1 //===-- ValueObject.cpp -----------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/Core/ValueObject.h" 11 12 #include "lldb/Core/Address.h" 13 #include "lldb/Core/Module.h" 14 #include "lldb/Core/ValueObjectCast.h" 15 #include "lldb/Core/ValueObjectChild.h" 16 #include "lldb/Core/ValueObjectConstResult.h" 17 #include "lldb/Core/ValueObjectDynamicValue.h" 18 #include "lldb/Core/ValueObjectMemory.h" 19 #include "lldb/Core/ValueObjectSyntheticFilter.h" 20 #include "lldb/DataFormatters/DataVisualization.h" 21 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 22 #include "lldb/DataFormatters/FormatManager.h" 23 #include "lldb/DataFormatters/StringPrinter.h" 24 #include "lldb/DataFormatters/TypeFormat.h" 25 #include "lldb/DataFormatters/TypeSummary.h" 26 #include "lldb/DataFormatters/TypeValidator.h" 27 #include "lldb/DataFormatters/ValueObjectPrinter.h" 28 #include "lldb/Expression/ExpressionVariable.h" 29 #include "lldb/Symbol/ClangASTContext.h" 30 #include "lldb/Symbol/CompileUnit.h" 31 #include "lldb/Symbol/CompilerType.h" 32 #include "lldb/Symbol/Declaration.h" 33 #include "lldb/Symbol/SymbolContext.h" 34 #include "lldb/Symbol/Type.h" 35 #include "lldb/Target/ExecutionContext.h" 36 #include "lldb/Target/Language.h" 37 #include "lldb/Target/LanguageRuntime.h" 38 #include "lldb/Target/ObjCLanguageRuntime.h" 39 #include "lldb/Target/Process.h" 40 #include "lldb/Target/StackFrame.h" 41 #include "lldb/Target/Target.h" 42 #include "lldb/Target/Thread.h" 43 #include "lldb/Target/ThreadList.h" 44 #include "lldb/Utility/DataBuffer.h" 45 #include "lldb/Utility/DataBufferHeap.h" 46 #include "lldb/Utility/Flags.h" 47 #include "lldb/Utility/Log.h" 48 #include "lldb/Utility/Logging.h" 49 #include "lldb/Utility/Scalar.h" 50 #include "lldb/Utility/SharingPtr.h" 51 #include "lldb/Utility/Stream.h" 52 #include "lldb/Utility/StreamString.h" 53 #include "lldb/lldb-private-types.h" 54 55 #include "llvm/Support/Compiler.h" 56 57 #include <algorithm> 58 #include <cstdint> 59 #include <cstdlib> 60 #include <memory> 61 #include <tuple> 62 63 #include <assert.h> 64 #include <inttypes.h> 65 #include <stdio.h> 66 #include <string.h> 67 68 namespace lldb_private { 69 class ExecutionContextScope; 70 } 71 namespace lldb_private { 72 class SymbolContextScope; 73 } 74 75 using namespace lldb; 76 using namespace lldb_private; 77 using namespace lldb_utility; 78 79 static user_id_t g_value_obj_uid = 0; 80 81 //---------------------------------------------------------------------- 82 // ValueObject constructor 83 //---------------------------------------------------------------------- 84 ValueObject::ValueObject(ValueObject &parent) 85 : UserID(++g_value_obj_uid), // Unique identifier for every value object 86 m_parent(&parent), m_root(NULL), m_update_point(parent.GetUpdatePoint()), 87 m_name(), m_data(), m_value(), m_error(), m_value_str(), 88 m_old_value_str(), m_location_str(), m_summary_str(), m_object_desc_str(), 89 m_validation_result(), m_manager(parent.GetManager()), m_children(), 90 m_synthetic_children(), m_dynamic_value(NULL), m_synthetic_value(NULL), 91 m_deref_valobj(NULL), m_format(eFormatDefault), 92 m_last_format(eFormatDefault), m_last_format_mgr_revision(0), 93 m_type_summary_sp(), m_type_format_sp(), m_synthetic_children_sp(), 94 m_type_validator_sp(), m_user_id_of_forced_summary(), 95 m_address_type_of_ptr_or_ref_children(eAddressTypeInvalid), 96 m_value_checksum(), 97 m_preferred_display_language(lldb::eLanguageTypeUnknown), 98 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 99 m_children_count_valid(false), m_old_value_valid(false), 100 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 101 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 102 m_is_getting_summary(false), 103 m_did_calculate_complete_objc_class_type(false), 104 m_is_synthetic_children_generated( 105 parent.m_is_synthetic_children_generated) { 106 m_manager->ManageObject(this); 107 } 108 109 //---------------------------------------------------------------------- 110 // ValueObject constructor 111 //---------------------------------------------------------------------- 112 ValueObject::ValueObject(ExecutionContextScope *exe_scope, 113 AddressType child_ptr_or_ref_addr_type) 114 : UserID(++g_value_obj_uid), // Unique identifier for every value object 115 m_parent(NULL), m_root(NULL), m_update_point(exe_scope), m_name(), 116 m_data(), m_value(), m_error(), m_value_str(), m_old_value_str(), 117 m_location_str(), m_summary_str(), m_object_desc_str(), 118 m_validation_result(), m_manager(), m_children(), m_synthetic_children(), 119 m_dynamic_value(NULL), m_synthetic_value(NULL), m_deref_valobj(NULL), 120 m_format(eFormatDefault), m_last_format(eFormatDefault), 121 m_last_format_mgr_revision(0), m_type_summary_sp(), m_type_format_sp(), 122 m_synthetic_children_sp(), m_type_validator_sp(), 123 m_user_id_of_forced_summary(), 124 m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type), 125 m_value_checksum(), 126 m_preferred_display_language(lldb::eLanguageTypeUnknown), 127 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 128 m_children_count_valid(false), m_old_value_valid(false), 129 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 130 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 131 m_is_getting_summary(false), 132 m_did_calculate_complete_objc_class_type(false), 133 m_is_synthetic_children_generated(false) { 134 m_manager = new ValueObjectManager(); 135 m_manager->ManageObject(this); 136 } 137 138 //---------------------------------------------------------------------- 139 // Destructor 140 //---------------------------------------------------------------------- 141 ValueObject::~ValueObject() {} 142 143 bool ValueObject::UpdateValueIfNeeded(bool update_format) { 144 145 bool did_change_formats = false; 146 147 if (update_format) 148 did_change_formats = UpdateFormatsIfNeeded(); 149 150 // If this is a constant value, then our success is predicated on whether we 151 // have an error or not 152 if (GetIsConstant()) { 153 // if you are constant, things might still have changed behind your back 154 // (e.g. you are a frozen object and things have changed deeper than you 155 // cared to freeze-dry yourself) in this case, your value has not changed, 156 // but "computed" entries might have, so you might now have a different 157 // summary, or a different object description. clear these so we will 158 // recompute them 159 if (update_format && !did_change_formats) 160 ClearUserVisibleData(eClearUserVisibleDataItemsSummary | 161 eClearUserVisibleDataItemsDescription); 162 return m_error.Success(); 163 } 164 165 bool first_update = IsChecksumEmpty(); 166 167 if (NeedsUpdating()) { 168 m_update_point.SetUpdated(); 169 170 // Save the old value using swap to avoid a string copy which also will 171 // clear our m_value_str 172 if (m_value_str.empty()) { 173 m_old_value_valid = false; 174 } else { 175 m_old_value_valid = true; 176 m_old_value_str.swap(m_value_str); 177 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 178 } 179 180 ClearUserVisibleData(); 181 182 if (IsInScope()) { 183 const bool value_was_valid = GetValueIsValid(); 184 SetValueDidChange(false); 185 186 m_error.Clear(); 187 188 // Call the pure virtual function to update the value 189 190 bool need_compare_checksums = false; 191 llvm::SmallVector<uint8_t, 16> old_checksum; 192 193 if (!first_update && CanProvideValue()) { 194 need_compare_checksums = true; 195 old_checksum.resize(m_value_checksum.size()); 196 std::copy(m_value_checksum.begin(), m_value_checksum.end(), 197 old_checksum.begin()); 198 } 199 200 bool success = UpdateValue(); 201 202 SetValueIsValid(success); 203 204 if (success) { 205 const uint64_t max_checksum_size = 128; 206 m_data.Checksum(m_value_checksum, max_checksum_size); 207 } else { 208 need_compare_checksums = false; 209 m_value_checksum.clear(); 210 } 211 212 assert(!need_compare_checksums || 213 (!old_checksum.empty() && !m_value_checksum.empty())); 214 215 if (first_update) 216 SetValueDidChange(false); 217 else if (!m_value_did_change && success == false) { 218 // The value wasn't gotten successfully, so we mark this as changed if 219 // the value used to be valid and now isn't 220 SetValueDidChange(value_was_valid); 221 } else if (need_compare_checksums) { 222 SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0], 223 m_value_checksum.size())); 224 } 225 226 } else { 227 m_error.SetErrorString("out of scope"); 228 } 229 } 230 return m_error.Success(); 231 } 232 233 bool ValueObject::UpdateFormatsIfNeeded() { 234 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_DATAFORMATTERS)); 235 if (log) 236 log->Printf("[%s %p] checking for FormatManager revisions. ValueObject " 237 "rev: %d - Global rev: %d", 238 GetName().GetCString(), static_cast<void *>(this), 239 m_last_format_mgr_revision, 240 DataVisualization::GetCurrentRevision()); 241 242 bool any_change = false; 243 244 if ((m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) { 245 m_last_format_mgr_revision = DataVisualization::GetCurrentRevision(); 246 any_change = true; 247 248 SetValueFormat(DataVisualization::GetFormat(*this, eNoDynamicValues)); 249 SetSummaryFormat( 250 DataVisualization::GetSummaryFormat(*this, GetDynamicValueType())); 251 #ifndef LLDB_DISABLE_PYTHON 252 SetSyntheticChildren( 253 DataVisualization::GetSyntheticChildren(*this, GetDynamicValueType())); 254 #endif 255 SetValidator(DataVisualization::GetValidator(*this, GetDynamicValueType())); 256 } 257 258 return any_change; 259 } 260 261 void ValueObject::SetNeedsUpdate() { 262 m_update_point.SetNeedsUpdate(); 263 // We have to clear the value string here so ConstResult children will notice 264 // if their values are changed by hand (i.e. with SetValueAsCString). 265 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 266 } 267 268 void ValueObject::ClearDynamicTypeInformation() { 269 m_children_count_valid = false; 270 m_did_calculate_complete_objc_class_type = false; 271 m_last_format_mgr_revision = 0; 272 m_override_type = CompilerType(); 273 SetValueFormat(lldb::TypeFormatImplSP()); 274 SetSummaryFormat(lldb::TypeSummaryImplSP()); 275 SetSyntheticChildren(lldb::SyntheticChildrenSP()); 276 } 277 278 CompilerType ValueObject::MaybeCalculateCompleteType() { 279 CompilerType compiler_type(GetCompilerTypeImpl()); 280 281 if (m_did_calculate_complete_objc_class_type) { 282 if (m_override_type.IsValid()) 283 return m_override_type; 284 else 285 return compiler_type; 286 } 287 288 CompilerType class_type; 289 bool is_pointer_type = false; 290 291 if (ClangASTContext::IsObjCObjectPointerType(compiler_type, &class_type)) { 292 is_pointer_type = true; 293 } else if (ClangASTContext::IsObjCObjectOrInterfaceType(compiler_type)) { 294 class_type = compiler_type; 295 } else { 296 return compiler_type; 297 } 298 299 m_did_calculate_complete_objc_class_type = true; 300 301 if (class_type) { 302 ConstString class_name(class_type.GetConstTypeName()); 303 304 if (class_name) { 305 ProcessSP process_sp( 306 GetUpdatePoint().GetExecutionContextRef().GetProcessSP()); 307 308 if (process_sp) { 309 ObjCLanguageRuntime *objc_language_runtime( 310 process_sp->GetObjCLanguageRuntime()); 311 312 if (objc_language_runtime) { 313 TypeSP complete_objc_class_type_sp = 314 objc_language_runtime->LookupInCompleteClassCache(class_name); 315 316 if (complete_objc_class_type_sp) { 317 CompilerType complete_class( 318 complete_objc_class_type_sp->GetFullCompilerType()); 319 320 if (complete_class.GetCompleteType()) { 321 if (is_pointer_type) { 322 m_override_type = complete_class.GetPointerType(); 323 } else { 324 m_override_type = complete_class; 325 } 326 327 if (m_override_type.IsValid()) 328 return m_override_type; 329 } 330 } 331 } 332 } 333 } 334 } 335 return compiler_type; 336 } 337 338 CompilerType ValueObject::GetCompilerType() { 339 return MaybeCalculateCompleteType(); 340 } 341 342 TypeImpl ValueObject::GetTypeImpl() { return TypeImpl(GetCompilerType()); } 343 344 DataExtractor &ValueObject::GetDataExtractor() { 345 UpdateValueIfNeeded(false); 346 return m_data; 347 } 348 349 const Status &ValueObject::GetError() { 350 UpdateValueIfNeeded(false); 351 return m_error; 352 } 353 354 const ConstString &ValueObject::GetName() const { return m_name; } 355 356 const char *ValueObject::GetLocationAsCString() { 357 return GetLocationAsCStringImpl(m_value, m_data); 358 } 359 360 const char *ValueObject::GetLocationAsCStringImpl(const Value &value, 361 const DataExtractor &data) { 362 if (UpdateValueIfNeeded(false)) { 363 if (m_location_str.empty()) { 364 StreamString sstr; 365 366 Value::ValueType value_type = value.GetValueType(); 367 368 switch (value_type) { 369 case Value::eValueTypeScalar: 370 case Value::eValueTypeVector: 371 if (value.GetContextType() == Value::eContextTypeRegisterInfo) { 372 RegisterInfo *reg_info = value.GetRegisterInfo(); 373 if (reg_info) { 374 if (reg_info->name) 375 m_location_str = reg_info->name; 376 else if (reg_info->alt_name) 377 m_location_str = reg_info->alt_name; 378 if (m_location_str.empty()) 379 m_location_str = (reg_info->encoding == lldb::eEncodingVector) 380 ? "vector" 381 : "scalar"; 382 } 383 } 384 if (m_location_str.empty()) 