true) && 1586 (custom_format == eFormatCString || 1587 custom_format == eFormatCharArray || 1588 custom_format == eFormatChar || 1589 custom_format == eFormatVectorOfChar)) // print char[] & char* directly 1590 { 1591 Error error; 1592 lldb::DataBufferSP buffer_sp; 1593 ReadPointedString(buffer_sp, 1594 error, 1595 0, 1596 (custom_format == eFormatVectorOfChar) || 1597 (custom_format == eFormatCharArray)); 1598 lldb_private::formatters::ReadBufferAndDumpToStreamOptions options(*this); 1599 options.SetData(DataExtractor(buffer_sp, lldb::eByteOrderInvalid, 8)); // none of this matters for a string - pass some defaults 1600 options.SetStream(&s); 1601 options.SetPrefixToken(0); 1602 options.SetQuote('"'); 1603 options.SetSourceSize(buffer_sp->GetByteSize()); 1604 lldb_private::formatters::ReadBufferAndDumpToStream<lldb_private::formatters::StringElementType::ASCII>(options); 1605 return !error.Fail(); 1606 } 1607 1608 if (custom_format == eFormatEnum) 1609 return false; 1610 1611 // this only works for arrays, because I have no way to know when 1612 // the pointed memory ends, and no special \0 end of data marker 1613 if (flags.Test(eTypeIsArray)) 1614 { 1615 if ((custom_format == eFormatBytes) || 1616 (custom_format == eFormatBytesWithASCII)) 1617 { 1618 const size_t count = GetNumChildren(); 1619 1620 s << '['; 1621 for (size_t low = 0; low < count; low++) 1622 { 1623 1624 if (low) 1625 s << ','; 1626 1627 ValueObjectSP child = GetChildAtIndex(low,true); 1628 if (!child.get()) 1629 { 1630 s << "<invalid child>"; 1631 continue; 1632 } 1633 child->DumpPrintableRepresentation(s, ValueObject::eValueObjectRepresentationStyleValue, custom_format); 1634 } 1635 1636 s << ']'; 1637 1638 return true; 1639 } 1640 1641 if ((custom_format == eFormatVectorOfChar) || 1642 (custom_format == eFormatVectorOfFloat32) || 1643 (custom_format == eFormatVectorOfFloat64) || 1644 (custom_format == eFormatVectorOfSInt16) || 1645 (custom_format == eFormatVectorOfSInt32) || 1646 (custom_format == eFormatVectorOfSInt64) || 1647 (custom_format == eFormatVectorOfSInt8) || 1648 (custom_format == eFormatVectorOfUInt128) || 1649 (custom_format == eFormatVectorOfUInt16) || 1650 (custom_format == eFormatVectorOfUInt32) || 1651 (custom_format == eFormatVectorOfUInt64) || 1652 (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes with ASCII or any vector format should be printed directly 1653 { 1654 const size_t count = GetNumChildren(); 1655 1656 Format format = FormatManager::GetSingleItemFormat(custom_format); 1657 1658 s << '['; 1659 for (size_t low = 0; low < count; low++) 1660 { 1661 1662 if (low) 1663 s << ','; 1664 1665 ValueObjectSP child = GetChildAtIndex(low,true); 1666 if (!child.get()) 1667 { 1668 s << "<invalid child>"; 1669 continue; 1670 } 1671 child->DumpPrintableRepresentation(s, ValueObject::eValueObjectRepresentationStyleValue, format); 1672 } 1673 1674 s << ']'; 1675 1676 return true; 1677 } 1678 } 1679 1680 if ((custom_format == eFormatBoolean) || 1681 (custom_format == eFormatBinary) || 1682 (custom_format == eFormatChar) || 1683 (custom_format == eFormatCharPrintable) || 1684 (custom_format == eFormatComplexFloat) || 1685 (custom_format == eFormatDecimal) || 1686 (custom_format == eFormatHex) || 1687 (custom_format == eFormatHexUppercase) || 1688 (custom_format == eFormatFloat) || 1689 (custom_format == eFormatOctal) || 1690 (custom_format == eFormatOSType) || 1691 (custom_format == eFormatUnicode16) || 1692 (custom_format == eFormatUnicode32) || 1693 (custom_format == eFormatUnsigned) || 1694 (custom_format == eFormatPointer) || 1695 (custom_format == eFormatComplexInteger) || 1696 (custom_format == eFormatComplex) || 1697 (custom_format == eFormatDefault)) // use the [] operator 1698 return false; 1699 } 1700 } 1701 1702 if (only_special) 1703 return false; 1704 1705 bool var_success = false; 1706 1707 { 1708 const char *cstr = NULL; 1709 1710 // this is a local stream that we are using to ensure that the data pointed to by cstr survives 1711 // long enough for us to copy it to its destination - it is necessary to have this temporary storage 1712 // area for cases where our desired output is not backed by some other longer-term storage 1713 StreamString strm; 1714 1715 if (custom_format != eFormatInvalid) 1716 SetFormat(custom_format); 1717 1718 switch(val_obj_display) 1719 { 1720 case eValueObjectRepresentationStyleValue: 1721 cstr = GetValueAsCString(); 1722 break; 1723 1724 case eValueObjectRepresentationStyleSummary: 1725 cstr = GetSummaryAsCString(); 1726 break; 1727 1728 case eValueObjectRepresentationStyleLanguageSpecific: 1729 cstr = GetObjectDescription(); 1730 break; 1731 1732 case eValueObjectRepresentationStyleLocation: 1733 cstr = GetLocationAsCString(); 1734 break; 1735 1736 case eValueObjectRepresentationStyleChildrenCount: 1737 strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren()); 1738 cstr = strm.GetString().c_str(); 1739 break; 1740 1741 case eValueObjectRepresentationStyleType: 1742 cstr = GetTypeName().AsCString(); 1743 break; 1744 1745 case eValueObjectRepresentationStyleName: 1746 cstr = GetName().AsCString(); 1747 break; 1748 1749 case eValueObjectRepresentationStyleExpressionPath: 1750 GetExpressionPath(strm, false); 1751 cstr = strm.GetString().c_str(); 1752 break; 1753 } 1754 1755 if (!cstr) 1756 { 1757 if (val_obj_display == eValueObjectRepresentationStyleValue) 1758 cstr = GetSummaryAsCString(); 1759 else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1760 { 1761 if (!CanProvideValue()) 1762 { 1763 strm.Printf("%s @ %s", GetTypeName().AsCString(), GetLocationAsCString()); 1764 cstr = strm.GetString().c_str(); 1765 } 1766 else 1767 cstr = GetValueAsCString(); 1768 } 1769 } 1770 1771 if (cstr) 1772 s.PutCString(cstr); 1773 else 1774 { 1775 if (m_error.Fail()) 1776 { 1777 if (do_dump_error) 1778 s.Printf("<%s>", m_error.AsCString()); 1779 else 1780 return false; 1781 } 1782 else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1783 s.PutCString("<no summary available>"); 1784 else if (val_obj_display == eValueObjectRepresentationStyleValue) 1785 s.PutCString("<no value available>"); 1786 else if (val_obj_display == eValueObjectRepresentationStyleLanguageSpecific) 1787 s.PutCString("<not a valid Objective-C object>"); // edit this if we have other runtimes that support a description 1788 else 1789 s.PutCString("<no printable representation>"); 1790 } 1791 1792 // we should only return false here if we could not do *anything* 1793 // even if we have an error message as output, that's a success 1794 // from our callers' perspective, so return true 1795 var_success = true; 1796 1797 if (custom_format != eFormatInvalid) 1798 SetFormat(eFormatDefault); 1799 } 1800 1801 return var_success; 1802 } 1803 1804 addr_t 1805 ValueObject::GetAddressOf (bool scalar_is_load_address, AddressType *address_type) 1806 { 1807 if (!UpdateValueIfNeeded(false)) 1808 return LLDB_INVALID_ADDRESS; 1809 1810 switch (m_value.GetValueType()) 1811 { 1812 case Value::eValueTypeScalar: 1813 case Value::eValueTypeVector: 1814 if (scalar_is_load_address) 1815 { 1816 if(address_type) 1817 *address_type = eAddressTypeLoad; 1818 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1819 } 1820 break; 1821 1822 case Value::eValueTypeLoadAddress: 1823 case Value::eValueTypeFileAddress: 1824 case Value::eValueTypeHostAddress: 1825 { 1826 if(address_type) 1827 *address_type = m_value.GetValueAddressType (); 1828 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1829 } 1830 break; 1831 } 1832 if (address_type) 1833 *address_type = eAddressTypeInvalid; 1834 return LLDB_INVALID_ADDRESS; 1835 } 1836 1837 addr_t 1838 ValueObject::GetPointerValue (AddressType *address_type) 1839 { 1840 addr_t address = LLDB_INVALID_ADDRESS; 1841 if(address_type) 1842 *address_type = eAddressTypeInvalid; 1843 1844 if (!UpdateValueIfNeeded(false)) 1845 return address; 1846 1847 switch (m_value.GetValueType()) 1848 { 1849 case Value::eValueTypeScalar: 1850 case Value::eValueTypeVector: 1851 address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1852 break; 1853 1854 case Value::eValueTypeHostAddress: 1855 case Value::eValueTypeLoadAddress: 1856 case Value::eValueTypeFileAddress: 1857 { 1858 lldb::offset_t data_offset = 0; 1859 address = m_data.GetPointer(&data_offset); 1860 } 1861 break; 1862 } 1863 1864 if (address_type) 1865 *address_type = GetAddressTypeOfChildren(); 1866 1867 return address; 1868 } 1869 1870 bool 1871 ValueObject::SetValueFromCString (const char *value_str, Error& error) 1872 { 1873 error.Clear(); 1874 // Make sure our value is up to date first so that our location and location 1875 // type is valid. 1876 if (!UpdateValueIfNeeded(false)) 1877 { 1878 error.SetErrorString("unable to read value"); 1879 return false; 1880 } 1881 1882 uint64_t count = 0; 1883 const Encoding encoding = GetClangType().GetEncoding (count); 1884 1885 const size_t byte_size = GetByteSize(); 1886 1887 Value::ValueType value_type = m_value.GetValueType(); 1888 1889 if (value_type == Value::eValueTypeScalar) 1890 { 1891 // If the value is already a scalar, then let the scalar change itself: 1892 m_value.GetScalar().SetValueFromCString (value_str, encoding, byte_size); 1893 } 1894 else if (byte_size <= Scalar::GetMaxByteSize()) 1895 { 1896 // If the value fits in a scalar, then make a new scalar and again let the 1897 // scalar code do the conversion, then figure out where to put the new value. 1898 Scalar new_scalar; 1899 error = new_scalar.SetValueFromCString (value_str, encoding, byte_size); 1900 if (error.Success()) 1901 { 1902 switch (value_type) 1903 { 1904 case Value::eValueTypeLoadAddress: 1905 { 1906 // If it is a load address, then the scalar value is the storage location 1907 // of the data, and we have to shove this value down to that load location. 