1 //===-- ValueObject.cpp -----------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Core/ValueObject.h" 10 11 #include "lldb/Core/Address.h" 12 #include "lldb/Core/Module.h" 13 #include "lldb/Core/ValueObjectCast.h" 14 #include "lldb/Core/ValueObjectChild.h" 15 #include "lldb/Core/ValueObjectConstResult.h" 16 #include "lldb/Core/ValueObjectDynamicValue.h" 17 #include "lldb/Core/ValueObjectMemory.h" 18 #include "lldb/Core/ValueObjectSyntheticFilter.h" 19 #include "lldb/DataFormatters/DataVisualization.h" 20 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 21 #include "lldb/DataFormatters/FormatManager.h" 22 #include "lldb/DataFormatters/StringPrinter.h" 23 #include "lldb/DataFormatters/TypeFormat.h" 24 #include "lldb/DataFormatters/TypeSummary.h" 25 #include "lldb/DataFormatters/TypeValidator.h" 26 #include "lldb/DataFormatters/ValueObjectPrinter.h" 27 #include "lldb/Expression/ExpressionVariable.h" 28 #include "lldb/Symbol/ClangASTContext.h" 29 #include "lldb/Symbol/CompileUnit.h" 30 #include "lldb/Symbol/CompilerType.h" 31 #include "lldb/Symbol/Declaration.h" 32 #include "lldb/Symbol/SymbolContext.h" 33 #include "lldb/Symbol/Type.h" 34 #include "lldb/Symbol/Variable.h" 35 #include "lldb/Target/ExecutionContext.h" 36 #include "lldb/Target/Language.h" 37 #include "lldb/Target/LanguageRuntime.h" 38 #include "lldb/Target/Process.h" 39 #include "lldb/Target/StackFrame.h" 40 #include "lldb/Target/Target.h" 41 #include "lldb/Target/Thread.h" 42 #include "lldb/Target/ThreadList.h" 43 #include "lldb/Utility/DataBuffer.h" 44 #include "lldb/Utility/DataBufferHeap.h" 45 #include "lldb/Utility/Flags.h" 46 #include "lldb/Utility/Log.h" 47 #include "lldb/Utility/Logging.h" 48 #include "lldb/Utility/Scalar.h" 49 #include "lldb/Utility/SharingPtr.h" 50 #include "lldb/Utility/Stream.h" 51 #include "lldb/Utility/StreamString.h" 52 #include "lldb/lldb-private-types.h" 53 54 #include "llvm/Support/Compiler.h" 55 56 #include <algorithm> 57 #include <cstdint> 58 #include <cstdlib> 59 #include <memory> 60 #include <tuple> 61 62 #include <assert.h> 63 #include <inttypes.h> 64 #include <stdio.h> 65 #include <string.h> 66 67 namespace lldb_private { 68 class ExecutionContextScope; 69 } 70 namespace lldb_private { 71 class SymbolContextScope; 72 } 73 74 using namespace lldb; 75 using namespace lldb_private; 76 77 static user_id_t g_value_obj_uid = 0; 78 79 // ValueObject constructor 80 ValueObject::ValueObject(ValueObject &parent) 81 : UserID(++g_value_obj_uid), // Unique identifier for every value object 82 m_parent(&parent), m_root(nullptr), 83 m_update_point(parent.GetUpdatePoint()), m_name(), m_data(), m_value(), 84 m_error(), m_value_str(), m_old_value_str(), m_location_str(), 85 m_summary_str(), m_object_desc_str(), m_validation_result(), 86 m_manager(parent.GetManager()), m_children(), m_synthetic_children(), 87 m_dynamic_value(nullptr), m_synthetic_value(nullptr), 88 m_deref_valobj(nullptr), m_format(eFormatDefault), 89 m_last_format(eFormatDefault), m_last_format_mgr_revision(0), 90 m_type_summary_sp(), m_type_format_sp(), m_synthetic_children_sp(), 91 m_type_validator_sp(), m_user_id_of_forced_summary(), 92 m_address_type_of_ptr_or_ref_children(eAddressTypeInvalid), 93 m_value_checksum(), 94 m_preferred_display_language(lldb::eLanguageTypeUnknown), 95 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 96 m_children_count_valid(false), m_old_value_valid(false), 97 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 98 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 99 m_is_getting_summary(false), 100 m_did_calculate_complete_objc_class_type(false), 101 m_is_synthetic_children_generated( 102 parent.m_is_synthetic_children_generated) { 103 m_manager->ManageObject(this); 104 } 105 106 // ValueObject constructor 107 ValueObject::ValueObject(ExecutionContextScope *exe_scope, 108 AddressType child_ptr_or_ref_addr_type) 109 : UserID(++g_value_obj_uid), // Unique identifier for every value object 110 m_parent(nullptr), m_root(nullptr), m_update_point(exe_scope), m_name(), 111 m_data(), m_value(), m_error(), m_value_str(), m_old_value_str(), 112 m_location_str(), m_summary_str(), m_object_desc_str(), 113 m_validation_result(), m_manager(), m_children(), m_synthetic_children(), 114 m_dynamic_value(nullptr), m_synthetic_value(nullptr), 115 m_deref_valobj(nullptr), m_format(eFormatDefault), 116 m_last_format(eFormatDefault), m_last_format_mgr_revision(0), 117 m_type_summary_sp(), m_type_format_sp(), m_synthetic_children_sp(), 118 m_type_validator_sp(), m_user_id_of_forced_summary(), 119 m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type), 120 m_value_checksum(), 121 m_preferred_display_language(lldb::eLanguageTypeUnknown), 122 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 123 m_children_count_valid(false), m_old_value_valid(false), 124 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 125 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 126 m_is_getting_summary(false), 127 m_did_calculate_complete_objc_class_type(false), 128 m_is_synthetic_children_generated(false) { 129 m_manager = new ValueObjectManager(); 130 m_manager->ManageObject(this); 131 } 132 133 // Destructor 134 ValueObject::~ValueObject() {} 135 136 void ValueObject::UpdateChildrenAddressType() { 137 Value::ValueType value_type = m_value.GetValueType(); 138 ExecutionContext exe_ctx(GetExecutionContextRef()); 139 Process *process = exe_ctx.GetProcessPtr(); 140 const bool process_is_alive = process && process->IsAlive(); 141 const uint32_t type_info = GetCompilerType().GetTypeInfo(); 142 const bool is_pointer_or_ref = 143 (type_info & (lldb::eTypeIsPointer | lldb::eTypeIsReference)) != 0; 144 145 switch (value_type) { 146 case Value::eValueTypeFileAddress: 147 // If this type is a pointer, then its children will be considered load 148 // addresses if the pointer or reference is dereferenced, but only if 149 // the process is alive. 150 // 151 // There could be global variables like in the following code: 152 // struct LinkedListNode { Foo* foo; LinkedListNode* next; }; 153 // Foo g_foo1; 154 // Foo g_foo2; 155 // LinkedListNode g_second_node = { &g_foo2, NULL }; 156 // LinkedListNode g_first_node = { &g_foo1, &g_second_node }; 157 // 158 // When we aren't running, we should be able to look at these variables 159 // using the "target variable" command. Children of the "g_first_node" 160 // always will be of the same address type as the parent. But children 161 // of the "next" member of LinkedListNode will become load addresses if 162 // we have a live process, or remain a file address if it was a file 163 // address. 164 if (process_is_alive && is_pointer_or_ref) 165 SetAddressTypeOfChildren(eAddressTypeLoad); 166 else 167 SetAddressTypeOfChildren(eAddressTypeFile); 168 break; 169 case Value::eValueTypeHostAddress: 170 // Same as above for load addresses, except children of pointer or refs 171 // are always load addresses. Host addresses are used to store freeze 172 // dried variables. If this type is a struct, the entire struct 173 // contents will be copied into the heap of the 174 // LLDB process, but we do not currently follow any pointers. 175 if (is_pointer_or_ref) 176 SetAddressTypeOfChildren(eAddressTypeLoad); 177 else 178 SetAddressTypeOfChildren(eAddressTypeHost); 179 break; 180 case Value::eValueTypeLoadAddress: 181 case Value::eValueTypeScalar: 182 case Value::eValueTypeVector: 183 SetAddressTypeOfChildren(eAddressTypeLoad); 184 break; 185 } 186 } 187 188 bool ValueObject::UpdateValueIfNeeded(bool update_format) { 189 190 bool did_change_formats = false; 191 192 if (update_format) 193 did_change_formats = UpdateFormatsIfNeeded(); 194 195 // If this is a constant value, then our success is predicated on whether we 196 // have an error or not 197 if (GetIsConstant()) { 198 // if you are constant, things might still have changed behind your back 199 // (e.g. you are a frozen object and things have changed deeper than you 200 // cared to freeze-dry yourself) in this case, your value has not changed, 201 // but "computed" entries might have, so you might now have a different 202 // summary, or a different object description. clear these so we will 203 // recompute them 204 if (update_format && !did_change_formats) 205 ClearUserVisibleData(eClearUserVisibleDataItemsSummary | 206 eClearUserVisibleDataItemsDescription); 207 return m_error.Success(); 208 } 209 210 bool first_update = IsChecksumEmpty(); 211 212 if (NeedsUpdating()) { 213 m_update_point.SetUpdated(); 214 215 // Save the old value using swap to avoid a string copy which also will 216 // clear our m_value_str 217 if (m_value_str.empty()) { 218 m_old_value_valid = false; 219 } else { 220 m_old_value_valid = true; 221 m_old_value_str.swap(m_value_str); 222 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 223 } 224 225 ClearUserVisibleData(); 226 227 if (IsInScope()) { 228 const bool value_was_valid = GetValueIsValid(); 229 SetValueDidChange(false); 230 231 m_error.Clear(); 232 233 // Call the pure virtual function to update the value 234 235 bool need_compare_checksums = false; 236 llvm::SmallVector<uint8_t, 16> old_checksum; 237 238 if (!first_update && CanProvideValue()) { 239 need_compare_checksums = true; 240 old_checksum.resize(m_value_checksum.size()); 241 std::copy(m_value_checksum.begin(), m_value_checksum.end(), 242 old_checksum.begin()); 243 } 244 245 bool success = UpdateValue(); 246 247 SetValueIsValid(success); 248 249 if (success) { 250 UpdateChildrenAddressType(); 251 const uint64_t max_checksum_size = 128; 252 m_data.Checksum(m_value_checksum, max_checksum_size); 253 } else { 254 need_compare_checksums = false; 255 m_value_checksum.clear(); 256 } 257 258 assert(!need_compare_checksums || 259 (!old_checksum.empty() && !m_value_checksum.empty())); 260 261 if (first_update) 262 SetValueDidChange(false); 263 else if (!m_value_did_change && !success) { 264 // The value wasn't gotten successfully, so we mark this as changed if 265 // the value used to be valid and now isn't 266 SetValueDidChange(value_was_valid); 267 } else if (need_compare_checksums) { 268 SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0], 269 m_value_checksum.size())); 270 } 271 272 } else { 273 m_error.SetErrorString("out of scope"); 274 } 275 } 276 return m_error.Success(); 277 } 278 279 bool ValueObject::UpdateFormatsIfNeeded() { 280 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_DATAFORMATTERS)); 281 LLDB_LOGF(log, 282 "[%s %p] checking for FormatManager revisions. ValueObject " 283 "rev: %d - Global rev: %d", 284 GetName().GetCString(), static_cast<void *>(this), 285 m_last_format_mgr_revision, 286 DataVisualization::GetCurrentRevision()); 287 288 bool any_change = false; 289 290 if ((m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) { 291 m_last_format_mgr_revision = DataVisualization::GetCurrentRevision(); 292 any_change = true; 293 294 SetValueFormat(DataVisualization::GetFormat(*this, eNoDynamicValues)); 295 SetSummaryFormat( 296 DataVisualization::GetSummaryFormat(*this, GetDynamicValueType())); 297 #ifndef LLDB_DISABLE_PYTHON 298 SetSyntheticChildren( 299 DataVisualization::GetSyntheticChildren(*this, GetDynamicValueType())); 300 #endif 301 SetValidator(DataVisualization::GetValidator(*this, GetDynamicValueType())); 302 } 303 304 return any_change; 305 } 306 307 void ValueObject::SetNeedsUpdate() { 308 m_update_point.SetNeedsUpdate(); 309 // We have to clear the value string here so ConstResult children will notice 310 // if their values are changed by hand (i.e. with SetValueAsCString). 311 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 312 } 313 314 void ValueObject::ClearDynamicTypeInformation() { 315 m_children_count_valid = false; 316 m_did_calculate_complete_objc_class_type = false; 317 m_last_format_mgr_revision = 0; 318 m_override_type = CompilerType(); 319 SetValueFormat(lldb::TypeFormatImplSP()); 320 SetSummaryFormat(lldb::TypeSummaryImplSP()); 321 SetSyntheticChildren(lldb::SyntheticChildrenSP()); 322 } 323 324 CompilerType ValueObject::MaybeCalculateCompleteType() { 325 CompilerType compiler_type(GetCompilerTypeImpl()); 326 327 if (m_did_calculate_complete_objc_class_type) { 328 if (m_override_type.IsValid()) 329 return m_override_type; 330 else 331 return compiler_type; 332 } 333 334 m_did_calculate_complete_objc_class_type = true; 335 336 ProcessSP process_sp( 337 GetUpdatePoint().GetExecutionContextRef().GetProcessSP()); 338 339 if (!process_sp) 340 return compiler_type; 341 342 if (auto *runtime = 343 process_sp->GetLanguageRuntime(GetObjectRuntimeLanguage())) { 344 if (llvm::Optional<CompilerType> complete_type = 345 runtime->GetRuntimeType(compiler_type)) { 346 m_override_type = complete_type.getValue(); 347 if (m_override_type.IsValid()) 348 return m_override_type; 349 } 350 } 351 return compiler_type; 352 } 353 354 CompilerType ValueObject::GetCompilerType() { 355 return MaybeCalculateCompleteType(); 356 } 357 358 TypeImpl ValueObject::GetTypeImpl() { return TypeImpl(GetCompilerType()); } 359 360 DataExtractor &ValueObject::GetDataExtractor() { 361 UpdateValueIfNeeded(false); 362 return m_data; 363 } 364 365 const Status &ValueObject::GetError() { 366 UpdateValueIfNeeded(false); 367 return m_error; 368 } 369 370 ConstString ValueObject::GetName() const { return m_name; } 371 372 const char *ValueObject::GetLocationAsCString() { 373 return GetLocationAsCStringImpl(m_value, m_data); 374 } 375 376 const char *ValueObject::GetLocationAsCStringImpl(const Value &value, 377 const DataExtractor &data) { 378 if (UpdateValueIfNeeded(false)) { 379 if (m_location_str.empty()) { 380 StreamString sstr; 381 382 Value::ValueType value_type = value.GetValueType(); 383 384 switch (value_type) { 385 case Value::eValueTypeScalar: 386 case Value::eValueTypeVector: 387 if (value.GetContextType() == Value::eContextTypeRegisterInfo) { 388 RegisterInfo *reg_info = value.GetRegisterInfo(); 389 if (reg_info) { 390 if (reg_info->name) 391 m_location_str = reg_info->name; 392 else if (reg_info->alt_name) 393 m_location_str = reg_info->alt_name; 394 if (m_location_str.empty()) 395 m_location_str = (reg_info->encoding == lldb::eEncodingVector) 396 ? "vector" 397 : "scalar"; 398 } 399 } 400 if (m_location_str.empty()) 401 m_location_str = 402 (value_type == Value::eValueTypeVector) ? "vector" : "scalar"; 403 break; 404 405 case Value::eValueTypeLoadAddress: 406 case Value::eValueTypeFileAddress: 