385 m_location_str = 386 (value_type == Value::eValueTypeVector) ? "vector" : "scalar"; 387 break; 388 389 case Value::eValueTypeLoadAddress: 390 case Value::eValueTypeFileAddress: 391 case Value::eValueTypeHostAddress: { 392 uint32_t addr_nibble_size = data.GetAddressByteSize() * 2; 393 sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, 394 value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS)); 395 m_location_str = sstr.GetString(); 396 } break; 397 } 398 } 399 } 400 return m_location_str.c_str(); 401 } 402 403 Value &ValueObject::GetValue() { return m_value; } 404 405 const Value &ValueObject::GetValue() const { return m_value; } 406 407 bool ValueObject::ResolveValue(Scalar &scalar) { 408 if (UpdateValueIfNeeded( 409 false)) // make sure that you are up to date before returning anything 410 { 411 ExecutionContext exe_ctx(GetExecutionContextRef()); 412 Value tmp_value(m_value); 413 scalar = tmp_value.ResolveValue(&exe_ctx); 414 if (scalar.IsValid()) { 415 const uint32_t bitfield_bit_size = GetBitfieldBitSize(); 416 if (bitfield_bit_size) 417 return scalar.ExtractBitfield(bitfield_bit_size, 418 GetBitfieldBitOffset()); 419 return true; 420 } 421 } 422 return false; 423 } 424 425 bool ValueObject::IsLogicalTrue(Status &error) { 426 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 427 LazyBool is_logical_true = language->IsLogicalTrue(*this, error); 428 switch (is_logical_true) { 429 case eLazyBoolYes: 430 case eLazyBoolNo: 431 return (is_logical_true == true); 432 case eLazyBoolCalculate: 433 break; 434 } 435 } 436 437 Scalar scalar_value; 438 439 if (!ResolveValue(scalar_value)) { 440 error.SetErrorString("failed to get a scalar result"); 441 return false; 442 } 443 444 bool ret; 445 if (scalar_value.ULongLong(1) == 0) 446 ret = false; 447 else 448 ret = true; 449 error.Clear(); 450 return ret; 451 } 452 453 bool ValueObject::GetValueIsValid() const { return m_value_is_valid; } 454 455 void ValueObject::SetValueIsValid(bool b) { m_value_is_valid = b; } 456 457 bool ValueObject::GetValueDidChange() { return m_value_did_change; } 458 459 void ValueObject::SetValueDidChange(bool value_changed) { 460 m_value_did_change = value_changed; 461 } 462 463 ValueObjectSP ValueObject::GetChildAtIndex(size_t idx, bool can_create) { 464 ValueObjectSP child_sp; 465 // We may need to update our value if we are dynamic 466 if (IsPossibleDynamicType()) 467 UpdateValueIfNeeded(false); 468 if (idx < GetNumChildren()) { 469 // Check if we have already made the child value object? 470 if (can_create && !m_children.HasChildAtIndex(idx)) { 471 // No we haven't created the child at this index, so lets have our 472 // subclass do it and cache the result for quick future access. 473 m_children.SetChildAtIndex(idx, CreateChildAtIndex(idx, false, 0)); 474 } 475 476 ValueObject *child = m_children.GetChildAtIndex(idx); 477 if (child != NULL) 478 return child->GetSP(); 479 } 480 return child_sp; 481 } 482 483 lldb::ValueObjectSP 484 ValueObject::GetChildAtIndexPath(llvm::ArrayRef<size_t> idxs, 485 size_t *index_of_error) { 486 if (idxs.size() == 0) 487 return GetSP(); 488 ValueObjectSP root(GetSP()); 489 for (size_t idx : idxs) { 490 root = root->GetChildAtIndex(idx, true); 491 if (!root) { 492 if (index_of_error) 493 *index_of_error = idx; 494 return root; 495 } 496 } 497 return root; 498 } 499 500 lldb::ValueObjectSP ValueObject::GetChildAtIndexPath( 501 llvm::ArrayRef<std::pair<size_t, bool>> idxs, size_t *index_of_error) { 502 if (idxs.size() == 0) 503 return GetSP(); 504 ValueObjectSP root(GetSP()); 505 for (std::pair<size_t, bool> idx : idxs) { 506 root = root->GetChildAtIndex(idx.first, idx.second); 507 if (!root) { 508 if (index_of_error) 509 *index_of_error = idx.first; 510 return root; 511 } 512 } 513 return root; 514 } 515 516 lldb::ValueObjectSP 517 ValueObject::GetChildAtNamePath(llvm::ArrayRef<ConstString> names, 518 ConstString *name_of_error) { 519 if (names.size() == 0) 520 return GetSP(); 521 ValueObjectSP root(GetSP()); 522 for (ConstString name : names) { 523 root = root->GetChildMemberWithName(name, true); 524 if (!root) { 525 if (name_of_error) 526 *name_of_error = name; 527 return root; 528 } 529 } 530 return root; 531 } 532 533 lldb::ValueObjectSP ValueObject::GetChildAtNamePath( 534 llvm::ArrayRef<std::pair<ConstString, bool>> names, 535 ConstString *name_of_error) { 536 if (names.size() == 0) 537 return GetSP(); 538 ValueObjectSP root(GetSP()); 539 for (std::pair<ConstString, bool> name : names) { 540 root = root->GetChildMemberWithName(name.first, name.second); 541 if (!root) { 542 if (name_of_error) 543 *name_of_error = name.first; 544 return root; 545 } 546 } 547 return root; 548 } 549 550 size_t ValueObject::GetIndexOfChildWithName(const ConstString &name) { 551 bool omit_empty_base_classes = true; 552 return GetCompilerType().GetIndexOfChildWithName(name.GetCString(), 553 omit_empty_base_classes); 554 } 555 556 ValueObjectSP ValueObject::GetChildMemberWithName(const ConstString &name, 557 bool can_create) { 558 // when getting a child by name, it could be buried inside some base classes 559 // (which really aren't part of the expression path), so we need a vector of 560 // indexes that can get us down to the correct child 561 ValueObjectSP child_sp; 562 563 // We may need to update our value if we are dynamic 564 if (IsPossibleDynamicType()) 565 UpdateValueIfNeeded(false); 566 567 std::vector<uint32_t> child_indexes; 568 bool omit_empty_base_classes = true; 569 const size_t num_child_indexes = 570 GetCompilerType().GetIndexOfChildMemberWithName( 571 name.GetCString(), omit_empty_base_classes, child_indexes); 572 if (num_child_indexes > 0) { 573 std::vector<uint32_t>::const_iterator pos = child_indexes.begin(); 574 std::vector<uint32_t>::const_iterator end = child_indexes.end(); 575 576 child_sp = GetChildAtIndex(*pos, can_create); 577 for (++pos; pos != end; ++pos) { 578 if (child_sp) { 579 ValueObjectSP new_child_sp(child_sp->GetChildAtIndex(*pos, can_create)); 580 child_sp = new_child_sp; 581 } else { 582 child_sp.reset(); 583 } 584 } 585 } 586 return child_sp; 587 } 588 589 size_t ValueObject::GetNumChildren(uint32_t max) { 590 UpdateValueIfNeeded(); 591 592 if (max < UINT32_MAX) { 593 if (m_children_count_valid) { 594 size_t children_count = m_children.GetChildrenCount(); 595 return children_count <= max ? children_count : max; 596 } else 597 return CalculateNumChildren(max); 598 } 599 600 if (!m_children_count_valid) { 601 SetNumChildren(CalculateNumChildren()); 602 } 603 return m_children.GetChildrenCount(); 604 } 605 606 bool ValueObject::MightHaveChildren() { 607 bool has_children = false; 608 const uint32_t type_info = GetTypeInfo(); 609 if (type_info) { 610 if (type_info & (eTypeHasChildren | eTypeIsPointer | eTypeIsReference)) 611 has_children = true; 612 } else { 613 has_children = GetNumChildren() > 0; 614 } 615 return has_children; 616 } 617 618 // Should only be called by ValueObject::GetNumChildren() 619 void ValueObject::SetNumChildren(size_t num_children) { 620 m_children_count_valid = true; 621 m_children.SetChildrenCount(num_children); 622 } 623 624 void ValueObject::SetName(const ConstString &name) { m_name = name; } 625 626 ValueObject *ValueObject::CreateChildAtIndex(size_t idx, 627 bool synthetic_array_member, 628 int32_t synthetic_index) { 629 ValueObject *valobj = NULL; 630 631 bool omit_empty_base_classes = true; 632 bool ignore_array_bounds = synthetic_array_member; 633 std::string child_name_str; 634 uint32_t child_byte_size = 0; 635 int32_t child_byte_offset = 0; 636 uint32_t child_bitfield_bit_size = 0; 637 uint32_t child_bitfield_bit_offset = 0; 638 bool child_is_base_class = false; 639 bool child_is_deref_of_parent = false; 640 uint64_t language_flags = 0; 641 642 const bool transparent_pointers = synthetic_array_member == false; 643 CompilerType child_compiler_type; 644 645 ExecutionContext exe_ctx(GetExecutionContextRef()); 646 647 child_compiler_type = GetCompilerType().GetChildCompilerTypeAtIndex( 648 &exe_ctx, idx, transparent_pointers, omit_empty_base_classes, 649 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 650 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 651 child_is_deref_of_parent, this, language_flags); 652 if (child_compiler_type) { 653 if (synthetic_index) 654 child_byte_offset += child_byte_size * synthetic_index; 655 656 ConstString child_name; 657 if (!child_name_str.empty()) 658 child_name.SetCString(child_name_str.c_str()); 659 660 valobj = new ValueObjectChild( 661 *this, child_compiler_type, child_name, child_byte_size, 662 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 663 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 664 language_flags); 665 } 666 667 return valobj; 668 } 669 670 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 671 std::string &destination, 672 lldb::LanguageType lang) { 673 return GetSummaryAsCString(summary_ptr, destination, 674 TypeSummaryOptions().SetLanguage(lang)); 675 } 676 677 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 678 std::string &destination, 679 const TypeSummaryOptions &options) { 680 destination.clear(); 681 682 // ideally we would like to bail out if passing NULL, but if we do so we end 683 // up not providing the summary for function pointers anymore 684 if (/*summary_ptr == NULL ||*/ m_is_getting_summary) 685 return false; 686 687 m_is_getting_summary = true; 688 689 TypeSummaryOptions actual_options(options); 690 691 if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown) 692 actual_options.SetLanguage(GetPreferredDisplayLanguage()); 693 694 // this is a hot path in code and we prefer to avoid setting this string all 695 // too often also clearing out other information that we might care to see in 696 // a crash log. might be useful in very specific situations though. 697 /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. 698 Summary provider's description is %s", 699 GetTypeName().GetCString(), 700 GetName().GetCString(), 701 summary_ptr->GetDescription().c_str());*/ 702 703 if (UpdateValueIfNeeded(false) && summary_ptr) { 704 if (HasSyntheticValue()) 705 m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on 706 // the synthetic children being 707 // up-to-date (e.g. ${svar%#}) 708 summary_ptr->FormatObject(this, destination, actual_options); 709 } 710 m_is_getting_summary = false; 711 return !destination.empty(); 712 } 713 714 const char *ValueObject::GetSummaryAsCString(lldb::LanguageType lang) { 715 if (UpdateValueIfNeeded(true) && m_summary_str.empty()) { 716 TypeSummaryOptions summary_options; 717 summary_options.SetLanguage(lang); 718 GetSummaryAsCString(GetSummaryFormat().get(), m_summary_str, 719 summary_options); 720 } 721 if (m_summary_str.empty()) 722 return NULL; 723 return m_summary_str.c_str(); 724 } 725 726 bool ValueObject::GetSummaryAsCString(std::string &destination, 727 const TypeSummaryOptions &options) { 728 return GetSummaryAsCString(GetSummaryFormat().get(), destination, options); 729 } 730 731 bool ValueObject::IsCStringContainer(bool check_pointer) { 732 CompilerType pointee_or_element_compiler_type; 733 const Flags type_flags(GetTypeInfo(&pointee_or_element_compiler_type)); 734 bool is_char_arr_ptr(type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 735 pointee_or_element_compiler_type.IsCharType()); 736 if (!is_char_arr_ptr) 737 return false; 738 if (!check_pointer) 739 return true; 740 if (type_flags.Test(eTypeIsArray)) 741 return true; 742 addr_t cstr_address = LLDB_INVALID_ADDRESS; 743 AddressType cstr_address_type = eAddressTypeInvalid; 744 cstr_address = GetAddressOf(true, &cstr_address_type); 745 return (cstr_address != LLDB_INVALID_ADDRESS); 746 } 747 748 size_t ValueObject::GetPointeeData(DataExtractor &data, uint32_t item_idx, 749 uint32_t item_count) { 750 CompilerType pointee_or_element_compiler_type; 751 const uint32_t type_info = GetTypeInfo(&pointee_or_element_compiler_type); 752 const bool is_pointer_type = type_info & eTypeIsPointer; 753 const bool is_array_type = type_info & eTypeIsArray; 754 if (!