1908 ExecutionContext exe_ctx (GetExecutionContextRef()); 1909 Process *process = exe_ctx.GetProcessPtr(); 1910 if (process) 1911 { 1912 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1913 size_t bytes_written = process->WriteScalarToMemory (target_addr, 1914 new_scalar, 1915 byte_size, 1916 error); 1917 if (!error.Success()) 1918 return false; 1919 if (bytes_written != byte_size) 1920 { 1921 error.SetErrorString("unable to write value to memory"); 1922 return false; 1923 } 1924 } 1925 } 1926 break; 1927 case Value::eValueTypeHostAddress: 1928 { 1929 // If it is a host address, then we stuff the scalar as a DataBuffer into the Value's data. 1930 DataExtractor new_data; 1931 new_data.SetByteOrder (m_data.GetByteOrder()); 1932 1933 DataBufferSP buffer_sp (new DataBufferHeap(byte_size, 0)); 1934 m_data.SetData(buffer_sp, 0); 1935 bool success = new_scalar.GetData(new_data); 1936 if (success) 1937 { 1938 new_data.CopyByteOrderedData (0, 1939 byte_size, 1940 const_cast<uint8_t *>(m_data.GetDataStart()), 1941 byte_size, 1942 m_data.GetByteOrder()); 1943 } 1944 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1945 1946 } 1947 break; 1948 case Value::eValueTypeFileAddress: 1949 case Value::eValueTypeScalar: 1950 case Value::eValueTypeVector: 1951 break; 1952 } 1953 } 1954 else 1955 { 1956 return false; 1957 } 1958 } 1959 else 1960 { 1961 // We don't support setting things bigger than a scalar at present. 1962 error.SetErrorString("unable to write aggregate data type"); 1963 return false; 1964 } 1965 1966 // If we have reached this point, then we have successfully changed the value. 1967 SetNeedsUpdate(); 1968 return true; 1969 } 1970 1971 bool 1972 ValueObject::GetDeclaration (Declaration &decl) 1973 { 1974 decl.Clear(); 1975 return false; 1976 } 1977 1978 ConstString 1979 ValueObject::GetTypeName() 1980 { 1981 return GetClangType().GetConstTypeName(); 1982 } 1983 1984 ConstString 1985 ValueObject::GetDisplayTypeName() 1986 { 1987 return GetTypeName(); 1988 } 1989 1990 ConstString 1991 ValueObject::GetQualifiedTypeName() 1992 { 1993 return GetClangType().GetConstQualifiedTypeName(); 1994 } 1995 1996 1997 LanguageType 1998 ValueObject::GetObjectRuntimeLanguage () 1999 { 2000 return GetClangType().GetMinimumLanguage (); 2001 } 2002 2003 void 2004 ValueObject::AddSyntheticChild (const ConstString &key, ValueObject *valobj) 2005 { 2006 m_synthetic_children[key] = valobj; 2007 } 2008 2009 ValueObjectSP 2010 ValueObject::GetSyntheticChild (const ConstString &key) const 2011 { 2012 ValueObjectSP synthetic_child_sp; 2013 std::map<ConstString, ValueObject *>::const_iterator pos = m_synthetic_children.find (key); 2014 if (pos != m_synthetic_children.end()) 2015 synthetic_child_sp = pos->second->GetSP(); 2016 return synthetic_child_sp; 2017 } 2018 2019 uint32_t 2020 ValueObject::GetTypeInfo (ClangASTType *pointee_or_element_clang_type) 2021 { 2022 return GetClangType().GetTypeInfo (pointee_or_element_clang_type); 2023 } 2024 2025 bool 2026 ValueObject::IsPointerType () 2027 { 2028 return GetClangType().IsPointerType(); 2029 } 2030 2031 bool 2032 ValueObject::IsArrayType () 2033 { 2034 return GetClangType().IsArrayType (NULL, NULL, NULL); 2035 } 2036 2037 bool 2038 ValueObject::IsScalarType () 2039 { 2040 return GetClangType().IsScalarType (); 2041 } 2042 2043 bool 2044 ValueObject::IsIntegerType (bool &is_signed) 2045 { 2046 return GetClangType().IsIntegerType (is_signed); 2047 } 2048 2049 bool 2050 ValueObject::IsPointerOrReferenceType () 2051 { 2052 return GetClangType().IsPointerOrReferenceType (); 2053 } 2054 2055 bool 2056 ValueObject::IsPossibleDynamicType () 2057 { 2058 ExecutionContext exe_ctx (GetExecutionContextRef()); 2059 Process *process = exe_ctx.GetProcessPtr(); 2060 if (process) 2061 return process->IsPossibleDynamicValue(*this); 2062 else 2063 return GetClangType().IsPossibleDynamicType (NULL, true, true); 2064 } 2065 2066 bool 2067 ValueObject::IsObjCNil () 2068 { 2069 const uint32_t mask = eTypeIsObjC | eTypeIsPointer; 2070 bool isObjCpointer = (((GetClangType().GetTypeInfo(NULL)) & mask) == mask); 2071 if (!isObjCpointer) 2072 return false; 2073 bool canReadValue = true; 2074 bool isZero = GetValueAsUnsigned(0,&canReadValue) == 0; 2075 return canReadValue && isZero; 2076 } 2077 2078 ValueObjectSP 2079 ValueObject::GetSyntheticArrayMember (size_t index, bool can_create) 2080 { 2081 const uint32_t type_info = GetTypeInfo (); 2082 if (type_info & eTypeIsArray) 2083 return GetSyntheticArrayMemberFromArray(index, can_create); 2084 2085 if (type_info & eTypeIsPointer) 2086 return GetSyntheticArrayMemberFromPointer(index, can_create); 2087 2088 return ValueObjectSP(); 2089 2090 } 2091 2092 ValueObjectSP 2093 ValueObject::GetSyntheticArrayMemberFromPointer (size_t index, bool can_create) 2094 { 2095 ValueObjectSP synthetic_child_sp; 2096 if (IsPointerType ()) 2097 { 2098 char index_str[64]; 2099 snprintf(index_str, sizeof(index_str), "[%" PRIu64 "]", (uint64_t)index); 2100 ConstString index_const_str(index_str); 2101 // Check if we have already created a synthetic array member in this 2102 // valid object. If we have we will re-use it. 2103 synthetic_child_sp = GetSyntheticChild (index_const_str); 2104 if (!synthetic_child_sp) 2105 { 2106 ValueObject *synthetic_child; 2107 // We haven't made a synthetic array member for INDEX yet, so 2108 // lets make one and cache it for any future reference. 2109 synthetic_child = CreateChildAtIndex(0, true, index); 2110 2111 // Cache the value if we got one back... 2112 if (synthetic_child) 2113 { 2114 AddSyntheticChild(index_const_str, synthetic_child); 2115 synthetic_child_sp = synthetic_child->GetSP(); 2116 synthetic_child_sp->SetName(ConstString(index_str)); 2117 synthetic_child_sp->m_is_array_item_for_pointer = true; 2118 } 2119 } 2120 } 2121 return synthetic_child_sp; 2122 } 2123 2124 // This allows you to create an array member using and index 2125 // that doesn't not fall in the normal bounds of the array. 2126 // Many times structure can be defined as: 2127 // struct Collection 2128 // { 2129 // uint32_t item_count; 2130 // Item item_array[0]; 2131 // }; 2132 // The size of the "item_array" is 1, but many times in practice 2133 // there are more items in "item_array". 2134 2135 ValueObjectSP 2136 ValueObject::GetSyntheticArrayMemberFromArray (size_t index, bool can_create) 2137 { 2138 ValueObjectSP synthetic_child_sp; 2139 if (IsArrayType ()) 2140 { 2141 char index_str[64]; 2142 snprintf(index_str, sizeof(index_str), "[%" PRIu64 "]", (uint64_t)index); 2143 ConstString index_const_str(index_str); 2144 // Check if we have already created a synthetic array member in this 2145 // valid object. If we have we will re-use it. 2146 synthetic_child_sp = GetSyntheticChild (index_const_str); 2147 if (!synthetic_child_sp) 2148 { 2149 ValueObject *synthetic_child; 2150 // We haven't made a synthetic array member for INDEX yet, so 2151 // lets make one and cache it for any future reference. 2152 synthetic_child = CreateChildAtIndex(0, true, index); 2153 2154 // Cache the value if we got one back... 2155 if (synthetic_child) 2156 { 2157 AddSyntheticChild(index_const_str, synthetic_child); 2158 synthetic_child_sp = synthetic_child->GetSP(); 2159 synthetic_child_sp->SetName(ConstString(index_str)); 2160 synthetic_child_sp->m_is_array_item_for_pointer = true; 2161 } 2162 } 2163 } 2164 return synthetic_child_sp; 2165 } 2166 2167 ValueObjectSP 2168 ValueObject::GetSyntheticBitFieldChild (uint32_t from, uint32_t to, bool can_create) 2169 { 2170 ValueObjectSP synthetic_child_sp; 2171 if (IsScalarType ()) 2172 { 2173 char index_str[64]; 2174 snprintf(index_str, sizeof(index_str), "[%i-%i]", from, to); 2175 ConstString index_const_str(index_str); 2176 // Check if we have already created a synthetic array member in this 2177 // valid object. If we have we will re-use it. 2178 synthetic_child_sp = GetSyntheticChild (index_const_str); 2179 if (!synthetic_child_sp) 2180 { 2181 // We haven't made a synthetic array member for INDEX yet, so 2182 // lets make one and cache it for any future reference. 2183 ValueObjectChild *synthetic_child = new ValueObjectChild (*this, 2184 GetClangType(), 2185 index_const_str, 2186 GetByteSize(), 2187 0, 2188 to-from+1, 2189 from, 2190 false, 2191 false, 2192 eAddressTypeInvalid); 2193 2194 // Cache the value if we got one back... 2195 if (synthetic_child) 2196 { 2197 AddSyntheticChild(index_const_str, synthetic_child); 2198 synthetic_child_sp = synthetic_child->GetSP(); 2199 synthetic_child_sp->SetName(ConstString(index_str)); 2200 synthetic_child_sp->m_is_bitfield_for_scalar = true; 2201 } 2202 } 2203 } 2204 return synthetic_child_sp; 2205 } 2206 2207 ValueObjectSP 2208 ValueObject::GetSyntheticChildAtOffset(uint32_t offset, const ClangASTType& type, bool can_create) 2209 { 2210 2211 ValueObjectSP synthetic_child_sp; 2212 2213 char name_str[64]; 2214 snprintf(name_str, sizeof(name_str), "@%i", offset); 2215 ConstString name_const_str(name_str); 2216 2217 // Check if we have already created a synthetic array member in this 2218 // valid object. If we have we will re-use it. 2219 synthetic_child_sp = GetSyntheticChild (name_const_str); 2220 2221 if (synthetic_child_sp.get()) 2222 return synthetic_child_sp; 2223 2224 if (!can_create) 2225 return ValueObjectSP(); 2226 2227 ExecutionContext exe_ctx (GetExecutionContextRef()); 2228 2229 ValueObjectChild *synthetic_child = new ValueObjectChild(*this, 2230 type, 2231 name_const_str, 2232 type.GetByteSize(&exe_ctx), 2233 offset, 2234 0, 2235 0, 2236 false, 2237 false, 2238 eAddressTypeInvalid); 2239 if (synthetic_child) 2240 { 2241 AddSyntheticChild(name_const_str, synthetic_child); 2242 synthetic_child_sp = synthetic_child->GetSP(); 2243 synthetic_child_sp->SetName(name_const_str); 2244 synthetic_child_sp->m_is_child_at_offset = true; 2245 } 2246 return synthetic_child_sp; 2247 } 2248 2249 ValueObjectSP 2250 ValueObject::GetSyntheticBase (uint32_t offset, const ClangASTType& type, bool can_create) 2251 { 2252 ValueObjectSP synthetic_child_sp; 2253 2254 char name_str[64]; 2255 snprintf(name_str, sizeof(name_str), "%s", type.GetTypeName().AsCString("<unknown>")); 2256 ConstString name_const_str(name_str); 2257 2258 // Check if we have already created a synthetic array member in this 2259 // valid object. If we have we will re-use it. 2260 synthetic_child_sp = GetSyntheticChild (name_const_str); 2261 2262 if (synthetic_child_sp.get()) 2263 return synthetic_child_sp; 2264 2265 if (!can_create) 2266 return ValueObjectSP(); 2267 2268 const bool is_base_class = true; 2269 2270 ExecutionContext exe_ctx (GetExecutionContextRef()); 2271 2272 ValueObjectChild *synthetic_child = new ValueObjectChild(*this, 2273 type, 2274 name_const_str, 2275 type.GetByteSize(&exe_ctx), 2276 offset, 2277 0, 2278 0, 2279 is_base_class, 2280 false, 2281 eAddressTypeInvalid); 2282 if (synthetic_child) 2283 { 2284 AddSyntheticChild(name_const_str, synthetic_child); 2285 synthetic_child_sp = synthetic_child->GetSP(); 2286 synthetic_child_sp->SetName(name_const_str); 2287 } 2288 return synthetic_child_sp; 2289 } 2290 2291 2292 // your expression path needs to have a leading . or -> 2293 // (unless it somehow "looks like" an array, in which case it has 2294 // a leading [ symbol). while the [ is meaningful and should be shown 2295 // to the user, . and -> are just parser design, but by no means 2296 // added information for the user.. strip them off 2297 static const char* 2298 SkipLeadingExpressionPathSeparators(const char* expression) 2299 { 2300 if (!expression || !expression[0]) 2301 return expression; 2302 if (expression[0] == '.') 