407 case Value::eValueTypeHostAddress: { 408 uint32_t addr_nibble_size = data.GetAddressByteSize() * 2; 409 sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, 410 value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS)); 411 m_location_str = sstr.GetString(); 412 } break; 413 } 414 } 415 } 416 return m_location_str.c_str(); 417 } 418 419 Value &ValueObject::GetValue() { return m_value; } 420 421 const Value &ValueObject::GetValue() const { return m_value; } 422 423 bool ValueObject::ResolveValue(Scalar &scalar) { 424 if (UpdateValueIfNeeded( 425 false)) // make sure that you are up to date before returning anything 426 { 427 ExecutionContext exe_ctx(GetExecutionContextRef()); 428 Value tmp_value(m_value); 429 scalar = tmp_value.ResolveValue(&exe_ctx); 430 if (scalar.IsValid()) { 431 const uint32_t bitfield_bit_size = GetBitfieldBitSize(); 432 if (bitfield_bit_size) 433 return scalar.ExtractBitfield(bitfield_bit_size, 434 GetBitfieldBitOffset()); 435 return true; 436 } 437 } 438 return false; 439 } 440 441 bool ValueObject::IsLogicalTrue(Status &error) { 442 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 443 LazyBool is_logical_true = language->IsLogicalTrue(*this, error); 444 switch (is_logical_true) { 445 case eLazyBoolYes: 446 case eLazyBoolNo: 447 return (is_logical_true == true); 448 case eLazyBoolCalculate: 449 break; 450 } 451 } 452 453 Scalar scalar_value; 454 455 if (!ResolveValue(scalar_value)) { 456 error.SetErrorString("failed to get a scalar result"); 457 return false; 458 } 459 460 bool ret; 461 ret = scalar_value.ULongLong(1) != 0; 462 error.Clear(); 463 return ret; 464 } 465 466 bool ValueObject::GetValueIsValid() const { return m_value_is_valid; } 467 468 void ValueObject::SetValueIsValid(bool b) { m_value_is_valid = b; } 469 470 bool ValueObject::GetValueDidChange() { return m_value_did_change; } 471 472 void ValueObject::SetValueDidChange(bool value_changed) { 473 m_value_did_change = value_changed; 474 } 475 476 ValueObjectSP ValueObject::GetChildAtIndex(size_t idx, bool can_create) { 477 ValueObjectSP child_sp; 478 // We may need to update our value if we are dynamic 479 if (IsPossibleDynamicType()) 480 UpdateValueIfNeeded(false); 481 if (idx < GetNumChildren()) { 482 // Check if we have already made the child value object? 483 if (can_create && !m_children.HasChildAtIndex(idx)) { 484 // No we haven't created the child at this index, so lets have our 485 // subclass do it and cache the result for quick future access. 486 m_children.SetChildAtIndex(idx, CreateChildAtIndex(idx, false, 0)); 487 } 488 489 ValueObject *child = m_children.GetChildAtIndex(idx); 490 if (child != nullptr) 491 return child->GetSP(); 492 } 493 return child_sp; 494 } 495 496 lldb::ValueObjectSP 497 ValueObject::GetChildAtIndexPath(llvm::ArrayRef<size_t> idxs, 498 size_t *index_of_error) { 499 if (idxs.size() == 0) 500 return GetSP(); 501 ValueObjectSP root(GetSP()); 502 for (size_t idx : idxs) { 503 root = root->GetChildAtIndex(idx, true); 504 if (!root) { 505 if (index_of_error) 506 *index_of_error = idx; 507 return root; 508 } 509 } 510 return root; 511 } 512 513 lldb::ValueObjectSP ValueObject::GetChildAtIndexPath( 514 llvm::ArrayRef<std::pair<size_t, bool>> idxs, size_t *index_of_error) { 515 if (idxs.size() == 0) 516 return GetSP(); 517 ValueObjectSP root(GetSP()); 518 for (std::pair<size_t, bool> idx : idxs) { 519 root = root->GetChildAtIndex(idx.first, idx.second); 520 if (!root) { 521 if (index_of_error) 522 *index_of_error = idx.first; 523 return root; 524 } 525 } 526 return root; 527 } 528 529 lldb::ValueObjectSP 530 ValueObject::GetChildAtNamePath(llvm::ArrayRef<ConstString> names, 531 ConstString *name_of_error) { 532 if (names.size() == 0) 533 return GetSP(); 534 ValueObjectSP root(GetSP()); 535 for (ConstString name : names) { 536 root = root->GetChildMemberWithName(name, true); 537 if (!root) { 538 if (name_of_error) 539 *name_of_error = name; 540 return root; 541 } 542 } 543 return root; 544 } 545 546 lldb::ValueObjectSP ValueObject::GetChildAtNamePath( 547 llvm::ArrayRef<std::pair<ConstString, bool>> names, 548 ConstString *name_of_error) { 549 if (names.size() == 0) 550 return GetSP(); 551 ValueObjectSP root(GetSP()); 552 for (std::pair<ConstString, bool> name : names) { 553 root = root->GetChildMemberWithName(name.first, name.second); 554 if (!root) { 555 if (name_of_error) 556 *name_of_error = name.first; 557 return root; 558 } 559 } 560 return root; 561 } 562 563 size_t ValueObject::GetIndexOfChildWithName(ConstString name) { 564 bool omit_empty_base_classes = true; 565 return GetCompilerType().GetIndexOfChildWithName(name.GetCString(), 566 omit_empty_base_classes); 567 } 568 569 ValueObjectSP ValueObject::GetChildMemberWithName(ConstString name, 570 bool can_create) { 571 // when getting a child by name, it could be buried inside some base classes 572 // (which really aren't part of the expression path), so we need a vector of 573 // indexes that can get us down to the correct child 574 ValueObjectSP child_sp; 575 576 // We may need to update our value if we are dynamic 577 if (IsPossibleDynamicType()) 578 UpdateValueIfNeeded(false); 579 580 std::vector<uint32_t> child_indexes; 581 bool omit_empty_base_classes = true; 582 const size_t num_child_indexes = 583 GetCompilerType().GetIndexOfChildMemberWithName( 584 name.GetCString(), omit_empty_base_classes, child_indexes); 585 if (num_child_indexes > 0) { 586 std::vector<uint32_t>::const_iterator pos = child_indexes.begin(); 587 std::vector<uint32_t>::const_iterator end = child_indexes.end(); 588 589 child_sp = GetChildAtIndex(*pos, can_create); 590 for (++pos; pos != end; ++pos) { 591 if (child_sp) { 592 ValueObjectSP new_child_sp(child_sp->GetChildAtIndex(*pos, can_create)); 593 child_sp = new_child_sp; 594 } else { 595 child_sp.reset(); 596 } 597 } 598 } 599 return child_sp; 600 } 601 602 size_t ValueObject::GetNumChildren(uint32_t max) { 603 UpdateValueIfNeeded(); 604 605 if (max < UINT32_MAX) { 606 if (m_children_count_valid) { 607 size_t children_count = m_children.GetChildrenCount(); 608 return children_count <= max ? children_count : max; 609 } else 610 return CalculateNumChildren(max); 611 } 612 613 if (!m_children_count_valid) { 614 SetNumChildren(CalculateNumChildren()); 615 } 616 return m_children.GetChildrenCount(); 617 } 618 619 bool ValueObject::MightHaveChildren() { 620 bool has_children = false; 621 const uint32_t type_info = GetTypeInfo(); 622 if (type_info) { 623 if (type_info & (eTypeHasChildren | eTypeIsPointer | eTypeIsReference)) 624 has_children = true; 625 } else { 626 has_children = GetNumChildren() > 0; 627 } 628 return has_children; 629 } 630 631 // Should only be called by ValueObject::GetNumChildren() 632 void ValueObject::SetNumChildren(size_t num_children) { 633 m_children_count_valid = true; 634 m_children.SetChildrenCount(num_children); 635 } 636 637 void ValueObject::SetName(ConstString name) { m_name = name; } 638 639 ValueObject *ValueObject::CreateChildAtIndex(size_t idx, 640 bool synthetic_array_member, 641 int32_t synthetic_index) { 642 ValueObject *valobj = nullptr; 643 644 bool omit_empty_base_classes = true; 645 bool ignore_array_bounds = synthetic_array_member; 646 std::string child_name_str; 647 uint32_t child_byte_size = 0; 648 int32_t child_byte_offset = 0; 649 uint32_t child_bitfield_bit_size = 0; 650 uint32_t child_bitfield_bit_offset = 0; 651 bool child_is_base_class = false; 652 bool child_is_deref_of_parent = false; 653 uint64_t language_flags = 0; 654 655 const bool transparent_pointers = !synthetic_array_member; 656 CompilerType child_compiler_type; 657 658 ExecutionContext exe_ctx(GetExecutionContextRef()); 659 660 child_compiler_type = GetCompilerType().GetChildCompilerTypeAtIndex( 661 &exe_ctx, idx, transparent_pointers, omit_empty_base_classes, 662 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 663 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 664 child_is_deref_of_parent, this, language_flags); 665 if (child_compiler_type) { 666 if (synthetic_index) 667 child_byte_offset += child_byte_size * synthetic_index; 668 669 ConstString child_name; 670 if (!child_name_str.empty()) 671 child_name.SetCString(child_name_str.c_str()); 672 673 valobj = new ValueObjectChild( 674 *this, child_compiler_type, child_name, child_byte_size, 675 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 676 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 677 language_flags); 678 } 679 680 return valobj; 681 } 682 683 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 684 std::string &destination, 685 lldb::LanguageType lang) { 686 return GetSummaryAsCString(summary_ptr, destination, 687 TypeSummaryOptions().SetLanguage(lang)); 688 } 689 690 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 691 std::string &destination, 692 const TypeSummaryOptions &options) { 693 destination.clear(); 694 695 // ideally we would like to bail out if passing NULL, but if we do so we end 696 // up not providing the summary for function pointers anymore 697 if (/*summary_ptr == NULL ||*/ m_is_getting_summary) 698 return false; 699 700 m_is_getting_summary = true; 701 702 TypeSummaryOptions actual_options(options); 703 704 if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown) 705 actual_options.SetLanguage(GetPreferredDisplayLanguage()); 706 707 // this is a hot path in code and we prefer to avoid setting this string all 708 // too often also clearing out other information that we might care to see in 709 // a crash log. might be useful in very specific situations though. 710 /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. 711 Summary provider's description is %s", 712 GetTypeName().GetCString(), 713 GetName().GetCString(), 714 summary_ptr->GetDescription().c_str());*/ 715 716 if (UpdateValueIfNeeded(false) && summary_ptr) { 717 if (HasSyntheticValue()) 718 m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on 719 // the synthetic children being 720 // up-to-date (e.g. ${svar%#}) 721 summary_ptr->FormatObject(this, destination, actual_options); 722 } 723 m_is_getting_summary = false; 724 return !destination.empty(); 725 } 726 727 const char *ValueObject::GetSummaryAsCString(lldb::LanguageType lang) { 728 if (UpdateValueIfNeeded(true) && m_summary_str.empty()) { 729 TypeSummaryOptions summary_options; 730 summary_options.SetLanguage(lang); 731 GetSummaryAsCString(GetSummaryFormat().get(), m_summary_str, 732 summary_options); 733 } 734 if (m_summary_str.empty()) 735 return nullptr; 736 return m_summary_str.c_str(); 737 } 738 739 bool ValueObject::GetSummaryAsCString(std::string &destination, 740 const TypeSummaryOptions &options) { 741 return GetSummaryAsCString(GetSummaryFormat().get(), destination, options); 742 } 743 744 bool ValueObject::IsCStringContainer(bool check_pointer) { 745 CompilerType pointee_or_element_compiler_type; 746 const Flags type_flags(GetTypeInfo(&pointee_or_element_compiler_type)); 747 bool is_char_arr_ptr(type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 748 pointee_or_element_compiler_type.IsCharType()); 749 if (!is_char_arr_ptr) 750 return false; 751 if (!check_pointer) 752 return true; 753 if (type_flags.Test(eTypeIsArray)) 754 return true; 755 addr_t cstr_address = LLDB_INVALID_ADDRESS; 756 AddressType cstr_address_type = eAddressTypeInvalid; 757 cstr_address = GetAddressOf(true, &cstr_address_type); 758 return (cstr_address != LLDB_INVALID_ADDRESS); 759 } 760 761 size_t ValueObject::GetPointeeData(DataExtractor &data, uint32_t item_idx, 762 uint32_t item_count) { 763 CompilerType pointee_or_element_compiler_type; 764 const uint32_t type_info = GetTypeInfo(&pointee_or_element_compiler_type); 765 const bool is_pointer_type = type_info & eTypeIsPointer; 766 const bool is_array_type = type_info & eTypeIsArray; 767 if (!(is_pointer_type || is_array_type)) 768 return 0; 769 770 if (item_count == 0) 771 return 0; 772 773 ExecutionContext exe_ctx(GetExecutionContextRef()); 774 775 llvm::Optional<uint64_t> item_type_size = 776 pointee_or_element_compiler_type.GetByteSize( 777 exe_ctx.GetBestExecutionContextScope()); 778 if (!item_type_size) 779 return 0; 780 const uint64_t bytes = item_count * *item_type_size; 781 const uint64_t offset = item_idx * *item_type_size; 782 783 if (item_idx == 0 && item_count == 1) // simply a deref 784 { 785 if (is_pointer_type) { 786 Status error; 787 ValueObjectSP pointee_sp = Dereference(error); 788 if (error.Fail() || pointee_sp.get() == nullptr) 789 return 0; 790 return pointee_sp->GetData(data, error); 791 } else { 792 ValueObjectSP child_sp = GetChildAtIndex(0, true); 793 if (child_sp.get() == nullptr) 794 return 0; 795 Status error; 796 return child_sp->GetData(data, error); 797 } 798 return true; 799 } else /* (items > 1) */ 800 { 801 Status error; 802 lldb_private::DataBufferHeap *heap_buf_ptr = nullptr; 803 lldb::DataBufferSP data_sp(heap_buf_ptr = 804 new lldb_private::DataBufferHeap()); 805 806 AddressType addr_type; 807 lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type) 808 : GetAddressOf(true, &addr_type); 809 810 switch (addr_type) { 811 case eAddressTypeFile: { 812 ModuleSP module_sp(GetModule()); 813 if (module_sp) { 814 addr = addr + offset; 815 Address so_addr; 816 module_sp->ResolveFileAddress(addr, so_addr); 817 ExecutionContext exe_ctx(GetExecutionContextRef()); 818 Target *target = exe_ctx.GetTargetPtr(); 819 if (target) { 820 heap_buf_ptr->SetByteSize(bytes); 821 size_t bytes_read = target->ReadMemory( 822 so_addr, false, heap_buf_ptr->GetBytes(), bytes, error); 823 if (error.Success()) { 824 data.SetData(data_sp); 825 return bytes_read; 826 } 827 } 828 } 829 } break; 830 case eAddressTypeLoad: { 831 ExecutionContext exe_ctx(GetExecutionContextRef()); 832 Process *process = exe_ctx.GetProcessPtr(); 833 if (process) { 834 heap_buf_ptr->SetByteSize(bytes); 835 size_t bytes_read = process->ReadMemory( 836 addr + offset, heap_buf_ptr->GetBytes(), bytes, error); 837 if (error.Success() || bytes_read > 0) { 838 data.SetData(data_sp); 839 return bytes_read; 840 } 841 } 842 } break; 843 case eAddressTypeHost: { 844 auto max_bytes = 845 GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope()); 846 if (max_bytes && *max_bytes > offset) { 847 size_t bytes_read = std::min<uint64_t>(*max_bytes - offset, bytes); 848 addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 849 if (addr == 0 || addr == LLDB_INVALID_ADDRESS) 850 break; 851 heap_buf_ptr->CopyData((uint8_t *)(addr + offset), bytes_read); 852 data.SetData(data_sp); 853 return bytes_read; 854 } 855 } break; 856 case eAddressTypeInvalid: 857 break; 858 } 859 } 860 return 0; 861 } 862 863 uint64_t ValueObject::GetData(DataExtractor &data, Status &error) { 864 UpdateValueIfNeeded(false); 865 ExecutionContext exe_ctx(GetExecutionContextRef()); 866 error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get()); 867 if (error.Fail()) { 868 if (m_data.GetByteSize()) { 869 data = m_data; 870 error.Clear(); 871 return data.GetByteSize(); 872 } else { 873 return 0; 874 } 875 } 876 data.SetAddressByteSize(m_data.GetAddressByteSize()); 877 data.SetByteOrder(m_data.GetByteOrder()); 878 return data.GetByteSize(); 879 } 880 881 bool ValueObject::SetData(DataExtractor &data, Status &error) { 882 error.Clear(); 883 // Make sure our value is up to date first so that our location and location 884 // type is valid. 