(is_pointer_type || is_array_type)) 755 return 0; 756 757 if (item_count == 0) 758 return 0; 759 760 ExecutionContext exe_ctx(GetExecutionContextRef()); 761 762 const uint64_t item_type_size = pointee_or_element_compiler_type.GetByteSize( 763 exe_ctx.GetBestExecutionContextScope()); 764 const uint64_t bytes = item_count * item_type_size; 765 const uint64_t offset = item_idx * item_type_size; 766 767 if (item_idx == 0 && item_count == 1) // simply a deref 768 { 769 if (is_pointer_type) { 770 Status error; 771 ValueObjectSP pointee_sp = Dereference(error); 772 if (error.Fail() || pointee_sp.get() == NULL) 773 return 0; 774 return pointee_sp->GetData(data, error); 775 } else { 776 ValueObjectSP child_sp = GetChildAtIndex(0, true); 777 if (child_sp.get() == NULL) 778 return 0; 779 Status error; 780 return child_sp->GetData(data, error); 781 } 782 return true; 783 } else /* (items > 1) */ 784 { 785 Status error; 786 lldb_private::DataBufferHeap *heap_buf_ptr = NULL; 787 lldb::DataBufferSP data_sp(heap_buf_ptr = 788 new lldb_private::DataBufferHeap()); 789 790 AddressType addr_type; 791 lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type) 792 : GetAddressOf(true, &addr_type); 793 794 switch (addr_type) { 795 case eAddressTypeFile: { 796 ModuleSP module_sp(GetModule()); 797 if (module_sp) { 798 addr = addr + offset; 799 Address so_addr; 800 module_sp->ResolveFileAddress(addr, so_addr); 801 ExecutionContext exe_ctx(GetExecutionContextRef()); 802 Target *target = exe_ctx.GetTargetPtr(); 803 if (target) { 804 heap_buf_ptr->SetByteSize(bytes); 805 size_t bytes_read = target->ReadMemory( 806 so_addr, false, heap_buf_ptr->GetBytes(), bytes, error); 807 if (error.Success()) { 808 data.SetData(data_sp); 809 return bytes_read; 810 } 811 } 812 } 813 } break; 814 case eAddressTypeLoad: { 815 ExecutionContext exe_ctx(GetExecutionContextRef()); 816 Process *process = exe_ctx.GetProcessPtr(); 817 if (process) { 818 heap_buf_ptr->SetByteSize(bytes); 819 size_t bytes_read = process->ReadMemory( 820 addr + offset, heap_buf_ptr->GetBytes(), bytes, error); 821 if (error.Success() || bytes_read > 0) { 822 data.SetData(data_sp); 823 return bytes_read; 824 } 825 } 826 } break; 827 case eAddressTypeHost: { 828 const uint64_t max_bytes = 829 GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope()); 830 if (max_bytes > offset) { 831 size_t bytes_read = std::min<uint64_t>(max_bytes - offset, bytes); 832 addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 833 if (addr == 0 || addr == LLDB_INVALID_ADDRESS) 834 break; 835 heap_buf_ptr->CopyData((uint8_t *)(addr + offset), bytes_read); 836 data.SetData(data_sp); 837 return bytes_read; 838 } 839 } break; 840 case eAddressTypeInvalid: 841 break; 842 } 843 } 844 return 0; 845 } 846 847 uint64_t ValueObject::GetData(DataExtractor &data, Status &error) { 848 UpdateValueIfNeeded(false); 849 ExecutionContext exe_ctx(GetExecutionContextRef()); 850 error = m_value.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 851 if (error.Fail()) { 852 if (m_data.GetByteSize()) { 853 data = m_data; 854 error.Clear(); 855 return data.GetByteSize(); 856 } else { 857 return 0; 858 } 859 } 860 data.SetAddressByteSize(m_data.GetAddressByteSize()); 861 data.SetByteOrder(m_data.GetByteOrder()); 862 return data.GetByteSize(); 863 } 864 865 bool ValueObject::SetData(DataExtractor &data, Status &error) { 866 error.Clear(); 867 // Make sure our value is up to date first so that our location and location 868 // type is valid. 869 if (!UpdateValueIfNeeded(false)) { 870 error.SetErrorString("unable to read value"); 871 return false; 872 } 873 874 uint64_t count = 0; 875 const Encoding encoding = GetCompilerType().GetEncoding(count); 876 877 const size_t byte_size = GetByteSize(); 878 879 Value::ValueType value_type = m_value.GetValueType(); 880 881 switch (value_type) { 882 case Value::eValueTypeScalar: { 883 Status set_error = 884 m_value.GetScalar().SetValueFromData(data, encoding, byte_size); 885 886 if (!set_error.Success()) { 887 error.SetErrorStringWithFormat("unable to set scalar value: %s", 888 set_error.AsCString()); 889 return false; 890 } 891 } break; 892 case Value::eValueTypeLoadAddress: { 893 // If it is a load address, then the scalar value is the storage location 894 // of the data, and we have to shove this value down to that load location. 895 ExecutionContext exe_ctx(GetExecutionContextRef()); 896 Process *process = exe_ctx.GetProcessPtr(); 897 if (process) { 898 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 899 size_t bytes_written = process->WriteMemory( 900 target_addr, data.GetDataStart(), byte_size, error); 901 if (!error.Success()) 902 return false; 903 if (bytes_written != byte_size) { 904 error.SetErrorString("unable to write value to memory"); 905 return false; 906 } 907 } 908 } break; 909 case Value::eValueTypeHostAddress: { 910 // If it is a host address, then we stuff the scalar as a DataBuffer into 911 // the Value's data. 912 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 913 m_data.SetData(buffer_sp, 0); 914 data.CopyByteOrderedData(0, byte_size, 915 const_cast<uint8_t *>(m_data.GetDataStart()), 916 byte_size, m_data.GetByteOrder()); 917 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 918 } break; 919 case Value::eValueTypeFileAddress: 920 case Value::eValueTypeVector: 921 break; 922 } 923 924 // If we have reached this point, then we have successfully changed the 925 // value. 926 SetNeedsUpdate(); 927 return true; 928 } 929 930 static bool CopyStringDataToBufferSP(const StreamString &source, 931 lldb::DataBufferSP &destination) { 932 destination.reset(new DataBufferHeap(source.GetSize() + 1, 0)); 933 memcpy(destination->GetBytes(), source.GetString().data(), source.GetSize()); 934 return true; 935 } 936 937 std::pair<size_t, bool> 938 ValueObject::ReadPointedString(lldb::DataBufferSP &buffer_sp, Status &error, 939 uint32_t max_length, bool honor_array, 940 Format item_format) { 941 bool was_capped = false; 942 StreamString s; 943 ExecutionContext exe_ctx(GetExecutionContextRef()); 944 Target *target = exe_ctx.GetTargetPtr(); 945 946 if (!target) { 947 s << "<no target to read from>"; 948 error.SetErrorString("no target to read from"); 949 CopyStringDataToBufferSP(s, buffer_sp); 950 return {0, was_capped}; 951 } 952 953 if (max_length == 0) 954 max_length = target->GetMaximumSizeOfStringSummary(); 955 956 size_t bytes_read = 0; 957 size_t total_bytes_read = 0; 958 959 CompilerType compiler_type = GetCompilerType(); 960 CompilerType elem_or_pointee_compiler_type; 961 const Flags type_flags(GetTypeInfo(&elem_or_pointee_compiler_type)); 962 if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 963 elem_or_pointee_compiler_type.IsCharType()) { 964 addr_t cstr_address = LLDB_INVALID_ADDRESS; 965 AddressType cstr_address_type = eAddressTypeInvalid; 966 967 size_t cstr_len = 0; 968 bool capped_data = false; 969 const bool is_array = type_flags.Test(eTypeIsArray); 970 if (is_array) { 971 // We have an array 972 uint64_t array_size = 0; 973 if (compiler_type.IsArrayType(NULL, &array_size, NULL)) { 974 cstr_len = array_size; 975 if (cstr_len > max_length) { 976 capped_data = true; 977 cstr_len = max_length; 978 } 979 } 980 cstr_address = GetAddressOf(true, &cstr_address_type); 981 } else { 982 // We have a pointer 983 cstr_address = GetPointerValue(&cstr_address_type); 984 } 985 986 if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) { 987 if (cstr_address_type == eAddressTypeHost && is_array) { 988 const char *cstr = GetDataExtractor().PeekCStr(0); 989 if (cstr == nullptr) { 990 s << "<invalid address>"; 991 error.SetErrorString("invalid address"); 992 CopyStringDataToBufferSP(s, buffer_sp); 993 return {0, was_capped}; 994 } 995 buffer_sp.reset(new DataBufferHeap(cstr_len, 0)); 996 memcpy(buffer_sp->GetBytes(), cstr, cstr_len); 997 return {cstr_len, was_capped}; 998 } else { 999 s << "<invalid address>"; 1000 error.SetErrorString("invalid address"); 1001 CopyStringDataToBufferSP(s, buffer_sp); 1002 return {0, was_capped}; 1003 } 1004 } 1005 1006 Address cstr_so_addr(cstr_address); 1007 DataExtractor data; 1008 if (cstr_len > 0 && honor_array) { 1009 // I am using GetPointeeData() here to abstract the fact that some 1010 // ValueObjects are actually frozen pointers in the host but the pointed- 1011 // to data lives in the debuggee, and GetPointeeData() automatically 1012 // takes care of this 1013 GetPointeeData(data, 0, cstr_len); 1014 1015 if ((bytes_read = data.GetByteSize()) > 0) { 1016 total_bytes_read = bytes_read; 1017 for (size_t offset = 0; offset < bytes_read; offset++) 1018 s.Printf("%c", *data.PeekData(offset, 1)); 1019 if (capped_data) 1020 was_capped = true; 1021 } 1022 } else { 1023 cstr_len = max_length; 1024 const size_t k_max_buf_size = 64; 1025 1026 size_t offset = 0; 1027 1028 int cstr_len_displayed = -1; 1029 bool capped_cstr = false; 1030 // I am using GetPointeeData() here to abstract the fact that some 1031 // ValueObjects are actually frozen pointers in the host but the pointed- 1032 // to data lives in the debuggee, and GetPointeeData() automatically 1033 // takes care of this 1034 while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) { 1035 total_bytes_read += bytes_read; 1036 const char *cstr = data.PeekCStr(0); 1037 size_t len = strnlen(cstr, k_max_buf_size); 1038 if (cstr_len_displayed < 0) 1039 cstr_len_displayed = len; 1040 1041 if (len == 0) 1042 break; 1043 cstr_len_displayed += len; 1044 if (len > bytes_read) 1045 len = bytes_read; 1046 if (len > cstr_len) 1047 len = cstr_len; 1048 1049 for (size_t offset = 0; offset < bytes_read; offset++) 1050 s.Printf("%c", *data.PeekData(offset, 1)); 1051 1052 if (len < k_max_buf_size) 1053 break; 1054 1055 if (len >= cstr_len) { 1056 capped_cstr = true; 1057 break; 1058 } 1059 1060 cstr_len -= len; 1061 offset += len; 1062 } 1063 1064 if (cstr_len_displayed >= 0) { 1065 if (capped_cstr) 1066 was_capped = true; 1067 } 1068 } 1069 } else { 1070 error.SetErrorString("not a string object"); 1071 s << "<not a string object>"; 1072 } 1073 CopyStringDataToBufferSP(s, buffer_sp); 1074 return {total_bytes_read, was_capped}; 1075 } 1076 1077 std::pair<TypeValidatorResult, std::string> ValueObject::GetValidationStatus() { 1078 if (!UpdateValueIfNeeded(true)) 1079 return {TypeValidatorResult::Success, 1080 ""}; // not the validator's job to discuss update problems 1081 1082 if (m_validation_result.hasValue()) 1083 return m_validation_result.getValue(); 1084 1085 if (!m_type_validator_sp) 1086 return {TypeValidatorResult::Success, ""}; // no validator no failure 1087 1088 auto outcome = m_type_validator_sp->FormatObject(this); 1089 1090 return (m_validation_result = {outcome.m_result, outcome.m_message}) 1091 .getValue(); 1092 } 1093 1094 const char *ValueObject::GetObjectDescription() { 1095 1096 if (!UpdateValueIfNeeded(true)) 1097 return NULL; 1098 1099 if (!m_object_desc_str.empty()) 1100 return m_object_desc_str.c_str(); 1101 1102 ExecutionContext exe_ctx(GetExecutionContextRef()); 1103 Process *process = exe_ctx.GetProcessPtr(); 1104 if (process == NULL) 1105 return NULL; 1106 1107 StreamString s; 1108 1109 LanguageType language = GetObjectRuntimeLanguage(); 1110 LanguageRuntime *runtime = process->GetLanguageRuntime(language); 1111 1112 if (runtime == NULL) { 1113 // Aw, hell, if the things a pointer, or even just an integer, let's try 1114 // ObjC anyway... 1115 CompilerType compiler_type = GetCompilerType(); 1116 if (compiler_type) { 1117 bool is_signed; 1118 if (compiler_type.IsIntegerType(is_signed) || 1119 compiler_type.IsPointerType()) { 1120 runtime = process->GetLanguageRuntime(eLanguageTypeObjC); 1121 } 1122 } 1123 } 1124 1125 if (runtime && runtime->GetObjectDescription(s, *this)) { 1126 m_object_desc_str.append(s.GetString()); 1127 } 1128 1129 if (m_object_desc_str.empty()) 1130 return NULL; 1131 else 1132 return m_object_desc_str.c_str(); 1133 } 1134 1135 bool ValueObject::GetValueAsCString(const lldb_private::TypeFormatImpl &format, 1136 std::string &destination) { 1137 if (UpdateValueIfNeeded(false)) 1138 return format.FormatObject(this, destination); 1139 else 1140 return false; 1141 } 1142 1143 bool ValueObject::GetValueAsCString(lldb::Format format, 1144 std::string &destination) { 1145 return GetValueAsCString(TypeFormatImpl_Format(format), destination); 1146 } 1147 1148 const char *ValueObject::GetValueAsCString() { 1149 if (UpdateValueIfNeeded(true)) { 1150 lldb::TypeFormatImplSP format_sp; 1151 lldb::Format my_format = GetFormat(); 1152 if (my_format == lldb::eFormatDefault) { 1153 if (m_type_format_sp) 1154 format_sp = m_type_format_sp; 1155 else { 1156 if (m_is_bitfield_for_scalar) 1157 my_format = eFormatUnsigned; 1158 else { 1159 if (m_value.GetContextType() == Value::eContextTypeRegisterInfo) { 1160 const RegisterInfo *reg_info = m_value.GetRegisterInfo(); 1161 if (reg_info) 1162 my_format = reg_info->format; 1163 } else { 1164 my_format = GetValue().GetCompilerType().GetFormat(); 1165 } 1166 } 1167 } 1168 } 1169 if (my_format != m_last_format || m_value_str.empty()) { 1170 m_last_format = my_format; 1171 if (!format_sp) 1172 format_sp.reset(new TypeFormatImpl_Format(my_format)); 1173 if (GetValueAsCString(*format_sp.get(), m_value_str)) { 1174 if (!m_value_did_change && m_old_value_valid) { 1175 // The value was gotten successfully, so we consider the value as 1176 // changed if the value string differs 1177 SetValueDidChange(m_old_value_str != m_value_str); 1178 } 1179 } 1180 } 1181 } 1182 if (m_value_str.empty()) 1183 return NULL; 1184 return m_value_str.c_str(); 1185 } 1186 1187 // if > 8bytes, 0 is returned. this method should mostly be used to read 1188 // address values out of pointers 1189 uint64_t ValueObject::GetValueAsUnsigned(uint64_t fail_value, bool *success) { 1190 // If our byte size is zero this is an aggregate type that has children 1191 if (CanProvideValue()) { 1192 Scalar scalar; 1193 if (ResolveValue(scalar)) { 1194 if (success) 1195 *success = true; 1196 return scalar.ULongLong(fail_value); 1197 } 1198 // fallthrough, otherwise... 1199 } 1200 1201 if (success) 1202 *success = false; 1203 return fail_value; 1204 } 1205 1206 int64_t ValueObject::GetValueAsSigned(int64_t fail_value, bool *success) { 1207 // If our byte size is zero this is an aggregate type that has children 1208 if (CanProvideValue()) { 1209 Scalar scalar; 1210 if (ResolveValue(scalar)) { 1211 if (success) 1212 *success = true; 1213 return scalar.SLongLong(fail_value); 1214 } 1215 // fallthrough, otherwise... 