1 //===-- ValueObject.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Core/ValueObject.h" 10 11 #include "lldb/Core/Address.h" 12 #include "lldb/Core/Module.h" 13 #include "lldb/Core/ValueObjectCast.h" 14 #include "lldb/Core/ValueObjectChild.h" 15 #include "lldb/Core/ValueObjectConstResult.h" 16 #include "lldb/Core/ValueObjectDynamicValue.h" 17 #include "lldb/Core/ValueObjectMemory.h" 18 #include "lldb/Core/ValueObjectSyntheticFilter.h" 19 #include "lldb/DataFormatters/DataVisualization.h" 20 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 21 #include "lldb/DataFormatters/FormatManager.h" 22 #include "lldb/DataFormatters/StringPrinter.h" 23 #include "lldb/DataFormatters/TypeFormat.h" 24 #include "lldb/DataFormatters/TypeSummary.h" 25 #include "lldb/DataFormatters/ValueObjectPrinter.h" 26 #include "lldb/Expression/ExpressionVariable.h" 27 #include "lldb/Host/Config.h" 28 #include "lldb/Symbol/CompileUnit.h" 29 #include "lldb/Symbol/CompilerType.h" 30 #include "lldb/Symbol/Declaration.h" 31 #include "lldb/Symbol/SymbolContext.h" 32 #include "lldb/Symbol/Type.h" 33 #include "lldb/Symbol/Variable.h" 34 #include "lldb/Target/ExecutionContext.h" 35 #include "lldb/Target/Language.h" 36 #include "lldb/Target/LanguageRuntime.h" 37 #include "lldb/Target/Process.h" 38 #include "lldb/Target/StackFrame.h" 39 #include "lldb/Target/Target.h" 40 #include "lldb/Target/Thread.h" 41 #include "lldb/Target/ThreadList.h" 42 #include "lldb/Utility/DataBuffer.h" 43 #include "lldb/Utility/DataBufferHeap.h" 44 #include "lldb/Utility/Flags.h" 45 #include "lldb/Utility/Log.h" 46 #include "lldb/Utility/Logging.h" 47 #include "lldb/Utility/Scalar.h" 48 #include "lldb/Utility/Stream.h" 49 #include "lldb/Utility/StreamString.h" 50 #include "lldb/lldb-private-types.h" 51 52 #include "llvm/Support/Compiler.h" 53 54 #include <algorithm> 55 #include <cstdint> 56 #include <cstdlib> 57 #include <memory> 58 #include <tuple> 59 60 #include <assert.h> 61 #include <inttypes.h> 62 #include <stdio.h> 63 #include <string.h> 64 65 namespace lldb_private { 66 class ExecutionContextScope; 67 } 68 namespace lldb_private { 69 class SymbolContextScope; 70 } 71 72 using namespace lldb; 73 using namespace lldb_private; 74 75 static user_id_t g_value_obj_uid = 0; 76 77 // ValueObject constructor 78 ValueObject::ValueObject(ValueObject &parent) 79 : UserID(++g_value_obj_uid), // Unique identifier for every value object 80 m_parent(&parent), m_root(nullptr), 81 m_update_point(parent.GetUpdatePoint()), m_name(), m_data(), m_value(), 82 m_error(), m_value_str(), m_old_value_str(), m_location_str(), 83 m_summary_str(), m_object_desc_str(), m_manager(parent.GetManager()), 84 m_children(), m_synthetic_children(), m_dynamic_value(nullptr), 85 m_synthetic_value(nullptr), m_deref_valobj(nullptr), 86 m_format(eFormatDefault), m_last_format(eFormatDefault), 87 m_last_format_mgr_revision(0), m_type_summary_sp(), m_type_format_sp(), 88 m_synthetic_children_sp(), m_user_id_of_forced_summary(), 89 m_address_type_of_ptr_or_ref_children(eAddressTypeInvalid), 90 m_value_checksum(), 91 m_preferred_display_language(lldb::eLanguageTypeUnknown), 92 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 93 m_children_count_valid(false), m_old_value_valid(false), 94 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 95 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 96 m_is_getting_summary(false), 97 m_did_calculate_complete_objc_class_type(false), 98 m_is_synthetic_children_generated( 99 parent.m_is_synthetic_children_generated) { 100 m_data.SetByteOrder(parent.GetDataExtractor().GetByteOrder()); 101 m_data.SetAddressByteSize(parent.GetDataExtractor().GetAddressByteSize()); 102 m_manager->ManageObject(this); 103 } 104 105 // ValueObject constructor 106 ValueObject::ValueObject(ExecutionContextScope *exe_scope, 107 ValueObjectManager &manager, 108 AddressType child_ptr_or_ref_addr_type) 109 : UserID(++g_value_obj_uid), // Unique identifier for every value object 110 m_parent(nullptr), m_root(nullptr), m_update_point(exe_scope), m_name(), 111 m_data(), m_value(), m_error(), m_value_str(), m_old_value_str(), 112 m_location_str(), m_summary_str(), m_object_desc_str(), 113 m_manager(&manager), m_children(), m_synthetic_children(), 114 m_dynamic_value(nullptr), m_synthetic_value(nullptr), 115 m_deref_valobj(nullptr), m_format(eFormatDefault), 116 m_last_format(eFormatDefault), m_last_format_mgr_revision(0), 117 m_type_summary_sp(), m_type_format_sp(), m_synthetic_children_sp(), 118 m_user_id_of_forced_summary(), 119 m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type), 120 m_value_checksum(), 121 m_preferred_display_language(lldb::eLanguageTypeUnknown), 122 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 123 m_children_count_valid(false), m_old_value_valid(false), 124 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 125 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 126 m_is_getting_summary(false), 127 m_did_calculate_complete_objc_class_type(false), 128 m_is_synthetic_children_generated(false) { 129 if (exe_scope) { 130 TargetSP target_sp(exe_scope->CalculateTarget()); 131 if (target_sp) { 132 const ArchSpec &arch = target_sp->GetArchitecture(); 133 m_data.SetByteOrder(arch.GetByteOrder()); 134 m_data.SetAddressByteSize(arch.GetAddressByteSize()); 135 } 136 } 137 m_manager->ManageObject(this); 138 } 139 140 // Destructor 141 ValueObject::~ValueObject() {} 142 143 void ValueObject::UpdateChildrenAddressType() { 144 Value::ValueType value_type = m_value.GetValueType(); 145 ExecutionContext exe_ctx(GetExecutionContextRef()); 146 Process *process = exe_ctx.GetProcessPtr(); 147 const bool process_is_alive = process && process->IsAlive(); 148 const uint32_t type_info = GetCompilerType().GetTypeInfo(); 149 const bool is_pointer_or_ref = 150 (type_info & (lldb::eTypeIsPointer | lldb::eTypeIsReference)) != 0; 151 152 switch (value_type) { 153 case Value::eValueTypeFileAddress: 154 // If this type is a pointer, then its children will be considered load 155 // addresses if the pointer or reference is dereferenced, but only if 156 // the process is alive. 157 // 158 // There could be global variables like in the following code: 159 // struct LinkedListNode { Foo* foo; LinkedListNode* next; }; 160 // Foo g_foo1; 161 // Foo g_foo2; 162 // LinkedListNode g_second_node = { &g_foo2, NULL }; 163 // LinkedListNode g_first_node = { &g_foo1, &g_second_node }; 164 // 165 // When we aren't running, we should be able to look at these variables 166 // using the "target variable" command. Children of the "g_first_node" 167 // always will be of the same address type as the parent. But children 168 // of the "next" member of LinkedListNode will become load addresses if 169 // we have a live process, or remain a file address if it was a file 170 // address. 171 if (process_is_alive && is_pointer_or_ref) 172 SetAddressTypeOfChildren(eAddressTypeLoad); 173 else 174 SetAddressTypeOfChildren(eAddressTypeFile); 175 break; 176 case Value::eValueTypeHostAddress: 177 // Same as above for load addresses, except children of pointer or refs 178 // are always load addresses. Host addresses are used to store freeze 179 // dried variables. If this type is a struct, the entire struct 180 // contents will be copied into the heap of the 181 // LLDB process, but we do not currently follow any pointers. 182 if (is_pointer_or_ref) 183 SetAddressTypeOfChildren(eAddressTypeLoad); 184 else 185 SetAddressTypeOfChildren(eAddressTypeHost); 186 break; 187 case Value::eValueTypeLoadAddress: 188 case Value::eValueTypeScalar: 189 case Value::eValueTypeVector: 190 SetAddressTypeOfChildren(eAddressTypeLoad); 191 break; 192 } 193 } 194 195 bool ValueObject::UpdateValueIfNeeded(bool update_format) { 196 197 bool did_change_formats = false; 198 199 if (update_format) 200 did_change_formats = UpdateFormatsIfNeeded(); 201 202 // If this is a constant value, then our success is predicated on whether we 203 // have an error or not 204 if (GetIsConstant()) { 205 // if you are constant, things might still have changed behind your back 206 // (e.g. you are a frozen object and things have changed deeper than you 207 // cared to freeze-dry yourself) in this case, your value has not changed, 208 // but "computed" entries might have, so you might now have a different 209 // summary, or a different object description. clear these so we will 210 // recompute them 211 if (update_format && !did_change_formats) 212 ClearUserVisibleData(eClearUserVisibleDataItemsSummary | 213 eClearUserVisibleDataItemsDescription); 214 return m_error.Success(); 215 } 216 217 bool first_update = IsChecksumEmpty(); 218 219 if (NeedsUpdating()) { 220 m_update_point.SetUpdated(); 221 222 // Save the old value using swap to avoid a string copy which also will 223 // clear our m_value_str 224 if (m_value_str.empty()) { 225 m_old_value_valid = false; 226 } else { 227 m_old_value_valid = true; 228 m_old_value_str.swap(m_value_str); 229 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 230 } 231 232 ClearUserVisibleData(); 233 234 if (IsInScope()) { 235 const bool value_was_valid = GetValueIsValid(); 236 SetValueDidChange(false); 237 238 m_error.Clear(); 239 240 // Call the pure virtual function to update the value 241 242 bool need_compare_checksums = false; 243 llvm::SmallVector<uint8_t, 16> old_checksum; 244 245 if (!first_update && CanProvideValue()) { 246 need_compare_checksums = true; 247 old_checksum.resize(m_value_checksum.size()); 248 std::copy(m_value_checksum.begin(), m_value_checksum.end(), 249 old_checksum.begin()); 250 } 251 252 bool success = UpdateValue(); 253 254 SetValueIsValid(success); 255 256 if (success) { 257 UpdateChildrenAddressType(); 258 const uint64_t max_checksum_size = 128; 259 m_data.Checksum(m_value_checksum, max_checksum_size); 260 } else { 261 need_compare_checksums = false; 262 m_value_checksum.clear(); 263 } 264 265 assert(!need_compare_checksums || 266 (!old_checksum.empty() && !m_value_checksum.empty())); 267 268 if (first_update) 269 SetValueDidChange(false); 270 else if (!m_value_did_change && !success) { 271 // The value wasn't gotten successfully, so we mark this as changed if 272 // the value used to be valid and now isn't 273 SetValueDidChange(value_was_valid); 274 } else if (need_compare_checksums) { 275 SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0], 276 m_value_checksum.size())); 277 } 278 279 } else { 280 m_error.SetErrorString("out of scope"); 281 } 282 } 283 return m_error.Success(); 284 } 285 286 bool ValueObject::UpdateFormatsIfNeeded() { 287 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_DATAFORMATTERS)); 288 LLDB_LOGF(log, 289 "[%s %p] checking for FormatManager revisions. ValueObject " 290 "rev: %d - Global rev: %d", 291 GetName().GetCString(), static_cast<void *>(this), 292 m_last_format_mgr_revision, 293 DataVisualization::GetCurrentRevision()); 294 295 bool any_change = false; 296 297 if ((m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) { 298 m_last_format_mgr_revision = DataVisualization::GetCurrentRevision(); 299 any_change = true; 300 301 SetValueFormat(DataVisualization::GetFormat(*this, eNoDynamicValues)); 302 SetSummaryFormat( 303 DataVisualization::GetSummaryFormat(*this, GetDynamicValueType())); 304 #if LLDB_ENABLE_PYTHON 305 SetSyntheticChildren( 306 DataVisualization::GetSyntheticChildren(*this, GetDynamicValueType())); 307 #endif 308 } 309 310 return any_change; 311 } 312 313 void ValueObject::SetNeedsUpdate() { 314 m_update_point.SetNeedsUpdate(); 315 // We have to clear the value string here so ConstResult children will notice 316 // if their values are changed by hand (i.e. with SetValueAsCString). 317 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 318 } 319 320 void ValueObject::ClearDynamicTypeInformation() { 321 m_children_count_valid = false; 322 m_did_calculate_complete_objc_class_type = false; 323 m_last_format_mgr_revision = 0; 324 m_override_type = CompilerType(); 325 SetValueFormat(lldb::TypeFormatImplSP()); 326 SetSummaryFormat(lldb::TypeSummaryImplSP()); 327 SetSyntheticChildren(lldb::SyntheticChildrenSP()); 328 } 329 330 CompilerType ValueObject::MaybeCalculateCompleteType() { 331 CompilerType compiler_type(GetCompilerTypeImpl()); 332 333 if (m_did_calculate_complete_objc_class_type) { 334 if (m_override_type.IsValid()) 335 return m_override_type; 336 else 337 return compiler_type; 338 } 339 340 m_did_calculate_complete_objc_class_type = true; 341 342 ProcessSP process_sp( 343 GetUpdatePoint().GetExecutionContextRef().GetProcessSP()); 344 345 if (!process_sp) 346 return compiler_type; 347 348 if (auto *runtime = 349 process_sp->GetLanguageRuntime(GetObjectRuntimeLanguage())) { 350 if (llvm::Optional<CompilerType> complete_type = 351 runtime->GetRuntimeType(compiler_type)) { 352 m_override_type = complete_type.getValue(); 353 if (m_override_type.IsValid()) 354 return m_override_type; 355 } 356 } 357 return compiler_type; 358 } 359 360 CompilerType ValueObject::GetCompilerType() { 361 return MaybeCalculateCompleteType(); 362 } 363 364 TypeImpl ValueObject::GetTypeImpl() { return TypeImpl(GetCompilerType()); } 365 366 DataExtractor &ValueObject::GetDataExtractor() { 367 UpdateValueIfNeeded(false); 368 return m_data; 369 } 370 371 const Status &ValueObject::GetError() { 372 UpdateValueIfNeeded(false); 373 return m_error; 374 } 375 376 ConstString ValueObject::GetName() const { return m_name; } 377 378 const char *ValueObject::GetLocationAsCString() { 379 return GetLocationAsCStringImpl(m_value, m_data); 380 } 381 382 const char *ValueObject::GetLocationAsCStringImpl(const Value &value, 383 const DataExtractor &data) { 384 if (UpdateValueIfNeeded(false)) { 385 if (m_location_str.empty()) { 386 StreamString sstr; 387 388 Value::ValueType value_type = value.GetValueType(); 389 390 switch (value_type) { 391 case Value::eValueTypeScalar: 392 case Value::eValueTypeVector: 393 if (value.GetContextType() == Value::eContextTypeRegisterInfo) { 394 RegisterInfo *reg_info = value.GetRegisterInfo(); 395 if (reg_info) { 396 if (reg_info->name) 397 m_location_str = reg_info->name; 398 else if (reg_info->alt_name) 399 m_location_str = reg_info->alt_name; 400 if (m_location_str.empty()) 401 m_location_str = (reg_info->encoding == lldb::eEncodingVector) 402 ? "vector" 403 : "scalar"; 404 } 405 } 406 if (m_location_str.empty()) 