885 if (!UpdateValueIfNeeded(false)) { 886 error.SetErrorString("unable to read value"); 887 return false; 888 } 889 890 uint64_t count = 0; 891 const Encoding encoding = GetCompilerType().GetEncoding(count); 892 893 const size_t byte_size = GetByteSize(); 894 895 Value::ValueType value_type = m_value.GetValueType(); 896 897 switch (value_type) { 898 case Value::eValueTypeScalar: { 899 Status set_error = 900 m_value.GetScalar().SetValueFromData(data, encoding, byte_size); 901 902 if (!set_error.Success()) { 903 error.SetErrorStringWithFormat("unable to set scalar value: %s", 904 set_error.AsCString()); 905 return false; 906 } 907 } break; 908 case Value::eValueTypeLoadAddress: { 909 // If it is a load address, then the scalar value is the storage location 910 // of the data, and we have to shove this value down to that load location. 911 ExecutionContext exe_ctx(GetExecutionContextRef()); 912 Process *process = exe_ctx.GetProcessPtr(); 913 if (process) { 914 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 915 size_t bytes_written = process->WriteMemory( 916 target_addr, data.GetDataStart(), byte_size, error); 917 if (!error.Success()) 918 return false; 919 if (bytes_written != byte_size) { 920 error.SetErrorString("unable to write value to memory"); 921 return false; 922 } 923 } 924 } break; 925 case Value::eValueTypeHostAddress: { 926 // If it is a host address, then we stuff the scalar as a DataBuffer into 927 // the Value's data. 928 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 929 m_data.SetData(buffer_sp, 0); 930 data.CopyByteOrderedData(0, byte_size, 931 const_cast<uint8_t *>(m_data.GetDataStart()), 932 byte_size, m_data.GetByteOrder()); 933 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 934 } break; 935 case Value::eValueTypeFileAddress: 936 case Value::eValueTypeVector: 937 break; 938 } 939 940 // If we have reached this point, then we have successfully changed the 941 // value. 942 SetNeedsUpdate(); 943 return true; 944 } 945 946 static bool CopyStringDataToBufferSP(const StreamString &source, 947 lldb::DataBufferSP &destination) { 948 destination = std::make_shared<DataBufferHeap>(source.GetSize() + 1, 0); 949 memcpy(destination->GetBytes(), source.GetString().data(), source.GetSize()); 950 return true; 951 } 952 953 std::pair<size_t, bool> 954 ValueObject::ReadPointedString(lldb::DataBufferSP &buffer_sp, Status &error, 955 uint32_t max_length, bool honor_array, 956 Format item_format) { 957 bool was_capped = false; 958 StreamString s; 959 ExecutionContext exe_ctx(GetExecutionContextRef()); 960 Target *target = exe_ctx.GetTargetPtr(); 961 962 if (!target) { 963 s << "<no target to read from>"; 964 error.SetErrorString("no target to read from"); 965 CopyStringDataToBufferSP(s, buffer_sp); 966 return {0, was_capped}; 967 } 968 969 if (max_length == 0) 970 max_length = target->GetMaximumSizeOfStringSummary(); 971 972 size_t bytes_read = 0; 973 size_t total_bytes_read = 0; 974 975 CompilerType compiler_type = GetCompilerType(); 976 CompilerType elem_or_pointee_compiler_type; 977 const Flags type_flags(GetTypeInfo(&elem_or_pointee_compiler_type)); 978 if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 979 elem_or_pointee_compiler_type.IsCharType()) { 980 addr_t cstr_address = LLDB_INVALID_ADDRESS; 981 AddressType cstr_address_type = eAddressTypeInvalid; 982 983 size_t cstr_len = 0; 984 bool capped_data = false; 985 const bool is_array = type_flags.Test(eTypeIsArray); 986 if (is_array) { 987 // We have an array 988 uint64_t array_size = 0; 989 if (compiler_type.IsArrayType(nullptr, &array_size, nullptr)) { 990 cstr_len = array_size; 991 if (cstr_len > max_length) { 992 capped_data = true; 993 cstr_len = max_length; 994 } 995 } 996 cstr_address = GetAddressOf(true, &cstr_address_type); 997 } else { 998 // We have a pointer 999 cstr_address = GetPointerValue(&cstr_address_type); 1000 } 1001 1002 if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) { 1003 if (cstr_address_type == eAddressTypeHost && is_array) { 1004 const char *cstr = GetDataExtractor().PeekCStr(0); 1005 if (cstr == nullptr) { 1006 s << "<invalid address>"; 1007 error.SetErrorString("invalid address"); 1008 CopyStringDataToBufferSP(s, buffer_sp); 1009 return {0, was_capped}; 1010 } 1011 buffer_sp = std::make_shared<DataBufferHeap>(cstr_len, 0); 1012 memcpy(buffer_sp->GetBytes(), cstr, cstr_len); 1013 return {cstr_len, was_capped}; 1014 } else { 1015 s << "<invalid address>"; 1016 error.SetErrorString("invalid address"); 1017 CopyStringDataToBufferSP(s, buffer_sp); 1018 return {0, was_capped}; 1019 } 1020 } 1021 1022 Address cstr_so_addr(cstr_address); 1023 DataExtractor data; 1024 if (cstr_len > 0 && honor_array) { 1025 // I am using GetPointeeData() here to abstract the fact that some 1026 // ValueObjects are actually frozen pointers in the host but the pointed- 1027 // to data lives in the debuggee, and GetPointeeData() automatically 1028 // takes care of this 1029 GetPointeeData(data, 0, cstr_len); 1030 1031 if ((bytes_read = data.GetByteSize()) > 0) { 1032 total_bytes_read = bytes_read; 1033 for (size_t offset = 0; offset < bytes_read; offset++) 1034 s.Printf("%c", *data.PeekData(offset, 1)); 1035 if (capped_data) 1036 was_capped = true; 1037 } 1038 } else { 1039 cstr_len = max_length; 1040 const size_t k_max_buf_size = 64; 1041 1042 size_t offset = 0; 1043 1044 int cstr_len_displayed = -1; 1045 bool capped_cstr = false; 1046 // I am using GetPointeeData() here to abstract the fact that some 1047 // ValueObjects are actually frozen pointers in the host but the pointed- 1048 // to data lives in the debuggee, and GetPointeeData() automatically 1049 // takes care of this 1050 while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) { 1051 total_bytes_read += bytes_read; 1052 const char *cstr = data.PeekCStr(0); 1053 size_t len = strnlen(cstr, k_max_buf_size); 1054 if (cstr_len_displayed < 0) 1055 cstr_len_displayed = len; 1056 1057 if (len == 0) 1058 break; 1059 cstr_len_displayed += len; 1060 if (len > bytes_read) 1061 len = bytes_read; 1062 if (len > cstr_len) 1063 len = cstr_len; 1064 1065 for (size_t offset = 0; offset < bytes_read; offset++) 1066 s.Printf("%c", *data.PeekData(offset, 1)); 1067 1068 if (len < k_max_buf_size) 1069 break; 1070 1071 if (len >= cstr_len) { 1072 capped_cstr = true; 1073 break; 1074 } 1075 1076 cstr_len -= len; 1077 offset += len; 1078 } 1079 1080 if (cstr_len_displayed >= 0) { 1081 if (capped_cstr) 1082 was_capped = true; 1083 } 1084 } 1085 } else { 1086 error.SetErrorString("not a string object"); 1087 s << "<not a string object>"; 1088 } 1089 CopyStringDataToBufferSP(s, buffer_sp); 1090 return {total_bytes_read, was_capped}; 1091 } 1092 1093 std::pair<TypeValidatorResult, std::string> ValueObject::GetValidationStatus() { 1094 if (!UpdateValueIfNeeded(true)) 1095 return {TypeValidatorResult::Success, 1096 ""}; // not the validator's job to discuss update problems 1097 1098 if (m_validation_result.hasValue()) 1099 return m_validation_result.getValue(); 1100 1101 if (!m_type_validator_sp) 1102 return {TypeValidatorResult::Success, ""}; // no validator no failure 1103 1104 auto outcome = m_type_validator_sp->FormatObject(this); 1105 1106 return (m_validation_result = {outcome.m_result, outcome.m_message}) 1107 .getValue(); 1108 } 1109 1110 const char *ValueObject::GetObjectDescription() { 1111 if (!UpdateValueIfNeeded(true)) 1112 return nullptr; 1113 1114 // Return cached value. 1115 if (!m_object_desc_str.empty()) 1116 return m_object_desc_str.c_str(); 1117 1118 ExecutionContext exe_ctx(GetExecutionContextRef()); 1119 Process *process = exe_ctx.GetProcessPtr(); 1120 if (!process) 1121 return nullptr; 1122 1123 // Returns the object description produced by one language runtime. 1124 auto get_object_description = [&](LanguageType language) -> const char * { 1125 if (LanguageRuntime *runtime = process->GetLanguageRuntime(language)) { 1126 StreamString s; 1127 if (runtime->GetObjectDescription(s, *this)) { 1128 m_object_desc_str.append(s.GetString()); 1129 return m_object_desc_str.c_str(); 1130 } 1131 } 1132 return nullptr; 1133 }; 1134 1135 // Try the native language runtime first. 1136 LanguageType native_language = GetObjectRuntimeLanguage(); 1137 if (const char *desc = get_object_description(native_language)) 1138 return desc; 1139 1140 // Try the Objective-C language runtime. This fallback is necessary 1141 // for Objective-C++ and mixed Objective-C / C++ programs. 1142 if (Language::LanguageIsCFamily(native_language)) 1143 return get_object_description(eLanguageTypeObjC); 1144 return nullptr; 1145 } 1146 1147 bool ValueObject::GetValueAsCString(const lldb_private::TypeFormatImpl &format, 1148 std::string &destination) { 1149 if (UpdateValueIfNeeded(false)) 1150 return format.FormatObject(this, destination); 1151 else 1152 return false; 1153 } 1154 1155 bool ValueObject::GetValueAsCString(lldb::Format format, 1156 std::string &destination) { 1157 return GetValueAsCString(TypeFormatImpl_Format(format), destination); 1158 } 1159 1160 const char *ValueObject::GetValueAsCString() { 1161 if (UpdateValueIfNeeded(true)) { 1162 lldb::TypeFormatImplSP format_sp; 1163 lldb::Format my_format = GetFormat(); 1164 if (my_format == lldb::eFormatDefault) { 1165 if (m_type_format_sp) 1166 format_sp = m_type_format_sp; 1167 else { 1168 if (m_is_bitfield_for_scalar) 1169 my_format = eFormatUnsigned; 1170 else { 1171 if (m_value.GetContextType() == Value::eContextTypeRegisterInfo) { 1172 const RegisterInfo *reg_info = m_value.GetRegisterInfo(); 1173 if (reg_info) 1174 my_format = reg_info->format; 1175 } else { 1176 my_format = GetValue().GetCompilerType().GetFormat(); 1177 } 1178 } 1179 } 1180 } 1181 if (my_format != m_last_format || m_value_str.empty()) { 1182 m_last_format = my_format; 1183 if (!format_sp) 1184 format_sp = std::make_shared<TypeFormatImpl_Format>(my_format); 1185 if (GetValueAsCString(*format_sp.get(), m_value_str)) { 1186 if (!m_value_did_change && m_old_value_valid) { 1187 // The value was gotten successfully, so we consider the value as 1188 // changed if the value string differs 1189 SetValueDidChange(m_old_value_str != m_value_str); 1190 } 1191 } 1192 } 1193 } 1194 if (m_value_str.empty()) 1195 return nullptr; 1196 return m_value_str.c_str(); 1197 } 1198 1199 // if > 8bytes, 0 is returned. this method should mostly be used to read 1200 // address values out of pointers 1201 uint64_t ValueObject::GetValueAsUnsigned(uint64_t fail_value, bool *success) { 1202 // If our byte size is zero this is an aggregate type that has children 1203 if (CanProvideValue()) { 1204 Scalar scalar; 1205 if (ResolveValue(scalar)) { 1206 if (success) 1207 *success = true; 1208 return scalar.ULongLong(fail_value); 1209 } 1210 // fallthrough, otherwise... 1211 } 1212 1213 if (success) 1214 *success = false; 1215 return fail_value; 1216 } 1217 1218 int64_t ValueObject::GetValueAsSigned(int64_t fail_value, bool *success) { 1219 // If our byte size is zero this is an aggregate type that has children 1220 if (CanProvideValue()) { 1221 Scalar scalar; 1222 if (ResolveValue(scalar)) { 1223 if (success) 1224 *success = true; 1225 return scalar.SLongLong(fail_value); 1226 } 1227 // fallthrough, otherwise... 1228 } 1229 1230 if (success) 1231 *success = false; 1232 return fail_value; 1233 } 1234 1235 // if any more "special cases" are added to 1236 // ValueObject::DumpPrintableRepresentation() please keep this call up to date 1237 // by returning true for your new special cases. We will eventually move to 1238 // checking this call result before trying to display special cases 1239 bool ValueObject::HasSpecialPrintableRepresentation( 1240 ValueObjectRepresentationStyle val_obj_display, Format custom_format) { 1241 Flags flags(GetTypeInfo()); 1242 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1243 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1244 if (IsCStringContainer(true) && 1245 (custom_format == eFormatCString || custom_format == eFormatCharArray || 1246 custom_format == eFormatChar || custom_format == eFormatVectorOfChar)) 1247 return true; 1248 1249 if (flags.Test(eTypeIsArray)) { 1250 if ((custom_format == eFormatBytes) || 1251 (custom_format == eFormatBytesWithASCII)) 1252 return true; 1253 1254 if ((custom_format == eFormatVectorOfChar) || 1255 (custom_format == eFormatVectorOfFloat32) || 1256 (custom_format == eFormatVectorOfFloat64) || 1257 (custom_format == eFormatVectorOfSInt16) || 1258 (custom_format == eFormatVectorOfSInt32) || 1259 (custom_format == eFormatVectorOfSInt64) || 1260 (custom_format == eFormatVectorOfSInt8) || 1261 (custom_format == eFormatVectorOfUInt128) || 1262 (custom_format == eFormatVectorOfUInt16) || 1263 (custom_format == eFormatVectorOfUInt32) || 1264 (custom_format == eFormatVectorOfUInt64) || 1265 (custom_format == eFormatVectorOfUInt8)) 1266 return true; 1267 } 1268 } 1269 return false; 1270 } 1271 1272 bool ValueObject::DumpPrintableRepresentation( 1273 Stream &s, ValueObjectRepresentationStyle val_obj_display, 1274 Format custom_format, PrintableRepresentationSpecialCases special, 1275 bool do_dump_error) { 1276 1277 Flags flags(GetTypeInfo()); 1278 1279 bool allow_special = 1280 (special == ValueObject::PrintableRepresentationSpecialCases::eAllow); 1281 const bool only_special = false; 1282 1283 if (allow_special) { 1284 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1285 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1286 // when