1216 } 1217 1218 if (success) 1219 *success = false; 1220 return fail_value; 1221 } 1222 1223 // if any more "special cases" are added to 1224 // ValueObject::DumpPrintableRepresentation() please keep this call up to date 1225 // by returning true for your new special cases. We will eventually move to 1226 // checking this call result before trying to display special cases 1227 bool ValueObject::HasSpecialPrintableRepresentation( 1228 ValueObjectRepresentationStyle val_obj_display, Format custom_format) { 1229 Flags flags(GetTypeInfo()); 1230 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1231 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1232 if (IsCStringContainer(true) && 1233 (custom_format == eFormatCString || custom_format == eFormatCharArray || 1234 custom_format == eFormatChar || custom_format == eFormatVectorOfChar)) 1235 return true; 1236 1237 if (flags.Test(eTypeIsArray)) { 1238 if ((custom_format == eFormatBytes) || 1239 (custom_format == eFormatBytesWithASCII)) 1240 return true; 1241 1242 if ((custom_format == eFormatVectorOfChar) || 1243 (custom_format == eFormatVectorOfFloat32) || 1244 (custom_format == eFormatVectorOfFloat64) || 1245 (custom_format == eFormatVectorOfSInt16) || 1246 (custom_format == eFormatVectorOfSInt32) || 1247 (custom_format == eFormatVectorOfSInt64) || 1248 (custom_format == eFormatVectorOfSInt8) || 1249 (custom_format == eFormatVectorOfUInt128) || 1250 (custom_format == eFormatVectorOfUInt16) || 1251 (custom_format == eFormatVectorOfUInt32) || 1252 (custom_format == eFormatVectorOfUInt64) || 1253 (custom_format == eFormatVectorOfUInt8)) 1254 return true; 1255 } 1256 } 1257 return false; 1258 } 1259 1260 bool ValueObject::DumpPrintableRepresentation( 1261 Stream &s, ValueObjectRepresentationStyle val_obj_display, 1262 Format custom_format, PrintableRepresentationSpecialCases special, 1263 bool do_dump_error) { 1264 1265 Flags flags(GetTypeInfo()); 1266 1267 bool allow_special = 1268 (special == ValueObject::PrintableRepresentationSpecialCases::eAllow); 1269 const bool only_special = false; 1270 1271 if (allow_special) { 1272 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1273 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1274 // when being asked to get a printable display an array or pointer type 1275 // directly, try to "do the right thing" 1276 1277 if (IsCStringContainer(true) && 1278 (custom_format == eFormatCString || 1279 custom_format == eFormatCharArray || custom_format == eFormatChar || 1280 custom_format == 1281 eFormatVectorOfChar)) // print char[] & char* directly 1282 { 1283 Status error; 1284 lldb::DataBufferSP buffer_sp; 1285 std::pair<size_t, bool> read_string = ReadPointedString( 1286 buffer_sp, error, 0, (custom_format == eFormatVectorOfChar) || 1287 (custom_format == eFormatCharArray)); 1288 lldb_private::formatters::StringPrinter:: 1289 ReadBufferAndDumpToStreamOptions options(*this); 1290 options.SetData(DataExtractor( 1291 buffer_sp, lldb::eByteOrderInvalid, 1292 8)); // none of this matters for a string - pass some defaults 1293 options.SetStream(&s); 1294 options.SetPrefixToken(0); 1295 options.SetQuote('"'); 1296 options.SetSourceSize(buffer_sp->GetByteSize()); 1297 options.SetIsTruncated(read_string.second); 1298 formatters::StringPrinter::ReadBufferAndDumpToStream< 1299 lldb_private::formatters::StringPrinter::StringElementType::ASCII>( 1300 options); 1301 return !error.Fail(); 1302 } 1303 1304 if (custom_format == eFormatEnum) 1305 return false; 1306 1307 // this only works for arrays, because I have no way to know when the 1308 // pointed memory ends, and no special \0 end of data marker 1309 if (flags.Test(eTypeIsArray)) { 1310 if ((custom_format == eFormatBytes) || 1311 (custom_format == eFormatBytesWithASCII)) { 1312 const size_t count = GetNumChildren(); 1313 1314 s << '['; 1315 for (size_t low = 0; low < count; low++) { 1316 1317 if (low) 1318 s << ','; 1319 1320 ValueObjectSP child = GetChildAtIndex(low, true); 1321 if (!child.get()) { 1322 s << "<invalid child>"; 1323 continue; 1324 } 1325 child->DumpPrintableRepresentation( 1326 s, ValueObject::eValueObjectRepresentationStyleValue, 1327 custom_format); 1328 } 1329 1330 s << ']'; 1331 1332 return true; 1333 } 1334 1335 if ((custom_format == eFormatVectorOfChar) || 1336 (custom_format == eFormatVectorOfFloat32) || 1337 (custom_format == eFormatVectorOfFloat64) || 1338 (custom_format == eFormatVectorOfSInt16) || 1339 (custom_format == eFormatVectorOfSInt32) || 1340 (custom_format == eFormatVectorOfSInt64) || 1341 (custom_format == eFormatVectorOfSInt8) || 1342 (custom_format == eFormatVectorOfUInt128) || 1343 (custom_format == eFormatVectorOfUInt16) || 1344 (custom_format == eFormatVectorOfUInt32) || 1345 (custom_format == eFormatVectorOfUInt64) || 1346 (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes 1347 // with ASCII or any vector 1348 // format should be printed 1349 // directly 1350 { 1351 const size_t count = GetNumChildren(); 1352 1353 Format format = FormatManager::GetSingleItemFormat(custom_format); 1354 1355 s << '['; 1356 for (size_t low = 0; low < count; low++) { 1357 1358 if (low) 1359 s << ','; 1360 1361 ValueObjectSP child = GetChildAtIndex(low, true); 1362 if (!child.get()) { 1363 s << "<invalid child>"; 1364 continue; 1365 } 1366 child->DumpPrintableRepresentation( 1367 s, ValueObject::eValueObjectRepresentationStyleValue, format); 1368 } 1369 1370 s << ']'; 1371 1372 return true; 1373 } 1374 } 1375 1376 if ((custom_format == eFormatBoolean) || 1377 (custom_format == eFormatBinary) || (custom_format == eFormatChar) || 1378 (custom_format == eFormatCharPrintable) || 1379 (custom_format == eFormatComplexFloat) || 1380 (custom_format == eFormatDecimal) || (custom_format == eFormatHex) || 1381 (custom_format == eFormatHexUppercase) || 1382 (custom_format == eFormatFloat) || (custom_format == eFormatOctal) || 1383 (custom_format == eFormatOSType) || 1384 (custom_format == eFormatUnicode16) || 1385 (custom_format == eFormatUnicode32) || 1386 (custom_format == eFormatUnsigned) || 1387 (custom_format == eFormatPointer) || 1388 (custom_format == eFormatComplexInteger) || 1389 (custom_format == eFormatComplex) || 1390 (custom_format == eFormatDefault)) // use the [] operator 1391 return false; 1392 } 1393 } 1394 1395 if (only_special) 1396 return false; 1397 1398 bool var_success = false; 1399 1400 { 1401 llvm::StringRef str; 1402 1403 // this is a local stream that we are using to ensure that the data pointed 1404 // to by cstr survives long enough for us to copy it to its destination - 1405 // it is necessary to have this temporary storage area for cases where our 1406 // desired output is not backed by some other longer-term storage 1407 StreamString strm; 1408 1409 if (custom_format != eFormatInvalid) 1410 SetFormat(custom_format); 1411 1412 switch (val_obj_display) { 1413 case eValueObjectRepresentationStyleValue: 1414 str = GetValueAsCString(); 1415 break; 1416 1417 case eValueObjectRepresentationStyleSummary: 1418 str = GetSummaryAsCString(); 1419 break; 1420 1421 case eValueObjectRepresentationStyleLanguageSpecific: 1422 str = GetObjectDescription(); 1423 break; 1424 1425 case eValueObjectRepresentationStyleLocation: 1426 str = GetLocationAsCString(); 1427 break; 1428 1429 case eValueObjectRepresentationStyleChildrenCount: 1430 strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren()); 1431 str = strm.GetString(); 1432 break; 1433 1434 case eValueObjectRepresentationStyleType: 1435 str = GetTypeName().GetStringRef(); 1436 break; 1437 1438 case eValueObjectRepresentationStyleName: 1439 str = GetName().GetStringRef(); 1440 break; 1441 1442 case eValueObjectRepresentationStyleExpressionPath: 1443 GetExpressionPath(strm, false); 1444 str = strm.GetString(); 1445 break; 1446 } 1447 1448 if (str.empty()) { 1449 if (val_obj_display == eValueObjectRepresentationStyleValue) 1450 str = GetSummaryAsCString(); 1451 else if (val_obj_display == eValueObjectRepresentationStyleSummary) { 1452 if (!CanProvideValue()) { 1453 strm.Printf("%s @ %s", GetTypeName().AsCString(), 1454 GetLocationAsCString()); 1455 str = strm.GetString(); 1456 } else 1457 str = GetValueAsCString(); 1458 } 1459 } 1460 1461 if (!str.empty()) 1462 s << str; 1463 else { 1464 if (m_error.Fail()) { 1465 if (do_dump_error) 1466 s.Printf("<%s>", m_error.AsCString()); 1467 else 1468 return false; 1469 } else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1470 s.PutCString("<no summary available>"); 1471 else if (val_obj_display == eValueObjectRepresentationStyleValue) 1472 s.PutCString("<no value available>"); 1473 else if (val_obj_display == 1474 eValueObjectRepresentationStyleLanguageSpecific) 1475 s.PutCString("<not a valid Objective-C object>"); // edit this if we 1476 // have other runtimes 1477 // that support a 1478 // description 1479 else 1480 s.PutCString("<no printable representation>"); 1481 } 1482 1483 // we should only return false here if we could not do *anything* even if 1484 // we have an error message as output, that's a success from our callers' 1485 // perspective, so return true 1486 var_success = true; 1487 1488 if (custom_format != eFormatInvalid) 1489 SetFormat(eFormatDefault); 1490 } 1491 1492 return var_success; 1493 } 1494 1495 addr_t ValueObject::GetAddressOf(bool scalar_is_load_address, 1496 AddressType *address_type) { 1497 // Can't take address of a bitfield 1498 if (IsBitfield()) 1499 return LLDB_INVALID_ADDRESS; 1500 1501 if (!UpdateValueIfNeeded(false)) 1502 return LLDB_INVALID_ADDRESS; 1503 1504 switch (m_value.GetValueType()) { 1505 case Value::eValueTypeScalar: 1506 case Value::eValueTypeVector: 1507 if (scalar_is_load_address) { 1508 if (address_type) 1509 *address_type = eAddressTypeLoad; 1510 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1511 } 1512 break; 1513 1514 case Value::eValueTypeLoadAddress: 1515 case Value::eValueTypeFileAddress: { 1516 if (address_type) 1517 *address_type = m_value.GetValueAddressType(); 1518 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1519 } break; 1520 case Value::eValueTypeHostAddress: { 1521 if (address_type) 1522 *address_type = m_value.GetValueAddressType(); 1523 return LLDB_INVALID_ADDRESS; 1524 } break; 1525 } 1526 if (address_type) 1527 *address_type = eAddressTypeInvalid; 1528 return LLDB_INVALID_ADDRESS; 1529 } 1530 1531 addr_t ValueObject::GetPointerValue(AddressType *address_type) { 1532 addr_t address = LLDB_INVALID_ADDRESS; 1533 if (address_type) 1534 *address_type = eAddressTypeInvalid; 1535 1536 if (!UpdateValueIfNeeded(false)) 1537 return address; 1538 1539 switch (m_value.GetValueType()) { 1540 case Value::eValueTypeScalar: 1541 case Value::eValueTypeVector: 1542 address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1543 break; 1544 1545 case Value::eValueTypeHostAddress: 1546 case Value::eValueTypeLoadAddress: 1547 case Value::eValueTypeFileAddress: { 1548 lldb::offset_t data_offset = 0; 1549 address = m_data.GetPointer(&data_offset); 1550 } break; 1551 } 1552 1553 if (address_type) 1554 *address_type = GetAddressTypeOfChildren(); 1555 1556 return address; 1557 } 1558 1559 bool ValueObject::SetValueFromCString(const char *value_str, Status &error) { 1560 error.Clear(); 1561 // Make sure our value is up to date first so that our location and location 1562 // type is valid. 1563 if (!UpdateValueIfNeeded(false)) { 1564 error.SetErrorString("unable to read value"); 1565 return false; 1566 } 1567 1568 uint64_t count = 0; 1569 const Encoding encoding = GetCompilerType().GetEncoding(count); 1570 1571 const size_t byte_size = GetByteSize(); 1572 1573 Value::ValueType value_type = m_value.GetValueType(); 1574 1575 if (value_type == Value::eValueTypeScalar) { 1576 // If the value is already a scalar, then let the scalar change itself: 1577 m_value.GetScalar().SetValueFromCString(value_str, encoding, byte_size); 1578 } else if (byte_size <= 16) { 1579 // If the value fits in a scalar, then make a new scalar and again let the 1580 // scalar code do the conversion, then figure out where to put the new 1581 // value. 1582 Scalar new_scalar; 1583 error = new_scalar.SetValueFromCString(value_str, encoding, byte_size); 1584 if (error.Success()) { 1585 switch (value_type) { 1586 case Value::eValueTypeLoadAddress: { 1587 // If it is a load address, then the scalar value is the storage 1588 // location of the data, and we have to shove this value down to that 1589 // load location. 