2303 return expression+1; 2304 if (expression[0] == '-' && expression[1] == '>') 2305 return expression+2; 2306 return expression; 2307 } 2308 2309 ValueObjectSP 2310 ValueObject::GetSyntheticExpressionPathChild(const char* expression, bool can_create) 2311 { 2312 ValueObjectSP synthetic_child_sp; 2313 ConstString name_const_string(expression); 2314 // Check if we have already created a synthetic array member in this 2315 // valid object. If we have we will re-use it. 2316 synthetic_child_sp = GetSyntheticChild (name_const_string); 2317 if (!synthetic_child_sp) 2318 { 2319 // We haven't made a synthetic array member for expression yet, so 2320 // lets make one and cache it for any future reference. 2321 synthetic_child_sp = GetValueForExpressionPath(expression, 2322 NULL, NULL, NULL, 2323 GetValueForExpressionPathOptions().DontAllowSyntheticChildren()); 2324 2325 // Cache the value if we got one back... 2326 if (synthetic_child_sp.get()) 2327 { 2328 // FIXME: this causes a "real" child to end up with its name changed to the contents of expression 2329 AddSyntheticChild(name_const_string, synthetic_child_sp.get()); 2330 synthetic_child_sp->SetName(ConstString(SkipLeadingExpressionPathSeparators(expression))); 2331 } 2332 } 2333 return synthetic_child_sp; 2334 } 2335 2336 void 2337 ValueObject::CalculateSyntheticValue (bool use_synthetic) 2338 { 2339 if (use_synthetic == false) 2340 return; 2341 2342 TargetSP target_sp(GetTargetSP()); 2343 if (target_sp && target_sp->GetEnableSyntheticValue() == false) 2344 { 2345 m_synthetic_value = NULL; 2346 return; 2347 } 2348 2349 lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp); 2350 2351 if (!UpdateFormatsIfNeeded() && m_synthetic_value) 2352 return; 2353 2354 if (m_synthetic_children_sp.get() == NULL) 2355 return; 2356 2357 if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value) 2358 return; 2359 2360 m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp); 2361 } 2362 2363 void 2364 ValueObject::CalculateDynamicValue (DynamicValueType use_dynamic) 2365 { 2366 if (use_dynamic == eNoDynamicValues) 2367 return; 2368 2369 if (!m_dynamic_value && !IsDynamic()) 2370 { 2371 ExecutionContext exe_ctx (GetExecutionContextRef()); 2372 Process *process = exe_ctx.GetProcessPtr(); 2373 if (process && process->IsPossibleDynamicValue(*this)) 2374 { 2375 ClearDynamicTypeInformation (); 2376 m_dynamic_value = new ValueObjectDynamicValue (*this, use_dynamic); 2377 } 2378 } 2379 } 2380 2381 ValueObjectSP 2382 ValueObject::GetDynamicValue (DynamicValueType use_dynamic) 2383 { 2384 if (use_dynamic == eNoDynamicValues) 2385 return ValueObjectSP(); 2386 2387 if (!IsDynamic() && m_dynamic_value == NULL) 2388 { 2389 CalculateDynamicValue(use_dynamic); 2390 } 2391 if (m_dynamic_value) 2392 return m_dynamic_value->GetSP(); 2393 else 2394 return ValueObjectSP(); 2395 } 2396 2397 ValueObjectSP 2398 ValueObject::GetStaticValue() 2399 { 2400 return GetSP(); 2401 } 2402 2403 lldb::ValueObjectSP 2404 ValueObject::GetNonSyntheticValue () 2405 { 2406 return GetSP(); 2407 } 2408 2409 ValueObjectSP 2410 ValueObject::GetSyntheticValue (bool use_synthetic) 2411 { 2412 if (use_synthetic == false) 2413 return ValueObjectSP(); 2414 2415 CalculateSyntheticValue(use_synthetic); 2416 2417 if (m_synthetic_value) 2418 return m_synthetic_value->GetSP(); 2419 else 2420 return ValueObjectSP(); 2421 } 2422 2423 bool 2424 ValueObject::HasSyntheticValue() 2425 { 2426 UpdateFormatsIfNeeded(); 2427 2428 if (m_synthetic_children_sp.get() == NULL) 2429 return false; 2430 2431 CalculateSyntheticValue(true); 2432 2433 if (m_synthetic_value) 2434 return true; 2435 else 2436 return false; 2437 } 2438 2439 bool 2440 ValueObject::GetBaseClassPath (Stream &s) 2441 { 2442 if (IsBaseClass()) 2443 { 2444 bool parent_had_base_class = GetParent() && GetParent()->GetBaseClassPath (s); 2445 ClangASTType clang_type = GetClangType(); 2446 std::string cxx_class_name; 2447 bool this_had_base_class = clang_type.GetCXXClassName (cxx_class_name); 2448 if (this_had_base_class) 2449 { 2450 if (parent_had_base_class) 2451 s.PutCString("::"); 2452 s.PutCString(cxx_class_name.c_str()); 2453 } 2454 return parent_had_base_class || this_had_base_class; 2455 } 2456 return false; 2457 } 2458 2459 2460 ValueObject * 2461 ValueObject::GetNonBaseClassParent() 2462 { 2463 if (GetParent()) 2464 { 2465 if (GetParent()->IsBaseClass()) 2466 return GetParent()->GetNonBaseClassParent(); 2467 else 2468 return GetParent(); 2469 } 2470 return NULL; 2471 } 2472 2473 2474 bool 2475 ValueObject::IsBaseClass (uint32_t& depth) 2476 { 2477 if (!IsBaseClass()) 2478 { 2479 depth = 0; 2480 return false; 2481 } 2482 if (GetParent()) 2483 { 2484 GetParent()->IsBaseClass(depth); 2485 depth = depth + 1; 2486 return true; 2487 } 2488 // TODO: a base of no parent? weird.. 2489 depth = 1; 2490 return true; 2491 } 2492 2493 void 2494 ValueObject::GetExpressionPath (Stream &s, bool qualify_cxx_base_classes, GetExpressionPathFormat epformat) 2495 { 2496 // synthetic children do not actually "exist" as part of the hierarchy, and sometimes they are consed up in ways 2497 // that don't make sense from an underlying language/API standpoint. So, use a special code path here to return 2498 // something that can hopefully be used in expression 2499 if (m_is_synthetic_children_generated) 2500 { 2501 UpdateValueIfNeeded(); 2502 2503 if (m_value.GetValueType() == Value::eValueTypeLoadAddress) 2504 { 2505 if (IsPointerOrReferenceType()) 2506 { 2507 s.Printf("((%s)0x%" PRIx64 ")", 2508 GetTypeName().AsCString("void"), 2509 GetValueAsUnsigned(0)); 2510 return; 2511 } 2512 else 2513 { 2514 uint64_t load_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2515 if (load_addr != LLDB_INVALID_ADDRESS) 2516 { 2517 s.Printf("(*( (%s *)0x%" PRIx64 "))", 2518 GetTypeName().AsCString("void"), 2519 load_addr); 2520 return; 2521 } 2522 } 2523 } 2524 2525 if (CanProvideValue()) 2526 { 2527 s.Printf("((%s)%s)", 2528 GetTypeName().AsCString("void"), 2529 GetValueAsCString()); 2530 return; 2531 } 2532 2533 return; 2534 } 2535 2536 const bool is_deref_of_parent = IsDereferenceOfParent (); 2537 2538 if (is_deref_of_parent && epformat == eGetExpressionPathFormatDereferencePointers) 2539 { 2540 // this is the original format of GetExpressionPath() producing code like *(a_ptr).memberName, which is entirely 2541 // fine, until you put this into StackFrame::GetValueForVariableExpressionPath() which prefers to see a_ptr->memberName. 2542 // the eHonorPointers mode is meant to produce strings in this latter format 2543 s.PutCString("*("); 2544 } 2545 2546 ValueObject* parent = GetParent(); 2547 2548 if (parent) 2549 parent->GetExpressionPath (s, qualify_cxx_base_classes, epformat); 2550 2551 // if we are a deref_of_parent just because we are synthetic array 2552 // members made up to allow ptr[%d] syntax to work in variable 2553 // printing, then add our name ([%d]) to the expression path 2554 if (m_is_array_item_for_pointer && epformat == eGetExpressionPathFormatHonorPointers) 2555 s.PutCString(m_name.AsCString()); 2556 2557 if (!IsBaseClass()) 2558 { 2559 if (!is_deref_of_parent) 2560 { 2561 ValueObject *non_base_class_parent = GetNonBaseClassParent(); 2562 if (non_base_class_parent) 2563 { 2564 ClangASTType non_base_class_parent_clang_type = non_base_class_parent->GetClangType(); 2565 if (non_base_class_parent_clang_type) 2566 { 2567 if (parent && parent->IsDereferenceOfParent() && epformat == eGetExpressionPathFormatHonorPointers) 2568 { 2569 s.PutCString("->"); 2570 } 2571 else 2572 { 2573 const uint32_t non_base_class_parent_type_info = non_base_class_parent_clang_type.GetTypeInfo(); 2574 2575 if (non_base_class_parent_type_info & eTypeIsPointer) 2576 { 2577 s.PutCString("->"); 2578 } 2579 else if ((non_base_class_parent_type_info & eTypeHasChildren) && 2580 !(non_base_class_parent_type_info & eTypeIsArray)) 2581 { 2582 s.PutChar('.'); 2583 } 2584 } 2585 } 2586 } 2587 2588 const char *name = GetName().GetCString(); 2589 if (name) 2590 { 2591 if (qualify_cxx_base_classes) 2592 { 2593 if (GetBaseClassPath (s)) 2594 s.PutCString("::"); 2595 } 2596 s.PutCString(name); 2597 } 2598 } 2599 } 2600 2601 if (is_deref_of_parent && epformat == eGetExpressionPathFormatDereferencePointers) 2602 { 2603 s.PutChar(')'); 2604 } 2605 } 2606 2607 ValueObjectSP 2608 ValueObject::GetValueForExpressionPath(const char* expression, 2609 const char** first_unparsed, 2610 ExpressionPathScanEndReason* reason_to_stop, 2611 ExpressionPathEndResultType* final_value_type, 2612 const GetValueForExpressionPathOptions& options, 2613 ExpressionPathAftermath* final_task_on_target) 2614 { 2615 2616 const char* dummy_first_unparsed; 2617 ExpressionPathScanEndReason dummy_reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnknown; 2618 ExpressionPathEndResultType dummy_final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2619 ExpressionPathAftermath dummy_final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2620 2621 ValueObjectSP ret_val = GetValueForExpressionPath_Impl(expression, 2622 first_unparsed ? first_unparsed : &dummy_first_unparsed, 2623 reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2624 final_value_type ? final_value_type : &dummy_final_value_type, 2625 options, 2626 final_task_on_target ? final_task_on_target : &dummy_final_task_on_target); 2627 2628 if (!final_task_on_target || *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2629 return ret_val; 2630 2631 if (ret_val.get() && ((final_value_type ? *final_value_type : dummy_final_value_type) == eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress of plain objects 2632 { 2633 if ( (final_task_on_target ? *final_task_on_target : dummy_final_task_on_target) == ValueObject::eExpressionPathAftermathDereference) 2634 { 2635 Error error; 2636 ValueObjectSP final_value = ret_val->Dereference(error); 2637 if (error.Fail() || !final_value.get()) 2638 { 2639 if (reason_to_stop) 2640 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2641 if (final_value_type) 2642 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2643 return ValueObjectSP(); 2644 } 2645 else 2646 { 2647 if (final_task_on_target) 2648 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2649 return final_value; 2650 } 2651 } 2652 if (*final_task_on_target == ValueObject::eExpressionPathAftermathTakeAddress) 2653 { 2654 Error error; 2655 ValueObjectSP final_value = ret_val->AddressOf(error); 2656 if (error.Fail() || !final_value.get()) 2657 { 2658 if (reason_to_stop) 2659 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2660 if (final_value_type) 2661 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2662 return ValueObjectSP(); 2663 } 2664 else 2665 { 2666 if (final_task_on_target) 2667 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2668 return final_value; 2669 } 2670 } 2671 } 2672 return ret_val; // final_task_on_target will still have its original value, so you know I did not do it 2673 } 2674 2675 int 2676 ValueObject::GetValuesForExpressionPath(const char* expression, 2677 ValueObjectListSP& list, 2678 const char** first_unparsed, 2679 ExpressionPathScanEndReason* reason_to_stop, 2680 ExpressionPathEndResultType* final_value_type, 2681 const GetValueForExpressionPathOptions& options, 2682 ExpressionPathAftermath* final_task_on_target) 2683 { 2684 const char* dummy_first_unparsed; 2685 ExpressionPathScanEndReason dummy_reason_to_stop; 2686 ExpressionPathEndResultType dummy_final_value_type; 2687 ExpressionPathAftermath dummy_final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2688 2689 ValueObjectSP ret_val = GetValueForExpressionPath_Impl(expression, 2690 first_unparsed ? first_unparsed : &dummy_first_unparsed, 2691 reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2692 final_value_type ? final_value_type : &dummy_final_value_type, 2693 options, 2694 final_task_on_target ? final_task_on_target : &dummy_final_task_on_target); 2695 2696 if (!ret_val.get()) // if there are errors, I add nothing to the list 2697 return 0; 2698 2699 if ( (reason_to_stop ? *reason_to_stop : dummy_reason_to_stop) != eExpressionPathScanEndReasonArrayRangeOperatorMet) 2700 { 2701 // I need not expand a range, just post-process the final value and return 2702 if (!final_task_on_target || *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2703 { 2704 list->Append(ret_val); 2705 return 1; 2706 } 2707 if (ret_val.get() && (final_value_type ? *final_value_type : dummy_final_value_type) == eExpressionPathEndResultTypePlain) // I can only deref and takeaddress of plain objects 2708 { 2709 if (*final_task_on_target == ValueObject::eExpressionPathAftermathDereference) 2710 { 2711 Error error; 2712 ValueObjectSP final_value = ret_val->Dereference(error); 2713 if (error.Fail() || !final_value.get()) 2714 { 2715 if (reason_to_stop) 2716 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2717 if (final_value_type) 2718 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2719 return 0; 2720 } 2721 else 2722 { 2723 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2724 list->Append(final_value); 2725 return 1; 2726 } 2727 } 2728 if (*final_task_on_target == ValueObject::eExpressionPathAftermathTakeAddress) 2729 { 2730 Error error; 2731 ValueObjectSP final_value = ret_val->AddressOf(error); 2732 if (error.Fail() || !final_value.get()) 2733 { 2734 if (reason_to_stop) 2735 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2736 if (final_value_type) 2737 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2738 return 0; 2739 } 2740 else 2741 { 2742 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2743 list->Append(final_value); 2744 return 1; 2745 } 2746 } 2747 } 2748 } 2749 else 2750 { 2751 return ExpandArraySliceExpression(first_unparsed ? *first_unparsed : dummy_first_unparsed, 2752 first_unparsed ? first_unparsed : &dummy_first_unparsed, 2753 ret_val, 2754 list, 2755 reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2756 final_value_type ? final_value_type : &dummy_final_value_type, 2757 options, 2758 final_task_on_target ? final_task_on_target : &dummy_final_task_on_target); 2759 } 2760 // in any non-covered case, just do the obviously right thing 2761 list->Append(ret_val); 2762 return 1; 2763 } 2764 2765 ValueObjectSP 2766 ValueObject::GetValueForExpressionPath_Impl(const char* expression_cstr, 2767 const char** first_unparsed, 2768 ExpressionPathScanEndReason* reason_to_stop, 2769 ExpressionPathEndResultType* final_result, 2770 const GetValueForExpressionPathOptions& options, 2771 ExpressionPathAftermath* what_next) 2772 { 2773 ValueObjectSP root = GetSP(); 2774 2775 if (!root.get()) 2776 return ValueObjectSP(); 2777 2778 *first_unparsed = expression_cstr; 2779 2780 while (true) 2781 { 2782 2783 const char* expression_cstr = *first_unparsed; // hide the top level expression_cstr 2784 2785 ClangASTType root_clang_type = root->GetClangType(); 2786 ClangASTType pointee_clang_type; 2787 Flags pointee_clang_type_info; 2788 2789 Flags root_clang_type_info(root_clang_type.GetTypeInfo(&pointee_clang_type)); 2790 if (pointee_clang_type) 2791 pointee_clang_type_info.Reset(pointee_clang_type.GetTypeInfo()); 2792 2793 if (!expression_cstr || *expression_cstr == '\0') 2794 { 2795 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2796 return root; 2797 } 2798 2799 switch (*expression_cstr) 2800 { 2801 case '-': 2802 { 2803 if (options.m_check_dot_vs_arrow_syntax && 2804 root_clang_type_info.Test(eTypeIsPointer) ) // if you are trying to use -> on a non-pointer and I must catch the error 2805 { 2806 *first_unparsed = expression_cstr; 2807 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot; 2808 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2809 return ValueObjectSP(); 2810 } 2811 if (root_clang_type_info.Test(eTypeIsObjC) && // if yo are trying to extract an ObjC IVar when this is forbidden 2812 root_clang_type_info.Test(eTypeIsPointer) && 2813 options.m_no_fragile_ivar) 2814 { 2815 *first_unparsed = expression_cstr; 2816 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed; 2817 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2818 return ValueObjectSP(); 2819 } 2820 if (expression_cstr[1] != '>') 2821 { 2822 *first_unparsed = expression_cstr; 2823 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2824 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2825 return ValueObjectSP(); 2826 } 2827 expression_cstr++; // skip the - 2828 } 2829 case '.': // or fallthrough from -> 2830 { 2831 if (options.m_check_dot_vs_arrow_syntax && *expression_cstr == '.' && 2832 root_clang_type_info.Test(eTypeIsPointer)) // if you are trying to use . on a pointer and I must catch the error 2833 { 2834 *first_unparsed = expression_cstr; 2835 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow; 2836 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2837 return ValueObjectSP(); 2838 } 2839 expression_cstr++; // skip . 2840 const char *next_separator = strpbrk(expression_cstr+1,"-.["); 2841 ConstString child_name; 2842 if (!next_separator) // if no other separator just expand this last layer 2843 { 2844 child_name.SetCString (expression_cstr); 2845 ValueObjectSP child_valobj_sp = root->GetChildMemberWithName(child_name, true); 2846 2847 if (child_valobj_sp.get()) // we know we are done, so just return 2848 { 2849 *first_unparsed = ""; 2850 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2851 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2852 return child_valobj_sp; 2853 } 2854 else if (options.m_no_synthetic_children == false) // let's try with synthetic children 2855 { 2856 if (root->IsSynthetic()) 2857 { 2858 *first_unparsed = expression_cstr; 2859 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchSyntheticChild; 2860 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2861 return ValueObjectSP(); 2862 } 2863 2864 child_valobj_sp = root->GetSyntheticValue(); 2865 if (child_valobj_sp.get()) 2866 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2867 } 2868 2869 // if we are here and options.m_no_synthetic_children is true, child_valobj_sp is going to be a NULL SP, 2870 // so we hit the "else" branch, and return an error 2871 if(child_valobj_sp.get()) // if it worked, just return 2872 { 2873 *first_unparsed = ""; 2874 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2875 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2876 return child_valobj_sp; 2877 } 2878 else 2879 { 2880 *first_unparsed = expression_cstr; 2881 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2882 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2883 return ValueObjectSP(); 2884 } 2885 } 2886 else // other layers do expand 2887 { 2888 child_name.SetCStringWithLength(expression_cstr, next_separator - expression_cstr); 2889 ValueObjectSP child_valobj_sp = root->GetChildMemberWithName(child_name, true); 2890 if (child_valobj_sp.get()) // store the new root and move on 2891 { 2892 root = child_valobj_sp; 2893 *first_unparsed = next_separator; 2894 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2895 continue; 2896 } 2897 else if (options.m_no_synthetic_children == false) // let's try with synthetic children 2898 { 2899 if (root->IsSynthetic()) 2900 { 2901 *first_unparsed = expression_cstr; 2902 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2903 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2904 return ValueObjectSP(); 2905 } 2906 2907 child_valobj_sp = root->GetSyntheticValue(true); 2908 if (child_valobj_sp) 2909 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2910 } 2911 2912 // if we are here and options.m_no_synthetic_children is true, child_valobj_sp is going to be a NULL SP, 2913 // so we hit the "else" branch, and return an error 2914 if(child_valobj_sp.get()) // if it worked, move on 2915 { 2916 root = child_valobj_sp; 2917 *first_unparsed = next_separator; 2918 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2919 continue; 2920 } 2921 else 2922 { 2923 *first_unparsed = expression_cstr; 2924 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2925 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2926 return ValueObjectSP(); 2927 } 2928 } 2929 break; 2930 } 2931 case '[': 2932 { 2933 if (!root_clang_type_info.Test(eTypeIsArray) && !root_clang_type_info.Test(eTypeIsPointer) && !root_clang_type_info.Test(eTypeIsVector)) // if this is not a T[] nor a T* 2934 { 2935 if (!root_clang_type_info.Test(eTypeIsScalar)) // if this is not even a scalar... 