being asked to get a printable display an array or pointer type 1287 // directly, try to "do the right thing" 1288 1289 if (IsCStringContainer(true) && 1290 (custom_format == eFormatCString || 1291 custom_format == eFormatCharArray || custom_format == eFormatChar || 1292 custom_format == 1293 eFormatVectorOfChar)) // print char[] & char* directly 1294 { 1295 Status error; 1296 lldb::DataBufferSP buffer_sp; 1297 std::pair<size_t, bool> read_string = ReadPointedString( 1298 buffer_sp, error, 0, (custom_format == eFormatVectorOfChar) || 1299 (custom_format == eFormatCharArray)); 1300 lldb_private::formatters::StringPrinter:: 1301 ReadBufferAndDumpToStreamOptions options(*this); 1302 options.SetData(DataExtractor( 1303 buffer_sp, lldb::eByteOrderInvalid, 1304 8)); // none of this matters for a string - pass some defaults 1305 options.SetStream(&s); 1306 options.SetPrefixToken(nullptr); 1307 options.SetQuote('"'); 1308 options.SetSourceSize(buffer_sp->GetByteSize()); 1309 options.SetIsTruncated(read_string.second); 1310 formatters::StringPrinter::ReadBufferAndDumpToStream< 1311 lldb_private::formatters::StringPrinter::StringElementType::ASCII>( 1312 options); 1313 return !error.Fail(); 1314 } 1315 1316 if (custom_format == eFormatEnum) 1317 return false; 1318 1319 // this only works for arrays, because I have no way to know when the 1320 // pointed memory ends, and no special \0 end of data marker 1321 if (flags.Test(eTypeIsArray)) { 1322 if ((custom_format == eFormatBytes) || 1323 (custom_format == eFormatBytesWithASCII)) { 1324 const size_t count = GetNumChildren(); 1325 1326 s << '['; 1327 for (size_t low = 0; low < count; low++) { 1328 1329 if (low) 1330 s << ','; 1331 1332 ValueObjectSP child = GetChildAtIndex(low, true); 1333 if (!child.get()) { 1334 s << "<invalid child>"; 1335 continue; 1336 } 1337 child->DumpPrintableRepresentation( 1338 s, ValueObject::eValueObjectRepresentationStyleValue, 1339 custom_format); 1340 } 1341 1342 s << ']'; 1343 1344 return true; 1345 } 1346 1347 if ((custom_format == eFormatVectorOfChar) || 1348 (custom_format == eFormatVectorOfFloat32) || 1349 (custom_format == eFormatVectorOfFloat64) || 1350 (custom_format == eFormatVectorOfSInt16) || 1351 (custom_format == eFormatVectorOfSInt32) || 1352 (custom_format == eFormatVectorOfSInt64) || 1353 (custom_format == eFormatVectorOfSInt8) || 1354 (custom_format == eFormatVectorOfUInt128) || 1355 (custom_format == eFormatVectorOfUInt16) || 1356 (custom_format == eFormatVectorOfUInt32) || 1357 (custom_format == eFormatVectorOfUInt64) || 1358 (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes 1359 // with ASCII or any vector 1360 // format should be printed 1361 // directly 1362 { 1363 const size_t count = GetNumChildren(); 1364 1365 Format format = FormatManager::GetSingleItemFormat(custom_format); 1366 1367 s << '['; 1368 for (size_t low = 0; low < count; low++) { 1369 1370 if (low) 1371 s << ','; 1372 1373 ValueObjectSP child = GetChildAtIndex(low, true); 1374 if (!child.get()) { 1375 s << "<invalid child>"; 1376 continue; 1377 } 1378 child->DumpPrintableRepresentation( 1379 s, ValueObject::eValueObjectRepresentationStyleValue, format); 1380 } 1381 1382 s << ']'; 1383 1384 return true; 1385 } 1386 } 1387 1388 if ((custom_format == eFormatBoolean) || 1389 (custom_format == eFormatBinary) || (custom_format == eFormatChar) || 1390 (custom_format == eFormatCharPrintable) || 1391 (custom_format == eFormatComplexFloat) || 1392 (custom_format == eFormatDecimal) || (custom_format == eFormatHex) || 1393 (custom_format == eFormatHexUppercase) || 1394 (custom_format == eFormatFloat) || (custom_format == eFormatOctal) || 1395 (custom_format == eFormatOSType) || 1396 (custom_format == eFormatUnicode16) || 1397 (custom_format == eFormatUnicode32) || 1398 (custom_format == eFormatUnsigned) || 1399 (custom_format == eFormatPointer) || 1400 (custom_format == eFormatComplexInteger) || 1401 (custom_format == eFormatComplex) || 1402 (custom_format == eFormatDefault)) // use the [] operator 1403 return false; 1404 } 1405 } 1406 1407 if (only_special) 1408 return false; 1409 1410 bool var_success = false; 1411 1412 { 1413 llvm::StringRef str; 1414 1415 // this is a local stream that we are using to ensure that the data pointed 1416 // to by cstr survives long enough for us to copy it to its destination - 1417 // it is necessary to have this temporary storage area for cases where our 1418 // desired output is not backed by some other longer-term storage 1419 StreamString strm; 1420 1421 if (custom_format != eFormatInvalid) 1422 SetFormat(custom_format); 1423 1424 switch (val_obj_display) { 1425 case eValueObjectRepresentationStyleValue: 1426 str = GetValueAsCString(); 1427 break; 1428 1429 case eValueObjectRepresentationStyleSummary: 1430 str = GetSummaryAsCString(); 1431 break; 1432 1433 case eValueObjectRepresentationStyleLanguageSpecific: 1434 str = GetObjectDescription(); 1435 break; 1436 1437 case eValueObjectRepresentationStyleLocation: 1438 str = GetLocationAsCString(); 1439 break; 1440 1441 case eValueObjectRepresentationStyleChildrenCount: 1442 strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren()); 1443 str = strm.GetString(); 1444 break; 1445 1446 case eValueObjectRepresentationStyleType: 1447 str = GetTypeName().GetStringRef(); 1448 break; 1449 1450 case eValueObjectRepresentationStyleName: 1451 str = GetName().GetStringRef(); 1452 break; 1453 1454 case eValueObjectRepresentationStyleExpressionPath: 1455 GetExpressionPath(strm, false); 1456 str = strm.GetString(); 1457 break; 1458 } 1459 1460 if (str.empty()) { 1461 if (val_obj_display == eValueObjectRepresentationStyleValue) 1462 str = GetSummaryAsCString(); 1463 else if (val_obj_display == eValueObjectRepresentationStyleSummary) { 1464 if (!CanProvideValue()) { 1465 strm.Printf("%s @ %s", GetTypeName().AsCString(), 1466 GetLocationAsCString()); 1467 str = strm.GetString(); 1468 } else 1469 str = GetValueAsCString(); 1470 } 1471 } 1472 1473 if (!str.empty()) 1474 s << str; 1475 else { 1476 if (m_error.Fail()) { 1477 if (do_dump_error) 1478 s.Printf("<%s>", m_error.AsCString()); 1479 else 1480 return false; 1481 } else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1482 s.PutCString("<no summary available>"); 1483 else if (val_obj_display == eValueObjectRepresentationStyleValue) 1484 s.PutCString("<no value available>"); 1485 else if (val_obj_display == 1486 eValueObjectRepresentationStyleLanguageSpecific) 1487 s.PutCString("<not a valid Objective-C object>"); // edit this if we 1488 // have other runtimes 1489 // that support a 1490 // description 1491 else 1492 s.PutCString("<no printable representation>"); 1493 } 1494 1495 // we should only return false here if we could not do *anything* even if 1496 // we have an error message as output, that's a success from our callers' 1497 // perspective, so return true 1498 var_success = true; 1499 1500 if (custom_format != eFormatInvalid) 1501 SetFormat(eFormatDefault); 1502 } 1503 1504 return var_success; 1505 } 1506 1507 addr_t ValueObject::GetAddressOf(bool scalar_is_load_address, 1508 AddressType *address_type) { 1509 // Can't take address of a bitfield 1510 if (IsBitfield()) 1511 return LLDB_INVALID_ADDRESS; 1512 1513 if (!UpdateValueIfNeeded(false)) 1514 return LLDB_INVALID_ADDRESS; 1515 1516 switch (m_value.GetValueType()) { 1517 case Value::eValueTypeScalar: 1518 case Value::eValueTypeVector: 1519 if (scalar_is_load_address) { 1520 if (address_type) 1521 *address_type = eAddressTypeLoad; 1522 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1523 } 1524 break; 1525 1526 case Value::eValueTypeLoadAddress: 1527 case Value::eValueTypeFileAddress: { 1528 if (address_type) 1529 *address_type = m_value.GetValueAddressType(); 1530 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1531 } break; 1532 case Value::eValueTypeHostAddress: { 1533 if (address_type) 1534 *address_type = m_value.GetValueAddressType(); 1535 return LLDB_INVALID_ADDRESS; 1536 } break; 1537 } 1538 if (address_type) 1539 *address_type = eAddressTypeInvalid; 1540 return LLDB_INVALID_ADDRESS; 1541 } 1542 1543 addr_t ValueObject::GetPointerValue(AddressType *address_type) { 1544 addr_t address = LLDB_INVALID_ADDRESS; 1545 if (address_type) 1546 *address_type = eAddressTypeInvalid; 1547 1548 if (!UpdateValueIfNeeded(false)) 1549 return address; 1550 1551 switch (m_value.GetValueType()) { 1552 case Value::eValueTypeScalar: 1553 case Value::eValueTypeVector: 1554 address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1555 break; 1556 1557 case Value::eValueTypeHostAddress: 1558 case Value::eValueTypeLoadAddress: 1559 case Value::eValueTypeFileAddress: { 1560 lldb::offset_t data_offset = 0; 1561 address = m_data.GetPointer(&data_offset); 1562 } break; 1563 } 1564 1565 if (address_type) 1566 *address_type = GetAddressTypeOfChildren(); 1567 1568 return address; 1569 } 1570 1571 bool ValueObject::SetValueFromCString(const char *value_str, Status &error) { 1572 error.Clear(); 1573 // Make sure our value is up to date first so that our location and location 1574 // type is valid. 1575 if (!UpdateValueIfNeeded(false)) { 1576 error.SetErrorString("unable to read value"); 1577 return false; 1578 } 1579 1580 uint64_t count = 0; 1581 const Encoding encoding = GetCompilerType().GetEncoding(count); 1582 1583 const size_t byte_size = GetByteSize(); 1584 1585 Value::ValueType value_type = m_value.GetValueType(); 1586 1587 if (value_type == Value::eValueTypeScalar) { 1588 // If the value is already a scalar, then let the scalar change itself: 1589 m_value.GetScalar().SetValueFromCString(value_str, encoding, byte_size); 1590 } else if (byte_size <= 16) { 1591 // If the value fits in a scalar, then make a new scalar and again let the 1592 // scalar code do the conversion, then figure out where to put the new 1593 // value. 1594 Scalar new_scalar; 1595 error = new_scalar.SetValueFromCString(value_str, encoding, byte_size); 1596 if (error.Success()) { 1597 switch (value_type) { 1598 case Value::eValueTypeLoadAddress: { 1599 // If it is a load address, then the scalar value is the storage 1600 // location of the data, and we have to shove this value down to that 1601 // load location. 1602 ExecutionContext exe_ctx(GetExecutionContextRef()); 1603 Process *process = exe_ctx.GetProcessPtr(); 1604 if (process) { 1605 addr_t target_addr = 1606 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1607 size_t bytes_written = process->WriteScalarToMemory( 1608 target_addr, new_scalar, byte_size, error); 1609 if (!error.Success()) 1610 return false; 1611 if (bytes_written != byte_size) { 1612 error.SetErrorString("unable to write value to memory"); 1613 return false; 1614 } 1615 } 1616 } break; 1617 case Value::eValueTypeHostAddress: { 1618 // If it is a host address, then we stuff the scalar as a DataBuffer 1619 // into the Value's data. 1620 DataExtractor new_data; 1621 new_data.SetByteOrder(m_data.GetByteOrder()); 1622 1623 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 1624 m_data.SetData(buffer_sp, 0); 1625 bool success = new_scalar.GetData(new_data); 1626 if (success) { 1627 new_data.CopyByteOrderedData( 1628 0, byte_size, const_cast<uint8_t *>(m_data.GetDataStart()), 1629 byte_size, m_data.GetByteOrder()); 1630 } 1631 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1632 1633 } break; 1634 case Value::eValueTypeFileAddress: 1635 case Value::eValueTypeScalar: 1636 case Value::eValueTypeVector: 1637 break; 1638 } 1639 } else { 1640 return false; 1641 } 1642 } else { 1643 // We don't support setting things bigger than a scalar at present. 1644 error.SetErrorString("unable to write aggregate data type"); 1645 return false; 1646 } 1647 1648 // If we have reached this point, then we have successfully changed the 1649 // value. 1650 SetNeedsUpdate(); 1651 return true; 1652 } 1653 1654 bool ValueObject::GetDeclaration(Declaration &decl) { 1655 decl.Clear(); 1656 return false; 1657 } 1658 1659 ConstString ValueObject::GetTypeName() { 1660 return GetCompilerType().GetConstTypeName(); 1661 } 1662 1663 ConstString ValueObject::GetDisplayTypeName() { return GetTypeName(); } 1664 1665 ConstString ValueObject::GetQualifiedTypeName() { 1666 return GetCompilerType().GetConstQualifiedTypeName(); 1667 } 1668 1669 LanguageType ValueObject::GetObjectRuntimeLanguage() { 1670 return GetCompilerType().GetMinimumLanguage(); 1671 } 1672 1673 void ValueObject::AddSyntheticChild(ConstString key, 1674 ValueObject *valobj) { 1675 m_synthetic_children[key] = valobj; 1676 } 1677 1678 ValueObjectSP ValueObject::GetSyntheticChild(ConstString key) const { 1679 ValueObjectSP synthetic_child_sp; 1680 std::map<ConstString, ValueObject *>::const_iterator pos = 1681 m_synthetic_children.find(key); 1682 if (pos != m_synthetic_children.end()) 1683 synthetic_child_sp = pos->second->GetSP(); 1684 return synthetic_child_sp; 1685 } 1686 1687 uint32_t 1688 ValueObject::GetTypeInfo(CompilerType *pointee_or_element_compiler_type) { 1689 return GetCompilerType().GetTypeInfo(pointee_or_element_compiler_type); 1690 } 1691 1692 bool ValueObject::IsPointerType() { return GetCompilerType().IsPointerType(); } 1693 1694 bool ValueObject::IsArrayType() { 1695 return GetCompilerType().IsArrayType(nullptr, nullptr, nullptr); 1696 } 1697 1698 bool ValueObject::IsScalarType() { return GetCompilerType().IsScalarType(); } 1699 1700 bool ValueObject::IsIntegerType(bool &is_signed) { 1701 return GetCompilerType().IsIntegerType(is_signed); 1702 } 1703 1704 bool ValueObject::IsPointerOrReferenceType() { 1705 return GetCompilerType().IsPointerOrReferenceType(); 1706 } 1707 1708 bool ValueObject::IsPossibleDynamicType() { 1709 ExecutionContext exe_ctx(GetExecutionContextRef()); 1710 Process *process = exe_ctx.GetProcessPtr(); 1711 if (process) 1712 return process->IsPossibleDynamicValue(*this); 1713 else 1714 return GetCompilerType().IsPossibleDynamicType(nullptr, true, true); 1715 } 1716 1717 bool ValueObject::IsRuntimeSupportValue() { 1718 Process *process(GetProcessSP().get()); 1719 if (!process) 1720 return false; 1721 1722 // We trust the the compiler did the right thing and marked runtime support 1723 // values as artificial. 