1590 ExecutionContext exe_ctx(GetExecutionContextRef()); 1591 Process *process = exe_ctx.GetProcessPtr(); 1592 if (process) { 1593 addr_t target_addr = 1594 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1595 size_t bytes_written = process->WriteScalarToMemory( 1596 target_addr, new_scalar, byte_size, error); 1597 if (!error.Success()) 1598 return false; 1599 if (bytes_written != byte_size) { 1600 error.SetErrorString("unable to write value to memory"); 1601 return false; 1602 } 1603 } 1604 } break; 1605 case Value::eValueTypeHostAddress: { 1606 // If it is a host address, then we stuff the scalar as a DataBuffer 1607 // into the Value's data. 1608 DataExtractor new_data; 1609 new_data.SetByteOrder(m_data.GetByteOrder()); 1610 1611 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 1612 m_data.SetData(buffer_sp, 0); 1613 bool success = new_scalar.GetData(new_data); 1614 if (success) { 1615 new_data.CopyByteOrderedData( 1616 0, byte_size, const_cast<uint8_t *>(m_data.GetDataStart()), 1617 byte_size, m_data.GetByteOrder()); 1618 } 1619 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1620 1621 } break; 1622 case Value::eValueTypeFileAddress: 1623 case Value::eValueTypeScalar: 1624 case Value::eValueTypeVector: 1625 break; 1626 } 1627 } else { 1628 return false; 1629 } 1630 } else { 1631 // We don't support setting things bigger than a scalar at present. 1632 error.SetErrorString("unable to write aggregate data type"); 1633 return false; 1634 } 1635 1636 // If we have reached this point, then we have successfully changed the 1637 // value. 1638 SetNeedsUpdate(); 1639 return true; 1640 } 1641 1642 bool ValueObject::GetDeclaration(Declaration &decl) { 1643 decl.Clear(); 1644 return false; 1645 } 1646 1647 ConstString ValueObject::GetTypeName() { 1648 return GetCompilerType().GetConstTypeName(); 1649 } 1650 1651 ConstString ValueObject::GetDisplayTypeName() { return GetTypeName(); } 1652 1653 ConstString ValueObject::GetQualifiedTypeName() { 1654 return GetCompilerType().GetConstQualifiedTypeName(); 1655 } 1656 1657 LanguageType ValueObject::GetObjectRuntimeLanguage() { 1658 return GetCompilerType().GetMinimumLanguage(); 1659 } 1660 1661 void ValueObject::AddSyntheticChild(const ConstString &key, 1662 ValueObject *valobj) { 1663 m_synthetic_children[key] = valobj; 1664 } 1665 1666 ValueObjectSP ValueObject::GetSyntheticChild(const ConstString &key) const { 1667 ValueObjectSP synthetic_child_sp; 1668 std::map<ConstString, ValueObject *>::const_iterator pos = 1669 m_synthetic_children.find(key); 1670 if (pos != m_synthetic_children.end()) 1671 synthetic_child_sp = pos->second->GetSP(); 1672 return synthetic_child_sp; 1673 } 1674 1675 uint32_t 1676 ValueObject::GetTypeInfo(CompilerType *pointee_or_element_compiler_type) { 1677 return GetCompilerType().GetTypeInfo(pointee_or_element_compiler_type); 1678 } 1679 1680 bool ValueObject::IsPointerType() { return GetCompilerType().IsPointerType(); } 1681 1682 bool ValueObject::IsArrayType() { 1683 return GetCompilerType().IsArrayType(NULL, NULL, NULL); 1684 } 1685 1686 bool ValueObject::IsScalarType() { return GetCompilerType().IsScalarType(); } 1687 1688 bool ValueObject::IsIntegerType(bool &is_signed) { 1689 return GetCompilerType().IsIntegerType(is_signed); 1690 } 1691 1692 bool ValueObject::IsPointerOrReferenceType() { 1693 return GetCompilerType().IsPointerOrReferenceType(); 1694 } 1695 1696 bool ValueObject::IsPossibleDynamicType() { 1697 ExecutionContext exe_ctx(GetExecutionContextRef()); 1698 Process *process = exe_ctx.GetProcessPtr(); 1699 if (process) 1700 return process->IsPossibleDynamicValue(*this); 1701 else 1702 return GetCompilerType().IsPossibleDynamicType(NULL, true, true); 1703 } 1704 1705 bool ValueObject::IsRuntimeSupportValue() { 1706 Process *process(GetProcessSP().get()); 1707 if (process) { 1708 LanguageRuntime *runtime = 1709 process->GetLanguageRuntime(GetObjectRuntimeLanguage()); 1710 if (!runtime) 1711 runtime = process->GetObjCLanguageRuntime(); 1712 if (runtime) 1713 return runtime->IsRuntimeSupportValue(*this); 1714 } 1715 return false; 1716 } 1717 1718 bool ValueObject::IsNilReference() { 1719 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1720 return language->IsNilReference(*this); 1721 } 1722 return false; 1723 } 1724 1725 bool ValueObject::IsUninitializedReference() { 1726 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1727 return language->IsUninitializedReference(*this); 1728 } 1729 return false; 1730 } 1731 1732 // This allows you to create an array member using and index that doesn't not 1733 // fall in the normal bounds of the array. Many times structure can be defined 1734 // as: struct Collection { 1735 // uint32_t item_count; 1736 // Item item_array[0]; 1737 // }; 1738 // The size of the "item_array" is 1, but many times in practice there are more 1739 // items in "item_array". 1740 1741 ValueObjectSP ValueObject::GetSyntheticArrayMember(size_t index, 1742 bool can_create) { 1743 ValueObjectSP synthetic_child_sp; 1744 if (IsPointerType() || IsArrayType()) { 1745 char index_str[64]; 1746 snprintf(index_str, sizeof(index_str), "[%" PRIu64 "]", (uint64_t)index); 1747 ConstString index_const_str(index_str); 1748 // Check if we have already created a synthetic array member in this valid 1749 // object. If we have we will re-use it. 1750 synthetic_child_sp = GetSyntheticChild(index_const_str); 1751 if (!synthetic_child_sp) { 1752 ValueObject *synthetic_child; 1753 // We haven't made a synthetic array member for INDEX yet, so lets make 1754 // one and cache it for any future reference. 1755 synthetic_child = CreateChildAtIndex(0, true, index); 1756 1757 // Cache the value if we got one back... 1758 if (synthetic_child) { 1759 AddSyntheticChild(index_const_str, synthetic_child); 1760 synthetic_child_sp = synthetic_child->GetSP(); 1761 synthetic_child_sp->SetName(ConstString(index_str)); 1762 synthetic_child_sp->m_is_array_item_for_pointer = true; 1763 } 1764 } 1765 } 1766 return synthetic_child_sp; 1767 } 1768 1769 ValueObjectSP ValueObject::GetSyntheticBitFieldChild(uint32_t from, uint32_t to, 1770 bool can_create) { 1771 ValueObjectSP synthetic_child_sp; 1772 if (IsScalarType()) { 1773 char index_str[64]; 1774 snprintf(index_str, sizeof(index_str), "[%i-%i]", from, to); 1775 ConstString index_const_str(index_str); 1776 // Check if we have already created a synthetic array member in this valid 1777 // object. If we have we will re-use it. 1778 synthetic_child_sp = GetSyntheticChild(index_const_str); 1779 if (!synthetic_child_sp) { 1780 uint32_t bit_field_size = to - from + 1; 1781 uint32_t bit_field_offset = from; 1782 if (GetDataExtractor().GetByteOrder() == eByteOrderBig) 1783 bit_field_offset = 1784 GetByteSize() * 8 - bit_field_size - bit_field_offset; 1785 // We haven't made a synthetic array member for INDEX yet, so lets make 1786 // one and cache it for any future reference. 1787 ValueObjectChild *synthetic_child = new ValueObjectChild( 1788 *this, GetCompilerType(), index_const_str, GetByteSize(), 0, 1789 bit_field_size, bit_field_offset, false, false, eAddressTypeInvalid, 1790 0); 1791 1792 // Cache the value if we got one back... 1793 if (synthetic_child) { 1794 AddSyntheticChild(index_const_str, synthetic_child); 1795 synthetic_child_sp = synthetic_child->GetSP(); 1796 synthetic_child_sp->SetName(ConstString(index_str)); 1797 synthetic_child_sp->m_is_bitfield_for_scalar = true; 1798 } 1799 } 1800 } 1801 return synthetic_child_sp; 1802 } 1803 1804 ValueObjectSP ValueObject::GetSyntheticChildAtOffset( 1805 uint32_t offset, const CompilerType &type, bool can_create, 1806 ConstString name_const_str) { 1807 1808 ValueObjectSP synthetic_child_sp; 1809 1810 if (name_const_str.IsEmpty()) { 1811 char name_str[64]; 1812 snprintf(name_str, sizeof(name_str), "@%i", offset); 1813 name_const_str.SetCString(name_str); 1814 } 1815 1816 // Check if we have already created a synthetic array member in this valid 1817 // object. If we have we will re-use it. 1818 synthetic_child_sp = GetSyntheticChild(name_const_str); 1819 1820 if (synthetic_child_sp.get()) 1821 return synthetic_child_sp; 1822 1823 if (!can_create) 1824 return ValueObjectSP(); 1825 1826 ExecutionContext exe_ctx(GetExecutionContextRef()); 1827 1828 ValueObjectChild *synthetic_child = new ValueObjectChild( 1829 *this, type, name_const_str, 1830 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()), offset, 0, 0, 1831 false, false, eAddressTypeInvalid, 0); 1832 if (synthetic_child) { 1833 AddSyntheticChild(name_const_str, synthetic_child); 1834 synthetic_child_sp = synthetic_child->GetSP(); 1835 synthetic_child_sp->SetName(name_const_str); 1836 synthetic_child_sp->m_is_child_at_offset = true; 1837 } 1838 return synthetic_child_sp; 1839 } 1840 1841 ValueObjectSP ValueObject::GetSyntheticBase(uint32_t offset, 1842 const CompilerType &type, 1843 bool can_create, 1844 ConstString name_const_str) { 1845 ValueObjectSP synthetic_child_sp; 1846 1847 if (name_const_str.IsEmpty()) { 1848 char name_str[128]; 1849 snprintf(name_str, sizeof(name_str), "base%s@%i", 1850 type.GetTypeName().AsCString("<unknown>"), offset); 1851 name_const_str.SetCString(name_str); 1852 } 1853 1854 // Check if we have already created a synthetic array member in this valid 1855 // object. If we have we will re-use it. 1856 synthetic_child_sp = GetSyntheticChild(name_const_str); 1857 1858 if (synthetic_child_sp.get()) 1859 return synthetic_child_sp; 1860 1861 if (!can_create) 1862 return ValueObjectSP(); 1863 1864 const bool is_base_class = true; 1865 1866 ExecutionContext exe_ctx(GetExecutionContextRef()); 1867 1868 ValueObjectChild *synthetic_child = new ValueObjectChild( 1869 *this, type, name_const_str, 1870 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()), offset, 0, 0, 1871 is_base_class, false, eAddressTypeInvalid, 0); 1872 if (synthetic_child) { 1873 AddSyntheticChild(name_const_str, synthetic_child); 1874 synthetic_child_sp = synthetic_child->GetSP(); 1875 synthetic_child_sp->SetName(name_const_str); 1876 } 1877 return synthetic_child_sp; 1878 } 1879 1880 // your expression path needs to have a leading . or -> (unless it somehow 1881 // "looks like" an array, in which case it has a leading [ symbol). while the [ 1882 // is meaningful and should be shown to the user, . and -> are just parser 1883 // design, but by no means added information for the user.. strip them off 1884 static const char *SkipLeadingExpressionPathSeparators(const char *expression) { 1885 if (!expression || !expression[0]) 1886 return expression; 1887 if (expression[0] == '.') 1888 return expression + 1; 1889 if (expression[0] == '-' && expression[1] == '>') 1890 return expression + 2; 1891 return expression; 1892 } 1893 1894 ValueObjectSP 1895 ValueObject::GetSyntheticExpressionPathChild(const char *expression, 1896 bool can_create) { 1897 ValueObjectSP synthetic_child_sp; 1898 ConstString name_const_string(expression); 1899 // Check if we have already created a synthetic array member in this valid 1900 // object. If we have we will re-use it. 1901 synthetic_child_sp = GetSyntheticChild(name_const_string); 1902 if (!synthetic_child_sp) { 1903 // We haven't made a synthetic array member for expression yet, so lets 1904 // make one and cache it for any future reference. 1905 synthetic_child_sp = GetValueForExpressionPath( 1906 expression, NULL, NULL, 1907 GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal( 1908 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 1909 None)); 1910 1911 // Cache the value if we got one back... 1912 if (synthetic_child_sp.get()) { 1913 // FIXME: this causes a "real" child to end up with its name changed to 1914 // the contents of expression 1915 AddSyntheticChild(name_const_string, synthetic_child_sp.get()); 1916 synthetic_child_sp->SetName( 1917 ConstString(SkipLeadingExpressionPathSeparators(expression))); 1918 } 1919 } 1920 return synthetic_child_sp; 1921 } 1922 1923 void ValueObject::CalculateSyntheticValue(bool use_synthetic) { 1924 if (use_synthetic == false) 1925 return; 1926 1927 TargetSP target_sp(GetTargetSP()); 1928 if (target_sp && target_sp->GetEnableSyntheticValue() == false) { 1929 m_synthetic_value = NULL; 1930 return; 1931 } 1932 1933 lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp); 1934 1935 if (!UpdateFormatsIfNeeded() && m_synthetic_value) 1936 return; 1937 1938 if (m_synthetic_children_sp.get() == NULL) 1939 return; 1940 1941 if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value) 1942 return; 1943 1944 m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp); 1945 } 1946 1947 void ValueObject::CalculateDynamicValue(DynamicValueType use_dynamic) { 1948 if (use_dynamic == eNoDynamicValues) 1949 return; 1950 1951 if (!m_dynamic_value && !IsDynamic()) { 1952 ExecutionContext exe_ctx(GetExecutionContextRef()); 1953 Process *process = exe_ctx.GetProcessPtr(); 1954 if (process && process->IsPossibleDynamicValue(*this)) { 1955 ClearDynamicTypeInformation(); 1956 m_dynamic_value = new ValueObjectDynamicValue(*this, use_dynamic); 1957 } 1958 } 1959 } 1960 1961 ValueObjectSP ValueObject::GetDynamicValue(DynamicValueType use_dynamic) { 1962 if (use_dynamic == eNoDynamicValues) 1963 return ValueObjectSP(); 1964 1965 if (!IsDynamic() && m_dynamic_value == NULL) { 1966 CalculateDynamicValue(use_dynamic); 1967 } 1968 if (m_dynamic_value) 1969 return m_dynamic_value->GetSP(); 1970 else 1971 return ValueObjectSP(); 1972 } 1973 1974 ValueObjectSP ValueObject::GetStaticValue() { return GetSP(); } 1975 1976 lldb::ValueObjectSP ValueObject::GetNonSyntheticValue() { return GetSP(); } 1977 1978 ValueObjectSP ValueObject::GetSyntheticValue(bool use_synthetic) { 1979 if (use_synthetic == false) 1980 return ValueObjectSP(); 1981 1982 CalculateSyntheticValue(use_synthetic); 1983 1984 if (m_synthetic_value) 1985 return m_synthetic_value->GetSP(); 1986 else 1987 return ValueObjectSP(); 1988 } 1989 1990 bool ValueObject::HasSyntheticValue() { 1991 UpdateFormatsIfNeeded(); 1992 1993 if (m_synthetic_children_sp.get() == NULL) 1994 return false; 1995 1996 CalculateSyntheticValue(true); 1997 1998 if (m_synthetic_value) 1999 return true; 2000 else 2001 return false; 2002 } 2003 2004 bool ValueObject::GetBaseClassPath(Stream &s) { 2005 if (IsBaseClass()) { 2006 bool parent_had_base_class = 2007 GetParent() && GetParent()->GetBaseClassPath(s); 2008 CompilerType compiler_type = GetCompilerType(); 2009 std::string cxx_class_name; 2010 bool this_had_base_class = 2011 ClangASTContext::GetCXXClassName(compiler_type, cxx_class_name); 2012 if (this_had_base_class) { 2013 if (parent_had_base_class) 2014 s.PutCString("::"); 2015 s.PutCString(cxx_class_name); 2016 } 2017 return parent_had_base_class || this_had_base_class; 2018 } 2019 return false; 2020 } 2021 2022 ValueObject *ValueObject::GetNonBaseClassParent() { 2023 if (GetParent()) { 2024 if (GetParent()->IsBaseClass()) 2025 return GetParent()->GetNonBaseClassParent(); 2026 else 2027 return GetParent(); 2028 } 2029 return NULL; 2030 } 2031 2032 bool ValueObject::IsBaseClass(uint32_t &depth) { 2033 if (!IsBaseClass()) { 2034 depth = 0; 2035 return false; 2036 } 2037 if (GetParent()) { 2038 GetParent()->IsBaseClass(depth); 2039 depth = depth + 1; 2040 return true; 2041 } 2042 // TODO: a base of no parent? weird.. 