2936 { 2937 if (options.m_no_synthetic_children) // ...only chance left is synthetic 2938 { 2939 *first_unparsed = expression_cstr; 2940 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 2941 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2942 return ValueObjectSP(); 2943 } 2944 } 2945 else if (!options.m_allow_bitfields_syntax) // if this is a scalar, check that we can expand bitfields 2946 { 2947 *first_unparsed = expression_cstr; 2948 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 2949 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2950 return ValueObjectSP(); 2951 } 2952 } 2953 if (*(expression_cstr+1) == ']') // if this is an unbounded range it only works for arrays 2954 { 2955 if (!root_clang_type_info.Test(eTypeIsArray)) 2956 { 2957 *first_unparsed = expression_cstr; 2958 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 2959 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2960 return ValueObjectSP(); 2961 } 2962 else // even if something follows, we cannot expand unbounded ranges, just let the caller do it 2963 { 2964 *first_unparsed = expression_cstr+2; 2965 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2966 *final_result = ValueObject::eExpressionPathEndResultTypeUnboundedRange; 2967 return root; 2968 } 2969 } 2970 const char *separator_position = ::strchr(expression_cstr+1,'-'); 2971 const char *close_bracket_position = ::strchr(expression_cstr+1,']'); 2972 if (!close_bracket_position) // if there is no ], this is a syntax error 2973 { 2974 *first_unparsed = expression_cstr; 2975 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2976 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2977 return ValueObjectSP(); 2978 } 2979 if (!separator_position || separator_position > close_bracket_position) // if no separator, this is either [] or [N] 2980 { 2981 char *end = NULL; 2982 unsigned long index = ::strtoul (expression_cstr+1, &end, 0); 2983 if (!end || end != close_bracket_position) // if something weird is in our way return an error 2984 { 2985 *first_unparsed = expression_cstr; 2986 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2987 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2988 return ValueObjectSP(); 2989 } 2990 if (end - expression_cstr == 1) // if this is [], only return a valid value for arrays 2991 { 2992 if (root_clang_type_info.Test(eTypeIsArray)) 2993 { 2994 *first_unparsed = expression_cstr+2; 2995 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2996 *final_result = ValueObject::eExpressionPathEndResultTypeUnboundedRange; 2997 return root; 2998 } 2999 else 3000 { 3001 *first_unparsed = expression_cstr; 3002 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 3003 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3004 return ValueObjectSP(); 3005 } 3006 } 3007 // from here on we do have a valid index 3008 if (root_clang_type_info.Test(eTypeIsArray)) 3009 { 3010 ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true); 3011 if (!child_valobj_sp) 3012 child_valobj_sp = root->GetSyntheticArrayMemberFromArray(index, true); 3013 if (!child_valobj_sp) 3014 if (root->HasSyntheticValue() && root->GetSyntheticValue()->GetNumChildren() > index) 3015 child_valobj_sp = root->GetSyntheticValue()->GetChildAtIndex(index, true); 3016 if (child_valobj_sp) 3017 { 3018 root = child_valobj_sp; 3019 *first_unparsed = end+1; // skip ] 3020 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 3021 continue; 3022 } 3023 else 3024 { 3025 *first_unparsed = expression_cstr; 3026 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3027 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3028 return ValueObjectSP(); 3029 } 3030 } 3031 else if (root_clang_type_info.Test(eTypeIsPointer)) 3032 { 3033 if (*what_next == ValueObject::eExpressionPathAftermathDereference && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield 3034 pointee_clang_type_info.Test(eTypeIsScalar)) 3035 { 3036 Error error; 3037 root = root->Dereference(error); 3038 if (error.Fail() || !root.get()) 3039 { 3040 *first_unparsed = expression_cstr; 3041 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 3042 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3043 return ValueObjectSP(); 3044 } 3045 else 3046 { 3047 *what_next = eExpressionPathAftermathNothing; 3048 continue; 3049 } 3050 } 3051 else 3052 { 3053 if (root->GetClangType().GetMinimumLanguage() == eLanguageTypeObjC 3054 && pointee_clang_type_info.AllClear(eTypeIsPointer) 3055 && root->HasSyntheticValue() 3056 && options.m_no_synthetic_children == false) 3057 { 3058 root = root->GetSyntheticValue()->GetChildAtIndex(index, true); 3059 } 3060 else 3061 root = root->GetSyntheticArrayMemberFromPointer(index, true); 3062 if (!root.get()) 3063 { 3064 *first_unparsed = expression_cstr; 3065 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3066 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3067 return ValueObjectSP(); 3068 } 3069 else 3070 { 3071 *first_unparsed = end+1; // skip ] 3072 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 3073 continue; 3074 } 3075 } 3076 } 3077 else if (root_clang_type_info.Test(eTypeIsScalar)) 3078 { 3079 root = root->GetSyntheticBitFieldChild(index, index, true); 3080 if (!root.get()) 3081 { 3082 *first_unparsed = expression_cstr; 3083 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3084 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3085 return ValueObjectSP(); 3086 } 3087 else // we do not know how to expand members of bitfields, so we just return and let the caller do any further processing 3088 { 3089 *first_unparsed = end+1; // skip ] 3090 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 3091 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 3092 return root; 3093 } 3094 } 3095 else if (root_clang_type_info.Test(eTypeIsVector)) 3096 { 3097 root = root->GetChildAtIndex(index, true); 3098 if (!root.get()) 3099 { 3100 *first_unparsed = expression_cstr; 3101 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3102 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3103 return ValueObjectSP(); 3104 } 3105 else 3106 { 3107 *first_unparsed = end+1; // skip ] 3108 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 3109 continue; 3110 } 3111 } 3112 else if (options.m_no_synthetic_children == false) 3113 { 3114 if (root->HasSyntheticValue()) 3115 root = root->GetSyntheticValue(); 3116 else if (!root->IsSynthetic()) 3117 { 3118 *first_unparsed = expression_cstr; 3119 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 3120 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3121 return ValueObjectSP(); 3122 } 3123 // if we are here, then root itself is a synthetic VO.. should be good to go 3124 3125 if (!root.get()) 3126 { 3127 *first_unparsed = expression_cstr; 3128 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 3129 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3130 return ValueObjectSP(); 3131 } 3132 root = root->GetChildAtIndex(index, true); 3133 if (!root.get()) 3134 { 3135 *first_unparsed = expression_cstr; 3136 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3137 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3138 return ValueObjectSP(); 3139 } 3140 else 3141 { 3142 *first_unparsed = end+1; // skip ] 3143 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 3144 continue; 3145 } 3146 } 3147 else 3148 { 3149 *first_unparsed = expression_cstr; 3150 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3151 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3152 return ValueObjectSP(); 3153 } 3154 } 3155 else // we have a low and a high index 3156 { 3157 char *end = NULL; 3158 unsigned long index_lower = ::strtoul (expression_cstr+1, &end, 0); 3159 if (!end || end != separator_position) // if something weird is in our way return an error 3160 { 3161 *first_unparsed = expression_cstr; 3162 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3163 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3164 return ValueObjectSP(); 3165 } 3166 unsigned long index_higher = ::strtoul (separator_position+1, &end, 0); 3167 if (!end || end != close_bracket_position) // if something weird is in our way return an error 3168 { 3169 *first_unparsed = expression_cstr; 3170 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3171 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3172 return ValueObjectSP(); 3173 } 3174 if (index_lower > index_higher) // swap indices if required 3175 { 3176 unsigned long temp = index_lower; 3177 index_lower = index_higher; 3178 index_higher = temp; 3179 } 3180 if (root_clang_type_info.Test(eTypeIsScalar)) // expansion only works for scalars 3181 { 3182 root = root->GetSyntheticBitFieldChild(index_lower, index_higher, true); 3183 if (!root.get()) 3184 { 3185 *first_unparsed = expression_cstr; 3186 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3187 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3188 return ValueObjectSP(); 3189 } 3190 else 3191 { 3192 *first_unparsed = end+1; // skip ] 3193 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 3194 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 3195 return root; 3196 } 3197 } 3198 else if (root_clang_type_info.Test(eTypeIsPointer) && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield 3199 *what_next == ValueObject::eExpressionPathAftermathDereference && 3200 pointee_clang_type_info.Test(eTypeIsScalar)) 3201 { 3202 Error error; 3203 root = root->Dereference(error); 3204 if (error.Fail() || !root.get()) 3205 { 3206 *first_unparsed = expression_cstr; 3207 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 3208 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3209 return ValueObjectSP(); 3210 } 3211 else 3212 { 3213 *what_next = ValueObject::eExpressionPathAftermathNothing; 