1724 if (!GetVariable() || !GetVariable()->IsArtificial()) 1725 return false; 1726 1727 if (auto *runtime = process->GetLanguageRuntime(GetVariable()->GetLanguage())) 1728 if (runtime->IsWhitelistedRuntimeValue(GetName())) 1729 return false; 1730 1731 return true; 1732 } 1733 1734 bool ValueObject::IsNilReference() { 1735 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1736 return language->IsNilReference(*this); 1737 } 1738 return false; 1739 } 1740 1741 bool ValueObject::IsUninitializedReference() { 1742 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1743 return language->IsUninitializedReference(*this); 1744 } 1745 return false; 1746 } 1747 1748 // This allows you to create an array member using and index that doesn't not 1749 // fall in the normal bounds of the array. Many times structure can be defined 1750 // as: struct Collection { 1751 // uint32_t item_count; 1752 // Item item_array[0]; 1753 // }; 1754 // The size of the "item_array" is 1, but many times in practice there are more 1755 // items in "item_array". 1756 1757 ValueObjectSP ValueObject::GetSyntheticArrayMember(size_t index, 1758 bool can_create) { 1759 ValueObjectSP synthetic_child_sp; 1760 if (IsPointerType() || IsArrayType()) { 1761 char index_str[64]; 1762 snprintf(index_str, sizeof(index_str), "[%" PRIu64 "]", (uint64_t)index); 1763 ConstString index_const_str(index_str); 1764 // Check if we have already created a synthetic array member in this valid 1765 // object. If we have we will re-use it. 1766 synthetic_child_sp = GetSyntheticChild(index_const_str); 1767 if (!synthetic_child_sp) { 1768 ValueObject *synthetic_child; 1769 // We haven't made a synthetic array member for INDEX yet, so lets make 1770 // one and cache it for any future reference. 1771 synthetic_child = CreateChildAtIndex(0, true, index); 1772 1773 // Cache the value if we got one back... 1774 if (synthetic_child) { 1775 AddSyntheticChild(index_const_str, synthetic_child); 1776 synthetic_child_sp = synthetic_child->GetSP(); 1777 synthetic_child_sp->SetName(ConstString(index_str)); 1778 synthetic_child_sp->m_is_array_item_for_pointer = true; 1779 } 1780 } 1781 } 1782 return synthetic_child_sp; 1783 } 1784 1785 ValueObjectSP ValueObject::GetSyntheticBitFieldChild(uint32_t from, uint32_t to, 1786 bool can_create) { 1787 ValueObjectSP synthetic_child_sp; 1788 if (IsScalarType()) { 1789 char index_str[64]; 1790 snprintf(index_str, sizeof(index_str), "[%i-%i]", from, to); 1791 ConstString index_const_str(index_str); 1792 // Check if we have already created a synthetic array member in this valid 1793 // object. If we have we will re-use it. 1794 synthetic_child_sp = GetSyntheticChild(index_const_str); 1795 if (!synthetic_child_sp) { 1796 uint32_t bit_field_size = to - from + 1; 1797 uint32_t bit_field_offset = from; 1798 if (GetDataExtractor().GetByteOrder() == eByteOrderBig) 1799 bit_field_offset = 1800 GetByteSize() * 8 - bit_field_size - bit_field_offset; 1801 // We haven't made a synthetic array member for INDEX yet, so lets make 1802 // one and cache it for any future reference. 1803 ValueObjectChild *synthetic_child = new ValueObjectChild( 1804 *this, GetCompilerType(), index_const_str, GetByteSize(), 0, 1805 bit_field_size, bit_field_offset, false, false, eAddressTypeInvalid, 1806 0); 1807 1808 // Cache the value if we got one back... 1809 if (synthetic_child) { 1810 AddSyntheticChild(index_const_str, synthetic_child); 1811 synthetic_child_sp = synthetic_child->GetSP(); 1812 synthetic_child_sp->SetName(ConstString(index_str)); 1813 synthetic_child_sp->m_is_bitfield_for_scalar = true; 1814 } 1815 } 1816 } 1817 return synthetic_child_sp; 1818 } 1819 1820 ValueObjectSP ValueObject::GetSyntheticChildAtOffset( 1821 uint32_t offset, const CompilerType &type, bool can_create, 1822 ConstString name_const_str) { 1823 1824 ValueObjectSP synthetic_child_sp; 1825 1826 if (name_const_str.IsEmpty()) { 1827 char name_str[64]; 1828 snprintf(name_str, sizeof(name_str), "@%i", offset); 1829 name_const_str.SetCString(name_str); 1830 } 1831 1832 // Check if we have already created a synthetic array member in this valid 1833 // object. If we have we will re-use it. 1834 synthetic_child_sp = GetSyntheticChild(name_const_str); 1835 1836 if (synthetic_child_sp.get()) 1837 return synthetic_child_sp; 1838 1839 if (!can_create) 1840 return {}; 1841 1842 ExecutionContext exe_ctx(GetExecutionContextRef()); 1843 llvm::Optional<uint64_t> size = 1844 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1845 if (!size) 1846 return {}; 1847 ValueObjectChild *synthetic_child = 1848 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1849 false, false, eAddressTypeInvalid, 0); 1850 if (synthetic_child) { 1851 AddSyntheticChild(name_const_str, synthetic_child); 1852 synthetic_child_sp = synthetic_child->GetSP(); 1853 synthetic_child_sp->SetName(name_const_str); 1854 synthetic_child_sp->m_is_child_at_offset = true; 1855 } 1856 return synthetic_child_sp; 1857 } 1858 1859 ValueObjectSP ValueObject::GetSyntheticBase(uint32_t offset, 1860 const CompilerType &type, 1861 bool can_create, 1862 ConstString name_const_str) { 1863 ValueObjectSP synthetic_child_sp; 1864 1865 if (name_const_str.IsEmpty()) { 1866 char name_str[128]; 1867 snprintf(name_str, sizeof(name_str), "base%s@%i", 1868 type.GetTypeName().AsCString("<unknown>"), offset); 1869 name_const_str.SetCString(name_str); 1870 } 1871 1872 // Check if we have already created a synthetic array member in this valid 1873 // object. If we have we will re-use it. 1874 synthetic_child_sp = GetSyntheticChild(name_const_str); 1875 1876 if (synthetic_child_sp.get()) 1877 return synthetic_child_sp; 1878 1879 if (!can_create) 1880 return {}; 1881 1882 const bool is_base_class = true; 1883 1884 ExecutionContext exe_ctx(GetExecutionContextRef()); 1885 llvm::Optional<uint64_t> size = 1886 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1887 if (!size) 1888 return {}; 1889 ValueObjectChild *synthetic_child = 1890 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1891 is_base_class, false, eAddressTypeInvalid, 0); 1892 if (synthetic_child) { 1893 AddSyntheticChild(name_const_str, synthetic_child); 1894 synthetic_child_sp = synthetic_child->GetSP(); 1895 synthetic_child_sp->SetName(name_const_str); 1896 } 1897 return synthetic_child_sp; 1898 } 1899 1900 // your expression path needs to have a leading . or -> (unless it somehow 1901 // "looks like" an array, in which case it has a leading [ symbol). while the [ 1902 // is meaningful and should be shown to the user, . and -> are just parser 1903 // design, but by no means added information for the user.. strip them off 1904 static const char *SkipLeadingExpressionPathSeparators(const char *expression) { 1905 if (!expression || !expression[0]) 1906 return expression; 1907 if (expression[0] == '.') 1908 return expression + 1; 1909 if (expression[0] == '-' && expression[1] == '>') 1910 return expression + 2; 1911 return expression; 1912 } 1913 1914 ValueObjectSP 1915 ValueObject::GetSyntheticExpressionPathChild(const char *expression, 1916 bool can_create) { 1917 ValueObjectSP synthetic_child_sp; 1918 ConstString name_const_string(expression); 1919 // Check if we have already created a synthetic array member in this valid 1920 // object. If we have we will re-use it. 1921 synthetic_child_sp = GetSyntheticChild(name_const_string); 1922 if (!synthetic_child_sp) { 1923 // We haven't made a synthetic array member for expression yet, so lets 1924 // make one and cache it for any future reference. 1925 synthetic_child_sp = GetValueForExpressionPath( 1926 expression, nullptr, nullptr, 1927 GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal( 1928 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 1929 None)); 1930 1931 // Cache the value if we got one back... 1932 if (synthetic_child_sp.get()) { 1933 // FIXME: this causes a "real" child to end up with its name changed to 1934 // the contents of expression 1935 AddSyntheticChild(name_const_string, synthetic_child_sp.get()); 1936 synthetic_child_sp->SetName( 1937 ConstString(SkipLeadingExpressionPathSeparators(expression))); 1938 } 1939 } 1940 return synthetic_child_sp; 1941 } 1942 1943 void ValueObject::CalculateSyntheticValue(bool use_synthetic) { 1944 if (!use_synthetic) 1945 return; 1946 1947 TargetSP target_sp(GetTargetSP()); 1948 if (target_sp && !target_sp->GetEnableSyntheticValue()) { 1949 m_synthetic_value = nullptr; 1950 return; 1951 } 1952 1953 lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp); 1954 1955 if (!UpdateFormatsIfNeeded() && m_synthetic_value) 1956 return; 1957 1958 if (m_synthetic_children_sp.get() == nullptr) 1959 return; 1960 1961 if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value) 1962 return; 1963 1964 m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp); 1965 } 1966 1967 void ValueObject::CalculateDynamicValue(DynamicValueType use_dynamic) { 1968 if (use_dynamic == eNoDynamicValues) 1969 return; 1970 1971 if (!m_dynamic_value && !IsDynamic()) { 1972 ExecutionContext exe_ctx(GetExecutionContextRef()); 1973 Process *process = exe_ctx.GetProcessPtr(); 1974 if (process && process->IsPossibleDynamicValue(*this)) { 1975 ClearDynamicTypeInformation(); 1976 m_dynamic_value = new ValueObjectDynamicValue(*this, use_dynamic); 1977 } 1978 } 1979 } 1980 1981 ValueObjectSP ValueObject::GetDynamicValue(DynamicValueType use_dynamic) { 1982 if (use_dynamic == eNoDynamicValues) 1983 return ValueObjectSP(); 1984 1985 if (!IsDynamic() && m_dynamic_value == nullptr) { 1986 CalculateDynamicValue(use_dynamic); 1987 } 1988 if (m_dynamic_value) 1989 return m_dynamic_value->GetSP(); 1990 else 1991 return ValueObjectSP(); 1992 } 1993 1994 ValueObjectSP ValueObject::GetStaticValue() { return GetSP(); } 1995 1996 lldb::ValueObjectSP ValueObject::GetNonSyntheticValue() { return GetSP(); } 1997 1998 ValueObjectSP ValueObject::GetSyntheticValue(bool use_synthetic) { 1999 if (!use_synthetic) 2000 return ValueObjectSP(); 2001 2002 CalculateSyntheticValue(use_synthetic); 2003 2004 if (m_synthetic_value) 2005 return m_synthetic_value->GetSP(); 2006 else 2007 return ValueObjectSP(); 2008 } 2009 2010 bool ValueObject::HasSyntheticValue() { 2011 UpdateFormatsIfNeeded(); 2012 2013 if (m_synthetic_children_sp.get() == nullptr) 2014 return false; 2015 2016 CalculateSyntheticValue(true); 2017 2018 return m_synthetic_value != nullptr; 2019 } 2020 2021 bool ValueObject::GetBaseClassPath(Stream &s) { 2022 if (IsBaseClass()) { 2023 bool parent_had_base_class = 2024 GetParent() && GetParent()->GetBaseClassPath(s); 2025 CompilerType compiler_type = GetCompilerType(); 2026 std::string cxx_class_name; 2027 bool this_had_base_class = 2028 ClangASTContext::GetCXXClassName(compiler_type, cxx_class_name); 2029 if (this_had_base_class) { 2030 if (parent_had_base_class) 2031 s.PutCString("::"); 2032 s.PutCString(cxx_class_name); 2033 } 2034 return parent_had_base_class || this_had_base_class; 2035 } 2036 return false; 2037 } 2038 2039 ValueObject *ValueObject::GetNonBaseClassParent() { 2040 if (GetParent()) { 2041 if (GetParent()->IsBaseClass()) 2042 return GetParent()->GetNonBaseClassParent(); 2043 else 2044 return GetParent(); 2045 } 2046 return nullptr; 2047 } 2048 2049 bool ValueObject::IsBaseClass(uint32_t &depth) { 2050 if (!IsBaseClass()) { 2051 depth = 0; 2052 return false; 2053 } 2054 if (GetParent()) { 2055 GetParent()->IsBaseClass(depth); 2056 depth = depth + 1; 2057 return true; 2058 } 2059 // TODO: a base of no parent? weird.. 2060 depth = 1; 2061 return true; 2062 } 2063 2064 void ValueObject::GetExpressionPath(Stream &s, bool qualify_cxx_base_classes, 2065 GetExpressionPathFormat epformat) { 2066 // synthetic children do not actually "exist" as part of the hierarchy, and 2067 // sometimes they are consed up in ways that don't make sense from an 2068 // underlying language/API standpoint. So, use a special code path here to 2069 // return something that can hopefully be used in expression 2070 if (m_is_synthetic_children_generated) { 2071 UpdateValueIfNeeded(); 2072 2073 if (m_value.GetValueType() == Value::eValueTypeLoadAddress) { 2074 if (IsPointerOrReferenceType()) { 2075 s.Printf("((%s)0x%" PRIx64 ")", GetTypeName().AsCString("void"), 2076 GetValueAsUnsigned(0)); 2077 return; 2078 } else { 2079 uint64_t load_addr = 2080 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2081 if (load_addr != LLDB_INVALID_ADDRESS) { 2082 s.Printf("(*( (%s *)0x%" PRIx64 "))", GetTypeName().AsCString("void"), 2083 load_addr); 2084 return; 2085 } 2086 } 2087 } 2088 2089 if (CanProvideValue()) { 2090 s.Printf("((%s)%s)", GetTypeName().AsCString("void"), 2091 GetValueAsCString()); 2092 return; 2093 } 2094 2095 return; 2096 } 2097 2098 const bool is_deref_of_parent = IsDereferenceOfParent(); 2099 2100 if (is_deref_of_parent && 2101 epformat == eGetExpressionPathFormatDereferencePointers) { 2102 // this is the original format of GetExpressionPath() producing code like 2103 // *(a_ptr).memberName, which is entirely fine, until you put this into 2104 // StackFrame::GetValueForVariableExpressionPath() which prefers to see 2105 // a_ptr->memberName. the eHonorPointers mode is meant to produce strings 2106 // in this latter format 2107 s.PutCString("*("); 2108 } 2109 2110 ValueObject *parent = GetParent(); 2111 2112 if (parent) 2113 parent->GetExpressionPath(s, qualify_cxx_base_classes, epformat); 2114 2115 // if we are a deref_of_parent just because we are synthetic array members 2116 // made up to allow ptr[%d] syntax to work in variable printing, then add our 2117 // name ([%d]) to the expression path 2118 if (m_is_array_item_for_pointer && 2119 epformat == eGetExpressionPathFormatHonorPointers) 2120 s.PutCString(m_name.AsCString()); 2121 2122 if (!IsBaseClass()) { 2123 if (!is_deref_of_parent) { 2124 ValueObject *non_base_class_parent = GetNonBaseClassParent(); 2125 if (non_base_class_parent && 2126 !non_base_class_parent->GetName().IsEmpty()) { 2127 CompilerType non_base_class_parent_compiler_type = 2128 non_base_class_parent->GetCompilerType(); 2129 if (non_base_class_parent_compiler_type) { 2130 if (parent && parent->IsDereferenceOfParent() && 2131 epformat == eGetExpressionPathFormatHonorPointers) { 2132 s.PutCString("->"); 2133 } else { 2134 const uint32_t non_base_class_parent_type_info = 2135 non_base_class_parent_compiler_type.GetTypeInfo(); 2136 2137 if (non_base_class_parent_type_info & eTypeIsPointer) { 2138 s.PutCString("->"); 2139 } else if ((non_base_class_parent_type_info & eTypeHasChildren) && 2140 !