2043 depth = 1; 2044 return true; 2045 } 2046 2047 void ValueObject::GetExpressionPath(Stream &s, bool qualify_cxx_base_classes, 2048 GetExpressionPathFormat epformat) { 2049 // synthetic children do not actually "exist" as part of the hierarchy, and 2050 // sometimes they are consed up in ways that don't make sense from an 2051 // underlying language/API standpoint. So, use a special code path here to 2052 // return something that can hopefully be used in expression 2053 if (m_is_synthetic_children_generated) { 2054 UpdateValueIfNeeded(); 2055 2056 if (m_value.GetValueType() == Value::eValueTypeLoadAddress) { 2057 if (IsPointerOrReferenceType()) { 2058 s.Printf("((%s)0x%" PRIx64 ")", GetTypeName().AsCString("void"), 2059 GetValueAsUnsigned(0)); 2060 return; 2061 } else { 2062 uint64_t load_addr = 2063 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2064 if (load_addr != LLDB_INVALID_ADDRESS) { 2065 s.Printf("(*( (%s *)0x%" PRIx64 "))", GetTypeName().AsCString("void"), 2066 load_addr); 2067 return; 2068 } 2069 } 2070 } 2071 2072 if (CanProvideValue()) { 2073 s.Printf("((%s)%s)", GetTypeName().AsCString("void"), 2074 GetValueAsCString()); 2075 return; 2076 } 2077 2078 return; 2079 } 2080 2081 const bool is_deref_of_parent = IsDereferenceOfParent(); 2082 2083 if (is_deref_of_parent && 2084 epformat == eGetExpressionPathFormatDereferencePointers) { 2085 // this is the original format of GetExpressionPath() producing code like 2086 // *(a_ptr).memberName, which is entirely fine, until you put this into 2087 // StackFrame::GetValueForVariableExpressionPath() which prefers to see 2088 // a_ptr->memberName. the eHonorPointers mode is meant to produce strings 2089 // in this latter format 2090 s.PutCString("*("); 2091 } 2092 2093 ValueObject *parent = GetParent(); 2094 2095 if (parent) 2096 parent->GetExpressionPath(s, qualify_cxx_base_classes, epformat); 2097 2098 // if we are a deref_of_parent just because we are synthetic array members 2099 // made up to allow ptr[%d] syntax to work in variable printing, then add our 2100 // name ([%d]) to the expression path 2101 if (m_is_array_item_for_pointer && 2102 epformat == eGetExpressionPathFormatHonorPointers) 2103 s.PutCString(m_name.AsCString()); 2104 2105 if (!IsBaseClass()) { 2106 if (!is_deref_of_parent) { 2107 ValueObject *non_base_class_parent = GetNonBaseClassParent(); 2108 if (non_base_class_parent && 2109 !non_base_class_parent->GetName().IsEmpty()) { 2110 CompilerType non_base_class_parent_compiler_type = 2111 non_base_class_parent->GetCompilerType(); 2112 if (non_base_class_parent_compiler_type) { 2113 if (parent && parent->IsDereferenceOfParent() && 2114 epformat == eGetExpressionPathFormatHonorPointers) { 2115 s.PutCString("->"); 2116 } else { 2117 const uint32_t non_base_class_parent_type_info = 2118 non_base_class_parent_compiler_type.GetTypeInfo(); 2119 2120 if (non_base_class_parent_type_info & eTypeIsPointer) { 2121 s.PutCString("->"); 2122 } else if ((non_base_class_parent_type_info & eTypeHasChildren) && 2123 !(non_base_class_parent_type_info & eTypeIsArray)) { 2124 s.PutChar('.'); 2125 } 2126 } 2127 } 2128 } 2129 2130 const char *name = GetName().GetCString(); 2131 if (name) { 2132 if (qualify_cxx_base_classes) { 2133 if (GetBaseClassPath(s)) 2134 s.PutCString("::"); 2135 } 2136 s.PutCString(name); 2137 } 2138 } 2139 } 2140 2141 if (is_deref_of_parent && 2142 epformat == eGetExpressionPathFormatDereferencePointers) { 2143 s.PutChar(')'); 2144 } 2145 } 2146 2147 ValueObjectSP ValueObject::GetValueForExpressionPath( 2148 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2149 ExpressionPathEndResultType *final_value_type, 2150 const GetValueForExpressionPathOptions &options, 2151 ExpressionPathAftermath *final_task_on_target) { 2152 2153 ExpressionPathScanEndReason dummy_reason_to_stop = 2154 ValueObject::eExpressionPathScanEndReasonUnknown; 2155 ExpressionPathEndResultType dummy_final_value_type = 2156 ValueObject::eExpressionPathEndResultTypeInvalid; 2157 ExpressionPathAftermath dummy_final_task_on_target = 2158 ValueObject::eExpressionPathAftermathNothing; 2159 2160 ValueObjectSP ret_val = GetValueForExpressionPath_Impl( 2161 expression, reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2162 final_value_type ? final_value_type : &dummy_final_value_type, options, 2163 final_task_on_target ? final_task_on_target 2164 : &dummy_final_task_on_target); 2165 2166 if (!final_task_on_target || 2167 *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2168 return ret_val; 2169 2170 if (ret_val.get() && 2171 ((final_value_type ? *final_value_type : dummy_final_value_type) == 2172 eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress 2173 // of plain objects 2174 { 2175 if ((final_task_on_target ? *final_task_on_target 2176 : dummy_final_task_on_target) == 2177 ValueObject::eExpressionPathAftermathDereference) { 2178 Status error; 2179 ValueObjectSP final_value = ret_val->Dereference(error); 2180 if (error.Fail() || !final_value.get()) { 2181 if (reason_to_stop) 2182 *reason_to_stop = 2183 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2184 if (final_value_type) 2185 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2186 return ValueObjectSP(); 2187 } else { 2188 if (final_task_on_target) 2189 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2190 return final_value; 2191 } 2192 } 2193 if (*final_task_on_target == 2194 ValueObject::eExpressionPathAftermathTakeAddress) { 2195 Status error; 2196 ValueObjectSP final_value = ret_val->AddressOf(error); 2197 if (error.Fail() || !final_value.get()) { 2198 if (reason_to_stop) 2199 *reason_to_stop = 2200 ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2201 if (final_value_type) 2202 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2203 return ValueObjectSP(); 2204 } else { 2205 if (final_task_on_target) 2206 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2207 return final_value; 2208 } 2209 } 2210 } 2211 return ret_val; // final_task_on_target will still have its original value, so 2212 // you know I did not do it 2213 } 2214 2215 ValueObjectSP ValueObject::GetValueForExpressionPath_Impl( 2216 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2217 ExpressionPathEndResultType *final_result, 2218 const GetValueForExpressionPathOptions &options, 2219 ExpressionPathAftermath *what_next) { 2220 ValueObjectSP root = GetSP(); 2221 2222 if (!root) 2223 return nullptr; 2224 2225 llvm::StringRef remainder = expression; 2226 2227 while (true) { 2228 llvm::StringRef temp_expression = remainder; 2229 2230 CompilerType root_compiler_type = root->GetCompilerType(); 2231 CompilerType pointee_compiler_type; 2232 Flags pointee_compiler_type_info; 2233 2234 Flags root_compiler_type_info( 2235 root_compiler_type.GetTypeInfo(&pointee_compiler_type)); 2236 if (pointee_compiler_type) 2237 pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo()); 2238 2239 if (temp_expression.empty()) { 2240 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2241 return root; 2242 } 2243 2244 switch (temp_expression.front()) { 2245 case '-': { 2246 temp_expression = temp_expression.drop_front(); 2247 if (options.m_check_dot_vs_arrow_syntax && 2248 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2249 // use -> on a 2250 // non-pointer and I 2251 // must catch the error 2252 { 2253 *reason_to_stop = 2254 ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot; 2255 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2256 return ValueObjectSP(); 2257 } 2258 if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to 2259 // extract an ObjC IVar 2260 // when this is forbidden 2261 root_compiler_type_info.Test(eTypeIsPointer) && 2262 options.m_no_fragile_ivar) { 2263 *reason_to_stop = 2264 ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed; 2265 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2266 return ValueObjectSP(); 2267 } 2268 if (!temp_expression.startswith(">")) { 2269 *reason_to_stop = 2270 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2271 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2272 return ValueObjectSP(); 2273 } 2274 } 2275 LLVM_FALLTHROUGH; 2276 case '.': // or fallthrough from -> 2277 { 2278 if (options.m_check_dot_vs_arrow_syntax && 2279 temp_expression.front() == '.' && 2280 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2281 // use . on a pointer 2282 // and I must catch the 2283 // error 2284 { 2285 *reason_to_stop = 2286 ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow; 2287 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2288 return nullptr; 2289 } 2290 temp_expression = temp_expression.drop_front(); // skip . or > 2291 2292 size_t next_sep_pos = temp_expression.find_first_of("-.[", 1); 2293 ConstString child_name; 2294 if (next_sep_pos == llvm::StringRef::npos) // if no other separator just 2295 // expand this last layer 2296 { 2297 child_name.SetString(temp_expression); 2298 ValueObjectSP child_valobj_sp = 2299 root->GetChildMemberWithName(child_name, true); 2300 2301 if (child_valobj_sp.get()) // we know we are done, so just return 2302 { 2303 *reason_to_stop = 2304 ValueObject::eExpressionPathScanEndReasonEndOfString; 2305 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2306 return child_valobj_sp; 2307 } else { 2308 switch (options.m_synthetic_children_traversal) { 2309 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2310 None: 2311 break; 2312 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2313 FromSynthetic: 2314 if (root->IsSynthetic()) { 2315 child_valobj_sp = root->GetNonSyntheticValue(); 2316 if (child_valobj_sp.get()) 2317 child_valobj_sp = 2318 child_valobj_sp->GetChildMemberWithName(child_name, true); 2319 } 2320 break; 2321 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2322 ToSynthetic: 2323 if (!root->IsSynthetic()) { 2324 child_valobj_sp = root->GetSyntheticValue(); 2325 if (child_valobj_sp.get()) 2326 child_valobj_sp = 2327 child_valobj_sp->GetChildMemberWithName(child_name, true); 2328 } 2329 break; 2330 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2331 Both: 2332 if (root->IsSynthetic()) { 2333 child_valobj_sp = root->GetNonSyntheticValue(); 2334 if (child_valobj_sp.get()) 2335 child_valobj_sp = 2336 child_valobj_sp->GetChildMemberWithName(child_name, true); 2337 } else { 2338 child_valobj_sp = root->GetSyntheticValue(); 2339 if (child_valobj_sp.get()) 2340 child_valobj_sp = 2341 child_valobj_sp->GetChildMemberWithName(child_name, true); 2342 } 2343 break; 2344 } 2345 } 2346 2347 // if we are here and options.m_no_synthetic_children is true, 2348 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2349 // branch, and return an error 2350 if (child_valobj_sp.get()) // if it worked, just return 2351 { 2352 *reason_to_stop = 2353 ValueObject::eExpressionPathScanEndReasonEndOfString; 2354 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2355 return child_valobj_sp; 2356 } else { 2357 *reason_to_stop = 2358 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2359 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2360 return nullptr; 2361 } 2362 } else // other layers do expand 2363 { 2364 llvm::StringRef next_separator = temp_expression.substr(next_sep_pos); 2365 2366 child_name.SetString(temp_expression.slice(0, next_sep_pos)); 2367 2368 ValueObjectSP child_valobj_sp = 2369 root->GetChildMemberWithName(child_name, true); 2370 if (child_valobj_sp.get()) // store the new root and move on 2371 { 2372 root = child_valobj_sp; 2373 remainder = next_separator; 2374 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2375 continue; 2376 } else { 2377 switch (options.m_synthetic_children_traversal) { 2378 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2379 None: 2380 