407 m_location_str = 408 (value_type == Value::eValueTypeVector) ? "vector" : "scalar"; 409 break; 410 411 case Value::eValueTypeLoadAddress: 412 case Value::eValueTypeFileAddress: 413 case Value::eValueTypeHostAddress: { 414 uint32_t addr_nibble_size = data.GetAddressByteSize() * 2; 415 sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, 416 value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS)); 417 m_location_str = std::string(sstr.GetString()); 418 } break; 419 } 420 } 421 } 422 return m_location_str.c_str(); 423 } 424 425 Value &ValueObject::GetValue() { return m_value; } 426 427 const Value &ValueObject::GetValue() const { return m_value; } 428 429 bool ValueObject::ResolveValue(Scalar &scalar) { 430 if (UpdateValueIfNeeded( 431 false)) // make sure that you are up to date before returning anything 432 { 433 ExecutionContext exe_ctx(GetExecutionContextRef()); 434 Value tmp_value(m_value); 435 scalar = tmp_value.ResolveValue(&exe_ctx); 436 if (scalar.IsValid()) { 437 const uint32_t bitfield_bit_size = GetBitfieldBitSize(); 438 if (bitfield_bit_size) 439 return scalar.ExtractBitfield(bitfield_bit_size, 440 GetBitfieldBitOffset()); 441 return true; 442 } 443 } 444 return false; 445 } 446 447 bool ValueObject::IsLogicalTrue(Status &error) { 448 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 449 LazyBool is_logical_true = language->IsLogicalTrue(*this, error); 450 switch (is_logical_true) { 451 case eLazyBoolYes: 452 case eLazyBoolNo: 453 return (is_logical_true == true); 454 case eLazyBoolCalculate: 455 break; 456 } 457 } 458 459 Scalar scalar_value; 460 461 if (!ResolveValue(scalar_value)) { 462 error.SetErrorString("failed to get a scalar result"); 463 return false; 464 } 465 466 bool ret; 467 ret = scalar_value.ULongLong(1) != 0; 468 error.Clear(); 469 return ret; 470 } 471 472 bool ValueObject::GetValueIsValid() const { return m_value_is_valid; } 473 474 void ValueObject::SetValueIsValid(bool b) { m_value_is_valid = b; } 475 476 bool ValueObject::GetValueDidChange() { return m_value_did_change; } 477 478 void ValueObject::SetValueDidChange(bool value_changed) { 479 m_value_did_change = value_changed; 480 } 481 482 ValueObjectSP ValueObject::GetChildAtIndex(size_t idx, bool can_create) { 483 ValueObjectSP child_sp; 484 // We may need to update our value if we are dynamic 485 if (IsPossibleDynamicType()) 486 UpdateValueIfNeeded(false); 487 if (idx < GetNumChildren()) { 488 // Check if we have already made the child value object? 489 if (can_create && !m_children.HasChildAtIndex(idx)) { 490 // No we haven't created the child at this index, so lets have our 491 // subclass do it and cache the result for quick future access. 492 m_children.SetChildAtIndex(idx, CreateChildAtIndex(idx, false, 0)); 493 } 494 495 ValueObject *child = m_children.GetChildAtIndex(idx); 496 if (child != nullptr) 497 return child->GetSP(); 498 } 499 return child_sp; 500 } 501 502 lldb::ValueObjectSP 503 ValueObject::GetChildAtIndexPath(llvm::ArrayRef<size_t> idxs, 504 size_t *index_of_error) { 505 if (idxs.size() == 0) 506 return GetSP(); 507 ValueObjectSP root(GetSP()); 508 for (size_t idx : idxs) { 509 root = root->GetChildAtIndex(idx, true); 510 if (!root) { 511 if (index_of_error) 512 *index_of_error = idx; 513 return root; 514 } 515 } 516 return root; 517 } 518 519 lldb::ValueObjectSP ValueObject::GetChildAtIndexPath( 520 llvm::ArrayRef<std::pair<size_t, bool>> idxs, size_t *index_of_error) { 521 if (idxs.size() == 0) 522 return GetSP(); 523 ValueObjectSP root(GetSP()); 524 for (std::pair<size_t, bool> idx : idxs) { 525 root = root->GetChildAtIndex(idx.first, idx.second); 526 if (!root) { 527 if (index_of_error) 528 *index_of_error = idx.first; 529 return root; 530 } 531 } 532 return root; 533 } 534 535 lldb::ValueObjectSP 536 ValueObject::GetChildAtNamePath(llvm::ArrayRef<ConstString> names, 537 ConstString *name_of_error) { 538 if (names.size() == 0) 539 return GetSP(); 540 ValueObjectSP root(GetSP()); 541 for (ConstString name : names) { 542 root = root->GetChildMemberWithName(name, true); 543 if (!root) { 544 if (name_of_error) 545 *name_of_error = name; 546 return root; 547 } 548 } 549 return root; 550 } 551 552 lldb::ValueObjectSP ValueObject::GetChildAtNamePath( 553 llvm::ArrayRef<std::pair<ConstString, bool>> names, 554 ConstString *name_of_error) { 555 if (names.size() == 0) 556 return GetSP(); 557 ValueObjectSP root(GetSP()); 558 for (std::pair<ConstString, bool> name : names) { 559 root = root->GetChildMemberWithName(name.first, name.second); 560 if (!root) { 561 if (name_of_error) 562 *name_of_error = name.first; 563 return root; 564 } 565 } 566 return root; 567 } 568 569 size_t ValueObject::GetIndexOfChildWithName(ConstString name) { 570 bool omit_empty_base_classes = true; 571 return GetCompilerType().GetIndexOfChildWithName(name.GetCString(), 572 omit_empty_base_classes); 573 } 574 575 ValueObjectSP ValueObject::GetChildMemberWithName(ConstString name, 576 bool can_create) { 577 // when getting a child by name, it could be buried inside some base classes 578 // (which really aren't part of the expression path), so we need a vector of 579 // indexes that can get us down to the correct child 580 ValueObjectSP child_sp; 581 582 // We may need to update our value if we are dynamic 583 if (IsPossibleDynamicType()) 584 UpdateValueIfNeeded(false); 585 586 std::vector<uint32_t> child_indexes; 587 bool omit_empty_base_classes = true; 588 589 if (!GetCompilerType().IsValid()) 590 return ValueObjectSP(); 591 592 const size_t num_child_indexes = 593 GetCompilerType().GetIndexOfChildMemberWithName( 594 name.GetCString(), omit_empty_base_classes, child_indexes); 595 if (num_child_indexes > 0) { 596 std::vector<uint32_t>::const_iterator pos = child_indexes.begin(); 597 std::vector<uint32_t>::const_iterator end = child_indexes.end(); 598 599 child_sp = GetChildAtIndex(*pos, can_create); 600 for (++pos; pos != end; ++pos) { 601 if (child_sp) { 602 ValueObjectSP new_child_sp(child_sp->GetChildAtIndex(*pos, can_create)); 603 child_sp = new_child_sp; 604 } else { 605 child_sp.reset(); 606 } 607 } 608 } 609 return child_sp; 610 } 611 612 size_t ValueObject::GetNumChildren(uint32_t max) { 613 UpdateValueIfNeeded(); 614 615 if (max < UINT32_MAX) { 616 if (m_children_count_valid) { 617 size_t children_count = m_children.GetChildrenCount(); 618 return children_count <= max ? children_count : max; 619 } else 620 return CalculateNumChildren(max); 621 } 622 623 if (!m_children_count_valid) { 624 SetNumChildren(CalculateNumChildren()); 625 } 626 return m_children.GetChildrenCount(); 627 } 628 629 bool ValueObject::MightHaveChildren() { 630 bool has_children = false; 631 const uint32_t type_info = GetTypeInfo(); 632 if (type_info) { 633 if (type_info & (eTypeHasChildren | eTypeIsPointer | eTypeIsReference)) 634 has_children = true; 635 } else { 636 has_children = GetNumChildren() > 0; 637 } 638 return has_children; 639 } 640 641 // Should only be called by ValueObject::GetNumChildren() 642 void ValueObject::SetNumChildren(size_t num_children) { 643 m_children_count_valid = true; 644 m_children.SetChildrenCount(num_children); 645 } 646 647 void ValueObject::SetName(ConstString name) { m_name = name; } 648 649 ValueObject *ValueObject::CreateChildAtIndex(size_t idx, 650 bool synthetic_array_member, 651 int32_t synthetic_index) { 652 ValueObject *valobj = nullptr; 653 654 bool omit_empty_base_classes = true; 655 bool ignore_array_bounds = synthetic_array_member; 656 std::string child_name_str; 657 uint32_t child_byte_size = 0; 658 int32_t child_byte_offset = 0; 659 uint32_t child_bitfield_bit_size = 0; 660 uint32_t child_bitfield_bit_offset = 0; 661 bool child_is_base_class = false; 662 bool child_is_deref_of_parent = false; 663 uint64_t language_flags = 0; 664 665 const bool transparent_pointers = !synthetic_array_member; 666 CompilerType child_compiler_type; 667 668 ExecutionContext exe_ctx(GetExecutionContextRef()); 669 670 child_compiler_type = GetCompilerType().GetChildCompilerTypeAtIndex( 671 &exe_ctx, idx, transparent_pointers, omit_empty_base_classes, 672 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 673 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 674 child_is_deref_of_parent, this, language_flags); 675 if (child_compiler_type) { 676 if (synthetic_index) 677 child_byte_offset += child_byte_size * synthetic_index; 678 679 ConstString child_name; 680 if (!child_name_str.empty()) 681 child_name.SetCString(child_name_str.c_str()); 682 683 valobj = new ValueObjectChild( 684 *this, child_compiler_type, child_name, child_byte_size, 685 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 686 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 687 language_flags); 688 } 689 690 if (!valobj && synthetic_array_member) 691 valobj = GetSyntheticValue() 692 ->GetChildAtIndex(synthetic_index, synthetic_array_member) 693 .get(); 694 695 return valobj; 696 } 697 698 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 699 std::string &destination, 700 lldb::LanguageType lang) { 701 return GetSummaryAsCString(summary_ptr, destination, 702 TypeSummaryOptions().SetLanguage(lang)); 703 } 704 705 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 706 std::string &destination, 707 const TypeSummaryOptions &options) { 708 destination.clear(); 709 710 // ideally we would like to bail out if passing NULL, but if we do so we end 711 // up not providing the summary for function pointers anymore 712 if (/*summary_ptr == NULL ||*/ m_is_getting_summary) 713 return false; 714 715 m_is_getting_summary = true; 716 717 TypeSummaryOptions actual_options(options); 718 719 if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown) 720 actual_options.SetLanguage(GetPreferredDisplayLanguage()); 721 722 // this is a hot path in code and we prefer to avoid setting this string all 723 // too often also clearing out other information that we might care to see in 724 // a crash log. might be useful in very specific situations though. 725 /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. 726 Summary provider's description is %s", 727 GetTypeName().GetCString(), 728 GetName().GetCString(), 729 summary_ptr->GetDescription().c_str());*/ 730 731 if (UpdateValueIfNeeded(false) && summary_ptr) { 732 if (HasSyntheticValue()) 733 m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on 734 // the synthetic children being 735 // up-to-date (e.g. ${svar%#}) 736 summary_ptr->FormatObject(this, destination, actual_options); 737 } 738 m_is_getting_summary = false; 739 return !destination.empty(); 740 } 741 742 const char *ValueObject::GetSummaryAsCString(lldb::LanguageType lang) { 743 if (UpdateValueIfNeeded(true) && m_summary_str.empty()) { 744 TypeSummaryOptions summary_options; 745 summary_options.SetLanguage(lang); 746 GetSummaryAsCString(GetSummaryFormat().get(), m_summary_str, 747 summary_options); 748 } 749 if (m_summary_str.empty()) 750 return nullptr; 751 return m_summary_str.c_str(); 752 } 753 754 bool ValueObject::GetSummaryAsCString(std::string &destination, 755 const TypeSummaryOptions &options) { 756 return GetSummaryAsCString(GetSummaryFormat().get(), destination, options); 757 } 758 759 bool ValueObject::IsCStringContainer(bool check_pointer) { 760 CompilerType pointee_or_element_compiler_type; 761 const Flags type_flags(GetTypeInfo(&pointee_or_element_compiler_type)); 762 bool is_char_arr_ptr(type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 763 pointee_or_element_compiler_type.IsCharType()); 764 if (!is_char_arr_ptr) 765 return false; 766 if (!check_pointer) 767 return true; 768 if (type_flags.Test(eTypeIsArray)) 769 return true; 770 addr_t cstr_address = LLDB_INVALID_ADDRESS; 771 AddressType cstr_address_type = eAddressTypeInvalid; 772 cstr_address = GetPointerValue(&cstr_address_type); 773 return (cstr_address != LLDB_INVALID_ADDRESS); 774 } 775 776 size_t ValueObject::GetPointeeData(DataExtractor &data, uint32_t item_idx, 777 uint32_t item_count) { 778 CompilerType pointee_or_element_compiler_type; 779 const uint32_t type_info = GetTypeInfo(&pointee_or_element_compiler_type); 780 const bool is_pointer_type = type_info & eTypeIsPointer; 781 const bool is_array_type = type_info & eTypeIsArray; 782 if (!(is_pointer_type || is_array_type)) 783 return 0; 784 785 if (item_count == 0) 786 return 0; 787 788 ExecutionContext exe_ctx(GetExecutionContextRef()); 789 790 llvm::Optional<uint64_t> item_type_size = 791 pointee_or_element_compiler_type.GetByteSize( 792 exe_ctx.GetBestExecutionContextScope()); 793 if (!item_type_size) 794 return 0; 795 const uint64_t bytes = item_count * *item_type_size; 796 const uint64_t offset = item_idx * *item_type_size; 797 798 if (item_idx == 0 && item_count == 1) // simply a deref 799 { 800 if (is_pointer_type) { 801 Status error; 802 ValueObjectSP pointee_sp = Dereference(error); 803 if (error.Fail() || pointee_sp.get() == nullptr) 804 return 0; 805 return pointee_sp->GetData(data, error); 806 } else { 807 ValueObjectSP child_sp = GetChildAtIndex(0, true); 808 if (child_sp.get() == nullptr) 809 return 0; 810 Status error; 811 return child_sp->GetData(data, error); 812 } 813 return true; 814 } else /* (items > 1) */ 815 { 816 Status error; 817 lldb_private::DataBufferHeap *heap_buf_ptr = nullptr; 818 lldb::DataBufferSP data_sp(heap_buf_ptr = 819 new lldb_private::DataBufferHeap()); 820 821 AddressType addr_type; 822 lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type) 823 : GetAddressOf(true, &addr_type); 824 825 switch (addr_type) { 826 case eAddressTypeFile: { 827 ModuleSP module_sp(GetModule()); 828 if (module_sp) { 829 addr = addr + offset; 830 Address so_addr; 831 module_sp->ResolveFileAddress(addr, so_addr); 832 ExecutionContext exe_ctx(GetExecutionContextRef()); 833 Target *target = exe_ctx.GetTargetPtr(); 834 if (target) { 835 heap_buf_ptr->SetByteSize(bytes); 836 size_t bytes_read = target->ReadMemory( 837 so_addr, false, heap_buf_ptr->GetBytes(), bytes, error); 838 if (error.Success()) { 839 data.SetData(data_sp); 840 return bytes_read; 841 } 842 } 843 } 844 } break; 845 case eAddressTypeLoad: { 846 ExecutionContext exe_ctx(GetExecutionContextRef()); 847 Process *process = exe_ctx.GetProcessPtr(); 848 if (process) { 849 heap_buf_ptr->SetByteSize(bytes); 850 size_t bytes_read = process->ReadMemory( 851 addr + offset, heap_buf_ptr->GetBytes(), bytes, error); 852 if (error.Success() || bytes_read > 0) { 853 data.SetData(data_sp); 854 return bytes_read; 855 } 856 } 857 } break; 858 case eAddressTypeHost: { 859 auto max_bytes = 860 GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope()); 861 if (max_bytes && *max_bytes > offset) { 862 size_t bytes_read = std::min<uint64_t>(*max_bytes - offset, bytes); 863 addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 864 if (addr == 0 || addr == LLDB_INVALID_ADDRESS) 865 break; 866 heap_buf_ptr->CopyData((uint8_t *)(addr + offset), bytes_read); 867 data.SetData(data_sp); 868 return bytes_read; 869 } 870 } break; 871 case eAddressTypeInvalid: 872 break; 873 } 874 } 875 return 0; 876 } 877 878 uint64_t ValueObject::GetData(DataExtractor &data, Status &error) { 879 UpdateValueIfNeeded(false); 880 ExecutionContext exe_ctx(GetExecutionContextRef()); 881 error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get()); 882 if (error.Fail()) { 883 if (m_data.GetByteSize()) { 884 data = m_data; 885 error.Clear(); 886 return data.GetByteSize(); 887 } else { 888 return 0; 889 } 890 } 891 data.SetAddressByteSize(m_data.GetAddressByteSize()); 892 data.SetByteOrder(m_data.GetByteOrder()); 893 return data.GetByteSize(); 894 } 895 896 bool ValueObject::SetData(DataExtractor &data, Status &error) { 897 error.Clear(); 898 // Make sure our value is up to date first so that our location and location 899 // type is valid. 