3214 continue; 3215 } 3216 } 3217 else 3218 { 3219 *first_unparsed = expression_cstr; 3220 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 3221 *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange; 3222 return root; 3223 } 3224 } 3225 break; 3226 } 3227 default: // some non-separator is in the way 3228 { 3229 *first_unparsed = expression_cstr; 3230 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3231 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3232 return ValueObjectSP(); 3233 break; 3234 } 3235 } 3236 } 3237 } 3238 3239 int 3240 ValueObject::ExpandArraySliceExpression(const char* expression_cstr, 3241 const char** first_unparsed, 3242 ValueObjectSP root, 3243 ValueObjectListSP& list, 3244 ExpressionPathScanEndReason* reason_to_stop, 3245 ExpressionPathEndResultType* final_result, 3246 const GetValueForExpressionPathOptions& options, 3247 ExpressionPathAftermath* what_next) 3248 { 3249 if (!root.get()) 3250 return 0; 3251 3252 *first_unparsed = expression_cstr; 3253 3254 while (true) 3255 { 3256 3257 const char* expression_cstr = *first_unparsed; // hide the top level expression_cstr 3258 3259 ClangASTType root_clang_type = root->GetClangType(); 3260 ClangASTType pointee_clang_type; 3261 Flags pointee_clang_type_info; 3262 Flags root_clang_type_info(root_clang_type.GetTypeInfo(&pointee_clang_type)); 3263 if (pointee_clang_type) 3264 pointee_clang_type_info.Reset(pointee_clang_type.GetTypeInfo()); 3265 3266 if (!expression_cstr || *expression_cstr == '\0') 3267 { 3268 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 3269 list->Append(root); 3270 return 1; 3271 } 3272 3273 switch (*expression_cstr) 3274 { 3275 case '[': 3276 { 3277 if (!root_clang_type_info.Test(eTypeIsArray) && !root_clang_type_info.Test(eTypeIsPointer)) // if this is not a T[] nor a T* 3278 { 3279 if (!root_clang_type_info.Test(eTypeIsScalar)) // if this is not even a scalar, this syntax is just plain wrong! 3280 { 3281 *first_unparsed = expression_cstr; 3282 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 3283 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3284 return 0; 3285 } 3286 else if (!options.m_allow_bitfields_syntax) // if this is a scalar, check that we can expand bitfields 3287 { 3288 *first_unparsed = expression_cstr; 3289 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 3290 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3291 return 0; 3292 } 3293 } 3294 if (*(expression_cstr+1) == ']') // if this is an unbounded range it only works for arrays 3295 { 3296 if (!root_clang_type_info.Test(eTypeIsArray)) 3297 { 3298 *first_unparsed = expression_cstr; 3299 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 3300 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3301 return 0; 3302 } 3303 else // expand this into list 3304 { 3305 const size_t max_index = root->GetNumChildren() - 1; 3306 for (size_t index = 0; index < max_index; index++) 3307 { 3308 ValueObjectSP child = 3309 root->GetChildAtIndex(index, true); 3310 list->Append(child); 3311 } 3312 *first_unparsed = expression_cstr+2; 3313 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3314 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3315 return max_index; // tell me number of items I added to the VOList 3316 } 3317 } 3318 const char *separator_position = ::strchr(expression_cstr+1,'-'); 3319 const char *close_bracket_position = ::strchr(expression_cstr+1,']'); 3320 if (!close_bracket_position) // if there is no ], this is a syntax error 3321 { 3322 *first_unparsed = expression_cstr; 3323 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3324 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3325 return 0; 3326 } 3327 if (!separator_position || separator_position > close_bracket_position) // if no separator, this is either [] or [N] 3328 { 3329 char *end = NULL; 3330 unsigned long index = ::strtoul (expression_cstr+1, &end, 0); 3331 if (!end || end != close_bracket_position) // if something weird is in our way return an error 3332 { 3333 *first_unparsed = expression_cstr; 3334 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3335 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3336 return 0; 3337 } 3338 if (end - expression_cstr == 1) // if this is [], only return a valid value for arrays 3339 { 3340 if (root_clang_type_info.Test(eTypeIsArray)) 3341 { 3342 const size_t max_index = root->GetNumChildren() - 1; 3343 for (size_t index = 0; index < max_index; index++) 3344 { 3345 ValueObjectSP child = 3346 root->GetChildAtIndex(index, true); 3347 list->Append(child); 3348 } 3349 *first_unparsed = expression_cstr+2; 3350 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3351 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3352 return max_index; // tell me number of items I added to the VOList 3353 } 3354 else 3355 { 3356 *first_unparsed = expression_cstr; 3357 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 3358 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3359 return 0; 3360 } 3361 } 3362 // from here on we do have a valid index 3363 if (root_clang_type_info.Test(eTypeIsArray)) 3364 { 3365 root = root->GetChildAtIndex(index, true); 3366 if (!root.get()) 3367 { 3368 *first_unparsed = expression_cstr; 3369 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3370 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3371 return 0; 3372 } 3373 else 3374 { 3375 list->Append(root); 3376 *first_unparsed = end+1; // skip ] 3377 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3378 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3379 return 1; 3380 } 3381 } 3382 else if (root_clang_type_info.Test(eTypeIsPointer)) 3383 { 3384 if (*what_next == ValueObject::eExpressionPathAftermathDereference && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield 3385 pointee_clang_type_info.Test(eTypeIsScalar)) 3386 { 3387 Error error; 3388 root = root->Dereference(error); 3389 if (error.Fail() || !root.get()) 3390 { 3391 *first_unparsed = expression_cstr; 3392 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 3393 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3394 return 0; 3395 } 3396 else 3397 { 3398 *what_next = eExpressionPathAftermathNothing; 3399 continue; 3400 } 3401 } 3402 else 3403 { 3404 root = root->GetSyntheticArrayMemberFromPointer(index, true); 3405 if (!root.get()) 3406 { 3407 *first_unparsed = expression_cstr; 3408 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3409 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3410 return 0; 3411 } 3412 else 3413 { 3414 list->Append(root); 3415 *first_unparsed = end+1; // skip ] 3416 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3417 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3418 return 1; 3419 } 3420 } 3421 } 3422 else /*if (ClangASTContext::IsScalarType(root_clang_type))*/ 3423 { 3424 root = root->GetSyntheticBitFieldChild(index, index, true); 3425 if (!root.get()) 3426 { 3427 *first_unparsed = expression_cstr; 3428 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3429 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3430 return 0; 3431 } 3432 else // we do not know how to expand members of bitfields, so we just return and let the caller do any further processing 3433 { 3434 list->Append(root); 3435 *first_unparsed = end+1; // skip ] 3436 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3437 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3438 return 1; 3439 } 3440 } 3441 } 3442 else // we have a low and a high index 3443 { 3444 char *end = NULL; 3445 unsigned long index_lower = ::strtoul (expression_cstr+1, &end, 0); 3446 if (!end || end != separator_position) // if something weird is in our way return an error 3447 { 3448 *first_unparsed = expression_cstr; 3449 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3450 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3451 return 0; 3452 } 3453 unsigned long index_higher = ::strtoul (separator_position+1, &end, 0); 3454 if (!end || end != close_bracket_position) // if something weird is in our way return an error 3455 { 3456 *first_unparsed = expression_cstr; 3457 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3458 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3459 return 0; 3460 } 3461 if (index_lower > index_higher) // swap indices if required 3462 { 3463 unsigned long temp = index_lower; 3464 index_lower = index_higher; 3465 index_higher = temp; 3466 } 3467 if (root_clang_type_info.Test(eTypeIsScalar)) // expansion only works for scalars 3468 { 3469 root = root->GetSyntheticBitFieldChild(index_lower, index_higher, true); 3470 if (!root.get()) 3471 { 3472 *first_unparsed = expression_cstr; 3473 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3474 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3475 return 0; 3476 } 3477 else 3478 { 3479 list->Append(root); 3480 *first_unparsed = end+1; // skip ] 3481 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3482 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3483 return 1; 3484 } 3485 } 3486 else if (root_clang_type_info.Test(eTypeIsPointer) && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield 3487 *what_next == ValueObject::eExpressionPathAftermathDereference && 3488 pointee_clang_type_info.Test(eTypeIsScalar)) 3489 { 3490 Error error; 3491 root = root->Dereference(error); 3492 if (error.Fail() || !root.get()) 3493 { 3494 *first_unparsed = expression_cstr; 3495 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 3496 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3497 return 0; 3498 } 3499 else 3500 { 3501 *what_next = ValueObject::eExpressionPathAftermathNothing; 3502 continue; 3503 } 3504 } 3505 else 3506 { 3507 for (unsigned long index = index_lower; 3508 index <= index_higher; index++) 3509 { 3510 ValueObjectSP child = 3511 root->GetChildAtIndex(index, true); 3512 list->Append(child); 3513 } 3514 *first_unparsed = end+1; 3515 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3516 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3517 return index_higher-index_lower+1; // tell me number of items I added to the VOList 3518 } 3519 } 3520 break; 3521 } 3522 default: // some non-[ separator, or something entirely wrong, is in the way 3523 { 3524 *first_unparsed = expression_cstr; 3525 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3526 