(non_base_class_parent_type_info & eTypeIsArray)) { 2141 s.PutChar('.'); 2142 } 2143 } 2144 } 2145 } 2146 2147 const char *name = GetName().GetCString(); 2148 if (name) { 2149 if (qualify_cxx_base_classes) { 2150 if (GetBaseClassPath(s)) 2151 s.PutCString("::"); 2152 } 2153 s.PutCString(name); 2154 } 2155 } 2156 } 2157 2158 if (is_deref_of_parent && 2159 epformat == eGetExpressionPathFormatDereferencePointers) { 2160 s.PutChar(')'); 2161 } 2162 } 2163 2164 ValueObjectSP ValueObject::GetValueForExpressionPath( 2165 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2166 ExpressionPathEndResultType *final_value_type, 2167 const GetValueForExpressionPathOptions &options, 2168 ExpressionPathAftermath *final_task_on_target) { 2169 2170 ExpressionPathScanEndReason dummy_reason_to_stop = 2171 ValueObject::eExpressionPathScanEndReasonUnknown; 2172 ExpressionPathEndResultType dummy_final_value_type = 2173 ValueObject::eExpressionPathEndResultTypeInvalid; 2174 ExpressionPathAftermath dummy_final_task_on_target = 2175 ValueObject::eExpressionPathAftermathNothing; 2176 2177 ValueObjectSP ret_val = GetValueForExpressionPath_Impl( 2178 expression, reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2179 final_value_type ? final_value_type : &dummy_final_value_type, options, 2180 final_task_on_target ? final_task_on_target 2181 : &dummy_final_task_on_target); 2182 2183 if (!final_task_on_target || 2184 *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2185 return ret_val; 2186 2187 if (ret_val.get() && 2188 ((final_value_type ? *final_value_type : dummy_final_value_type) == 2189 eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress 2190 // of plain objects 2191 { 2192 if ((final_task_on_target ? *final_task_on_target 2193 : dummy_final_task_on_target) == 2194 ValueObject::eExpressionPathAftermathDereference) { 2195 Status error; 2196 ValueObjectSP final_value = ret_val->Dereference(error); 2197 if (error.Fail() || !final_value.get()) { 2198 if (reason_to_stop) 2199 *reason_to_stop = 2200 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2201 if (final_value_type) 2202 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2203 return ValueObjectSP(); 2204 } else { 2205 if (final_task_on_target) 2206 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2207 return final_value; 2208 } 2209 } 2210 if (*final_task_on_target == 2211 ValueObject::eExpressionPathAftermathTakeAddress) { 2212 Status error; 2213 ValueObjectSP final_value = ret_val->AddressOf(error); 2214 if (error.Fail() || !final_value.get()) { 2215 if (reason_to_stop) 2216 *reason_to_stop = 2217 ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2218 if (final_value_type) 2219 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2220 return ValueObjectSP(); 2221 } else { 2222 if (final_task_on_target) 2223 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2224 return final_value; 2225 } 2226 } 2227 } 2228 return ret_val; // final_task_on_target will still have its original value, so 2229 // you know I did not do it 2230 } 2231 2232 ValueObjectSP ValueObject::GetValueForExpressionPath_Impl( 2233 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2234 ExpressionPathEndResultType *final_result, 2235 const GetValueForExpressionPathOptions &options, 2236 ExpressionPathAftermath *what_next) { 2237 ValueObjectSP root = GetSP(); 2238 2239 if (!root) 2240 return nullptr; 2241 2242 llvm::StringRef remainder = expression; 2243 2244 while (true) { 2245 llvm::StringRef temp_expression = remainder; 2246 2247 CompilerType root_compiler_type = root->GetCompilerType(); 2248 CompilerType pointee_compiler_type; 2249 Flags pointee_compiler_type_info; 2250 2251 Flags root_compiler_type_info( 2252 root_compiler_type.GetTypeInfo(&pointee_compiler_type)); 2253 if (pointee_compiler_type) 2254 pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo()); 2255 2256 if (temp_expression.empty()) { 2257 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2258 return root; 2259 } 2260 2261 switch (temp_expression.front()) { 2262 case '-': { 2263 temp_expression = temp_expression.drop_front(); 2264 if (options.m_check_dot_vs_arrow_syntax && 2265 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2266 // use -> on a 2267 // non-pointer and I 2268 // must catch the error 2269 { 2270 *reason_to_stop = 2271 ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot; 2272 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2273 return ValueObjectSP(); 2274 } 2275 if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to 2276 // extract an ObjC IVar 2277 // when this is forbidden 2278 root_compiler_type_info.Test(eTypeIsPointer) && 2279 options.m_no_fragile_ivar) { 2280 *reason_to_stop = 2281 ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed; 2282 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2283 return ValueObjectSP(); 2284 } 2285 if (!temp_expression.startswith(">")) { 2286 *reason_to_stop = 2287 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2288 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2289 return ValueObjectSP(); 2290 } 2291 } 2292 LLVM_FALLTHROUGH; 2293 case '.': // or fallthrough from -> 2294 { 2295 if (options.m_check_dot_vs_arrow_syntax && 2296 temp_expression.front() == '.' && 2297 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2298 // use . on a pointer 2299 // and I must catch the 2300 // error 2301 { 2302 *reason_to_stop = 2303 ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow; 2304 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2305 return nullptr; 2306 } 2307 temp_expression = temp_expression.drop_front(); // skip . or > 2308 2309 size_t next_sep_pos = temp_expression.find_first_of("-.[", 1); 2310 ConstString child_name; 2311 if (next_sep_pos == llvm::StringRef::npos) // if no other separator just 2312 // expand this last layer 2313 { 2314 child_name.SetString(temp_expression); 2315 ValueObjectSP child_valobj_sp = 2316 root->GetChildMemberWithName(child_name, true); 2317 2318 if (child_valobj_sp.get()) // we know we are done, so just return 2319 { 2320 *reason_to_stop = 2321 ValueObject::eExpressionPathScanEndReasonEndOfString; 2322 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2323 return child_valobj_sp; 2324 } else { 2325 switch (options.m_synthetic_children_traversal) { 2326 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2327 None: 2328 break; 2329 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2330 FromSynthetic: 2331 if (root->IsSynthetic()) { 2332 child_valobj_sp = root->GetNonSyntheticValue(); 2333 if (child_valobj_sp.get()) 2334 child_valobj_sp = 2335 child_valobj_sp->GetChildMemberWithName(child_name, true); 2336 } 2337 break; 2338 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2339 ToSynthetic: 2340 if (!root->IsSynthetic()) { 2341 child_valobj_sp = root->GetSyntheticValue(); 2342 if (child_valobj_sp.get()) 2343 child_valobj_sp = 2344 child_valobj_sp->GetChildMemberWithName(child_name, true); 2345 } 2346 break; 2347 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2348 Both: 2349 if (root->IsSynthetic()) { 2350 child_valobj_sp = root->GetNonSyntheticValue(); 2351 if (child_valobj_sp.get()) 2352 child_valobj_sp = 2353 child_valobj_sp->GetChildMemberWithName(child_name, true); 2354 } else { 2355 child_valobj_sp = root->GetSyntheticValue(); 2356 if (child_valobj_sp.get()) 2357 child_valobj_sp = 2358 child_valobj_sp->GetChildMemberWithName(child_name, true); 2359 } 2360 break; 2361 } 2362 } 2363 2364 // if we are here and options.m_no_synthetic_children is true, 2365 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2366 // branch, and return an error 2367 if (child_valobj_sp.get()) // if it worked, just return 2368 { 2369 *reason_to_stop = 2370 ValueObject::eExpressionPathScanEndReasonEndOfString; 2371 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2372 return child_valobj_sp; 2373 } else { 2374 *reason_to_stop = 2375 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2376 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2377 return nullptr; 2378 } 2379 } else // other layers do expand 2380 { 2381 llvm::StringRef next_separator = temp_expression.substr(next_sep_pos); 2382 2383 child_name.SetString(temp_expression.slice(0, next_sep_pos)); 2384 2385 ValueObjectSP child_valobj_sp = 2386 root->GetChildMemberWithName(child_name, true); 2387 if (child_valobj_sp.get()) // store the new root and move on 2388 { 2389 root = child_valobj_sp; 2390 remainder = next_separator; 2391 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2392 continue; 2393 } else { 2394 switch (options.m_synthetic_children_traversal) { 2395 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2396 None: 2397 break; 2398 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2399 FromSynthetic: 2400 if (root->IsSynthetic()) { 2401 child_valobj_sp = root->GetNonSyntheticValue(); 2402 if (child_valobj_sp.get()) 2403 child_valobj_sp = 2404 child_valobj_sp->GetChildMemberWithName(child_name, true); 2405 } 2406 break; 2407 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2408 ToSynthetic: 2409 if (!root->IsSynthetic()) { 2410 child_valobj_sp = root->GetSyntheticValue(); 2411 if (child_valobj_sp.get()) 2412 child_valobj_sp = 2413 child_valobj_sp->GetChildMemberWithName(child_name, true); 2414 } 2415 break; 2416 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2417 Both: 2418 if (root->IsSynthetic()) { 2419 child_valobj_sp = root->GetNonSyntheticValue(); 2420 if (child_valobj_sp.get()) 2421 child_valobj_sp = 2422 child_valobj_sp->GetChildMemberWithName(child_name, true); 2423 } else { 2424 child_valobj_sp = root->GetSyntheticValue(); 2425 if (child_valobj_sp.get()) 2426 child_valobj_sp = 2427 child_valobj_sp->GetChildMemberWithName(child_name, true); 2428 } 2429 break; 2430 } 2431 } 2432 2433 // if we are here and options.m_no_synthetic_children is true, 2434 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2435 // branch, and return an error 2436 if (child_valobj_sp.get()) // if it worked, move on 2437 { 2438 root = child_valobj_sp; 2439 remainder = next_separator; 2440 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2441 continue; 2442 } else { 2443 *reason_to_stop = 2444 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2445 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2446 return nullptr; 2447 } 2448 } 2449 break; 2450 } 2451 case '[': { 2452 if (!root_compiler_type_info.Test(eTypeIsArray) && 2453 !root_compiler_type_info.Test(eTypeIsPointer) && 2454 !root_compiler_type_info.Test( 2455 eTypeIsVector)) // if this is not a T[] nor a T* 2456 { 2457 if (!root_compiler_type_info.Test( 2458 eTypeIsScalar)) // if this is not even a scalar... 2459 { 2460 if (options.m_synthetic_children_traversal == 2461 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2462 None) // ...only chance left is synthetic 2463 { 2464 *reason_to_stop = 2465 ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 2466 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2467 return ValueObjectSP(); 2468 } 2469 } else if (!options.m_allow_bitfields_syntax) // if this is a scalar, 2470 // check that we can 2471 // expand bitfields 2472 { 2473 *reason_to_stop = 2474 ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 2475 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2476 return ValueObjectSP(); 2477 } 2478 } 2479 if (temp_expression[1] == 2480 ']') // if this is an unbounded range it only works for arrays 2481 { 2482 if (!root_compiler_type_info.Test(eTypeIsArray)) { 2483 *reason_to_stop = 2484 ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 2485 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2486 return nullptr; 2487 } else // even if something follows, we cannot expand unbounded ranges, 2488 // just let the caller do it 2489 { 2490 *reason_to_stop = 2491 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2492 *final_result = 2493 ValueObject::eExpressionPathEndResultTypeUnboundedRange; 2494 return root; 2495 } 2496 } 2497 2498 size_t close_bracket_position = temp_expression.find(']', 1); 2499 if (close_bracket_position == 2500 llvm::StringRef::npos) // if there is no ], this is a syntax error 2501 { 2502 *reason_to_stop = 2503 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2504 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2505 return nullptr; 2506 } 2507 2508 llvm::StringRef bracket_expr = 2509 temp_expression.slice(1, close_bracket_position); 2510 2511 // If this was an empty expression it would have been caught by the if 2512 // above. 2513 assert(!bracket_expr.empty()); 2514 2515 if (!bracket_expr.contains('-')) { 2516 // if no separator, this is of the form [N]. Note that this cannot be 2517 // an unbounded range of the form [], because that case was handled 2518 // above with an unconditional return. 