break; 2381 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2382 FromSynthetic: 2383 if (root->IsSynthetic()) { 2384 child_valobj_sp = root->GetNonSyntheticValue(); 2385 if (child_valobj_sp.get()) 2386 child_valobj_sp = 2387 child_valobj_sp->GetChildMemberWithName(child_name, true); 2388 } 2389 break; 2390 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2391 ToSynthetic: 2392 if (!root->IsSynthetic()) { 2393 child_valobj_sp = root->GetSyntheticValue(); 2394 if (child_valobj_sp.get()) 2395 child_valobj_sp = 2396 child_valobj_sp->GetChildMemberWithName(child_name, true); 2397 } 2398 break; 2399 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2400 Both: 2401 if (root->IsSynthetic()) { 2402 child_valobj_sp = root->GetNonSyntheticValue(); 2403 if (child_valobj_sp.get()) 2404 child_valobj_sp = 2405 child_valobj_sp->GetChildMemberWithName(child_name, true); 2406 } else { 2407 child_valobj_sp = root->GetSyntheticValue(); 2408 if (child_valobj_sp.get()) 2409 child_valobj_sp = 2410 child_valobj_sp->GetChildMemberWithName(child_name, true); 2411 } 2412 break; 2413 } 2414 } 2415 2416 // if we are here and options.m_no_synthetic_children is true, 2417 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2418 // branch, and return an error 2419 if (child_valobj_sp.get()) // if it worked, move on 2420 { 2421 root = child_valobj_sp; 2422 remainder = next_separator; 2423 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2424 continue; 2425 } else { 2426 *reason_to_stop = 2427 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2428 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2429 return nullptr; 2430 } 2431 } 2432 break; 2433 } 2434 case '[': { 2435 if (!root_compiler_type_info.Test(eTypeIsArray) && 2436 !root_compiler_type_info.Test(eTypeIsPointer) && 2437 !root_compiler_type_info.Test( 2438 eTypeIsVector)) // if this is not a T[] nor a T* 2439 { 2440 if (!root_compiler_type_info.Test( 2441 eTypeIsScalar)) // if this is not even a scalar... 2442 { 2443 if (options.m_synthetic_children_traversal == 2444 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2445 None) // ...only chance left is synthetic 2446 { 2447 *reason_to_stop = 2448 ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 2449 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2450 return ValueObjectSP(); 2451 } 2452 } else if (!options.m_allow_bitfields_syntax) // if this is a scalar, 2453 // check that we can 2454 // expand bitfields 2455 { 2456 *reason_to_stop = 2457 ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 2458 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2459 return ValueObjectSP(); 2460 } 2461 } 2462 if (temp_expression[1] == 2463 ']') // if this is an unbounded range it only works for arrays 2464 { 2465 if (!root_compiler_type_info.Test(eTypeIsArray)) { 2466 *reason_to_stop = 2467 ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 2468 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2469 return nullptr; 2470 } else // even if something follows, we cannot expand unbounded ranges, 2471 // just let the caller do it 2472 { 2473 *reason_to_stop = 2474 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2475 *final_result = 2476 ValueObject::eExpressionPathEndResultTypeUnboundedRange; 2477 return root; 2478 } 2479 } 2480 2481 size_t close_bracket_position = temp_expression.find(']', 1); 2482 if (close_bracket_position == 2483 llvm::StringRef::npos) // if there is no ], this is a syntax error 2484 { 2485 *reason_to_stop = 2486 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2487 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2488 return nullptr; 2489 } 2490 2491 llvm::StringRef bracket_expr = 2492 temp_expression.slice(1, close_bracket_position); 2493 2494 // If this was an empty expression it would have been caught by the if 2495 // above. 2496 assert(!bracket_expr.empty()); 2497 2498 if (!bracket_expr.contains('-')) { 2499 // if no separator, this is of the form [N]. Note that this cannot be 2500 // an unbounded range of the form [], because that case was handled 2501 // above with an unconditional return. 2502 unsigned long index = 0; 2503 if (bracket_expr.getAsInteger(0, index)) { 2504 *reason_to_stop = 2505 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2506 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2507 return nullptr; 2508 } 2509 2510 // from here on we do have a valid index 2511 if (root_compiler_type_info.Test(eTypeIsArray)) { 2512 ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true); 2513 if (!child_valobj_sp) 2514 child_valobj_sp = root->GetSyntheticArrayMember(index, true); 2515 if (!child_valobj_sp) 2516 if (root->HasSyntheticValue() && 2517 root->GetSyntheticValue()->GetNumChildren() > index) 2518 child_valobj_sp = 2519 root->GetSyntheticValue()->GetChildAtIndex(index, true); 2520 if (child_valobj_sp) { 2521 root = child_valobj_sp; 2522 remainder = 2523 temp_expression.substr(close_bracket_position + 1); // skip ] 2524 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2525 continue; 2526 } else { 2527 *reason_to_stop = 2528 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2529 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2530 return nullptr; 2531 } 2532 } else if (root_compiler_type_info.Test(eTypeIsPointer)) { 2533 if (*what_next == 2534 ValueObject:: 2535 eExpressionPathAftermathDereference && // if this is a 2536 // ptr-to-scalar, I 2537 // am accessing it 2538 // by index and I 2539 // would have 2540 // deref'ed anyway, 2541 // then do it now 2542 // and use this as 2543 // a bitfield 2544 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2545 Status error; 2546 root = root->Dereference(error); 2547 if (error.Fail() || !root) { 2548 *reason_to_stop = 2549 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2550 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2551 return nullptr; 2552 } else { 2553 *what_next = eExpressionPathAftermathNothing; 2554 continue; 2555 } 2556 } else { 2557 if (root->GetCompilerType().GetMinimumLanguage() == 2558 eLanguageTypeObjC && 2559 pointee_compiler_type_info.AllClear(eTypeIsPointer) && 2560 root->HasSyntheticValue() && 2561 (options.m_synthetic_children_traversal == 2562 GetValueForExpressionPathOptions:: 2563 SyntheticChildrenTraversal::ToSynthetic || 2564 options.m_synthetic_children_traversal == 2565 GetValueForExpressionPathOptions:: 2566 SyntheticChildrenTraversal::Both)) { 2567 root = root->GetSyntheticValue()->GetChildAtIndex(index, true); 2568 } else 2569 root = root->GetSyntheticArrayMember(index, true); 2570 if (!root) { 2571 *reason_to_stop = 2572 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2573 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2574 return nullptr; 2575 } else { 2576 remainder = 2577 temp_expression.substr(close_bracket_position + 1); // skip ] 2578 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2579 continue; 2580 } 2581 } 2582 } else if (root_compiler_type_info.Test(eTypeIsScalar)) { 2583 root = root->GetSyntheticBitFieldChild(index, index, true); 2584 if (!root) { 2585 *reason_to_stop = 2586 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2587 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2588 return nullptr; 2589 } else // we do not know how to expand members of bitfields, so we 2590 // just return and let the caller do any further processing 2591 { 2592 *reason_to_stop = ValueObject:: 2593 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2594 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2595 return root; 2596 } 2597 } else if (root_compiler_type_info.Test(eTypeIsVector)) { 2598 root = root->GetChildAtIndex(index, true); 2599 if (!root) { 2600 *reason_to_stop = 2601 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2602 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2603 return ValueObjectSP(); 2604 } else { 2605 remainder = 2606 temp_expression.substr(close_bracket_position + 1); // skip ] 2607 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2608 continue; 2609 } 2610 } else if (options.m_synthetic_children_traversal == 2611 GetValueForExpressionPathOptions:: 2612 SyntheticChildrenTraversal::ToSynthetic || 2613 options.m_synthetic_children_traversal == 2614 GetValueForExpressionPathOptions:: 2615 SyntheticChildrenTraversal::Both) { 2616 if (root->HasSyntheticValue()) 2617 root = root->GetSyntheticValue(); 2618 else if (!root->IsSynthetic()) { 2619 *reason_to_stop = 2620 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2621 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2622 return nullptr; 2623 } 2624 // if we are here, then root itself is a synthetic VO.. should be 2625 // good to go 2626 2627 if (!root) { 2628 *reason_to_stop = 2629 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2630 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2631 return nullptr; 2632 } 2633 root = root->GetChildAtIndex(index, true); 2634 if (!root) { 2635 *reason_to_stop = 2636 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2637 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2638 return nullptr; 2639 } else { 2640 remainder = 2641 temp_expression.substr(close_bracket_position + 1); // skip ] 2642 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2643 continue; 2644 } 2645 } else { 2646 *reason_to_stop = 2647 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2648 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2649 return nullptr; 2650 } 2651 } else { 2652 // we have a low and a high index 2653 llvm::StringRef sleft, sright; 2654 unsigned long low_index, high_index; 2655 std::tie(sleft, sright) = bracket_expr.split('-'); 2656 if (sleft.getAsInteger(0, low_index) || 2657 sright.getAsInteger(0, high_index)) { 2658 *reason_to_stop = 2659 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2660 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2661 return nullptr; 2662 } 2663 2664 if (low_index > high_index) // swap indices if required 2665 std::swap(low_index, high_index); 2666 2667 if (root_compiler_type_info.Test( 2668 eTypeIsScalar)) // expansion only works for scalars 2669 { 2670 root = root->GetSyntheticBitFieldChild(low_index, high_index, true); 2671 if (!root) { 2672 *reason_to_stop = 2673 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2674 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2675 return nullptr; 2676 } else { 2677 *reason_to_stop = ValueObject:: 2678 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2679 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2680 return root; 2681 } 2682 } else if (root_compiler_type_info.Test( 2683 eTypeIsPointer) && // if this is a ptr-to-scalar, I am 2684 // accessing it by index and I would 2685 // have deref'ed anyway, then do it 2686 // now and use this as a bitfield 2687 *what_next == 2688 ValueObject::eExpressionPathAftermathDereference && 2689 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2690 Status error; 2691 root = root->Dereference(error); 2692 if (error.Fail() || !root) { 2693 *reason_to_stop = 2694 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2695 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2696 return nullptr; 2697 } else { 2698 *what_next = ValueObject::eExpressionPathAftermathNothing; 2699 continue; 2700 } 2701 } else { 2702 *reason_to_stop = 2703 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2704 *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange; 2705 return root; 2706 } 2707 } 2708 break; 2709 } 2710 default: // some non-separator is in the way 2711 { 2712 *reason_to_stop = 2713 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2714 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2715 return nullptr; 2716 } 2717 } 2718 } 2719 } 2720 2721 void ValueObject::LogValueObject(Log *log) { 2722 if (log) 2723 return LogValueObject(log, DumpValueObjectOptions(*this)); 2724 } 2725 2726 void ValueObject::LogValueObject(Log *log, 2727 const DumpValueObjectOptions &options) { 2728 if (log) { 2729 StreamString s; 2730 Dump(s, options); 2731 if (s.GetSize()) 2732 log->PutCString(s.GetData()); 2733 } 2734 } 2735 2736 void ValueObject::Dump(Stream &s) { Dump(s, DumpValueObjectOptions(*this)); } 2737 2738 void ValueObject::Dump(Stream &s, const DumpValueObjectOptions &options) { 2739 ValueObjectPrinter printer(this, &s, options); 2740 printer.PrintValueObject(); 2741 } 2742 2743 ValueObjectSP ValueObject::CreateConstantValue(const ConstString &name) { 2744 ValueObjectSP valobj_sp; 2745 2746 if (UpdateValueIfNeeded(false) && m_error.Success()) { 2747 ExecutionContext exe_ctx(GetExecutionContextRef()); 2748 2749 DataExtractor data; 2750 data.SetByteOrder(m_data.GetByteOrder()); 2751 data.SetAddressByteSize(m_data.GetAddressByteSize()); 2752 2753 if (IsBitfield()) { 2754 Value v(Scalar(GetValueAsUnsigned(UINT64_MAX))); 2755 m_error = v.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 2756 } else 2757 m_error = m_value.