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3527 return 0; 3528 break; 3529 } 3530 } 3531 } 3532 } 3533 3534 void 3535 ValueObject::LogValueObject (Log *log) 3536 { 3537 if (log) 3538 return LogValueObject (log, DumpValueObjectOptions::DefaultOptions()); 3539 } 3540 3541 void 3542 ValueObject::LogValueObject (Log *log, const DumpValueObjectOptions& options) 3543 { 3544 if (log) 3545 { 3546 StreamString s; 3547 Dump (s, options); 3548 if (s.GetSize()) 3549 log->PutCString(s.GetData()); 3550 } 3551 } 3552 3553 void 3554 ValueObject::Dump (Stream &s) 3555 { 3556 Dump (s, DumpValueObjectOptions::DefaultOptions()); 3557 } 3558 3559 void 3560 ValueObject::Dump (Stream &s, 3561 const DumpValueObjectOptions& options) 3562 { 3563 ValueObjectPrinter printer(this,&s,options); 3564 printer.PrintValueObject(); 3565 } 3566 3567 ValueObjectSP 3568 ValueObject::CreateConstantValue (const ConstString &name) 3569 { 3570 ValueObjectSP valobj_sp; 3571 3572 if (UpdateValueIfNeeded(false) && m_error.Success()) 3573 { 3574 ExecutionContext exe_ctx (GetExecutionContextRef()); 3575 3576 DataExtractor data; 3577 data.SetByteOrder (m_data.GetByteOrder()); 3578 data.SetAddressByteSize(m_data.GetAddressByteSize()); 3579 3580 if (IsBitfield()) 3581 { 3582 Value v(Scalar(GetValueAsUnsigned(UINT64_MAX))); 3583 m_error = v.GetValueAsData (&exe_ctx, data, 0, GetModule().get()); 3584 } 3585 else 3586 m_error = m_value.GetValueAsData (&exe_ctx, data, 0, GetModule().get()); 3587 3588 valobj_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), 3589 GetClangType(), 3590 name, 3591 data, 3592 GetAddressOf()); 3593 } 3594 3595 if (!valobj_sp) 3596 { 3597 ExecutionContext exe_ctx (GetExecutionContextRef()); 3598 valobj_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), m_error); 3599 } 3600 return valobj_sp; 3601 } 3602 3603 ValueObjectSP 3604 ValueObject::GetQualifiedRepresentationIfAvailable (lldb::DynamicValueType dynValue, 3605 bool synthValue) 3606 { 3607 ValueObjectSP result_sp(GetSP()); 3608 3609 switch (dynValue) 3610 { 3611 case lldb::eDynamicCanRunTarget: 3612 case lldb::eDynamicDontRunTarget: 3613 { 3614 if (!result_sp->IsDynamic()) 3615 { 3616 if (result_sp->GetDynamicValue(dynValue)) 3617 result_sp = result_sp->GetDynamicValue(dynValue); 3618 } 3619 } 3620 break; 3621 case lldb::eNoDynamicValues: 3622 { 3623 if (result_sp->IsDynamic()) 3624 { 3625 if (result_sp->GetStaticValue()) 3626 result_sp = result_sp->GetStaticValue(); 3627 } 3628 } 3629 break; 3630 } 3631 3632 if (synthValue) 3633 { 3634 if (!result_sp->IsSynthetic()) 3635 { 3636 if (result_sp->GetSyntheticValue()) 3637 result_sp = result_sp->GetSyntheticValue(); 3638 } 3639 } 3640 else 3641 { 3642 if (result_sp->IsSynthetic()) 3643 { 3644 if (result_sp->GetNonSyntheticValue()) 3645 result_sp = result_sp->GetNonSyntheticValue(); 3646 } 3647 } 3648 3649 return result_sp; 3650 } 3651 3652 lldb::addr_t 3653 ValueObject::GetCPPVTableAddress (AddressType &address_type) 3654 { 3655 ClangASTType pointee_type; 3656 ClangASTType this_type(GetClangType()); 3657 uint32_t type_info = this_type.GetTypeInfo(&pointee_type); 3658 if (type_info) 3659 { 3660 bool ptr_or_ref = false; 3661 if (type_info & (eTypeIsPointer | eTypeIsReference)) 3662 { 3663 ptr_or_ref = true; 3664 type_info = pointee_type.GetTypeInfo(); 3665 } 3666 3667 const uint32_t cpp_class = eTypeIsClass | eTypeIsCPlusPlus; 3668 if ((type_info & cpp_class) == cpp_class) 3669 { 3670 if (ptr_or_ref) 3671 { 3672 address_type = GetAddressTypeOfChildren(); 3673 return GetValueAsUnsigned(LLDB_INVALID_ADDRESS); 3674 } 3675 else 3676 return GetAddressOf (false, &address_type); 3677 } 3678 } 3679 3680 address_type = eAddressTypeInvalid; 3681 return LLDB_INVALID_ADDRESS; 3682 } 3683 3684 ValueObjectSP 3685 ValueObject::Dereference (Error &error) 3686 { 3687 if (m_deref_valobj) 3688 return m_deref_valobj->GetSP(); 3689 3690 const bool is_pointer_type = IsPointerType(); 3691 if (is_pointer_type) 3692 { 3693 bool omit_empty_base_classes = true; 3694 bool ignore_array_bounds = false; 3695 3696 std::string child_name_str; 3697 uint32_t child_byte_size = 0; 3698 int32_t child_byte_offset = 0; 3699 uint32_t child_bitfield_bit_size = 0; 3700 uint32_t child_bitfield_bit_offset = 0; 3701 bool child_is_base_class = false; 3702 bool child_is_deref_of_parent = false; 3703 const bool transparent_pointers = false; 3704 ClangASTType clang_type = GetClangType(); 3705 ClangASTType child_clang_type; 3706 3707 ExecutionContext exe_ctx (GetExecutionContextRef()); 3708 3709 child_clang_type = clang_type.GetChildClangTypeAtIndex (&exe_ctx, 3710 0, 3711 transparent_pointers, 3712 omit_empty_base_classes, 3713 ignore_array_bounds, 3714 child_name_str, 3715 child_byte_size, 3716 child_byte_offset, 3717 child_bitfield_bit_size, 3718 child_bitfield_bit_offset, 3719 child_is_base_class, 3720 child_is_deref_of_parent, 3721 this); 3722 if (child_clang_type && child_byte_size) 3723 { 3724 ConstString child_name; 3725 if (!child_name_str.empty()) 3726 child_name.SetCString (child_name_str.c_str()); 3727 3728 m_deref_valobj = new ValueObjectChild (*this, 3729 child_clang_type, 3730 child_name, 3731 child_byte_size, 3732 child_byte_offset, 3733 child_bitfield_bit_size, 3734 child_bitfield_bit_offset, 3735 child_is_base_class, 3736 child_is_deref_of_parent, 3737 eAddressTypeInvalid); 3738 } 3739 } 3740 3741 if (m_deref_valobj) 3742 { 3743 error.Clear(); 3744 return m_deref_valobj->GetSP(); 3745 } 3746 else 3747 { 3748 StreamString strm; 3749 GetExpressionPath(strm, true); 3750 3751 if (is_pointer_type) 3752 error.SetErrorStringWithFormat("dereference failed: (%s) %s", GetTypeName().AsCString("<invalid type>"), strm.GetString().c_str()); 3753 else 3754 error.SetErrorStringWithFormat("not a pointer type: (%s) %s", GetTypeName().AsCString("<invalid type>"), strm.GetString().c_str()); 3755 return ValueObjectSP(); 3756 } 3757 } 3758 3759 ValueObjectSP 3760 ValueObject::AddressOf (Error &error) 3761 { 3762 if (m_addr_of_valobj_sp) 3763 return m_addr_of_valobj_sp; 3764 3765 AddressType address_type = eAddressTypeInvalid; 3766 const bool scalar_is_load_address = false; 3767 addr_t addr = GetAddressOf (scalar_is_load_address, &address_type); 3768 error.Clear(); 3769 if (addr != LLDB_INVALID_ADDRESS) 3770 { 3771 switch (address_type) 3772 { 3773 case eAddressTypeInvalid: 3774 { 3775 StreamString expr_path_strm; 3776 GetExpressionPath(expr_path_strm, true); 3777 error.SetErrorStringWithFormat("'%s' is not in memory", expr_path_strm.GetString().c_str()); 3778 } 3779 break; 3780 3781 case eAddressTypeFile: 3782 case eAddressTypeLoad: 3783 case eAddressTypeHost: 3784 { 3785 ClangASTType clang_type = GetClangType(); 3786 if (clang_type) 3787 { 3788 std::string name (1, '&'); 3789 name.append (m_name.AsCString("")); 3790 ExecutionContext exe_ctx (GetExecutionContextRef()); 3791 m_addr_of_valobj_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), 3792 clang_type.GetPointerType(), 3793 ConstString (name.c_str()), 3794 addr, 3795 eAddressTypeInvalid, 3796 m_data.GetAddressByteSize()); 3797 } 3798 } 3799 break; 3800 } 3801 } 3802 else 3803 { 3804 StreamString expr_path_strm; 3805 GetExpressionPath(expr_path_strm, true); 3806 error.SetErrorStringWithFormat("'%s' doesn't have a valid address", expr_path_strm.GetString().c_str()); 3807 } 3808 3809 return m_addr_of_valobj_sp; 3810 } 3811 3812 ValueObjectSP 3813 ValueObject::Cast (const ClangASTType &clang_ast_type) 3814 { 3815 return ValueObjectCast::Create (*this, GetName(), clang_ast_type); 3816 } 3817 3818 ValueObjectSP 3819 ValueObject::CastPointerType (const char *name, ClangASTType &clang_ast_type) 3820 { 3821 ValueObjectSP valobj_sp; 3822 AddressType address_type; 3823 addr_t ptr_value = GetPointerValue (&address_type); 3824 3825 if (ptr_value != LLDB_INVALID_ADDRESS) 3826 { 3827 Address ptr_addr (ptr_value); 3828 ExecutionContext exe_ctx (GetExecutionContextRef()); 3829 valobj_sp = ValueObjectMemory::Create (exe_ctx.GetBestExecutionContextScope(), 3830 name, 3831 ptr_addr, 3832 clang_ast_type); 3833 } 3834 return valobj_sp; 3835 } 3836 3837 ValueObjectSP 3838 ValueObject::CastPointerType (const char *name, TypeSP &type_sp) 3839 { 3840 ValueObjectSP valobj_sp; 3841 AddressType address_type; 3842 addr_t ptr_value = GetPointerValue (&address_type); 3843 3844 if (ptr_value != LLDB_INVALID_ADDRESS) 3845 { 3846 Address ptr_addr (ptr_value); 3847 ExecutionContext exe_ctx (GetExecutionContextRef()); 3848 valobj_sp = ValueObjectMemory::Create (exe_ctx.GetBestExecutionContextScope(), 3849 name, 3850 ptr_addr, 3851 type_sp); 3852 } 3853 return valobj_sp; 3854 } 3855 3856 ValueObject::EvaluationPoint::EvaluationPoint () : 3857 m_mod_id(), 3858 m_exe_ctx_ref(), 3859 m_needs_update (true) 3860 { 3861 } 3862 3863 ValueObject::EvaluationPoint::EvaluationPoint (ExecutionContextScope *exe_scope, bool use_selected): 3864 m_mod_id(), 3865 m_exe_ctx_ref(), 3866 m_needs_update (true) 3867 { 3868 ExecutionContext exe_ctx(exe_scope); 3869 TargetSP target_sp (exe_ctx.GetTargetSP()); 3870 if (target_sp) 3871 { 3872 m_exe_ctx_ref.SetTargetSP (target_sp); 3873 ProcessSP process_sp (exe_ctx.GetProcessSP()); 3874 if (!process_sp) 3875 process_sp = target_sp->GetProcessSP(); 3876 3877 if (process_sp) 3878 { 3879 m_mod_id = process_sp->GetModID(); 3880 m_exe_ctx_ref.SetProcessSP (process_sp); 3881 3882 ThreadSP thread_sp (exe_ctx.GetThreadSP()); 3883 3884 if (!thread_sp) 3885 { 3886 if (use_selected) 3887 thread_sp = process_sp->GetThreadList().GetSelectedThread(); 3888 } 3889 3890 if (thread_sp) 3891 { 3892 m_exe_ctx_ref.SetThreadSP(thread_sp); 3893 3894 StackFrameSP frame_sp (exe_ctx.GetFrameSP()); 3895 if (!frame_sp) 3896 { 3897 if (use_selected) 3898 frame_sp = thread_sp->GetSelectedFrame(); 3899 } 3900 if (frame_sp) 3901 m_exe_ctx_ref.SetFrameSP(frame_sp); 3902 } 3903 } 3904 } 3905 } 3906 3907 ValueObject::EvaluationPoint::EvaluationPoint (const ValueObject::EvaluationPoint &rhs) : 3908 m_mod_id(), 3909 m_exe_ctx_ref(rhs.m_exe_ctx_ref), 3910 m_needs_update (true) 3911 { 3912 } 3913 3914 ValueObject::EvaluationPoint::~EvaluationPoint () 3915 { 3916 } 3917 3918 // This function checks the EvaluationPoint against the current process state. If the current 3919 // state matches the evaluation point, or the evaluation point is already invalid, then we return 3920 // false, meaning "no change". If the current state is different, we update our state, and return 3921 // true meaning "yes, change". If we did see a change, we also set m_needs_update to true, so 3922 // future calls to NeedsUpdate will return true. 3923 // exe_scope will be set to the current execution context scope. 