900 if (!UpdateValueIfNeeded(false)) { 901 error.SetErrorString("unable to read value"); 902 return false; 903 } 904 905 uint64_t count = 0; 906 const Encoding encoding = GetCompilerType().GetEncoding(count); 907 908 const size_t byte_size = GetByteSize(); 909 910 Value::ValueType value_type = m_value.GetValueType(); 911 912 switch (value_type) { 913 case Value::eValueTypeScalar: { 914 Status set_error = 915 m_value.GetScalar().SetValueFromData(data, encoding, byte_size); 916 917 if (!set_error.Success()) { 918 error.SetErrorStringWithFormat("unable to set scalar value: %s", 919 set_error.AsCString()); 920 return false; 921 } 922 } break; 923 case Value::eValueTypeLoadAddress: { 924 // If it is a load address, then the scalar value is the storage location 925 // of the data, and we have to shove this value down to that load location. 926 ExecutionContext exe_ctx(GetExecutionContextRef()); 927 Process *process = exe_ctx.GetProcessPtr(); 928 if (process) { 929 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 930 size_t bytes_written = process->WriteMemory( 931 target_addr, data.GetDataStart(), byte_size, error); 932 if (!error.Success()) 933 return false; 934 if (bytes_written != byte_size) { 935 error.SetErrorString("unable to write value to memory"); 936 return false; 937 } 938 } 939 } break; 940 case Value::eValueTypeHostAddress: { 941 // If it is a host address, then we stuff the scalar as a DataBuffer into 942 // the Value's data. 943 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 944 m_data.SetData(buffer_sp, 0); 945 data.CopyByteOrderedData(0, byte_size, 946 const_cast<uint8_t *>(m_data.GetDataStart()), 947 byte_size, m_data.GetByteOrder()); 948 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 949 } break; 950 case Value::eValueTypeFileAddress: 951 case Value::eValueTypeVector: 952 break; 953 } 954 955 // If we have reached this point, then we have successfully changed the 956 // value. 957 SetNeedsUpdate(); 958 return true; 959 } 960 961 static bool CopyStringDataToBufferSP(const StreamString &source, 962 lldb::DataBufferSP &destination) { 963 destination = std::make_shared<DataBufferHeap>(source.GetSize() + 1, 0); 964 memcpy(destination->GetBytes(), source.GetString().data(), source.GetSize()); 965 return true; 966 } 967 968 std::pair<size_t, bool> 969 ValueObject::ReadPointedString(lldb::DataBufferSP &buffer_sp, Status &error, 970 uint32_t max_length, bool honor_array, 971 Format item_format) { 972 bool was_capped = false; 973 StreamString s; 974 ExecutionContext exe_ctx(GetExecutionContextRef()); 975 Target *target = exe_ctx.GetTargetPtr(); 976 977 if (!target) { 978 s << "<no target to read from>"; 979 error.SetErrorString("no target to read from"); 980 CopyStringDataToBufferSP(s, buffer_sp); 981 return {0, was_capped}; 982 } 983 984 if (max_length == 0) 985 max_length = target->GetMaximumSizeOfStringSummary(); 986 987 size_t bytes_read = 0; 988 size_t total_bytes_read = 0; 989 990 CompilerType compiler_type = GetCompilerType(); 991 CompilerType elem_or_pointee_compiler_type; 992 const Flags type_flags(GetTypeInfo(&elem_or_pointee_compiler_type)); 993 if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 994 elem_or_pointee_compiler_type.IsCharType()) { 995 addr_t cstr_address = LLDB_INVALID_ADDRESS; 996 AddressType cstr_address_type = eAddressTypeInvalid; 997 998 size_t cstr_len = 0; 999 bool capped_data = false; 1000 const bool is_array = type_flags.Test(eTypeIsArray); 1001 if (is_array) { 1002 // We have an array 1003 uint64_t array_size = 0; 1004 if (compiler_type.IsArrayType(nullptr, &array_size, nullptr)) { 1005 cstr_len = array_size; 1006 if (cstr_len > max_length) { 1007 capped_data = true; 1008 cstr_len = max_length; 1009 } 1010 } 1011 cstr_address = GetAddressOf(true, &cstr_address_type); 1012 } else { 1013 // We have a pointer 1014 cstr_address = GetPointerValue(&cstr_address_type); 1015 } 1016 1017 if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) { 1018 if (cstr_address_type == eAddressTypeHost && is_array) { 1019 const char *cstr = GetDataExtractor().PeekCStr(0); 1020 if (cstr == nullptr) { 1021 s << "<invalid address>"; 1022 error.SetErrorString("invalid address"); 1023 CopyStringDataToBufferSP(s, buffer_sp); 1024 return {0, was_capped}; 1025 } 1026 buffer_sp = std::make_shared<DataBufferHeap>(cstr_len, 0); 1027 memcpy(buffer_sp->GetBytes(), cstr, cstr_len); 1028 return {cstr_len, was_capped}; 1029 } else { 1030 s << "<invalid address>"; 1031 error.SetErrorString("invalid address"); 1032 CopyStringDataToBufferSP(s, buffer_sp); 1033 return {0, was_capped}; 1034 } 1035 } 1036 1037 Address cstr_so_addr(cstr_address); 1038 DataExtractor data; 1039 if (cstr_len > 0 && honor_array) { 1040 // I am using GetPointeeData() here to abstract the fact that some 1041 // ValueObjects are actually frozen pointers in the host but the pointed- 1042 // to data lives in the debuggee, and GetPointeeData() automatically 1043 // takes care of this 1044 GetPointeeData(data, 0, cstr_len); 1045 1046 if ((bytes_read = data.GetByteSize()) > 0) { 1047 total_bytes_read = bytes_read; 1048 for (size_t offset = 0; offset < bytes_read; offset++) 1049 s.Printf("%c", *data.PeekData(offset, 1)); 1050 if (capped_data) 1051 was_capped = true; 1052 } 1053 } else { 1054 cstr_len = max_length; 1055 const size_t k_max_buf_size = 64; 1056 1057 size_t offset = 0; 1058 1059 int cstr_len_displayed = -1; 1060 bool capped_cstr = false; 1061 // I am using GetPointeeData() here to abstract the fact that some 1062 // ValueObjects are actually frozen pointers in the host but the pointed- 1063 // to data lives in the debuggee, and GetPointeeData() automatically 1064 // takes care of this 1065 while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) { 1066 total_bytes_read += bytes_read; 1067 const char *cstr = data.PeekCStr(0); 1068 size_t len = strnlen(cstr, k_max_buf_size); 1069 if (cstr_len_displayed < 0) 1070 cstr_len_displayed = len; 1071 1072 if (len == 0) 1073 break; 1074 cstr_len_displayed += len; 1075 if (len > bytes_read) 1076 len = bytes_read; 1077 if (len > cstr_len) 1078 len = cstr_len; 1079 1080 for (size_t offset = 0; offset < bytes_read; offset++) 1081 s.Printf("%c", *data.PeekData(offset, 1)); 1082 1083 if (len < k_max_buf_size) 1084 break; 1085 1086 if (len >= cstr_len) { 1087 capped_cstr = true; 1088 break; 1089 } 1090 1091 cstr_len -= len; 1092 offset += len; 1093 } 1094 1095 if (cstr_len_displayed >= 0) { 1096 if (capped_cstr) 1097 was_capped = true; 1098 } 1099 } 1100 } else { 1101 error.SetErrorString("not a string object"); 1102 s << "<not a string object>"; 1103 } 1104 CopyStringDataToBufferSP(s, buffer_sp); 1105 return {total_bytes_read, was_capped}; 1106 } 1107 1108 const char *ValueObject::GetObjectDescription() { 1109 if (!UpdateValueIfNeeded(true)) 1110 return nullptr; 1111 1112 // Return cached value. 1113 if (!m_object_desc_str.empty()) 1114 return m_object_desc_str.c_str(); 1115 1116 ExecutionContext exe_ctx(GetExecutionContextRef()); 1117 Process *process = exe_ctx.GetProcessPtr(); 1118 if (!process) 1119 return nullptr; 1120 1121 // Returns the object description produced by one language runtime. 1122 auto get_object_description = [&](LanguageType language) -> const char * { 1123 if (LanguageRuntime *runtime = process->GetLanguageRuntime(language)) { 1124 StreamString s; 1125 if (runtime->GetObjectDescription(s, *this)) { 1126 m_object_desc_str.append(std::string(s.GetString())); 1127 return m_object_desc_str.c_str(); 1128 } 1129 } 1130 return nullptr; 1131 }; 1132 1133 // Try the native language runtime first. 1134 LanguageType native_language = GetObjectRuntimeLanguage(); 1135 if (const char *desc = get_object_description(native_language)) 1136 return desc; 1137 1138 // Try the Objective-C language runtime. This fallback is necessary 1139 // for Objective-C++ and mixed Objective-C / C++ programs. 1140 if (Language::LanguageIsCFamily(native_language)) 1141 return get_object_description(eLanguageTypeObjC); 1142 return nullptr; 1143 } 1144 1145 bool ValueObject::GetValueAsCString(const lldb_private::TypeFormatImpl &format, 1146 std::string &destination) { 1147 if (UpdateValueIfNeeded(false)) 1148 return format.FormatObject(this, destination); 1149 else 1150 return false; 1151 } 1152 1153 bool ValueObject::GetValueAsCString(lldb::Format format, 1154 std::string &destination) { 1155 return GetValueAsCString(TypeFormatImpl_Format(format), destination); 1156 } 1157 1158 const char *ValueObject::GetValueAsCString() { 1159 if (UpdateValueIfNeeded(true)) { 1160 lldb::TypeFormatImplSP format_sp; 1161 lldb::Format my_format = GetFormat(); 1162 if (my_format == lldb::eFormatDefault) { 1163 if (m_type_format_sp) 1164 format_sp = m_type_format_sp; 1165 else { 1166 if (m_is_bitfield_for_scalar) 1167 my_format = eFormatUnsigned; 1168 else { 1169 if (m_value.GetContextType() == Value::eContextTypeRegisterInfo) { 1170 const RegisterInfo *reg_info = m_value.GetRegisterInfo(); 1171 if (reg_info) 1172 my_format = reg_info->format; 1173 } else { 1174 my_format = GetValue().GetCompilerType().GetFormat(); 1175 } 1176 } 1177 } 1178 } 1179 if (my_format != m_last_format || m_value_str.empty()) { 1180 m_last_format = my_format; 1181 if (!format_sp) 1182 format_sp = std::make_shared<TypeFormatImpl_Format>(my_format); 1183 if (GetValueAsCString(*format_sp.get(), m_value_str)) { 1184 if (!m_value_did_change && m_old_value_valid) { 1185 // The value was gotten successfully, so we consider the value as 1186 // changed if the value string differs 1187 SetValueDidChange(m_old_value_str != m_value_str); 1188 } 1189 } 1190 } 1191 } 1192 if (m_value_str.empty()) 1193 return nullptr; 1194 return m_value_str.c_str(); 1195 } 1196 1197 // if > 8bytes, 0 is returned. this method should mostly be used to read 1198 // address values out of pointers 1199 uint64_t ValueObject::GetValueAsUnsigned(uint64_t fail_value, bool *success) { 1200 // If our byte size is zero this is an aggregate type that has children 1201 if (CanProvideValue()) { 1202 Scalar scalar; 1203 if (ResolveValue(scalar)) { 1204 if (success) 1205 *success = true; 1206 return scalar.ULongLong(fail_value); 1207 } 1208 // fallthrough, otherwise... 1209 } 1210 1211 if (success) 1212 *success = false; 1213 return fail_value; 1214 } 1215 1216 int64_t ValueObject::GetValueAsSigned(int64_t fail_value, bool *success) { 1217 // If our byte size is zero this is an aggregate type that has children 1218 if (CanProvideValue()) { 1219 Scalar scalar; 1220 if (ResolveValue(scalar)) { 1221 if (success) 1222 *success = true; 1223 return scalar.SLongLong(fail_value); 1224 } 1225 // fallthrough, otherwise... 1226 } 1227 1228 if (success) 1229 *success = false; 1230 return fail_value; 1231 } 1232 1233 // if any more "special cases" are added to 1234 // ValueObject::DumpPrintableRepresentation() please keep this call up to date 1235 // by returning true for your new special cases. We will eventually move to 1236 // checking this call result before trying to display special cases 1237 bool ValueObject::HasSpecialPrintableRepresentation( 1238 ValueObjectRepresentationStyle val_obj_display, Format custom_format) { 1239 Flags flags(GetTypeInfo()); 1240 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1241 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1242 if (IsCStringContainer(true) && 1243 (custom_format == eFormatCString || custom_format == eFormatCharArray || 1244 custom_format == eFormatChar || custom_format == eFormatVectorOfChar)) 1245 return true; 1246 1247 if (flags.Test(eTypeIsArray)) { 1248 if ((custom_format == eFormatBytes) || 1249 (custom_format == eFormatBytesWithASCII)) 1250 return true; 1251 1252 if ((custom_format == eFormatVectorOfChar) || 1253 (custom_format == eFormatVectorOfFloat32) || 1254 (custom_format == eFormatVectorOfFloat64) || 1255 (custom_format == eFormatVectorOfSInt16) || 1256 (custom_format == eFormatVectorOfSInt32) || 1257 (custom_format == eFormatVectorOfSInt64) || 1258 (custom_format == eFormatVectorOfSInt8) || 1259 (custom_format == eFormatVectorOfUInt128) || 1260 (custom_format == eFormatVectorOfUInt16) || 1261 (custom_format == eFormatVectorOfUInt32) || 1262 (custom_format == eFormatVectorOfUInt64) || 1263 (custom_format == eFormatVectorOfUInt8)) 1264 return true; 1265 } 1266 } 1267 return false; 1268 } 1269 1270 bool ValueObject::DumpPrintableRepresentation( 1271 Stream &s, ValueObjectRepresentationStyle val_obj_display, 1272 Format custom_format, PrintableRepresentationSpecialCases special, 1273 bool do_dump_error) { 1274 1275 Flags flags(GetTypeInfo()); 1276 1277 bool allow_special = 1278 (special == ValueObject::PrintableRepresentationSpecialCases::eAllow); 1279 const bool only_special = false; 1280 1281 if (allow_special) { 1282 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1283 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1284 // when being asked to get