2519 unsigned long index = 0; 2520 if (bracket_expr.getAsInteger(0, index)) { 2521 *reason_to_stop = 2522 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2523 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2524 return nullptr; 2525 } 2526 2527 // from here on we do have a valid index 2528 if (root_compiler_type_info.Test(eTypeIsArray)) { 2529 ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true); 2530 if (!child_valobj_sp) 2531 child_valobj_sp = root->GetSyntheticArrayMember(index, true); 2532 if (!child_valobj_sp) 2533 if (root->HasSyntheticValue() && 2534 root->GetSyntheticValue()->GetNumChildren() > index) 2535 child_valobj_sp = 2536 root->GetSyntheticValue()->GetChildAtIndex(index, true); 2537 if (child_valobj_sp) { 2538 root = child_valobj_sp; 2539 remainder = 2540 temp_expression.substr(close_bracket_position + 1); // skip ] 2541 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2542 continue; 2543 } else { 2544 *reason_to_stop = 2545 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2546 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2547 return nullptr; 2548 } 2549 } else if (root_compiler_type_info.Test(eTypeIsPointer)) { 2550 if (*what_next == 2551 ValueObject:: 2552 eExpressionPathAftermathDereference && // if this is a 2553 // ptr-to-scalar, I 2554 // am accessing it 2555 // by index and I 2556 // would have 2557 // deref'ed anyway, 2558 // then do it now 2559 // and use this as 2560 // a bitfield 2561 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2562 Status error; 2563 root = root->Dereference(error); 2564 if (error.Fail() || !root) { 2565 *reason_to_stop = 2566 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2567 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2568 return nullptr; 2569 } else { 2570 *what_next = eExpressionPathAftermathNothing; 2571 continue; 2572 } 2573 } else { 2574 if (root->GetCompilerType().GetMinimumLanguage() == 2575 eLanguageTypeObjC && 2576 pointee_compiler_type_info.AllClear(eTypeIsPointer) && 2577 root->HasSyntheticValue() && 2578 (options.m_synthetic_children_traversal == 2579 GetValueForExpressionPathOptions:: 2580 SyntheticChildrenTraversal::ToSynthetic || 2581 options.m_synthetic_children_traversal == 2582 GetValueForExpressionPathOptions:: 2583 SyntheticChildrenTraversal::Both)) { 2584 root = root->GetSyntheticValue()->GetChildAtIndex(index, true); 2585 } else 2586 root = root->GetSyntheticArrayMember(index, true); 2587 if (!root) { 2588 *reason_to_stop = 2589 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2590 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2591 return nullptr; 2592 } else { 2593 remainder = 2594 temp_expression.substr(close_bracket_position + 1); // skip ] 2595 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2596 continue; 2597 } 2598 } 2599 } else if (root_compiler_type_info.Test(eTypeIsScalar)) { 2600 root = root->GetSyntheticBitFieldChild(index, index, true); 2601 if (!root) { 2602 *reason_to_stop = 2603 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2604 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2605 return nullptr; 2606 } else // we do not know how to expand members of bitfields, so we 2607 // just return and let the caller do any further processing 2608 { 2609 *reason_to_stop = ValueObject:: 2610 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2611 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2612 return root; 2613 } 2614 } else if (root_compiler_type_info.Test(eTypeIsVector)) { 2615 root = root->GetChildAtIndex(index, true); 2616 if (!root) { 2617 *reason_to_stop = 2618 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2619 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2620 return ValueObjectSP(); 2621 } else { 2622 remainder = 2623 temp_expression.substr(close_bracket_position + 1); // skip ] 2624 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2625 continue; 2626 } 2627 } else if (options.m_synthetic_children_traversal == 2628 GetValueForExpressionPathOptions:: 2629 SyntheticChildrenTraversal::ToSynthetic || 2630 options.m_synthetic_children_traversal == 2631 GetValueForExpressionPathOptions:: 2632 SyntheticChildrenTraversal::Both) { 2633 if (root->HasSyntheticValue()) 2634 root = root->GetSyntheticValue(); 2635 else if (!root->IsSynthetic()) { 2636 *reason_to_stop = 2637 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2638 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2639 return nullptr; 2640 } 2641 // if we are here, then root itself is a synthetic VO.. should be 2642 // good to go 2643 2644 if (!root) { 2645 *reason_to_stop = 2646 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2647 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2648 return nullptr; 2649 } 2650 root = root->GetChildAtIndex(index, true); 2651 if (!root) { 2652 *reason_to_stop = 2653 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2654 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2655 return nullptr; 2656 } else { 2657 remainder = 2658 temp_expression.substr(close_bracket_position + 1); // skip ] 2659 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2660 continue; 2661 } 2662 } else { 2663 *reason_to_stop = 2664 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2665 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2666 return nullptr; 2667 } 2668 } else { 2669 // we have a low and a high index 2670 llvm::StringRef sleft, sright; 2671 unsigned long low_index, high_index; 2672 std::tie(sleft, sright) = bracket_expr.split('-'); 2673 if (sleft.getAsInteger(0, low_index) || 2674 sright.getAsInteger(0, high_index)) { 2675 *reason_to_stop = 2676 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2677 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2678 return nullptr; 2679 } 2680 2681 if (low_index > high_index) // swap indices if required 2682 std::swap(low_index, high_index); 2683 2684 if (root_compiler_type_info.Test( 2685 eTypeIsScalar)) // expansion only works for scalars 2686 { 2687 root = root->GetSyntheticBitFieldChild(low_index, high_index, true); 2688 if (!root) { 2689 *reason_to_stop = 2690 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2691 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2692 return nullptr; 2693 } else { 2694 *reason_to_stop = ValueObject:: 2695 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2696 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2697 return root; 2698 } 2699 } else if (root_compiler_type_info.Test( 2700 eTypeIsPointer) && // if this is a ptr-to-scalar, I am 2701 // accessing it by index and I would 2702 // have deref'ed anyway, then do it 2703 // now and use this as a bitfield 2704 *what_next == 2705 ValueObject::eExpressionPathAftermathDereference && 2706 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2707 Status error; 2708 root = root->Dereference(error); 2709 if (error.Fail() || !root) { 2710 *reason_to_stop = 2711 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2712 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2713 return nullptr; 2714 } else { 2715 *what_next = ValueObject::eExpressionPathAftermathNothing; 2716 continue; 2717 } 2718 } else { 2719 *reason_to_stop = 2720 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2721 *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange; 2722 return root; 2723 } 2724 } 2725 break; 2726 } 2727 default: // some non-separator is in the way 2728 { 2729 *reason_to_stop = 2730 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2731 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2732 return nullptr; 2733 } 2734 } 2735 } 2736 } 2737 2738 void ValueObject::LogValueObject(Log *log) { 2739 if (log) 2740 return LogValueObject(log, DumpValueObjectOptions(*this)); 2741 } 2742 2743 void ValueObject::LogValueObject(Log *log, 2744 const DumpValueObjectOptions &options) { 2745 if (log) { 2746 StreamString s; 2747 Dump(s, options); 2748 if (s.GetSize()) 2749 log->PutCString(s.GetData()); 2750 } 2751 } 2752 2753 void ValueObject::Dump(Stream &s) { Dump(s, DumpValueObjectOptions(*this)); } 2754 2755 void ValueObject::Dump(Stream &s, const DumpValueObjectOptions &options) { 2756 ValueObjectPrinter printer(this, &s, options); 2757 printer.PrintValueObject(); 2758 } 2759 2760 ValueObjectSP ValueObject::CreateConstantValue(ConstString name) { 2761 ValueObjectSP valobj_sp; 2762 2763 if (UpdateValueIfNeeded(false) && m_error.Success()) { 2764 ExecutionContext exe_ctx(GetExecutionContextRef()); 2765 2766 DataExtractor data; 2767 data.SetByteOrder(m_data.GetByteOrder()); 2768 data.SetAddressByteSize(m_data.GetAddressByteSize()); 2769 2770 if (IsBitfield()) { 2771 Value v(Scalar(GetValueAsUnsigned(UINT64_MAX))); 2772 m_error = v.GetValueAsData(&exe_ctx, data, GetModule().get()); 2773 } else 2774 m_error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get()); 2775 2776 valobj_sp = ValueObjectConstResult::Create( 2777 exe_ctx.GetBestExecutionContextScope(), GetCompilerType(), name, data, 2778 GetAddressOf()); 2779 } 2780 2781 if (!valobj_sp) { 2782 ExecutionContext exe_ctx(GetExecutionContextRef()); 2783 valobj_sp = ValueObjectConstResult::Create( 2784 exe_ctx.GetBestExecutionContextScope(), m_error); 2785 } 2786 return valobj_sp; 2787 } 2788 2789 ValueObjectSP ValueObject::GetQualifiedRepresentationIfAvailable( 2790 lldb::DynamicValueType dynValue, bool synthValue) { 2791 ValueObjectSP result_sp(GetSP()); 2792 2793 switch (dynValue) { 2794 case lldb::eDynamicCanRunTarget: 2795 case lldb::eDynamicDontRunTarget: { 2796 if (!result_sp->IsDynamic()) { 2797 if (result_sp->GetDynamicValue(dynValue)) 2798 result_sp = result_sp->GetDynamicValue(dynValue); 2799 } 2800 } break; 2801 case lldb::eNoDynamicValues: { 2802 if (result_sp->IsDynamic()) { 2803 if (result_sp->GetStaticValue()) 2804 result_sp = result_sp->GetStaticValue(); 2805 } 2806 } break; 2807 } 2808 2809 if (synthValue) { 2810 if (!result_sp->IsSynthetic()) { 2811 if (result_sp->GetSyntheticValue()) 2812 result_sp = result_sp->GetSyntheticValue(); 2813 } 2814 } else { 2815 if (result_sp->IsSynthetic()) { 2816 if (result_sp->GetNonSyntheticValue()) 2817 result_sp = result_sp->GetNonSyntheticValue(); 2818 } 2819 } 2820 2821 return result_sp; 2822 } 2823 2824 ValueObjectSP ValueObject::Dereference(Status &error) { 2825 if (m_deref_valobj) 2826 return m_deref_valobj->GetSP(); 2827 2828 const bool is_pointer_or_reference_type = IsPointerOrReferenceType(); 2829 if (is_pointer_or_reference_type) { 2830 bool omit_empty_base_classes = true; 2831 bool ignore_array_bounds = false; 2832 2833 std::string child_name_str; 2834 uint32_t child_byte_size = 0; 2835 int32_t child_byte_offset = 0; 2836 uint32_t child_bitfield_bit_size = 0; 2837 uint32_t child_bitfield_bit_offset = 0; 2838 bool child_is_base_class = false; 2839 bool child_is_deref_of_parent = false; 2840 const bool transparent_pointers = false; 2841 CompilerType compiler_type = GetCompilerType(); 2842 CompilerType child_compiler_type; 2843 uint64_t language_flags; 2844 2845 ExecutionContext exe_ctx(GetExecutionContextRef()); 2846 2847 child_compiler_type = compiler_type.GetChildCompilerTypeAtIndex( 2848 &exe_ctx, 0, transparent_pointers, omit_empty_base_classes, 2849 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 2850 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 2851 child_is_deref_of_parent, this, language_flags); 2852 if (child_compiler_type && child_byte_size) { 2853 ConstString child_name; 2854 if (!child_name_str.empty()) 2855 child_name.SetCString(child_name_str.c_str()); 2856 2857 m_deref_valobj = new ValueObjectChild( 2858 *this, child_compiler_type, child_name, child_byte_size, 2859 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 2860 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 2861 language_flags); 2862 } 2863 } else if (HasSyntheticValue()) { 2864 m_deref_valobj = 2865 GetSyntheticValue() 2866 ->GetChildMemberWithName(ConstString("$$dereference$$"), true) 2867 .get(); 2868 } 2869 2870 if (m_deref_valobj) { 2871 error.Clear(); 2872 return m_deref_valobj->GetSP(); 2873 } else { 2874 StreamString strm; 2875 GetExpressionPath(strm, true); 2876 2877 if (is_pointer_or_reference_type) 2878 error.SetErrorStringWithFormat("dereference failed: (%s) %s", 2879 GetTypeName().AsCString("<invalid type>"), 2880 strm.GetData()); 2881 else 2882 error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s", 2883 GetTypeName().AsCString("<invalid type>"), 2884 strm.GetData()); 2885 return ValueObjectSP(); 2886 } 2887 } 2888 2889 ValueObjectSP ValueObject::AddressOf(Status &error) { 2890 if (m_addr_of_valobj_sp) 2891 return m_addr_of_valobj_sp; 2892 2893 AddressType address_type = eAddressTypeInvalid; 2894 const bool scalar_is_load_address = false; 2895 addr_t addr = GetAddressOf(scalar_is_load_address, &address_type); 2896 error.Clear(); 2897 if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) { 2898 switch (address_type) { 2899 case eAddressTypeInvalid: { 2900 StreamString expr_path_strm; 2901 GetExpressionPath(expr_path_strm, true); 2902 error.SetErrorStringWithFormat("'%s' is not in memory", 2903 expr_path_strm.GetData()); 2904 } break; 2905 2906 case eAddressTypeFile: 2907 case eAddressTypeLoad: { 2908 CompilerType compiler_type = GetCompilerType(); 2909 if (compiler_type) { 2910 std::string name(1, '&'); 2911 name.append(m_name.AsCString("")); 2912 ExecutionContext exe_ctx(GetExecutionContextRef()); 2913 m_addr_of_valobj_sp = ValueObjectConstResult::Create( 2914 exe_ctx.GetBestExecutionContextScope(), 2915 compiler_type.GetPointerType(), ConstString(name.c_str()), addr, 2916 eAddressTypeInvalid, m_data.GetAddressByteSize()); 2917 } 2918 } break; 2919 default: 2920 break; 2921 } 2922 } else { 2923 StreamString expr_path_strm; 2924 GetExpressionPath(expr_path_strm, true); 2925 error.SetErrorStringWithFormat("'%s' doesn't have a valid address", 2926 expr_path_strm.GetData()); 2927 } 2928 2929 return m_addr_of_valobj_sp; 2930 } 2931 2932 ValueObjectSP ValueObject::Cast(const CompilerType &compiler_type) { 2933 return ValueObjectCast::Create(*this, GetName(), compiler_type); 2934 } 2935 2936 lldb::ValueObjectSP ValueObject::Clone(ConstString new_name) { 2937 return ValueObjectCast::Create(*this, new_name, GetCompilerType()); 2938 } 2939 2940 ValueObjectSP ValueObject::CastPointerType(const char *name, 2941 CompilerType &compiler_type) { 2942 ValueObjectSP valobj_sp; 2943 AddressType address_type; 2944 addr_t ptr_value = GetPointerValue(&address_type); 2945 2946 if (ptr_value != LLDB_INVALID_ADDRESS) { 2947 Address ptr_addr(ptr_value); 2948 ExecutionContext exe_ctx(GetExecutionContextRef()); 2949 valobj_sp = ValueObjectMemory::Create( 2950 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, compiler_type); 2951 } 2952 return valobj_sp; 2953 } 2954 2955 ValueObjectSP ValueObject::CastPointerType(const char *name, TypeSP &type_sp) { 2956 ValueObjectSP valobj_sp; 2957 AddressType address_type; 2958 addr_t ptr_value = GetPointerValue(&address_type); 2959 2960 if (ptr_value != LLDB_INVALID_ADDRESS) { 2961 Address ptr_addr(ptr_value); 2962 ExecutionContext exe_ctx(GetExecutionContextRef()); 2963 valobj_sp = ValueObjectMemory::Create( 2964 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, type_sp); 2965 } 2966 return valobj_sp; 2967 } 2968 2969 ValueObject::EvaluationPoint::EvaluationPoint() 2970 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) {} 2971 2972 ValueObject::EvaluationPoint::EvaluationPoint(ExecutionContextScope *exe_scope, 2973 bool use_selected) 2974 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) { 2975 ExecutionContext exe_ctx(exe_scope); 2976 TargetSP target_sp(exe_ctx.GetTargetSP()); 2977 if (target_sp) { 2978 m_exe_ctx_ref.SetTargetSP(target_sp); 2979 ProcessSP process_sp(exe_ctx.GetProcessSP()); 2980 if (!process_sp) 2981 process_sp = target_sp->GetProcessSP(); 2982 2983 if (process_sp) { 2984 m_mod_id = process_sp->GetModID(); 2985 m_exe_ctx_ref.SetProcessSP(process_sp); 2986 2987 ThreadSP thread_sp(exe_ctx.GetThreadSP()); 2988 2989 if (!thread_sp) { 2990 if (use_selected) 2991 thread_sp = process_sp->GetThreadList().GetSelectedThread(); 2992 } 2993 2994 if (thread_sp) { 2995 m_exe_ctx_ref.SetThreadSP(thread_sp); 2996 2997 StackFrameSP frame_sp(exe_ctx.GetFrameSP()); 2998 if (!frame_sp) { 2999 if (use_selected) 3000 frame_sp = thread_sp->GetSelectedFrame(); 3001 } 3002 if (frame_sp) 3003 m_exe_ctx_ref.SetFrameSP(frame_sp); 3004 } 3005 } 3006 } 3007 } 3008 3009 ValueObject::EvaluationPoint::EvaluationPoint( 3010 const ValueObject::EvaluationPoint &rhs) 3011 : m_mod_id(), m_exe_ctx_ref(rhs.m_exe_ctx_ref), m_needs_update(true) {} 3012 3013 ValueObject::EvaluationPoint::~EvaluationPoint() {} 3014 3015 // This function checks the EvaluationPoint against the current process state. 