3924 3925 bool 3926 ValueObject::EvaluationPoint::SyncWithProcessState() 3927 { 3928 3929 // Start with the target, if it is NULL, then we're obviously not going to get any further: 3930 const bool thread_and_frame_only_if_stopped = true; 3931 ExecutionContext exe_ctx(m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped)); 3932 3933 if (exe_ctx.GetTargetPtr() == NULL) 3934 return false; 3935 3936 // If we don't have a process nothing can change. 3937 Process *process = exe_ctx.GetProcessPtr(); 3938 if (process == NULL) 3939 return false; 3940 3941 // If our stop id is the current stop ID, nothing has changed: 3942 ProcessModID current_mod_id = process->GetModID(); 3943 3944 // If the current stop id is 0, either we haven't run yet, or the process state has been cleared. 3945 // In either case, we aren't going to be able to sync with the process state. 3946 if (current_mod_id.GetStopID() == 0) 3947 return false; 3948 3949 bool changed = false; 3950 const bool was_valid = m_mod_id.IsValid(); 3951 if (was_valid) 3952 { 3953 if (m_mod_id == current_mod_id) 3954 { 3955 // Everything is already up to date in this object, no need to 3956 // update the execution context scope. 3957 changed = false; 3958 } 3959 else 3960 { 3961 m_mod_id = current_mod_id; 3962 m_needs_update = true; 3963 changed = true; 3964 } 3965 } 3966 3967 // Now re-look up the thread and frame in case the underlying objects have gone away & been recreated. 3968 // That way we'll be sure to return a valid exe_scope. 3969 // If we used to have a thread or a frame but can't find it anymore, then mark ourselves as invalid. 3970 3971 if (m_exe_ctx_ref.HasThreadRef()) 3972 { 3973 ThreadSP thread_sp (m_exe_ctx_ref.GetThreadSP()); 3974 if (thread_sp) 3975 { 3976 if (m_exe_ctx_ref.HasFrameRef()) 3977 { 3978 StackFrameSP frame_sp (m_exe_ctx_ref.GetFrameSP()); 3979 if (!frame_sp) 3980 { 3981 // We used to have a frame, but now it is gone 3982 SetInvalid(); 3983 changed = was_valid; 3984 } 3985 } 3986 } 3987 else 3988 { 3989 // We used to have a thread, but now it is gone 3990 SetInvalid(); 3991 changed = was_valid; 3992 } 3993 3994 } 3995 return changed; 3996 } 3997 3998 void 3999 ValueObject::EvaluationPoint::SetUpdated () 4000 { 4001 ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP()); 4002 if (process_sp) 4003 m_mod_id = process_sp->GetModID(); 4004 m_needs_update = false; 4005 } 4006 4007 4008 4009 void 4010 ValueObject::ClearUserVisibleData(uint32_t clear_mask) 4011 { 4012 if ((clear_mask & eClearUserVisibleDataItemsValue) == eClearUserVisibleDataItemsValue) 4013 m_value_str.clear(); 4014 4015 if ((clear_mask & eClearUserVisibleDataItemsLocation) == eClearUserVisibleDataItemsLocation) 4016 m_location_str.clear(); 4017 4018 if ((clear_mask & eClearUserVisibleDataItemsSummary) == eClearUserVisibleDataItemsSummary) 4019 m_summary_str.clear(); 4020 4021 if ((clear_mask & eClearUserVisibleDataItemsDescription) == eClearUserVisibleDataItemsDescription) 4022 m_object_desc_str.clear(); 4023 4024 if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == eClearUserVisibleDataItemsSyntheticChildren) 4025 { 4026 if (m_synthetic_value) 4027 m_synthetic_value = NULL; 4028 } 4029 4030 if ((clear_mask & eClearUserVisibleDataItemsValidator) == eClearUserVisibleDataItemsValidator) 4031 m_validation_result.reset(); 4032 } 4033 4034 SymbolContextScope * 4035 ValueObject::GetSymbolContextScope() 4036 { 4037 if (m_parent) 4038 { 4039 if (!m_parent->IsPointerOrReferenceType()) 4040 return m_parent->GetSymbolContextScope(); 4041 } 4042 return NULL; 4043 } 4044 4045 lldb::ValueObjectSP 4046 ValueObject::CreateValueObjectFromExpression (const char* name, 4047 const char* expression, 4048 const ExecutionContext& exe_ctx) 4049 { 4050 return CreateValueObjectFromExpression(name, expression, exe_ctx, EvaluateExpressionOptions()); 4051 } 4052 4053 4054 lldb::ValueObjectSP 4055 ValueObject::CreateValueObjectFromExpression (const char* name, 4056 const char* expression, 4057 const ExecutionContext& exe_ctx, 4058 const EvaluateExpressionOptions& options) 4059 { 4060 lldb::ValueObjectSP retval_sp; 4061 lldb::TargetSP target_sp(exe_ctx.GetTargetSP()); 4062 if (!target_sp) 4063 return retval_sp; 4064 if (!expression || !*expression) 4065 return retval_sp; 4066 target_sp->EvaluateExpression (expression, 4067 exe_ctx.GetFrameSP().get(), 4068 retval_sp, 4069 options); 4070 if (retval_sp && name && *name) 4071 retval_sp->SetName(ConstString(name)); 4072 return retval_sp; 4073 } 4074 4075 lldb::ValueObjectSP 4076 ValueObject::CreateValueObjectFromAddress (const char* name, 4077 uint64_t address, 4078 const ExecutionContext& exe_ctx, 4079 ClangASTType type) 4080 { 4081 if (type) 4082 { 4083 ClangASTType pointer_type(type.GetPointerType()); 4084 if (pointer_type) 4085 { 4086 lldb::DataBufferSP buffer(new lldb_private::DataBufferHeap(&address,sizeof(lldb::addr_t))); 4087 lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), 4088 pointer_type, 4089 ConstString(name), 4090 buffer, 4091 exe_ctx.GetByteOrder(), 4092 exe_ctx.GetAddressByteSize())); 4093 if (ptr_result_valobj_sp) 4094 { 4095 ptr_result_valobj_sp->GetValue().SetValueType(Value::eValueTypeLoadAddress); 4096 Error err; 4097 ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err); 4098 if (ptr_result_valobj_sp && name && *name) 4099 ptr_result_valobj_sp->SetName(ConstString(name)); 4100 } 4101 return ptr_result_valobj_sp; 4102 } 4103 } 4104 return lldb::ValueObjectSP(); 4105 } 4106 4107 lldb::ValueObjectSP 4108 ValueObject::CreateValueObjectFromData (const char* name, 4109 const DataExtractor& data, 4110 const ExecutionContext& exe_ctx, 4111 ClangASTType type) 4112 { 4113 lldb::ValueObjectSP new_value_sp; 4114 new_value_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), 4115 type, 4116 ConstString(name), 4117 data, 4118 LLDB_INVALID_ADDRESS); 4119 new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad); 4120 if (new_value_sp && name && *name) 4121 new_value_sp->SetName(ConstString(name)); 4122 return new_value_sp; 4123 } 4124 4125 ModuleSP 4126 ValueObject::GetModule () 4127 { 4128 ValueObject* root(GetRoot()); 4129 if (root != this) 4130 return root->GetModule(); 4131 return lldb::ModuleSP(); 4132 } 4133 4134 ValueObject* 4135 ValueObject::GetRoot () 4136 { 4137 if (m_root) 4138 return m_root; 4139 return (m_root = FollowParentChain( [] (ValueObject* vo) -> bool { 4140 return (vo->m_parent != nullptr); 4141 })); 4142 } 4143 4144 ValueObject* 4145 ValueObject::FollowParentChain (std::function<bool(ValueObject*)> f) 4146 { 4147 ValueObject* vo = this; 4148 while (vo) 4149 { 4150 if (f(vo) == false) 4151 break; 4152 vo = vo->m_parent; 4153 } 4154 return vo; 4155 } 4156 4157 AddressType 4158 ValueObject::GetAddressTypeOfChildren() 4159 { 4160 if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) 4161 { 4162 ValueObject* root(GetRoot()); 4163 if (root != this) 4164 return root->GetAddressTypeOfChildren(); 4165 } 4166 return m_address_type_of_ptr_or_ref_children; 4167 } 4168 4169 lldb::DynamicValueType 4170 ValueObject::GetDynamicValueType () 4171 { 4172 ValueObject* with_dv_info = this; 4173 while (with_dv_info) 4174 { 4175 if (with_dv_info->HasDynamicValueTypeInfo()) 4176 return with_dv_info->GetDynamicValueTypeImpl(); 4177 with_dv_info = with_dv_info->m_parent; 4178 } 4179 return lldb::eNoDynamicValues; 4180 } 4181 4182 lldb::Format 4183 ValueObject::GetFormat () const 4184 { 4185 const ValueObject* with_fmt_info = this; 4186 while (with_fmt_info) 4187 { 4188 if (with_fmt_info->m_format != lldb::eFormatDefault) 4189 return with_fmt_info->m_format; 4190 with_fmt_info = with_fmt_info->m_parent; 4191 } 4192 return m_format; 4193 } 4194 4195 lldb::LanguageType 4196 ValueObject::GetPreferredDisplayLanguage () 4197 { 4198 lldb::LanguageType type = m_preferred_display_language; 4199 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 4200 { 4201 if (GetRoot()) 4202 { 4203 if (GetRoot() == this) 4204 { 4205 if (StackFrameSP frame_sp = GetFrameSP()) 4206 { 4207 const SymbolContext& sc(frame_sp->GetSymbolContext(eSymbolContextCompUnit)); 4208 if (CompileUnit* cu = sc.comp_unit) 4209 type = cu->GetLanguage(); 4210 } 4211 } 4212 else 4213 { 4214 type = GetRoot()->GetPreferredDisplayLanguage(); 4215 } 4216 } 4217 } 4218 return (m_preferred_display_language = type); // only compute it once 4219 } 4220 4221 void 4222 ValueObject::SetPreferredDisplayLanguage (lldb::LanguageType lt) 4223 { 4224 m_preferred_display_language = lt; 4225 } 4226 4227 bool 4228 ValueObject::CanProvideValue () 4229 { 4230 // we need to support invalid types as providers of values because some bare-board 4231 // debugging scenarios have no notion of types, but still manage to have raw numeric 4232 // values for things like registers. sigh. 4233 const ClangASTType &type(GetClangType()); 4234 return (false == type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue)); 4235 } 4236 4237 bool 4238 ValueObject::IsChecksumEmpty () 4239 { 4240 return m_value_checksum.empty(); 4241 } 4242 4243 ValueObjectSP 4244 ValueObject::Persist () 4245 { 4246 if (!UpdateValueIfNeeded()) 4247 return nullptr; 4248 4249 TargetSP target_sp(GetTargetSP()); 4250 if (!target_sp) 4251 return nullptr; 4252 4253 ConstString name(target_sp->GetPersistentVariables().GetNextPersistentVariableName()); 4254 4255 ClangExpressionVariableSP clang_var_sp(new ClangExpressionVariable(target_sp.get(), GetValue(), name)); 4256 if (clang_var_sp) 4257 { 4258 clang_var_sp->m_live_sp = clang_var_sp->m_frozen_sp; 4259 clang_var_sp->m_flags |= ClangExpressionVariable::EVIsProgramReference; 4260 target_sp->GetPersistentVariables().AddVariable(clang_var_sp); 4261 } 4262 4263 return clang_var_sp->GetValueObject(); 4264 } 4265 4266 bool 4267 ValueObject::IsSyntheticChildrenGenerated () 4268 { 4269 return m_is_synthetic_children_generated; 4270 } 4271 4272 void 4273 ValueObject::SetSyntheticChildrenGenerated (bool b) 4274 { 4275 m_is_synthetic_children_generated = b; 4276 } 4277