a printable display an array or pointer type 1285 // directly, try to "do the right thing" 1286 1287 if (IsCStringContainer(true) && 1288 (custom_format == eFormatCString || 1289 custom_format == eFormatCharArray || custom_format == eFormatChar || 1290 custom_format == 1291 eFormatVectorOfChar)) // print char[] & char* directly 1292 { 1293 Status error; 1294 lldb::DataBufferSP buffer_sp; 1295 std::pair<size_t, bool> read_string = ReadPointedString( 1296 buffer_sp, error, 0, (custom_format == eFormatVectorOfChar) || 1297 (custom_format == eFormatCharArray)); 1298 lldb_private::formatters::StringPrinter:: 1299 ReadBufferAndDumpToStreamOptions options(*this); 1300 options.SetData(DataExtractor( 1301 buffer_sp, lldb::eByteOrderInvalid, 1302 8)); // none of this matters for a string - pass some defaults 1303 options.SetStream(&s); 1304 options.SetPrefixToken(nullptr); 1305 options.SetQuote('"'); 1306 options.SetSourceSize(buffer_sp->GetByteSize()); 1307 options.SetIsTruncated(read_string.second); 1308 formatters::StringPrinter::ReadBufferAndDumpToStream< 1309 lldb_private::formatters::StringPrinter::StringElementType::ASCII>( 1310 options); 1311 return !error.Fail(); 1312 } 1313 1314 if (custom_format == eFormatEnum) 1315 return false; 1316 1317 // this only works for arrays, because I have no way to know when the 1318 // pointed memory ends, and no special \0 end of data marker 1319 if (flags.Test(eTypeIsArray)) { 1320 if ((custom_format == eFormatBytes) || 1321 (custom_format == eFormatBytesWithASCII)) { 1322 const size_t count = GetNumChildren(); 1323 1324 s << '['; 1325 for (size_t low = 0; low < count; low++) { 1326 1327 if (low) 1328 s << ','; 1329 1330 ValueObjectSP child = GetChildAtIndex(low, true); 1331 if (!child.get()) { 1332 s << "<invalid child>"; 1333 continue; 1334 } 1335 child->DumpPrintableRepresentation( 1336 s, ValueObject::eValueObjectRepresentationStyleValue, 1337 custom_format); 1338 } 1339 1340 s << ']'; 1341 1342 return true; 1343 } 1344 1345 if ((custom_format == eFormatVectorOfChar) || 1346 (custom_format == eFormatVectorOfFloat32) || 1347 (custom_format == eFormatVectorOfFloat64) || 1348 (custom_format == eFormatVectorOfSInt16) || 1349 (custom_format == eFormatVectorOfSInt32) || 1350 (custom_format == eFormatVectorOfSInt64) || 1351 (custom_format == eFormatVectorOfSInt8) || 1352 (custom_format == eFormatVectorOfUInt128) || 1353 (custom_format == eFormatVectorOfUInt16) || 1354 (custom_format == eFormatVectorOfUInt32) || 1355 (custom_format == eFormatVectorOfUInt64) || 1356 (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes 1357 // with ASCII or any vector 1358 // format should be printed 1359 // directly 1360 { 1361 const size_t count = GetNumChildren(); 1362 1363 Format format = FormatManager::GetSingleItemFormat(custom_format); 1364 1365 s << '['; 1366 for (size_t low = 0; low < count; low++) { 1367 1368 if (low) 1369 s << ','; 1370 1371 ValueObjectSP child = GetChildAtIndex(low, true); 1372 if (!child.get()) { 1373 s << "<invalid child>"; 1374 continue; 1375 } 1376 child->DumpPrintableRepresentation( 1377 s, ValueObject::eValueObjectRepresentationStyleValue, format); 1378 } 1379 1380 s << ']'; 1381 1382 return true; 1383 } 1384 } 1385 1386 if ((custom_format == eFormatBoolean) || 1387 (custom_format == eFormatBinary) || (custom_format == eFormatChar) || 1388 (custom_format == eFormatCharPrintable) || 1389 (custom_format == eFormatComplexFloat) || 1390 (custom_format == eFormatDecimal) || (custom_format == eFormatHex) || 1391 (custom_format == eFormatHexUppercase) || 1392 (custom_format == eFormatFloat) || (custom_format == eFormatOctal) || 1393 (custom_format == eFormatOSType) || 1394 (custom_format == eFormatUnicode16) || 1395 (custom_format == eFormatUnicode32) || 1396 (custom_format == eFormatUnsigned) || 1397 (custom_format == eFormatPointer) || 1398 (custom_format == eFormatComplexInteger) || 1399 (custom_format == eFormatComplex) || 1400 (custom_format == eFormatDefault)) // use the [] operator 1401 return false; 1402 } 1403 } 1404 1405 if (only_special) 1406 return false; 1407 1408 bool var_success = false; 1409 1410 { 1411 llvm::StringRef str; 1412 1413 // this is a local stream that we are using to ensure that the data pointed 1414 // to by cstr survives long enough for us to copy it to its destination - 1415 // it is necessary to have this temporary storage area for cases where our 1416 // desired output is not backed by some other longer-term storage 1417 StreamString strm; 1418 1419 if (custom_format != eFormatInvalid) 1420 SetFormat(custom_format); 1421 1422 switch (val_obj_display) { 1423 case eValueObjectRepresentationStyleValue: 1424 str = GetValueAsCString(); 1425 break; 1426 1427 case eValueObjectRepresentationStyleSummary: 1428 str = GetSummaryAsCString(); 1429 break; 1430 1431 case eValueObjectRepresentationStyleLanguageSpecific: 1432 str = GetObjectDescription(); 1433 break; 1434 1435 case eValueObjectRepresentationStyleLocation: 1436 str = GetLocationAsCString(); 1437 break; 1438 1439 case eValueObjectRepresentationStyleChildrenCount: 1440 strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren()); 1441 str = strm.GetString(); 1442 break; 1443 1444 case eValueObjectRepresentationStyleType: 1445 str = GetTypeName().GetStringRef(); 1446 break; 1447 1448 case eValueObjectRepresentationStyleName: 1449 str = GetName().GetStringRef(); 1450 break; 1451 1452 case eValueObjectRepresentationStyleExpressionPath: 1453 GetExpressionPath(strm); 1454 str = strm.GetString(); 1455 break; 1456 } 1457 1458 if (str.empty()) { 1459 if (val_obj_display == eValueObjectRepresentationStyleValue) 1460 str = GetSummaryAsCString(); 1461 else if (val_obj_display == eValueObjectRepresentationStyleSummary) { 1462 if (!CanProvideValue()) { 1463 strm.Printf("%s @ %s", GetTypeName().AsCString(), 1464 GetLocationAsCString()); 1465 str = strm.GetString(); 1466 } else 1467 str = GetValueAsCString(); 1468 } 1469 } 1470 1471 if (!str.empty()) 1472 s << str; 1473 else { 1474 if (m_error.Fail()) { 1475 if (do_dump_error) 1476 s.Printf("<%s>", m_error.AsCString()); 1477 else 1478 return false; 1479 } else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1480 s.PutCString("<no summary available>"); 1481 else if (val_obj_display == eValueObjectRepresentationStyleValue) 1482 s.PutCString("<no value available>"); 1483 else if (val_obj_display == 1484 eValueObjectRepresentationStyleLanguageSpecific) 1485 s.PutCString("<not a valid Objective-C object>"); // edit this if we 1486 // have other runtimes 1487 // that support a 1488 // description 1489 else 1490 s.PutCString("<no printable representation>"); 1491 } 1492 1493 // we should only return false here if we could not do *anything* even if 1494 // we have an error message as output, that's a success from our callers' 1495 // perspective, so return true 1496 var_success = true; 1497 1498 if (custom_format != eFormatInvalid) 1499 SetFormat(eFormatDefault); 1500 } 1501 1502 return var_success; 1503 } 1504 1505 addr_t ValueObject::GetAddressOf(bool scalar_is_load_address, 1506 AddressType *address_type) { 1507 // Can't take address of a bitfield 1508 if (IsBitfield()) 1509 return LLDB_INVALID_ADDRESS; 1510 1511 if (!UpdateValueIfNeeded(false)) 1512 return LLDB_INVALID_ADDRESS; 1513 1514 switch (m_value.GetValueType()) { 1515 case Value::eValueTypeScalar: 1516 case Value::eValueTypeVector: 1517 if (scalar_is_load_address) { 1518 if (address_type) 1519 *address_type = eAddressTypeLoad; 1520 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1521 } 1522 break; 1523 1524 case Value::eValueTypeLoadAddress: 1525 case Value::eValueTypeFileAddress: { 1526 if (address_type) 1527 *address_type = m_value.GetValueAddressType(); 1528 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1529 } break; 1530 case Value::eValueTypeHostAddress: { 1531 if (address_type) 1532 *address_type = m_value.GetValueAddressType(); 1533 return LLDB_INVALID_ADDRESS; 1534 } break; 1535 } 1536 if (address_type) 1537 *address_type = eAddressTypeInvalid; 1538 return LLDB_INVALID_ADDRESS; 1539 } 1540 1541 addr_t ValueObject::GetPointerValue(AddressType *address_type) { 1542 addr_t address = LLDB_INVALID_ADDRESS; 1543 if (address_type) 1544 *address_type = eAddressTypeInvalid; 1545 1546 if (!UpdateValueIfNeeded(false)) 1547 return address; 1548 1549 switch (m_value.GetValueType()) { 1550 case Value::eValueTypeScalar: 1551 case Value::eValueTypeVector: 1552 address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1553 break; 1554 1555 case Value::eValueTypeHostAddress: 1556 case Value::eValueTypeLoadAddress: 1557 case Value::eValueTypeFileAddress: { 1558 lldb::offset_t data_offset = 0; 1559 address = m_data.GetAddress(&data_offset); 1560 } break; 1561 } 1562 1563 if (address_type) 1564 *address_type = GetAddressTypeOfChildren(); 1565 1566 return address; 1567 } 1568 1569 bool ValueObject::SetValueFromCString(const char *value_str, Status &error) { 1570 error.Clear(); 1571 // Make sure our value is up to date first so that our location and location 1572 // type is valid. 1573 if (!UpdateValueIfNeeded(false)) { 1574 error.SetErrorString("unable to read value"); 1575 return false; 1576 } 1577 1578 uint64_t count = 0; 1579 const Encoding encoding = GetCompilerType().GetEncoding(count); 1580 1581 const size_t byte_size = GetByteSize(); 1582 1583 Value::ValueType value_type = m_value.GetValueType(); 1584 1585 if (value_type == Value::eValueTypeScalar) { 1586 // If the value is already a scalar, then let the scalar change itself: 1587 m_value.GetScalar().SetValueFromCString(value_str, encoding, byte_size); 1588 } else if (byte_size <= 16) { 1589 // If the value fits in a scalar, then make a new scalar and again let the 1590 // scalar code do the conversion, then figure out where to put the new 1591 // value. 1592 Scalar new_scalar; 1593 error = new_scalar.SetValueFromCString(value_str, encoding, byte_size); 1594 if (error.Success()) { 1595 switch (value_type) { 1596 case Value::eValueTypeLoadAddress: { 1597 // If it is a load address, then the scalar value is the storage 1598 // location of the data, and we have to shove this value down to that 1599 // load location. 1600 ExecutionContext exe_ctx(GetExecutionContextRef()); 1601 Process *process = exe_ctx.GetProcessPtr(); 1602 if (process) { 1603 addr_t target_addr = 1604 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1605 size_t bytes_written = process->WriteScalarToMemory( 1606 target_addr, new_scalar, byte_size, error); 1607 if (!error.Success()) 1608 return false; 1609 if (bytes_written != byte_size) { 1610 error.SetErrorString("unable to write value to memory"); 1611 return false; 1612 } 1613 } 1614 } break; 1615 case Value::eValueTypeHostAddress: { 1616 // If it is a host address, then we stuff the scalar as a DataBuffer 1617 // into the Value's data. 1618 DataExtractor new_data; 1619 new_data.SetByteOrder(m_data.GetByteOrder()); 1620 1621 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 1622 m_data.SetData(buffer_sp, 0); 1623 bool success = new_scalar.GetData(new_data); 1624 if (success) { 1625 new_data.CopyByteOrderedData( 1626 0, byte_size, const_cast<uint8_t *>(m_data.GetDataStart()), 1627 byte_size, m_data.GetByteOrder()); 1628 } 1629 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1630 1631 } break; 1632 case Value::eValueTypeFileAddress: 1633 case Value::eValueTypeScalar: 1634 case Value::eValueTypeVector: 1635 break; 1636 } 1637 } else { 1638 return false; 1639 } 1640 } else { 1641 // We don't support setting things bigger than a scalar at present. 1642 error.SetErrorString("unable to write aggregate data type"); 1643 return false; 1644 } 1645 1646 // If we have reached this point, then we have successfully changed the 1647 // value. 1648 SetNeedsUpdate(); 1649 return true; 1650 } 1651 1652 bool ValueObject::GetDeclaration(Declaration &decl) { 1653 decl.Clear(); 1654 return false; 1655 } 1656 1657 ConstString ValueObject::GetTypeName() { 1658 return GetCompilerType().GetTypeName(); 1659 } 1660 1661 ConstString ValueObject::GetDisplayTypeName() { return GetTypeName(); } 1662 1663 ConstString ValueObject::GetQualifiedTypeName() { 1664 return GetCompilerType().GetTypeName(); 1665 } 1666 1667 LanguageType ValueObject::GetObjectRuntimeLanguage() { 1668 return GetCompilerType().GetMinimumLanguage(); 1669 } 1670 1671 void ValueObject::AddSyntheticChild(ConstString key, 1672 ValueObject *valobj) { 1673 m_synthetic_children[key] = valobj; 1674 } 1675 1676 ValueObjectSP ValueObject::GetSyntheticChild(ConstString key) const { 1677 ValueObjectSP synthetic_child_sp; 1678 std::map<ConstString, ValueObject *>::const_iterator pos = 1679 m_synthetic_children.find(key); 1680 if (pos != m_synthetic_children.end()) 1681 synthetic_child_sp = pos->second->GetSP(); 1682 return synthetic_child_sp; 1683 } 1684 1685 uint32_t 1686 ValueObject::GetTypeInfo(CompilerType *pointee_or_element_compiler_type) { 1687 return GetCompilerType().GetTypeInfo(pointee_or_element_compiler_type); 1688 } 1689 1690 bool ValueObject::IsPointerType() { return GetCompilerType().IsPointerType(); } 1691 1692 bool ValueObject::IsArrayType() { 1693 return GetCompilerType().IsArrayType(nullptr, nullptr, nullptr); 1694 } 1695 1696 bool ValueObject::IsScalarType() { return GetCompilerType().IsScalarType(); } 1697 1698 bool ValueObject::IsIntegerType(bool &is_signed) { 1699 return GetCompilerType().IsIntegerType(is_signed); 1700 } 1701 1702 bool ValueObject::IsPointerOrReferenceType() { 1703 return GetCompilerType().IsPointerOrReferenceType(); 1704 } 1705 1706 bool ValueObject::IsPossibleDynamicType() { 1707 ExecutionContext exe_ctx(GetExecutionContextRef()); 1708 Process *process = exe_ctx.GetProcessPtr(); 1709 if (process) 1710 return process->IsPossibleDynamicValue(*this); 1711 else 1712 return GetCompilerType().IsPossibleDynamicType(nullptr, true, true); 1713 } 1714 1715 bool ValueObject::IsRuntimeSupportValue() { 1716 Process *process(GetProcessSP().get()); 1717 if (!process) 1718 return false; 1719 1720 // We trust the the compiler did the right thing and marked runtime support 1721 // values as artificial. 