3016 // If the current state matches the evaluation point, or the evaluation point 3017 // is already invalid, then we return false, meaning "no change". If the 3018 // current state is different, we update our state, and return true meaning 3019 // "yes, change". If we did see a change, we also set m_needs_update to true, 3020 // so future calls to NeedsUpdate will return true. exe_scope will be set to 3021 // the current execution context scope. 3022 3023 bool ValueObject::EvaluationPoint::SyncWithProcessState( 3024 bool accept_invalid_exe_ctx) { 3025 // Start with the target, if it is NULL, then we're obviously not going to 3026 // get any further: 3027 const bool thread_and_frame_only_if_stopped = true; 3028 ExecutionContext exe_ctx( 3029 m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped)); 3030 3031 if (exe_ctx.GetTargetPtr() == nullptr) 3032 return false; 3033 3034 // If we don't have a process nothing can change. 3035 Process *process = exe_ctx.GetProcessPtr(); 3036 if (process == nullptr) 3037 return false; 3038 3039 // If our stop id is the current stop ID, nothing has changed: 3040 ProcessModID current_mod_id = process->GetModID(); 3041 3042 // If the current stop id is 0, either we haven't run yet, or the process 3043 // state has been cleared. In either case, we aren't going to be able to sync 3044 // with the process state. 3045 if (current_mod_id.GetStopID() == 0) 3046 return false; 3047 3048 bool changed = false; 3049 const bool was_valid = m_mod_id.IsValid(); 3050 if (was_valid) { 3051 if (m_mod_id == current_mod_id) { 3052 // Everything is already up to date in this object, no need to update the 3053 // execution context scope. 3054 changed = false; 3055 } else { 3056 m_mod_id = current_mod_id; 3057 m_needs_update = true; 3058 changed = true; 3059 } 3060 } 3061 3062 // Now re-look up the thread and frame in case the underlying objects have 3063 // gone away & been recreated. That way we'll be sure to return a valid 3064 // exe_scope. If we used to have a thread or a frame but can't find it 3065 // anymore, then mark ourselves as invalid. 3066 3067 if (!accept_invalid_exe_ctx) { 3068 if (m_exe_ctx_ref.HasThreadRef()) { 3069 ThreadSP thread_sp(m_exe_ctx_ref.GetThreadSP()); 3070 if (thread_sp) { 3071 if (m_exe_ctx_ref.HasFrameRef()) { 3072 StackFrameSP frame_sp(m_exe_ctx_ref.GetFrameSP()); 3073 if (!frame_sp) { 3074 // We used to have a frame, but now it is gone 3075 SetInvalid(); 3076 changed = was_valid; 3077 } 3078 } 3079 } else { 3080 // We used to have a thread, but now it is gone 3081 SetInvalid(); 3082 changed = was_valid; 3083 } 3084 } 3085 } 3086 3087 return changed; 3088 } 3089 3090 void ValueObject::EvaluationPoint::SetUpdated() { 3091 ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP()); 3092 if (process_sp) 3093 m_mod_id = process_sp->GetModID(); 3094 m_needs_update = false; 3095 } 3096 3097 void ValueObject::ClearUserVisibleData(uint32_t clear_mask) { 3098 if ((clear_mask & eClearUserVisibleDataItemsValue) == 3099 eClearUserVisibleDataItemsValue) 3100 m_value_str.clear(); 3101 3102 if ((clear_mask & eClearUserVisibleDataItemsLocation) == 3103 eClearUserVisibleDataItemsLocation) 3104 m_location_str.clear(); 3105 3106 if ((clear_mask & eClearUserVisibleDataItemsSummary) == 3107 eClearUserVisibleDataItemsSummary) 3108 m_summary_str.clear(); 3109 3110 if ((clear_mask & eClearUserVisibleDataItemsDescription) == 3111 eClearUserVisibleDataItemsDescription) 3112 m_object_desc_str.clear(); 3113 3114 if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == 3115 eClearUserVisibleDataItemsSyntheticChildren) { 3116 if (m_synthetic_value) 3117 m_synthetic_value = nullptr; 3118 } 3119 3120 if ((clear_mask & eClearUserVisibleDataItemsValidator) == 3121 eClearUserVisibleDataItemsValidator) 3122 m_validation_result.reset(); 3123 } 3124 3125 SymbolContextScope *ValueObject::GetSymbolContextScope() { 3126 if (m_parent) { 3127 if (!m_parent->IsPointerOrReferenceType()) 3128 return m_parent->GetSymbolContextScope(); 3129 } 3130 return nullptr; 3131 } 3132 3133 lldb::ValueObjectSP 3134 ValueObject::CreateValueObjectFromExpression(llvm::StringRef name, 3135 llvm::StringRef expression, 3136 const ExecutionContext &exe_ctx) { 3137 return CreateValueObjectFromExpression(name, expression, exe_ctx, 3138 EvaluateExpressionOptions()); 3139 } 3140 3141 lldb::ValueObjectSP ValueObject::CreateValueObjectFromExpression( 3142 llvm::StringRef name, llvm::StringRef expression, 3143 const ExecutionContext &exe_ctx, const EvaluateExpressionOptions &options) { 3144 lldb::ValueObjectSP retval_sp; 3145 lldb::TargetSP target_sp(exe_ctx.GetTargetSP()); 3146 if (!target_sp) 3147 return retval_sp; 3148 if (expression.empty()) 3149 return retval_sp; 3150 target_sp->EvaluateExpression(expression, exe_ctx.GetFrameSP().get(), 3151 retval_sp, options); 3152 if (retval_sp && !name.empty()) 3153 retval_sp->SetName(ConstString(name)); 3154 return retval_sp; 3155 } 3156 3157 lldb::ValueObjectSP ValueObject::CreateValueObjectFromAddress( 3158 llvm::StringRef name, uint64_t address, const ExecutionContext &exe_ctx, 3159 CompilerType type) { 3160 if (type) { 3161 CompilerType pointer_type(type.GetPointerType()); 3162 if (pointer_type) { 3163 lldb::DataBufferSP buffer( 3164 new lldb_private::DataBufferHeap(&address, sizeof(lldb::addr_t))); 3165 lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create( 3166 exe_ctx.GetBestExecutionContextScope(), pointer_type, 3167 ConstString(name), buffer, exe_ctx.GetByteOrder(), 3168 exe_ctx.GetAddressByteSize())); 3169 if (ptr_result_valobj_sp) { 3170 ptr_result_valobj_sp->GetValue().SetValueType( 3171 Value::eValueTypeLoadAddress); 3172 Status err; 3173 ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err); 3174 if (ptr_result_valobj_sp && !name.empty()) 3175 ptr_result_valobj_sp->SetName(ConstString(name)); 3176 } 3177 return ptr_result_valobj_sp; 3178 } 3179 } 3180 return lldb::ValueObjectSP(); 3181 } 3182 3183 lldb::ValueObjectSP ValueObject::CreateValueObjectFromData( 3184 llvm::StringRef name, const DataExtractor &data, 3185 const ExecutionContext &exe_ctx, CompilerType type) { 3186 lldb::ValueObjectSP new_value_sp; 3187 new_value_sp = ValueObjectConstResult::Create( 3188 exe_ctx.GetBestExecutionContextScope(), type, ConstString(name), data, 3189 LLDB_INVALID_ADDRESS); 3190 new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad); 3191 if (new_value_sp && !name.empty()) 3192 new_value_sp->SetName(ConstString(name)); 3193 return new_value_sp; 3194 } 3195 3196 ModuleSP ValueObject::GetModule() { 3197 ValueObject *root(GetRoot()); 3198 if (root != this) 3199 return root->GetModule(); 3200 return lldb::ModuleSP(); 3201 } 3202 3203 ValueObject *ValueObject::GetRoot() { 3204 if (m_root) 3205 return m_root; 3206 return (m_root = FollowParentChain([](ValueObject *vo) -> bool { 3207 return (vo->m_parent != nullptr); 3208 })); 3209 } 3210 3211 ValueObject * 3212 ValueObject::FollowParentChain(std::function<bool(ValueObject *)> f) { 3213 ValueObject *vo = this; 3214 while (vo) { 3215 if (!f(vo)) 3216 break; 3217 vo = vo->m_parent; 3218 } 3219 return vo; 3220 } 3221 3222 AddressType ValueObject::GetAddressTypeOfChildren() { 3223 if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) { 3224 ValueObject *root(GetRoot()); 3225 if (root != this) 3226 return root->GetAddressTypeOfChildren(); 3227 } 3228 return m_address_type_of_ptr_or_ref_children; 3229 } 3230 3231 lldb::DynamicValueType ValueObject::GetDynamicValueType() { 3232 ValueObject *with_dv_info = this; 3233 while (with_dv_info) { 3234 if (with_dv_info->HasDynamicValueTypeInfo()) 3235 return with_dv_info->GetDynamicValueTypeImpl(); 3236 with_dv_info = with_dv_info->m_parent; 3237 } 3238 return lldb::eNoDynamicValues; 3239 } 3240 3241 lldb::Format ValueObject::GetFormat() const { 3242 const ValueObject *with_fmt_info = this; 3243 while (with_fmt_info) { 3244 if (with_fmt_info->m_format != lldb::eFormatDefault) 3245 return with_fmt_info->m_format; 3246 with_fmt_info = with_fmt_info->m_parent; 3247 } 3248 return m_format; 3249 } 3250 3251 lldb::LanguageType ValueObject::GetPreferredDisplayLanguage() { 3252 lldb::LanguageType type = m_preferred_display_language; 3253 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) { 3254 if (GetRoot()) { 3255 if (GetRoot() == this) { 3256 if (StackFrameSP frame_sp = GetFrameSP()) { 3257 const SymbolContext &sc( 3258 frame_sp->GetSymbolContext(eSymbolContextCompUnit)); 3259 if (CompileUnit *cu = sc.comp_unit) 3260 type = cu->GetLanguage(); 3261 } 3262 } else { 3263 type = GetRoot()->GetPreferredDisplayLanguage(); 3264 } 3265 } 3266 } 3267 return (m_preferred_display_language = type); // only compute it once 3268 } 3269 3270 void ValueObject::SetPreferredDisplayLanguage(lldb::LanguageType lt) { 3271 m_preferred_display_language = lt; 3272 } 3273 3274 void ValueObject::SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType lt) { 3275 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 3276 SetPreferredDisplayLanguage(lt); 3277 } 3278 3279 bool ValueObject::CanProvideValue() { 3280 // we need to support invalid types as providers of values because some bare- 3281 // board debugging scenarios have no notion of types, but still manage to 3282 // have raw numeric values for things like registers. sigh. 3283 const CompilerType &type(GetCompilerType()); 3284 return (!type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue)); 3285 } 3286 3287 bool ValueObject::IsChecksumEmpty() { return m_value_checksum.empty(); } 3288 3289 ValueObjectSP ValueObject::Persist() { 3290 if (!UpdateValueIfNeeded()) 3291 return nullptr; 3292 3293 TargetSP target_sp(GetTargetSP()); 3294 if (!target_sp) 3295 return nullptr; 3296 3297 PersistentExpressionState *persistent_state = 3298 target_sp->GetPersistentExpressionStateForLanguage( 3299 GetPreferredDisplayLanguage()); 3300 3301 if (!persistent_state) 3302 return nullptr; 3303 3304 auto prefix = persistent_state->GetPersistentVariablePrefix(); 3305 ConstString name = 3306 persistent_state->GetNextPersistentVariableName(*target_sp, prefix); 3307 3308 ValueObjectSP const_result_sp = 3309 ValueObjectConstResult::Create(target_sp.get(), GetValue(), name); 3310 3311 ExpressionVariableSP clang_var_sp = 3312 persistent_state->CreatePersistentVariable(const_result_sp); 3313 clang_var_sp->m_live_sp = clang_var_sp->m_frozen_sp; 3314 clang_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference; 3315 3316 return clang_var_sp->GetValueObject(); 3317 } 3318 3319 bool ValueObject::IsSyntheticChildrenGenerated() { 3320 return m_is_synthetic_children_generated; 3321 } 3322 3323 void ValueObject::SetSyntheticChildrenGenerated(bool b) { 3324 m_is_synthetic_children_generated = b; 3325 } 3326 3327 uint64_t ValueObject::GetLanguageFlags() { return m_language_flags; } 3328 3329 void ValueObject::SetLanguageFlags(uint64_t flags) { m_language_flags = flags; } 3330 3331 ValueObjectManager::ValueObjectManager(lldb::ValueObjectSP in_valobj_sp, 3332 lldb::DynamicValueType use_dynamic, 3333 bool use_synthetic) : m_root_valobj_sp(), 3334 m_user_valobj_sp(), m_use_dynamic(use_dynamic), m_stop_id(UINT32_MAX), 3335 m_use_synthetic(use_synthetic) { 3336 if (!in_valobj_sp) 3337 return; 3338 // If the user passes in a value object that is dynamic or synthetic, then 3339 // water it down to the static type. 3340 m_root_valobj_sp = in_valobj_sp->GetQualifiedRepresentationIfAvailable(lldb::eNoDynamicValues, false); 3341 } 3342 3343 bool ValueObjectManager::IsValid() const { 3344 if (!m_root_valobj_sp) 3345 return false; 3346 lldb::TargetSP target_sp = GetTargetSP(); 3347 if (target_sp) 3348 return target_sp->IsValid(); 3349 return false; 3350 } 3351 3352 lldb::ValueObjectSP ValueObjectManager::GetSP() { 3353 lldb::ProcessSP process_sp = GetProcessSP(); 3354 if (!process_sp) 3355 return lldb::ValueObjectSP(); 3356 3357 const uint32_t current_stop_id = process_sp->GetLastNaturalStopID(); 3358 if (current_stop_id == m_stop_id) 3359 return m_user_valobj_sp; 3360 3361 m_stop_id = current_stop_id; 3362 3363 if (!m_root_valobj_sp) { 3364 m_user_valobj_sp.reset(); 3365 return m_root_valobj_sp; 3366 } 3367 3368 m_user_valobj_sp = m_root_valobj_sp; 3369 3370 if (m_use_dynamic != lldb::eNoDynamicValues) { 3371 lldb::ValueObjectSP dynamic_sp = m_user_valobj_sp->GetDynamicValue(m_use_dynamic); 3372 if (dynamic_sp) 3373 m_user_valobj_sp = dynamic_sp; 3374 } 3375 3376 if (m_use_synthetic) { 3377 lldb::ValueObjectSP synthetic_sp = m_user_valobj_sp->GetSyntheticValue(m_use_synthetic); 3378 if (synthetic_sp) 3379 m_user_valobj_sp = synthetic_sp; 3380 } 3381 3382 return m_user_valobj_sp; 3383 } 3384 3385 void ValueObjectManager::SetUseDynamic(lldb::DynamicValueType use_dynamic) { 3386 if (use_dynamic != m_use_dynamic) { 3387 m_use_dynamic = use_dynamic; 3388 m_user_valobj_sp.reset(); 3389 m_stop_id = UINT32_MAX; 3390 } 3391 } 3392 3393 void ValueObjectManager::SetUseSynthetic(bool use_synthetic) { 3394 if (m_use_synthetic != use_synthetic) { 3395 m_use_synthetic = use_synthetic; 3396 m_user_valobj_sp.reset(); 3397 m_stop_id = UINT32_MAX; 3398 } 3399 } 3400 3401 lldb::TargetSP ValueObjectManager::GetTargetSP() const { 3402 if (!m_root_valobj_sp) 3403 return m_root_valobj_sp->GetTargetSP(); 3404 return lldb::TargetSP(); 3405 } 3406 3407 lldb::ProcessSP ValueObjectManager::GetProcessSP() const { 3408 if (m_root_valobj_sp) 3409 return m_root_valobj_sp->GetProcessSP(); 3410 return lldb::ProcessSP(); 3411 } 3412 3413 lldb::ThreadSP ValueObjectManager::GetThreadSP() const { 3414 if (m_root_valobj_sp) 3415 return m_root_valobj_sp->GetThreadSP(); 3416 return lldb::ThreadSP(); 3417 } 3418 3419 lldb::StackFrameSP ValueObjectManager::GetFrameSP() const { 3420 if (m_root_valobj_sp) 3421 return m_root_valobj_sp->GetFrameSP(); 3422 return lldb::StackFrameSP(); 3423 } 3424