1722 if (!GetVariable() || !GetVariable()->IsArtificial()) 1723 return false; 1724 1725 if (auto *runtime = process->GetLanguageRuntime(GetVariable()->GetLanguage())) 1726 if (runtime->IsWhitelistedRuntimeValue(GetName())) 1727 return false; 1728 1729 return true; 1730 } 1731 1732 bool ValueObject::IsNilReference() { 1733 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1734 return language->IsNilReference(*this); 1735 } 1736 return false; 1737 } 1738 1739 bool ValueObject::IsUninitializedReference() { 1740 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1741 return language->IsUninitializedReference(*this); 1742 } 1743 return false; 1744 } 1745 1746 // This allows you to create an array member using and index that doesn't not 1747 // fall in the normal bounds of the array. Many times structure can be defined 1748 // as: struct Collection { 1749 // uint32_t item_count; 1750 // Item item_array[0]; 1751 // }; 1752 // The size of the "item_array" is 1, but many times in practice there are more 1753 // items in "item_array". 1754 1755 ValueObjectSP ValueObject::GetSyntheticArrayMember(size_t index, 1756 bool can_create) { 1757 ValueObjectSP synthetic_child_sp; 1758 if (IsPointerType() || IsArrayType()) { 1759 char index_str[64]; 1760 snprintf(index_str, sizeof(index_str), "[%" PRIu64 "]", (uint64_t)index); 1761 ConstString index_const_str(index_str); 1762 // Check if we have already created a synthetic array member in this valid 1763 // object. If we have we will re-use it. 1764 synthetic_child_sp = GetSyntheticChild(index_const_str); 1765 if (!synthetic_child_sp) { 1766 ValueObject *synthetic_child; 1767 // We haven't made a synthetic array member for INDEX yet, so lets make 1768 // one and cache it for any future reference. 1769 synthetic_child = CreateChildAtIndex(0, true, index); 1770 1771 // Cache the value if we got one back... 1772 if (synthetic_child) { 1773 AddSyntheticChild(index_const_str, synthetic_child); 1774 synthetic_child_sp = synthetic_child->GetSP(); 1775 synthetic_child_sp->SetName(ConstString(index_str)); 1776 synthetic_child_sp->m_is_array_item_for_pointer = true; 1777 } 1778 } 1779 } 1780 return synthetic_child_sp; 1781 } 1782 1783 ValueObjectSP ValueObject::GetSyntheticBitFieldChild(uint32_t from, uint32_t to, 1784 bool can_create) { 1785 ValueObjectSP synthetic_child_sp; 1786 if (IsScalarType()) { 1787 char index_str[64]; 1788 snprintf(index_str, sizeof(index_str), "[%i-%i]", from, to); 1789 ConstString index_const_str(index_str); 1790 // Check if we have already created a synthetic array member in this valid 1791 // object. If we have we will re-use it. 1792 synthetic_child_sp = GetSyntheticChild(index_const_str); 1793 if (!synthetic_child_sp) { 1794 uint32_t bit_field_size = to - from + 1; 1795 uint32_t bit_field_offset = from; 1796 if (GetDataExtractor().GetByteOrder() == eByteOrderBig) 1797 bit_field_offset = 1798 GetByteSize() * 8 - bit_field_size - bit_field_offset; 1799 // We haven't made a synthetic array member for INDEX yet, so lets make 1800 // one and cache it for any future reference. 1801 ValueObjectChild *synthetic_child = new ValueObjectChild( 1802 *this, GetCompilerType(), index_const_str, GetByteSize(), 0, 1803 bit_field_size, bit_field_offset, false, false, eAddressTypeInvalid, 1804 0); 1805 1806 // Cache the value if we got one back... 1807 if (synthetic_child) { 1808 AddSyntheticChild(index_const_str, synthetic_child); 1809 synthetic_child_sp = synthetic_child->GetSP(); 1810 synthetic_child_sp->SetName(ConstString(index_str)); 1811 synthetic_child_sp->m_is_bitfield_for_scalar = true; 1812 } 1813 } 1814 } 1815 return synthetic_child_sp; 1816 } 1817 1818 ValueObjectSP ValueObject::GetSyntheticChildAtOffset( 1819 uint32_t offset, const CompilerType &type, bool can_create, 1820 ConstString name_const_str) { 1821 1822 ValueObjectSP synthetic_child_sp; 1823 1824 if (name_const_str.IsEmpty()) { 1825 char name_str[64]; 1826 snprintf(name_str, sizeof(name_str), "@%i", offset); 1827 name_const_str.SetCString(name_str); 1828 } 1829 1830 // Check if we have already created a synthetic array member in this valid 1831 // object. If we have we will re-use it. 1832 synthetic_child_sp = GetSyntheticChild(name_const_str); 1833 1834 if (synthetic_child_sp.get()) 1835 return synthetic_child_sp; 1836 1837 if (!can_create) 1838 return {}; 1839 1840 ExecutionContext exe_ctx(GetExecutionContextRef()); 1841 llvm::Optional<uint64_t> size = 1842 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1843 if (!size) 1844 return {}; 1845 ValueObjectChild *synthetic_child = 1846 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1847 false, false, eAddressTypeInvalid, 0); 1848 if (synthetic_child) { 1849 AddSyntheticChild(name_const_str, synthetic_child); 1850 synthetic_child_sp = synthetic_child->GetSP(); 1851 synthetic_child_sp->SetName(name_const_str); 1852 synthetic_child_sp->m_is_child_at_offset = true; 1853 } 1854 return synthetic_child_sp; 1855 } 1856 1857 ValueObjectSP ValueObject::GetSyntheticBase(uint32_t offset, 1858 const CompilerType &type, 1859 bool can_create, 1860 ConstString name_const_str) { 1861 ValueObjectSP synthetic_child_sp; 1862 1863 if (name_const_str.IsEmpty()) { 1864 char name_str[128]; 1865 snprintf(name_str, sizeof(name_str), "base%s@%i", 1866 type.GetTypeName().AsCString("<unknown>"), offset); 1867 name_const_str.SetCString(name_str); 1868 } 1869 1870 // Check if we have already created a synthetic array member in this valid 1871 // object. If we have we will re-use it. 1872 synthetic_child_sp = GetSyntheticChild(name_const_str); 1873 1874 if (synthetic_child_sp.get()) 1875 return synthetic_child_sp; 1876 1877 if (!can_create) 1878 return {}; 1879 1880 const bool is_base_class = true; 1881 1882 ExecutionContext exe_ctx(GetExecutionContextRef()); 1883 llvm::Optional<uint64_t> size = 1884 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1885 if (!size) 1886 return {}; 1887 ValueObjectChild *synthetic_child = 1888 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1889 is_base_class, false, eAddressTypeInvalid, 0); 1890 if (synthetic_child) { 1891 AddSyntheticChild(name_const_str, synthetic_child); 1892 synthetic_child_sp = synthetic_child->GetSP(); 1893 synthetic_child_sp->SetName(name_const_str); 1894 } 1895 return synthetic_child_sp; 1896 } 1897 1898 // your expression path needs to have a leading . or -> (unless it somehow 1899 // "looks like" an array, in which case it has a leading [ symbol). while the [ 1900 // is meaningful and should be shown to the user, . and -> are just parser 1901 // design, but by no means added information for the user.. strip them off 1902 static const char *SkipLeadingExpressionPathSeparators(const char *expression) { 1903 if (!expression || !expression[0]) 1904 return expression; 1905 if (expression[0] == '.') 1906 return expression + 1; 1907 if (expression[0] == '-' && expression[1] == '>') 1908 return expression + 2; 1909 return expression; 1910 } 1911 1912 ValueObjectSP 1913 ValueObject::GetSyntheticExpressionPathChild(const char *expression, 1914 bool can_create) { 1915 ValueObjectSP synthetic_child_sp; 1916 ConstString name_const_string(expression); 1917 // Check if we have already created a synthetic array member in this valid 1918 // object. If we have we will re-use it. 1919 synthetic_child_sp = GetSyntheticChild(name_const_string); 1920 if (!synthetic_child_sp) { 1921 // We haven't made a synthetic array member for expression yet, so lets 1922 // make one and cache it for any future reference. 1923 synthetic_child_sp = GetValueForExpressionPath( 1924 expression, nullptr, nullptr, 1925 GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal( 1926 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 1927 None)); 1928 1929 // Cache the value if we got one back... 1930 if (synthetic_child_sp.get()) { 1931 // FIXME: this causes a "real" child to end up with its name changed to 1932 // the contents of expression 1933 AddSyntheticChild(name_const_string, synthetic_child_sp.get()); 1934 synthetic_child_sp->SetName( 1935 ConstString(SkipLeadingExpressionPathSeparators(expression))); 1936 } 1937 } 1938 return synthetic_child_sp; 1939 } 1940 1941 void ValueObject::CalculateSyntheticValue() { 1942 TargetSP target_sp(GetTargetSP()); 1943 if (target_sp && !target_sp->GetEnableSyntheticValue()) { 1944 m_synthetic_value = nullptr; 1945 return; 1946 } 1947 1948 lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp); 1949 1950 if (!UpdateFormatsIfNeeded() && m_synthetic_value) 1951 return; 1952 1953 if (m_synthetic_children_sp.get() == nullptr) 1954 return; 1955 1956 if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value) 1957 return; 1958 1959 m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp); 1960 } 1961 1962 void ValueObject::CalculateDynamicValue(DynamicValueType use_dynamic) { 1963 if (use_dynamic == eNoDynamicValues) 1964 return; 1965 1966 if (!m_dynamic_value && !IsDynamic()) { 1967 ExecutionContext exe_ctx(GetExecutionContextRef()); 1968 Process *process = exe_ctx.GetProcessPtr(); 1969 if (process && process->IsPossibleDynamicValue(*this)) { 1970 ClearDynamicTypeInformation(); 1971 m_dynamic_value = new ValueObjectDynamicValue(*this, use_dynamic); 1972 } 1973 } 1974 } 1975 1976 ValueObjectSP ValueObject::GetDynamicValue(DynamicValueType use_dynamic) { 1977 if (use_dynamic == eNoDynamicValues) 1978 return ValueObjectSP(); 1979 1980 if (!IsDynamic() && m_dynamic_value == nullptr) { 1981 CalculateDynamicValue(use_dynamic); 1982 } 1983 if (m_dynamic_value) 1984 return m_dynamic_value->GetSP(); 1985 else 1986 return ValueObjectSP(); 1987 } 1988 1989 ValueObjectSP ValueObject::GetStaticValue() { return GetSP(); } 1990 1991 lldb::ValueObjectSP ValueObject::GetNonSyntheticValue() { return GetSP(); } 1992 1993 ValueObjectSP ValueObject::GetSyntheticValue() { 1994 CalculateSyntheticValue(); 1995 1996 if (m_synthetic_value) 1997 return m_synthetic_value->GetSP(); 1998 else 1999 return ValueObjectSP(); 2000 } 2001 2002 bool ValueObject::HasSyntheticValue() { 2003 UpdateFormatsIfNeeded(); 2004 2005 if (m_synthetic_children_sp.get() == nullptr) 2006 return false; 2007 2008 CalculateSyntheticValue(); 2009 2010 return m_synthetic_value != nullptr; 2011 } 2012 2013 ValueObject *ValueObject::GetNonBaseClassParent() { 2014 if (GetParent()) { 2015 if (GetParent()->IsBaseClass()) 2016 return GetParent()->GetNonBaseClassParent(); 2017 else 2018 return GetParent(); 2019 } 2020 return nullptr; 2021 } 2022 2023 bool ValueObject::IsBaseClass(uint32_t &depth) { 2024 if (!IsBaseClass()) { 2025 depth = 0; 2026 return false; 2027 } 2028 if (GetParent()) { 2029 GetParent()->IsBaseClass(depth); 2030 depth = depth + 1; 2031 return true; 2032 } 2033 // TODO: a base of no parent? weird.. 2034 depth = 1; 2035 return true; 2036 } 2037 2038 void ValueObject::GetExpressionPath(Stream &s, 2039 GetExpressionPathFormat epformat) { 2040 // synthetic children do not actually "exist" as part of the hierarchy, and 2041 // sometimes they are consed up in ways that don't make sense from an 2042 // underlying language/API standpoint. So, use a special code path here to 2043 // return something that can hopefully be used in expression 2044 if (m_is_synthetic_children_generated) { 2045 UpdateValueIfNeeded(); 2046 2047 if (m_value.GetValueType() == Value::eValueTypeLoadAddress) { 2048 if (IsPointerOrReferenceType()) { 2049 s.Printf("((%s)0x%" PRIx64 ")", GetTypeName().AsCString("void"), 2050 GetValueAsUnsigned(0)); 2051 return; 2052 } else { 2053 uint64_t load_addr = 2054 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2055 if (load_addr != LLDB_INVALID_ADDRESS) { 2056 s.Printf("(*( (%s *)0x%" PRIx64 "))", GetTypeName().AsCString("void"), 2057 load_addr); 2058 return; 2059 } 2060 } 2061 } 2062 2063 if (CanProvideValue()) { 2064 s.Printf("((%s)%s)", GetTypeName().AsCString("void"), 2065 GetValueAsCString()); 2066 return; 2067 } 2068 2069 return; 2070 } 2071 2072 const bool is_deref_of_parent = IsDereferenceOfParent(); 2073 2074 if (is_deref_of_parent && 2075 epformat == eGetExpressionPathFormatDereferencePointers) { 2076 // this is the original format of GetExpressionPath() producing code like 2077 // *(a_ptr).memberName, which is entirely fine, until you put this into 2078 // StackFrame::GetValueForVariableExpressionPath() which prefers to see 2079 // a_ptr->memberName. the eHonorPointers mode is meant to produce strings 2080 // in this latter format 2081 s.PutCString("*("); 2082 } 2083 2084 ValueObject *parent = GetParent(); 2085 2086 if (parent) 2087 parent->GetExpressionPath(s, epformat); 2088 2089 // if we are a deref_of_parent just because we are synthetic array members 2090 // made up to allow ptr[%d] syntax to work in variable printing, then add our 2091 // name ([%d]) to the expression path 2092 if (m_is_array_item_for_pointer && 2093 epformat == eGetExpressionPathFormatHonorPointers) 2094 s.PutCString(m_name.GetStringRef()); 2095 2096 if (!IsBaseClass()) { 2097 if (!is_deref_of_parent) { 2098 ValueObject *non_base_class_parent = GetNonBaseClassParent(); 2099 if (non_base_class_parent && 2100 !non_base_class_parent->GetName().IsEmpty()) { 2101 CompilerType non_base_class_parent_compiler_type = 2102 non_base_class_parent->GetCompilerType(); 2103 if (non_base_class_parent_compiler_type) { 2104 if (parent && parent->IsDereferenceOfParent() && 2105 epformat == eGetExpressionPathFormatHonorPointers) { 2106 s.PutCString("->"); 2107 } else { 2108 const uint32_t non_base_class_parent_type_info = 2109 non_base_class_parent_compiler_type.GetTypeInfo(); 2110 2111 if (non_base_class_parent_type_info & eTypeIsPointer) { 2112 s.PutCString("->"); 2113 } else if ((non_base_class_parent_type_info & eTypeHasChildren) && 2114 !(non_base_class_parent_type_info & eTypeIsArray)) { 2115 s.PutChar('.'); 2116 } 2117 } 2118 } 2119 } 2120 2121 const char *name = GetName().GetCString(); 2122 if (name) 2123 s.PutCString(name); 2124 } 2125 } 2126 2127 if (is_deref_of_parent && 2128 epformat == eGetExpressionPathFormatDereferencePointers) { 2129 s.PutChar(')'); 2130 } 2131 } 2132 2133 ValueObjectSP ValueObject::GetValueForExpressionPath( 2134 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2135 ExpressionPathEndResultType *final_value_type, 2136 const GetValueForExpressionPathOptions &options, 2137 ExpressionPathAftermath *final_task_on_target) { 2138 2139 ExpressionPathScanEndReason dummy_reason_to_stop = 2140 ValueObject::eExpressionPathScanEndReasonUnknown; 2141 ExpressionPathEndResultType dummy_final_value_type = 2142 ValueObject::eExpressionPathEndResultTypeInvalid; 2143 ExpressionPathAftermath dummy_final_task_on_target = 2144 ValueObject::eExpressionPathAftermathNothing; 2145 2146 ValueObjectSP ret_val = GetValueForExpressionPath_Impl( 2147 expression, reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2148 final_value_type ? final_value_type : &dummy_final_value_type, options, 2149 final_task_on_target ? final_task_on_target 2150 : &dummy_final_task_on_target); 2151 2152 if (!final_task_on_target || 2153 *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2154 return ret_val; 2155 2156 if (ret_val.get() && 2157 ((final_value_type ? *final_value_type : dummy_final_value_type) == 2158 eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress 2159 // of plain objects 2160 { 2161 if ((final_task_on_target ? *final_task_on_target 2162 : dummy_final_task_on_target) == 2163 ValueObject::eExpressionPathAftermathDereference) { 2164 Status error; 2165 ValueObjectSP final_value = ret_val->Dereference(error); 2166 if (error.Fail() || !final_value.get()) { 2167 if (reason_to_stop) 2168 *reason_to_stop = 2169 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2170 if (final_value_type) 2171 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2172 return ValueObjectSP(); 2173 } else { 2174 if (final_task_on_target) 2175 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2176 return final_value; 2177 } 2178 } 2179 if (*final_task_on_target == 2180 ValueObject::eExpressionPathAftermathTakeAddress) { 2181 Status error; 2182 ValueObjectSP final_value = ret_val->AddressOf(error); 2183 if (error.Fail() || !final_value.get()) { 2184 if (reason_to_stop) 2185 *reason_to_stop = 2186 ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2187 if (final_value_type) 2188 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2189 return ValueObjectSP(); 2190 } else { 2191 if (final_task_on_target) 2192 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2193 return final_value; 2194 } 2195 } 2196 } 2197 return ret_val; // final_task_on_target will still have its original value, so 2198 // you know I did not do it 2199 } 2200 2201 ValueObjectSP ValueObject::GetValueForExpressionPath_Impl( 2202 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2203 ExpressionPathEndResultType *final_result, 2204 const GetValueForExpressionPathOptions &options, 2205 ExpressionPathAftermath *what_next) { 2206 ValueObjectSP root = GetSP(); 2207 2208 if (!root) 2209 return nullptr; 2210 2211 llvm::StringRef remainder = expression; 2212 2213 while (true) { 2214 llvm::StringRef temp_expression = remainder; 2215 2216 CompilerType root_compiler_type = root->GetCompilerType(); 2217 CompilerType pointee_compiler_type; 2218 Flags pointee_compiler_type_info; 2219 2220 Flags root_compiler_type_info( 2221 root_compiler_type.GetTypeInfo(&pointee_compiler_type)); 2222 if (pointee_compiler_type) 2223 pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo()); 2224 2225 if (temp_expression.empty()) { 2226 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2227 return root; 2228 } 2229 2230 switch (temp_expression.front()) { 2231 case '-': { 2232 temp_expression = temp_expression.drop_front(); 2233 if (options.m_check_dot_vs_arrow_syntax && 2234 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2235 // use -> on a 2236 // non-pointer and I 2237 // must catch the error 2238 { 2239 *reason_to_stop = 2240 ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot; 2241 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2242 return ValueObjectSP(); 2243 } 2244 if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to 2245 // extract an ObjC IVar 2246 // when this is forbidden 2247 root_compiler_type_info.Test(eTypeIsPointer) && 2248 options.m_no_fragile_ivar) { 2249 *reason_to_stop = 2250 ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed; 2251 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2252 return ValueObjectSP(); 2253 } 2254 if (!temp_expression.startswith(">")) { 2255 *reason_to_stop = 2256 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2257 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2258 return ValueObjectSP(); 2259 } 2260 } 2261 LLVM_FALLTHROUGH; 2262 case '.': // or fallthrough from -> 2263 { 2264 if (options.m_check_dot_vs_arrow_syntax && 2265 temp_expression.front() == '.' && 2266 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2267 // use . on a pointer 2268 // and I must catch the 2269 // error 2270 { 2271 *reason_to_stop = 2272 ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow; 2273 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2274 return nullptr; 2275 } 2276 temp_expression = temp_expression.drop_front(); // skip . or > 2277 2278 size_t next_sep_pos = temp_expression.find_first_of("-.[", 1); 2279 ConstString child_name; 2280 if (next_sep_pos == llvm::StringRef::npos) // if no other separator just 2281 // expand this last layer 2282 { 2283 child_name.SetString(temp_expression); 2284 ValueObjectSP child_valobj_sp = 2285 root->GetChildMemberWithName(child_name, true); 2286 2287 if (child_valobj_sp.get()) // we know we are done, so just return 2288 { 2289 *reason_to_stop = 2290 ValueObject::eExpressionPathScanEndReasonEndOfString; 2291 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2292 return child_valobj_sp; 2293 } else { 2294 switch (options.m_synthetic_children_traversal) { 2295 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2296 None: 2297 break; 2298 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2299 FromSynthetic: 2300 if (root->IsSynthetic()) { 2301 child_valobj_sp = root->GetNonSyntheticValue(); 2302 if (child_valobj_sp.get()) 2303 child_valobj_sp = 2304 child_valobj_sp->GetChildMemberWithName(child_name, true); 2305 } 2306 break; 2307 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2308 ToSynthetic: 2309 if (!root->IsSynthetic()) { 2310 child_valobj_sp = root->GetSyntheticValue(); 2311 if (child_valobj_sp.get()) 2312 child_valobj_sp = 2313 child_valobj_sp->GetChildMemberWithName(child_name, true); 2314 } 2315 break; 2316 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2317 Both: 2318 if (root->IsSynthetic()) { 2319 child_valobj_sp = root->GetNonSyntheticValue(); 2320 if (child_valobj_sp.get()) 2321 child_valobj_sp = 2322 child_valobj_sp->GetChildMemberWithName(child_name, true); 2323 } else { 2324 child_valobj_sp = root->GetSyntheticValue(); 2325 if (child_valobj_sp.get()) 2326 child_valobj_sp = 2327 child_valobj_sp->GetChildMemberWithName(child_name, true); 2328 } 2329 break; 2330 } 2331 } 2332 2333 // if we are here and options.m_no_synthetic_children is true, 2334 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2335 // branch, and return an error 2336 if (child_valobj_sp.get()) // if it worked, just return 2337 { 2338 *reason_to_stop = 2339 ValueObject::eExpressionPathScanEndReasonEndOfString; 2340 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2341 return child_valobj_sp; 2342 } else { 2343 *reason_to_stop = 2344 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2345 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2346 return nullptr; 2347 } 2348 } else // other layers do expand 2349 { 2350 llvm::StringRef next_separator = temp_expression.substr(next_sep_pos); 2351 2352 child_name.SetString(temp_expression.slice(0, next_sep_pos)); 2353 2354 ValueObjectSP child_valobj_sp = 2355 root->GetChildMemberWithName(child_name, true); 2356 if (child_valobj_sp.get()) // store the new root and move on 2357 { 2358 root = child_valobj_sp; 2359 remainder = next_separator; 2360 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2361 continue; 2362 } else { 2363 switch (options.m_synthetic_children_traversal) { 2364 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2365 None: 2366 break; 2367 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2368 FromSynthetic: 2369 if (root->IsSynthetic()) { 2370 child_valobj_sp = root->GetNonSyntheticValue(); 2371 if (child_valobj_sp.get()) 2372 child_valobj_sp = 2373 child_valobj_sp->GetChildMemberWithName(child_name, true); 2374 } 2375 break; 2376 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2377 ToSynthetic: 2378 if (!root->IsSynthetic()) { 2379 child_valobj_sp = root->GetSyntheticValue(); 2380 if (child_valobj_sp.get()) 2381 child_valobj_sp = 2382 child_valobj_sp->GetChildMemberWithName(child_name, true); 2383 } 2384 break; 2385 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2386 Both: 2387 if (root->IsSynthetic()) { 2388 child_valobj_sp = root->GetNonSyntheticValue(); 2389 if (child_valobj_sp.get()) 2390 child_valobj_sp = 2391 child_valobj_sp->GetChildMemberWithName(child_name, true); 2392 } else { 2393 child_valobj_sp = root->GetSyntheticValue(); 2394 if (child_valobj_sp.get()) 2395 child_valobj_sp = 2396 child_valobj_sp->GetChildMemberWithName(child_name, true); 2397 } 2398 break; 2399 } 2400 } 2401 2402 // if we are here and options.m_no_synthetic_children is true, 2403 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2404 // branch, and return an error 2405 if (child_valobj_sp.get()) // if it worked, move on 2406 { 2407 root = child_valobj_sp; 2408 remainder = next_separator; 2409 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2410 continue; 2411 } else { 2412 *reason_to_stop = 2413 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2414 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2415 return nullptr; 2416 } 2417 } 2418 break; 2419 } 2420 case '[': { 2421 if (!root_compiler_type_info.Test(eTypeIsArray) && 2422 !root_compiler_type_info.Test(eTypeIsPointer) && 2423 !root_compiler_type_info.Test( 2424 eTypeIsVector)) // if this is not a T[] nor a T* 2425 { 2426 if (!root_compiler_type_info.Test( 2427 eTypeIsScalar)) // if this is not even a scalar... 2428 { 2429 if (options.m_synthetic_children_traversal == 2430 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2431 None) // ...only chance left is synthetic 2432 { 2433 *reason_to_stop = 2434 ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 2435 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2436 return ValueObjectSP(); 2437 } 2438 } else if (!options.m_allow_bitfields_syntax) // if this is a scalar, 2439 // check that we can 2440 // expand bitfields 2441 { 2442 *reason_to_stop = 2443 ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 2444 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2445 return ValueObjectSP(); 2446 } 2447 } 2448 if (temp_expression[1] == 2449 ']') // if this is an unbounded range it only works for arrays 2450 { 2451 if (!root_compiler_type_info.Test(eTypeIsArray)) { 2452 *reason_to_stop = 2453 ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 2454 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2455 return nullptr; 2456 } else // even if something follows, we cannot expand unbounded ranges, 2457 // just let the caller do it 2458 { 2459 *reason_to_stop = 2460 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2461 *final_result = 2462 ValueObject::eExpressionPathEndResultTypeUnboundedRange; 2463 return root; 2464 } 2465 } 2466 2467 size_t close_bracket_position = temp_expression.find(']', 1); 2468 if (close_bracket_position == 2469 llvm::StringRef::npos) // if there is no ], this is a syntax error 2470 { 2471 *reason_to_stop = 2472 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2473 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2474 return nullptr; 2475 } 2476 2477 llvm::StringRef bracket_expr = 2478 temp_expression.slice(1, close_bracket_position); 2479 2480 // If this was an empty expression it would have been caught by the if 2481 // above. 2482 assert(!bracket_expr.empty()); 2483 2484 if (!bracket_expr.contains('-')) { 2485 // if no separator, this is of the form [N]. Note that this cannot be 2486 // an unbounded range of the form [], because that case was handled 2487 // above with an unconditional return. 2488 unsigned long index = 0; 2489 if (bracket_expr.getAsInteger(0, index)) { 2490 *reason_to_stop = 2491 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2492 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2493 return nullptr; 2494 } 2495 2496 // from here on we do have a valid index 2497 if (root_compiler_type_info.Test(eTypeIsArray)) { 2498 ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true); 2499 if (!child_valobj_sp) 2500 child_valobj_sp = root->GetSyntheticArrayMember(index, true); 2501 if (!child_valobj_sp) 2502 if (root->HasSyntheticValue() && 2503 root->GetSyntheticValue()->GetNumChildren() > index) 2504 child_valobj_sp = 2505 root->GetSyntheticValue()->GetChildAtIndex(index, true); 2506 if (child_valobj_sp) { 2507 root = child_valobj_sp; 2508 remainder = 2509 temp_expression.substr(close_bracket_position + 1); // skip ] 2510 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2511 continue; 2512 } else { 2513 *reason_to_stop = 2514 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2515 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2516 return nullptr; 2517 } 2518 } else if (root_compiler_type_info.Test(eTypeIsPointer)) { 2519 if (*what_next == 2520 ValueObject:: 2521 eExpressionPathAftermathDereference && // if this is a 2522 // ptr-to-scalar, I 2523 // am accessing it 2524 // by index and I 2525 // would have 2526 // deref'ed anyway, 2527 // then do it now 2528 // and use this as 2529 // a bitfield 2530 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2531 Status error; 2532 root = root->Dereference(error); 2533 if (error.Fail() || !root) { 2534 *reason_to_stop = 2535 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2536 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2537 return nullptr; 2538 } else { 2539 *what_next = eExpressionPathAftermathNothing; 2540 continue; 2541 } 2542 } else { 2543 if (root->GetCompilerType().GetMinimumLanguage() == 2544 eLanguageTypeObjC && 2545 pointee_compiler_type_info.AllClear(eTypeIsPointer) && 2546 root->HasSyntheticValue() && 2547 (options.m_synthetic_children_traversal == 2548 GetValueForExpressionPathOptions:: 2549 SyntheticChildrenTraversal::ToSynthetic || 2550 options.m_synthetic_children_traversal == 2551 GetValueForExpressionPathOptions:: 2552 SyntheticChildrenTraversal::Both)) { 2553 root = root->GetSyntheticValue()->GetChildAtIndex(index, true); 2554 } else 2555 root = root->GetSyntheticArrayMember(index, true); 2556 if (!root) { 2557 *reason_to_stop = 2558 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2559 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2560 return nullptr; 2561 } else { 2562 remainder = 2563 temp_expression.substr(close_bracket_position + 1); // skip ] 2564 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2565 continue; 2566 } 2567 } 2568 } else if (root_compiler_type_info.Test(eTypeIsScalar)) { 2569 root = root->GetSyntheticBitFieldChild(index, index, true); 2570 if (!root) { 2571 *reason_to_stop = 2572 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2573 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2574 return nullptr; 2575 } else // we do not know how to expand members of bitfields, so we 2576 // just return and let the caller do any further processing 2577 { 2578 *reason_to_stop = ValueObject:: 2579 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2580 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2581 return root; 2582 } 2583 } else if (root_compiler_type_info.Test(eTypeIsVector)) { 2584 root = root->GetChildAtIndex(index, true); 2585 if (!root) { 2586 *reason_to_stop = 2587 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2588 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2589 return ValueObjectSP(); 2590 } else { 2591 remainder = 2592 temp_expression.substr(close_bracket_position + 1); // skip ] 2593 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2594 continue; 2595 } 2596 } else if (options.m_synthetic_children_traversal == 2597 GetValueForExpressionPathOptions:: 2598 SyntheticChildrenTraversal::ToSynthetic || 2599 options.m_synthetic_children_traversal == 2600 GetValueForExpressionPathOptions:: 2601 SyntheticChildrenTraversal::Both) { 2602 if (root->HasSyntheticValue()) 2603 root = root->GetSyntheticValue(); 2604 else if (!root->IsSynthetic()) { 2605 *reason_to_stop = 2606 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2607 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2608 return nullptr; 2609 } 2610 // if we are here, then root itself is a synthetic VO.. should be 2611 // good to go 2612 2613 if (!root) { 2614 *reason_to_stop = 2615 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2616 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2617 return nullptr; 2618 } 2619 root = root->GetChildAtIndex(index, true); 2620 if (!root) { 2621 *reason_to_stop = 2622 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2623 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2624 return nullptr; 2625 } else { 2626 remainder = 2627 temp_expression.substr(close_bracket_position + 1); // skip ] 2628 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2629 continue; 2630 } 2631 } else { 2632 *reason_to_stop = 2633 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2634 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2635 return nullptr; 2636 } 2637 } else { 2638 // we have a low and a high index 2639 llvm::StringRef sleft, sright; 2640 unsigned long low_index, high_index; 2641 std::tie(sleft, sright) = bracket_expr.split('-'); 2642 if (sleft.getAsInteger(0, low_index) || 2643 sright.getAsInteger(0, high_index)) { 2644 *reason_to_stop = 2645 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2646 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2647 return nullptr; 2648 } 2649 2650 if (low_index > high_index) // swap indices if required 2651 std::swap(low_index, high_index); 2652 2653 if (root_compiler_type_info.Test( 2654 eTypeIsScalar)) // expansion only works for scalars 2655 { 2656 root = root->GetSyntheticBitFieldChild(low_index, high_index, true); 2657 if (!root) { 2658 *reason_to_stop = 2659 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2660 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2661 return nullptr; 2662 } else { 2663 *reason_to_stop = ValueObject:: 2664 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2665 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2666 return root; 2667 } 2668 } else if (root_compiler_type_info.Test( 2669 eTypeIsPointer) && // if this is a ptr-to-scalar, I am 2670 // accessing it by index and I would 2671 // have deref'ed anyway, then do it 2672 // now and use this as a bitfield 2673 *what_next == 2674 ValueObject::eExpressionPathAftermathDereference && 2675 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2676 Status error; 2677 root = root->Dereference(error); 2678 if (error.Fail() || !root) { 2679 *reason_to_stop = 2680 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2681 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2682 return nullptr; 2683 } else { 2684 *what_next = ValueObject::eExpressionPathAftermathNothing; 2685 continue; 2686 } 2687 } else { 2688 *reason_to_stop = 2689 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2690 *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange; 2691 return root; 2692 } 2693 } 2694 break; 2695 } 2696 default: // some non-separator is in the way 2697 { 2698 *reason_to_stop = 2699 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2700 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2701 return nullptr; 2702 } 2703 } 2704 } 2705 } 2706 2707 void ValueObject::LogValueObject(Log *log) { 2708 if (log) 2709 return LogValueObject(log, DumpValueObjectOptions(*this)); 2710 } 2711 2712 void ValueObject::LogValueObject(Log *log, 2713 const DumpValueObjectOptions &options) { 2714 if (log) { 2715 StreamString s; 2716 Dump(s, options); 2717 if (s.GetSize()) 2718 log->PutCString(s.GetData()); 2719 } 2720 } 2721 2722 void ValueObject::Dump(Stream &s) { Dump(s, DumpValueObjectOptions(*this)); } 2723 2724 void ValueObject::Dump(Stream &s, const DumpValueObjectOptions &options) { 2725 ValueObjectPrinter printer(this, &s, options); 2726 printer.PrintValueObject(); 2727 } 2728 2729 ValueObjectSP ValueObject::CreateConstantValue(ConstString name) { 2730 ValueObjectSP valobj_sp; 2731 2732 if (UpdateValueIfNeeded(false) && m_error.Success()) { 2733 ExecutionContext exe_ctx(GetExecutionContextRef()); 2734 2735 DataExtractor data; 2736 data.SetByteOrder(m_data.GetByteOrder()); 2737 data.SetAddressByteSize(m_data.GetAddressByteSize()); 2738 2739 if (IsBitfield()) { 2740 Value v(Scalar(GetValueAsUnsigned(UINT64_MAX))); 2741 m_error = v.GetValueAsData(&exe_ctx, data, GetModule().get()); 2742 } else 2743 m_error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get()); 2744 2745 valobj_sp = ValueObjectConstResult::Create( 2746 exe_ctx.GetBestExecutionContextScope(), GetCompilerType(), name, data, 2747 GetAddressOf()); 2748 } 2749 2750 if (!valobj_sp) { 2751 ExecutionContext exe_ctx(GetExecutionContextRef()); 2752 valobj_sp = ValueObjectConstResult::Create( 2753 exe_ctx.GetBestExecutionContextScope(), m_error); 2754 } 2755 return valobj_sp; 2756 } 2757 2758 ValueObjectSP ValueObject::GetQualifiedRepresentationIfAvailable( 2759 lldb::DynamicValueType dynValue, bool synthValue) { 2760 ValueObjectSP result_sp(GetSP()); 2761 2762 switch (dynValue) { 2763 case lldb::eDynamicCanRunTarget: 2764 case lldb::eDynamicDontRunTarget: { 2765 if (!result_sp->IsDynamic()) { 2766 if (result_sp->GetDynamicValue(dynValue)) 2767 result_sp = result_sp->GetDynamicValue(dynValue); 2768 } 2769 } break; 2770 case lldb::eNoDynamicValues: { 2771 if (result_sp->IsDynamic()) { 2772 if (result_sp->GetStaticValue()) 2773 result_sp = result_sp->GetStaticValue(); 2774 } 2775 } break; 2776 } 2777 2778 if (synthValue) { 2779 if (!result_sp->IsSynthetic()) { 2780 if (result_sp->GetSyntheticValue()) 2781 result_sp = result_sp->GetSyntheticValue(); 2782 } 2783 } else { 2784 if (result_sp->IsSynthetic()) { 2785 if (result_sp->GetNonSyntheticValue()) 2786 result_sp = result_sp->GetNonSyntheticValue(); 2787 } 2788 } 2789 2790 return result_sp; 2791 } 2792 2793 ValueObjectSP ValueObject::Dereference(Status &error) { 2794 if (m_deref_valobj) 2795 return m_deref_valobj->GetSP(); 2796 2797 const bool is_pointer_or_reference_type = IsPointerOrReferenceType(); 2798 if (is_pointer_or_reference_type) { 2799 bool omit_empty_base_classes = true; 2800 bool ignore_array_bounds = false; 2801 2802 std::string child_name_str; 2803 uint32_t child_byte_size = 0; 2804 int32_t child_byte_offset = 0; 2805 uint32_t child_bitfield_bit_size = 0; 2806 uint32_t child_bitfield_bit_offset = 0; 2807 bool child_is_base_class = false; 2808 bool child_is_deref_of_parent = false; 2809 const bool transparent_pointers = false; 2810 CompilerType compiler_type = GetCompilerType(); 2811 CompilerType child_compiler_type; 2812 uint64_t language_flags = 0; 2813 2814 ExecutionContext exe_ctx(GetExecutionContextRef()); 2815 2816 child_compiler_type = compiler_type.GetChildCompilerTypeAtIndex( 2817 &exe_ctx, 0, transparent_pointers, omit_empty_base_classes, 2818 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 2819 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 2820 child_is_deref_of_parent, this, language_flags); 2821 if (child_compiler_type && child_byte_size) { 2822 ConstString child_name; 2823 if (!child_name_str.empty()) 2824 child_name.SetCString(child_name_str.c_str()); 2825 2826 m_deref_valobj = new ValueObjectChild( 2827 *this, child_compiler_type, child_name, child_byte_size, 2828 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 2829 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 2830 language_flags); 2831 } 2832 2833 // In case of incomplete child compiler type, use the pointee type and try 2834 // to recreate a new ValueObjectChild using it. 2835 if (!m_deref_valobj) { 2836 if (HasSyntheticValue()) { 2837 child_compiler_type = compiler_type.GetPointeeType(); 2838 2839 if (child_compiler_type) { 2840 ConstString child_name; 2841 if (!child_name_str.empty()) 2842 child_name.SetCString(child_name_str.c_str()); 2843 2844 m_deref_valobj = new ValueObjectChild( 2845 *this, child_compiler_type, child_name, child_byte_size, 2846 child_byte_offset, child_bitfield_bit_size, 2847 child_bitfield_bit_offset, child_is_base_class, 2848 child_is_deref_of_parent, eAddressTypeInvalid, language_flags); 2849 } 2850 } 2851 } 2852 2853 } else if (HasSyntheticValue()) { 2854 m_deref_valobj = 2855 GetSyntheticValue() 2856 ->GetChildMemberWithName(ConstString("$$dereference$$"), true) 2857 .get(); 2858 } else if (IsSynthetic()) { 2859 m_deref_valobj = 2860 GetChildMemberWithName(ConstString("$$dereference$$"), true).get(); 2861 } 2862 2863 if (m_deref_valobj) { 2864 error.Clear(); 2865 return m_deref_valobj->GetSP(); 2866 } else { 2867 StreamString strm; 2868 GetExpressionPath(strm); 2869 2870 if (is_pointer_or_reference_type) 2871 error.SetErrorStringWithFormat("dereference failed: (%s) %s", 2872 GetTypeName().AsCString("<invalid type>"), 2873 strm.GetData()); 2874 else 2875 error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s", 2876 GetTypeName().AsCString("<invalid type>"), 2877 strm.GetData()); 2878 return ValueObjectSP(); 2879 } 2880 } 2881 2882 ValueObjectSP ValueObject::AddressOf(Status &error) { 2883 if (m_addr_of_valobj_sp) 2884 return m_addr_of_valobj_sp; 2885 2886 AddressType address_type = eAddressTypeInvalid; 2887 const bool scalar_is_load_address = false; 2888 addr_t addr = GetAddressOf(scalar_is_load_address, &address_type); 2889 error.Clear(); 2890 if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) { 2891 switch (address_type) { 2892 case eAddressTypeInvalid: { 2893 StreamString expr_path_strm; 2894 GetExpressionPath(expr_path_strm); 2895 error.SetErrorStringWithFormat("'%s' is not in memory", 2896 expr_path_strm.GetData()); 2897 } break; 2898 2899 case eAddressTypeFile: 2900 case eAddressTypeLoad: { 2901 CompilerType compiler_type = GetCompilerType(); 2902 if (compiler_type) { 2903 std::string name(1, '&'); 2904 name.append(m_name.AsCString("")); 2905 ExecutionContext exe_ctx(GetExecutionContextRef()); 2906 m_addr_of_valobj_sp = ValueObjectConstResult::Create( 2907 exe_ctx.GetBestExecutionContextScope(), 2908 compiler_type.GetPointerType(), ConstString(name.c_str()), addr, 2909 eAddressTypeInvalid, m_data.GetAddressByteSize()); 2910 } 2911 } break; 2912 default: 2913 break; 2914 } 2915 } else { 2916 StreamString expr_path_strm; 2917 GetExpressionPath(expr_path_strm); 2918 error.SetErrorStringWithFormat("'%s' doesn't have a valid address", 2919 expr_path_strm.GetData()); 2920 } 2921 2922 return m_addr_of_valobj_sp; 2923 } 2924 2925 ValueObjectSP ValueObject::Cast(const CompilerType &compiler_type) { 2926 return ValueObjectCast::Create(*this, GetName(), compiler_type); 2927 } 2928 2929 lldb::ValueObjectSP ValueObject::Clone(ConstString new_name) { 2930 return ValueObjectCast::Create(*this, new_name, GetCompilerType()); 2931 } 2932 2933 ValueObjectSP ValueObject::CastPointerType(const char *name, 2934 CompilerType &compiler_type) { 2935 ValueObjectSP valobj_sp; 2936 AddressType address_type; 2937 addr_t ptr_value = GetPointerValue(&address_type); 2938 2939 if (ptr_value != LLDB_INVALID_ADDRESS) { 2940 Address ptr_addr(ptr_value); 2941 ExecutionContext exe_ctx(GetExecutionContextRef()); 2942 valobj_sp = ValueObjectMemory::Create( 2943 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, compiler_type); 2944 } 2945 return valobj_sp; 2946 } 2947 2948 ValueObjectSP ValueObject::CastPointerType(const char *name, TypeSP &type_sp) { 2949 ValueObjectSP valobj_sp; 2950 AddressType address_type; 2951 addr_t ptr_value = GetPointerValue(&address_type); 2952 2953 if (ptr_value != LLDB_INVALID_ADDRESS) { 2954 Address ptr_addr(ptr_value); 2955 ExecutionContext exe_ctx(GetExecutionContextRef()); 2956 valobj_sp = ValueObjectMemory::Create( 2957 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, type_sp); 2958 } 2959 return valobj_sp; 2960 } 2961 2962 ValueObject::EvaluationPoint::EvaluationPoint() 2963 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) {} 2964 2965 ValueObject::EvaluationPoint::EvaluationPoint(ExecutionContextScope *exe_scope, 2966 bool use_selected) 2967 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) { 2968 ExecutionContext exe_ctx(exe_scope); 2969 TargetSP target_sp(exe_ctx.GetTargetSP()); 2970 if (target_sp) { 2971 m_exe_ctx_ref.SetTargetSP(target_sp); 2972 ProcessSP process_sp(exe_ctx.GetProcessSP()); 2973 if (!process_sp) 2974 process_sp = target_sp->GetProcessSP(); 2975 2976 if (process_sp) { 2977 m_mod_id = process_sp->GetModID(); 2978 m_exe_ctx_ref.SetProcessSP(process_sp); 2979 2980 ThreadSP thread_sp(exe_ctx.GetThreadSP()); 2981 2982 if (!thread_sp) { 2983 if (use_selected) 2984 thread_sp = process_sp->GetThreadList().GetSelectedThread(); 2985 } 2986 2987 if (thread_sp) { 2988 m_exe_ctx_ref.SetThreadSP(thread_sp); 2989 2990 StackFrameSP frame_sp(exe_ctx.GetFrameSP()); 2991 if (!frame_sp) { 2992 if (use_selected) 2993 frame_sp = thread_sp->GetSelectedFrame(); 2994 } 2995 if (frame_sp) 2996 m_exe_ctx_ref.SetFrameSP(frame_sp); 2997 } 2998 } 2999 } 3000 } 3001 3002 ValueObject::EvaluationPoint::EvaluationPoint( 3003 const ValueObject::EvaluationPoint &rhs) 3004 : m_mod_id(), m_exe_ctx_ref(rhs.m_exe_ctx_ref), m_needs_update(true) {} 3005 3006 ValueObject::EvaluationPoint::~EvaluationPoint() {} 3007 3008 // This function checks the EvaluationPoint against the current process state. 3009 // If the current state matches the evaluation point, or the evaluation point 3010 // is already invalid, then we return false, meaning "no change". If the 3011 // current state is different, we update our state, and return true meaning 3012 // "yes, change". If we did see a change, we also set m_needs_update to true, 3013 // so future calls to NeedsUpdate will return true. exe_scope will be set to 3014 // the current execution context scope. 3015 3016 bool ValueObject::EvaluationPoint::SyncWithProcessState( 3017 bool accept_invalid_exe_ctx) { 3018 // Start with the target, if it is NULL, then we're obviously not going to 3019 // get any further: 3020 const bool thread_and_frame_only_if_stopped = true; 3021 ExecutionContext exe_ctx( 3022 m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped)); 3023 3024 if (exe_ctx.GetTargetPtr() == nullptr) 3025 return false; 3026 3027 // If we don't have a process nothing can change. 3028 Process *process = exe_ctx.GetProcessPtr(); 3029 if (process == nullptr) 3030 return false; 3031 3032 // If our stop id is the current stop ID, nothing has changed: 3033 ProcessModID current_mod_id = process->GetModID(); 3034 3035 // If the current stop id is 0, either we haven't run yet, or the process 3036 // state has been cleared. In either case, we aren't going to be able to sync 3037 // with the process state. 3038 if (current_mod_id.GetStopID() == 0) 3039 return false; 3040 3041 bool changed = false; 3042 const bool was_valid = m_mod_id.IsValid(); 3043 if (was_valid) { 3044 if (m_mod_id == current_mod_id) { 3045 // Everything is already up to date in this object, no need to update the 3046 // execution context scope. 3047 changed = false; 3048 } else { 3049 m_mod_id = current_mod_id; 3050 m_needs_update = true; 3051 changed = true; 3052 } 3053 } 3054 3055 // Now re-look up the thread and frame in case the underlying objects have 3056 // gone away & been recreated. That way we'll be sure to return a valid 3057 // exe_scope. If we used to have a thread or a frame but can't find it 3058 // anymore, then mark ourselves as invalid. 3059 3060 if (!accept_invalid_exe_ctx) { 3061 if (m_exe_ctx_ref.HasThreadRef()) { 3062 ThreadSP thread_sp(m_exe_ctx_ref.GetThreadSP()); 3063 if (thread_sp) { 3064 if (m_exe_ctx_ref.HasFrameRef()) { 3065 StackFrameSP frame_sp(m_exe_ctx_ref.GetFrameSP()); 3066 if (!frame_sp) { 3067 // We used to have a frame, but now it is gone 3068 SetInvalid(); 3069 changed = was_valid; 3070 } 3071 } 3072 } else { 3073 // We used to have a thread, but now it is gone 3074 SetInvalid(); 3075 changed = was_valid; 3076 } 3077 } 3078 } 3079 3080 return changed; 3081 } 3082 3083 void ValueObject::EvaluationPoint::SetUpdated() { 3084 ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP()); 3085 if (process_sp) 3086 m_mod_id = process_sp->GetModID(); 3087 m_needs_update = false; 3088 } 3089 3090 void ValueObject::ClearUserVisibleData(uint32_t clear_mask) { 3091 if ((clear_mask & eClearUserVisibleDataItemsValue) == 3092 eClearUserVisibleDataItemsValue) 3093 m_value_str.clear(); 3094 3095 if ((clear_mask & eClearUserVisibleDataItemsLocation) == 3096 eClearUserVisibleDataItemsLocation) 3097 m_location_str.clear(); 3098 3099 if ((clear_mask & eClearUserVisibleDataItemsSummary) == 3100 eClearUserVisibleDataItemsSummary) 3101 m_summary_str.clear(); 3102 3103 if ((clear_mask & eClearUserVisibleDataItemsDescription) == 3104 eClearUserVisibleDataItemsDescription) 3105 m_object_desc_str.clear(); 3106 3107 if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == 3108 eClearUserVisibleDataItemsSyntheticChildren) { 3109 if (m_synthetic_value) 3110 m_synthetic_value = nullptr; 3111 } 3112 } 3113 3114 SymbolContextScope *ValueObject::GetSymbolContextScope() { 3115 if (m_parent) { 3116 if (!m_parent->IsPointerOrReferenceType()) 3117 return m_parent->GetSymbolContextScope(); 3118 } 3119 return nullptr; 3120 } 3121 3122 lldb::ValueObjectSP 3123 ValueObject::CreateValueObjectFromExpression(llvm::StringRef name, 3124 llvm::StringRef expression, 3125 const ExecutionContext &exe_ctx) { 3126 return CreateValueObjectFromExpression(name, expression, exe_ctx, 3127 EvaluateExpressionOptions()); 3128 } 3129 3130 lldb::ValueObjectSP ValueObject::CreateValueObjectFromExpression( 3131 llvm::StringRef name, llvm::StringRef expression, 3132 const ExecutionContext &exe_ctx, const EvaluateExpressionOptions &options) { 3133 lldb::ValueObjectSP retval_sp; 3134 lldb::TargetSP target_sp(exe_ctx.GetTargetSP()); 3135 if (!target_sp) 3136 return retval_sp; 3137 if (expression.empty()) 3138 return retval_sp; 3139 target_sp->EvaluateExpression(expression, exe_ctx.GetFrameSP().get(), 3140 retval_sp, options); 3141 if (retval_sp && !name.empty()) 3142 retval_sp->SetName(ConstString(name)); 3143 return retval_sp; 3144 } 3145 3146 lldb::ValueObjectSP ValueObject::CreateValueObjectFromAddress( 3147 llvm::StringRef name, uint64_t address, const ExecutionContext &exe_ctx, 3148 CompilerType type) { 3149 if (type) { 3150 CompilerType pointer_type(type.GetPointerType()); 3151 if (pointer_type) { 3152 lldb::DataBufferSP buffer( 3153 new lldb_private::DataBufferHeap(&address, sizeof(lldb::addr_t))); 3154 lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create( 3155 exe_ctx.GetBestExecutionContextScope(), pointer_type, 3156 ConstString(name), buffer, exe_ctx.GetByteOrder(), 3157 exe_ctx.GetAddressByteSize())); 3158 if (ptr_result_valobj_sp) { 3159 ptr_result_valobj_sp->GetValue().SetValueType( 3160 Value::eValueTypeLoadAddress); 3161 Status err; 3162 ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err); 3163 if (ptr_result_valobj_sp && !name.empty()) 3164 ptr_result_valobj_sp->SetName(ConstString(name)); 3165 } 3166 return ptr_result_valobj_sp; 3167 } 3168 } 3169 return lldb::ValueObjectSP(); 3170 } 3171 3172 lldb::ValueObjectSP ValueObject::CreateValueObjectFromData( 3173 llvm::StringRef name, const DataExtractor &data, 3174 const ExecutionContext &exe_ctx, CompilerType type) { 3175 lldb::ValueObjectSP new_value_sp; 3176 new_value_sp = ValueObjectConstResult::Create( 3177 exe_ctx.GetBestExecutionContextScope(), type, ConstString(name), data, 3178 LLDB_INVALID_ADDRESS); 3179 new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad); 3180 if (new_value_sp && !name.empty()) 3181 new_value_sp->SetName(ConstString(name)); 3182 return new_value_sp; 3183 } 3184 3185 ModuleSP ValueObject::GetModule() { 3186 ValueObject *root(GetRoot()); 3187 if (root != this) 3188 return root->GetModule(); 3189 return lldb::ModuleSP(); 3190 } 3191 3192 ValueObject *ValueObject::GetRoot() { 3193 if (m_root) 3194 return m_root; 3195 return (m_root = FollowParentChain([](ValueObject *vo) -> bool { 3196 return (vo->m_parent != nullptr); 3197 })); 3198 } 3199 3200 ValueObject * 3201 ValueObject::FollowParentChain(std::function<bool(ValueObject *)> f) { 3202 ValueObject *vo = this; 3203 while (vo) { 3204 if (!f(vo)) 3205 break; 3206 vo = vo->m_parent; 3207 } 3208 return vo; 3209 } 3210 3211 AddressType ValueObject::GetAddressTypeOfChildren() { 3212 if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) { 3213 ValueObject *root(GetRoot()); 3214 if (root != this) 3215 return root->GetAddressTypeOfChildren(); 3216 } 3217 return m_address_type_of_ptr_or_ref_children; 3218 } 3219 3220 lldb::DynamicValueType ValueObject::GetDynamicValueType() { 3221 ValueObject *with_dv_info = this; 3222 while (with_dv_info) { 3223 if (with_dv_info->HasDynamicValueTypeInfo()) 3224 return with_dv_info->GetDynamicValueTypeImpl(); 3225 with_dv_info = with_dv_info->m_parent; 3226 } 3227 return lldb::eNoDynamicValues; 3228 } 3229 3230 lldb::Format ValueObject::GetFormat() const { 3231 const ValueObject *with_fmt_info = this; 3232 while (with_fmt_info) { 3233 if (with_fmt_info->m_format != lldb::eFormatDefault) 3234 return with_fmt_info->m_format; 3235 with_fmt_info = with_fmt_info->m_parent; 3236 } 3237 return m_format; 3238 } 3239 3240 lldb::LanguageType ValueObject::GetPreferredDisplayLanguage() { 3241 lldb::LanguageType type = m_preferred_display_language; 3242 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) { 3243 if (GetRoot()) { 3244 if (GetRoot() == this) { 3245 if (StackFrameSP frame_sp = GetFrameSP()) { 3246 const SymbolContext &sc( 3247 frame_sp->GetSymbolContext(eSymbolContextCompUnit)); 3248 if (CompileUnit *cu = sc.comp_unit) 3249 type = cu->GetLanguage(); 3250 } 3251 } else { 3252 type = GetRoot()->GetPreferredDisplayLanguage(); 3253 } 3254 } 3255 } 3256 return (m_preferred_display_language = type); // only compute it once 3257 } 3258 3259 void ValueObject::SetPreferredDisplayLanguage(lldb::LanguageType lt) { 3260 m_preferred_display_language = lt; 3261 } 3262 3263 void ValueObject::SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType lt) { 3264 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 3265 SetPreferredDisplayLanguage(lt); 3266 } 3267 3268 bool ValueObject::CanProvideValue() { 3269 // we need to support invalid types as providers of values because some bare- 3270 // board debugging scenarios have no notion of types, but still manage to 3271 // have raw numeric values for things like registers. sigh. 3272 const CompilerType &type(GetCompilerType()); 3273 return (!type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue)); 3274 } 3275 3276 bool ValueObject::IsChecksumEmpty() { return m_value_checksum.empty(); } 3277 3278 ValueObjectSP ValueObject::Persist() { 3279 if (!UpdateValueIfNeeded()) 3280 return nullptr; 3281 3282 TargetSP target_sp(GetTargetSP()); 3283 if (!target_sp) 3284 return nullptr; 3285 3286 PersistentExpressionState *persistent_state = 3287 target_sp->GetPersistentExpressionStateForLanguage( 3288 GetPreferredDisplayLanguage()); 3289 3290 if (!persistent_state) 3291 return nullptr; 3292 3293 ConstString name = persistent_state->GetNextPersistentVariableName(); 3294 3295 ValueObjectSP const_result_sp = 3296 ValueObjectConstResult::Create(target_sp.get(), GetValue(), name); 3297 3298 ExpressionVariableSP persistent_var_sp = 3299 persistent_state->CreatePersistentVariable(const_result_sp); 3300 persistent_var_sp->m_live_sp = persistent_var_sp->m_frozen_sp; 3301 persistent_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference; 3302 3303 return persistent_var_sp->GetValueObject(); 3304 } 3305 3306 bool ValueObject::IsSyntheticChildrenGenerated() { 3307 return m_is_synthetic_children_generated; 3308 } 3309 3310 void ValueObject::SetSyntheticChildrenGenerated(bool b) { 3311 m_is_synthetic_children_generated = b; 3312 } 3313 3314 uint64_t ValueObject::GetLanguageFlags() { return m_language_flags; } 3315 3316 void ValueObject::SetLanguageFlags(uint64_t flags) { m_language_flags = flags; } 3317 3318 ValueObjectManager::ValueObjectManager(lldb::ValueObjectSP in_valobj_sp, 3319 lldb::DynamicValueType use_dynamic, 3320 bool use_synthetic) : m_root_valobj_sp(), 3321 m_user_valobj_sp(), m_use_dynamic(use_dynamic), m_stop_id(UINT32_MAX), 3322 m_use_synthetic(use_synthetic) { 3323 if (!in_valobj_sp) 3324 return; 3325 // If the user passes in a value object that is dynamic or synthetic, then 3326 // water it down to the static type. 3327 m_root_valobj_sp = in_valobj_sp->GetQualifiedRepresentationIfAvailable(lldb::eNoDynamicValues, false); 3328 } 3329 3330 bool ValueObjectManager::IsValid() const { 3331 if (!m_root_valobj_sp) 3332 return false; 3333 lldb::TargetSP target_sp = GetTargetSP(); 3334 if (target_sp) 3335 return target_sp->IsValid(); 3336 return false; 3337 } 3338 3339 lldb::ValueObjectSP ValueObjectManager::GetSP() { 3340 lldb::ProcessSP process_sp = GetProcessSP(); 3341 if (!process_sp) 3342 return lldb::ValueObjectSP(); 3343 3344 const uint32_t current_stop_id = process_sp->GetLastNaturalStopID(); 3345 if (current_stop_id == m_stop_id) 3346 return m_user_valobj_sp; 3347 3348 m_stop_id = current_stop_id; 3349 3350 if (!m_root_valobj_sp) { 3351 m_user_valobj_sp.reset(); 3352 return m_root_valobj_sp; 3353 } 3354 3355 m_user_valobj_sp = m_root_valobj_sp; 3356 3357 if (m_use_dynamic != lldb::eNoDynamicValues) { 3358 lldb::ValueObjectSP dynamic_sp = m_user_valobj_sp->GetDynamicValue(m_use_dynamic); 3359 if (dynamic_sp) 3360 m_user_valobj_sp = dynamic_sp; 3361 } 3362 3363 if (m_use_synthetic) { 3364 lldb::ValueObjectSP synthetic_sp = m_user_valobj_sp->GetSyntheticValue(); 3365 if (synthetic_sp) 3366 m_user_valobj_sp = synthetic_sp; 3367 } 3368 3369 return m_user_valobj_sp; 3370 } 3371 3372 void ValueObjectManager::SetUseDynamic(lldb::DynamicValueType use_dynamic) { 3373 if (use_dynamic != m_use_dynamic) { 3374 m_use_dynamic = use_dynamic; 3375 m_user_valobj_sp.reset(); 3376 m_stop_id = UINT32_MAX; 3377 } 3378 } 3379 3380 void ValueObjectManager::SetUseSynthetic(bool use_synthetic) { 3381 if (m_use_synthetic != use_synthetic) { 3382 m_use_synthetic = use_synthetic; 3383 m_user_valobj_sp.reset(); 3384 m_stop_id = UINT32_MAX; 3385 } 3386 } 3387 3388 lldb::TargetSP ValueObjectManager::GetTargetSP() const { 3389 if (!m_root_valobj_sp) 3390 return m_root_valobj_sp->GetTargetSP(); 3391 return lldb::TargetSP(); 3392 } 3393 3394 lldb::ProcessSP ValueObjectManager::GetProcessSP() const { 3395 if (m_root_valobj_sp) 3396 return m_root_valobj_sp->GetProcessSP(); 3397 return lldb::ProcessSP(); 3398 } 3399 3400 lldb::ThreadSP ValueObjectManager::GetThreadSP() const { 3401 if (m_root_valobj_sp) 3402 return m_root_valobj_sp->GetThreadSP(); 3403 return lldb::ThreadSP(); 3404 } 3405 3406 lldb::StackFrameSP ValueObjectManager::GetFrameSP() const { 3407 if (m_root_valobj_sp) 3408 return m_root_valobj_sp->GetFrameSP(); 3409 return lldb::StackFrameSP(); 3410 } 3411