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 2758 2759 valobj_sp = ValueObjectConstResult::Create( 2760 exe_ctx.GetBestExecutionContextScope(), GetCompilerType(), name, data, 2761 GetAddressOf()); 2762 } 2763 2764 if (!valobj_sp) { 2765 ExecutionContext exe_ctx(GetExecutionContextRef()); 2766 valobj_sp = ValueObjectConstResult::Create( 2767 exe_ctx.GetBestExecutionContextScope(), m_error); 2768 } 2769 return valobj_sp; 2770 } 2771 2772 ValueObjectSP ValueObject::GetQualifiedRepresentationIfAvailable( 2773 lldb::DynamicValueType dynValue, bool synthValue) { 2774 ValueObjectSP result_sp(GetSP()); 2775 2776 switch (dynValue) { 2777 case lldb::eDynamicCanRunTarget: 2778 case lldb::eDynamicDontRunTarget: { 2779 if (!result_sp->IsDynamic()) { 2780 if (result_sp->GetDynamicValue(dynValue)) 2781 result_sp = result_sp->GetDynamicValue(dynValue); 2782 } 2783 } break; 2784 case lldb::eNoDynamicValues: { 2785 if (result_sp->IsDynamic()) { 2786 if (result_sp->GetStaticValue()) 2787 result_sp = result_sp->GetStaticValue(); 2788 } 2789 } break; 2790 } 2791 2792 if (synthValue) { 2793 if (!result_sp->IsSynthetic()) { 2794 if (result_sp->GetSyntheticValue()) 2795 result_sp = result_sp->GetSyntheticValue(); 2796 } 2797 } else { 2798 if (result_sp->IsSynthetic()) { 2799 if (result_sp->GetNonSyntheticValue()) 2800 result_sp = result_sp->GetNonSyntheticValue(); 2801 } 2802 } 2803 2804 return result_sp; 2805 } 2806 2807 ValueObjectSP ValueObject::Dereference(Status &error) { 2808 if (m_deref_valobj) 2809 return m_deref_valobj->GetSP(); 2810 2811 const bool is_pointer_or_reference_type = IsPointerOrReferenceType(); 2812 if (is_pointer_or_reference_type) { 2813 bool omit_empty_base_classes = true; 2814 bool ignore_array_bounds = false; 2815 2816 std::string child_name_str; 2817 uint32_t child_byte_size = 0; 2818 int32_t child_byte_offset = 0; 2819 uint32_t child_bitfield_bit_size = 0; 2820 uint32_t child_bitfield_bit_offset = 0; 2821 bool child_is_base_class = false; 2822 bool child_is_deref_of_parent = false; 2823 const bool transparent_pointers = false; 2824 CompilerType compiler_type = GetCompilerType(); 2825 CompilerType child_compiler_type; 2826 uint64_t language_flags; 2827 2828 ExecutionContext exe_ctx(GetExecutionContextRef()); 2829 2830 child_compiler_type = compiler_type.GetChildCompilerTypeAtIndex( 2831 &exe_ctx, 0, transparent_pointers, omit_empty_base_classes, 2832 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 2833 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 2834 child_is_deref_of_parent, this, language_flags); 2835 if (child_compiler_type && child_byte_size) { 2836 ConstString child_name; 2837 if (!child_name_str.empty()) 2838 child_name.SetCString(child_name_str.c_str()); 2839 2840 m_deref_valobj = new ValueObjectChild( 2841 *this, child_compiler_type, child_name, child_byte_size, 2842 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 2843 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 2844 language_flags); 2845 } 2846 } else if (HasSyntheticValue()) { 2847 m_deref_valobj = 2848 GetSyntheticValue() 2849 ->GetChildMemberWithName(ConstString("$$dereference$$"), true) 2850 .get(); 2851 } 2852 2853 if (m_deref_valobj) { 2854 error.Clear(); 2855 return m_deref_valobj->GetSP(); 2856 } else { 2857 StreamString strm; 2858 GetExpressionPath(strm, true); 2859 2860 if (is_pointer_or_reference_type) 2861 error.SetErrorStringWithFormat("dereference failed: (%s) %s", 2862 GetTypeName().AsCString("<invalid type>"), 2863 strm.GetData()); 2864 else 2865 error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s", 2866 GetTypeName().AsCString("<invalid type>"), 2867 strm.GetData()); 2868 return ValueObjectSP(); 2869 } 2870 } 2871 2872 ValueObjectSP ValueObject::AddressOf(Status &error) { 2873 if (m_addr_of_valobj_sp) 2874 return m_addr_of_valobj_sp; 2875 2876 AddressType address_type = eAddressTypeInvalid; 2877 const bool scalar_is_load_address = false; 2878 addr_t addr = GetAddressOf(scalar_is_load_address, &address_type); 2879 error.Clear(); 2880 if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) { 2881 switch (address_type) { 2882 case eAddressTypeInvalid: { 2883 StreamString expr_path_strm; 2884 GetExpressionPath(expr_path_strm, true); 2885 error.SetErrorStringWithFormat("'%s' is not in memory", 2886 expr_path_strm.GetData()); 2887 } break; 2888 2889 case eAddressTypeFile: 2890 case eAddressTypeLoad: { 2891 CompilerType compiler_type = GetCompilerType(); 2892 if (compiler_type) { 2893 std::string name(1, '&'); 2894 name.append(m_name.AsCString("")); 2895 ExecutionContext exe_ctx(GetExecutionContextRef()); 2896 m_addr_of_valobj_sp = ValueObjectConstResult::Create( 2897 exe_ctx.GetBestExecutionContextScope(), 2898 compiler_type.GetPointerType(), ConstString(name.c_str()), addr, 2899 eAddressTypeInvalid, m_data.GetAddressByteSize()); 2900 } 2901 } break; 2902 default: 2903 break; 2904 } 2905 } else { 2906 StreamString expr_path_strm; 2907 GetExpressionPath(expr_path_strm, true); 2908 error.SetErrorStringWithFormat("'%s' doesn't have a valid address", 2909 expr_path_strm.GetData()); 2910 } 2911 2912 return m_addr_of_valobj_sp; 2913 } 2914 2915 ValueObjectSP ValueObject::Cast(const CompilerType &compiler_type) { 2916 return ValueObjectCast::Create(*this, GetName(), compiler_type); 2917 } 2918 2919 lldb::ValueObjectSP ValueObject::Clone(const ConstString &new_name) { 2920 return ValueObjectCast::Create(*this, new_name, GetCompilerType()); 2921 } 2922 2923 ValueObjectSP ValueObject::CastPointerType(const char *name, 2924 CompilerType &compiler_type) { 2925 ValueObjectSP valobj_sp; 2926 AddressType address_type; 2927 addr_t ptr_value = GetPointerValue(&address_type); 2928 2929 if (ptr_value != LLDB_INVALID_ADDRESS) { 2930 Address ptr_addr(ptr_value); 2931 ExecutionContext exe_ctx(GetExecutionContextRef()); 2932 valobj_sp = ValueObjectMemory::Create( 2933 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, compiler_type); 2934 } 2935 return valobj_sp; 2936 } 2937 2938 ValueObjectSP ValueObject::CastPointerType(const char *name, TypeSP &type_sp) { 2939 ValueObjectSP valobj_sp; 2940 AddressType address_type; 2941 addr_t ptr_value = GetPointerValue(&address_type); 2942 2943 if (ptr_value != LLDB_INVALID_ADDRESS) { 2944 Address ptr_addr(ptr_value); 2945 ExecutionContext exe_ctx(GetExecutionContextRef()); 2946 valobj_sp = ValueObjectMemory::Create( 2947 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, type_sp); 2948 } 2949 return valobj_sp; 2950 } 2951 2952 ValueObject::EvaluationPoint::EvaluationPoint() 2953 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) {} 2954 2955 ValueObject::EvaluationPoint::EvaluationPoint(ExecutionContextScope *exe_scope, 2956 bool use_selected) 2957 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) { 2958 ExecutionContext exe_ctx(exe_scope); 2959 TargetSP target_sp(exe_ctx.GetTargetSP()); 2960 if (target_sp) { 2961 m_exe_ctx_ref.SetTargetSP(target_sp); 2962 ProcessSP process_sp(exe_ctx.GetProcessSP()); 2963 if (!process_sp) 2964 process_sp = target_sp->GetProcessSP(); 2965 2966 if (process_sp) { 2967 m_mod_id = process_sp->GetModID(); 2968 m_exe_ctx_ref.SetProcessSP(process_sp); 2969 2970 ThreadSP thread_sp(exe_ctx.GetThreadSP()); 2971 2972 if (!thread_sp) { 2973 if (use_selected) 2974 thread_sp = process_sp->GetThreadList().GetSelectedThread(); 2975 } 2976 2977 if (thread_sp) { 2978 m_exe_ctx_ref.SetThreadSP(thread_sp); 2979 2980 StackFrameSP frame_sp(exe_ctx.GetFrameSP()); 2981 if (!frame_sp) { 2982 if (use_selected) 2983 frame_sp = thread_sp->GetSelectedFrame(); 2984 } 2985 if (frame_sp) 2986 m_exe_ctx_ref.SetFrameSP(frame_sp); 2987 } 2988 } 2989 } 2990 } 2991 2992 ValueObject::EvaluationPoint::EvaluationPoint( 2993 const ValueObject::EvaluationPoint &rhs) 2994 : m_mod_id(), m_exe_ctx_ref(rhs.m_exe_ctx_ref), m_needs_update(true) {} 2995 2996 ValueObject::EvaluationPoint::~EvaluationPoint() {} 2997 2998 // This function checks the EvaluationPoint against the current process state. 2999 // If the current state matches the evaluation point, or the evaluation point 3000 // is already invalid, then we return false, meaning "no change". If the 3001 // current state is different, we update our state, and return true meaning 3002 // "yes, change". If we did see a change, we also set m_needs_update to true, 3003 // so future calls to NeedsUpdate will return true. exe_scope will be set to 3004 // the current execution context scope. 3005 3006 bool ValueObject::EvaluationPoint::SyncWithProcessState( 3007 bool accept_invalid_exe_ctx) { 3008 // Start with the target, if it is NULL, then we're obviously not going to 3009 // get any further: 3010 const bool thread_and_frame_only_if_stopped = true; 3011 ExecutionContext exe_ctx( 3012 m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped)); 3013 3014 if (exe_ctx.GetTargetPtr() == NULL) 3015 return false; 3016 3017 // If we don't have a process nothing can change. 3018 Process *process = exe_ctx.GetProcessPtr(); 3019 if (process == NULL) 3020 return false; 3021 3022 // If our stop id is the current stop ID, nothing has changed: 3023 ProcessModID current_mod_id = process->GetModID(); 3024 3025 // If the current stop id is 0, either we haven't run yet, or the process 3026 // state has been cleared. In either case, we aren't going to be able to sync 3027 // with the process state. 3028 if (current_mod_id.GetStopID() == 0) 3029 return false; 3030 3031 bool changed = false; 3032 const bool was_valid = m_mod_id.IsValid(); 3033 if (was_valid) { 3034 if (m_mod_id == current_mod_id) { 3035 // Everything is already up to date in this object, no need to update the 3036 // execution context scope. 3037 changed = false; 3038 } else { 3039 m_mod_id = current_mod_id; 3040 m_needs_update = true; 3041 changed = true; 3042 } 3043 } 3044 3045 // Now re-look up the thread and frame in case the underlying objects have 3046 // gone away & been recreated. That way we'll be sure to return a valid 3047 // exe_scope. If we used to have a thread or a frame but can't find it 3048 // anymore, then mark ourselves as invalid. 3049 3050 if (!accept_invalid_exe_ctx) { 3051 if (m_exe_ctx_ref.HasThreadRef()) { 3052 ThreadSP thread_sp(m_exe_ctx_ref.GetThreadSP()); 3053 if (thread_sp) { 3054 if (m_exe_ctx_ref.HasFrameRef()) { 3055 StackFrameSP frame_sp(m_exe_ctx_ref.GetFrameSP()); 3056 if (!frame_sp) { 3057 // We used to have a frame, but now it is gone 3058 SetInvalid(); 3059 changed = was_valid; 3060 } 3061 } 3062 } else { 3063 // We used to have a thread, but now it is gone 3064 SetInvalid(); 3065 changed = was_valid; 3066 } 3067 } 3068 } 3069 3070 return changed; 3071 } 3072 3073 void ValueObject::EvaluationPoint::SetUpdated() { 3074 ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP()); 3075 if (process_sp) 3076 m_mod_id = process_sp->GetModID(); 3077 m_needs_update = false; 3078 } 3079 3080 void ValueObject::ClearUserVisibleData(uint32_t clear_mask) { 3081 if ((clear_mask & eClearUserVisibleDataItemsValue) == 3082 eClearUserVisibleDataItemsValue) 3083 m_value_str.clear(); 3084 3085 if ((clear_mask & eClearUserVisibleDataItemsLocation) == 3086 eClearUserVisibleDataItemsLocation) 3087 m_location_str.clear(); 3088 3089 if ((clear_mask & eClearUserVisibleDataItemsSummary) == 3090 eClearUserVisibleDataItemsSummary) 3091 m_summary_str.clear(); 3092 3093 if ((clear_mask & eClearUserVisibleDataItemsDescription) == 3094 eClearUserVisibleDataItemsDescription) 3095 m_object_desc_str.clear(); 3096 3097 if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == 3098 eClearUserVisibleDataItemsSyntheticChildren) { 3099 if (m_synthetic_value) 3100 m_synthetic_value = NULL; 3101 } 3102 3103 if ((clear_mask & eClearUserVisibleDataItemsValidator) == 3104 eClearUserVisibleDataItemsValidator) 3105 m_validation_result.reset(); 3106 } 3107 3108 SymbolContextScope *ValueObject::GetSymbolContextScope() { 3109 if (m_parent) { 3110 if (!m_parent->IsPointerOrReferenceType()) 3111 return m_parent->GetSymbolContextScope(); 3112 } 3113 return NULL; 3114 } 3115 3116 lldb::ValueObjectSP 3117 ValueObject::CreateValueObjectFromExpression(llvm::StringRef name, 3118 llvm::StringRef expression, 3119 const ExecutionContext &exe_ctx) { 3120 return CreateValueObjectFromExpression(name, expression, exe_ctx, 3121 EvaluateExpressionOptions()); 3122 } 3123 3124 lldb::ValueObjectSP ValueObject::CreateValueObjectFromExpression( 3125 llvm::StringRef name, llvm::StringRef expression, 3126 const ExecutionContext &exe_ctx, const EvaluateExpressionOptions &options) { 3127 lldb::ValueObjectSP retval_sp; 3128 lldb::TargetSP target_sp(exe_ctx.GetTargetSP()); 3129 if (!target_sp) 3130 return retval_sp; 3131 if (expression.empty()) 3132 return retval_sp; 3133 target_sp->EvaluateExpression(expression, exe_ctx.GetFrameSP().get(), 3134 retval_sp, options); 3135 if (retval_sp && !name.empty()) 3136 retval_sp->SetName(ConstString(name)); 3137 return retval_sp; 3138 } 3139 3140 lldb::ValueObjectSP ValueObject::CreateValueObjectFromAddress( 3141 llvm::StringRef name, uint64_t address, const ExecutionContext &exe_ctx, 3142 CompilerType type) { 3143 if (type) { 3144 CompilerType pointer_type(type.GetPointerType()); 3145 if (pointer_type) { 3146 lldb::DataBufferSP buffer( 3147 new lldb_private::DataBufferHeap(&address, sizeof(lldb::addr_t))); 3148 lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create( 3149 exe_ctx.GetBestExecutionContextScope(), pointer_type, 3150 ConstString(name), buffer, exe_ctx.GetByteOrder(), 3151 exe_ctx.GetAddressByteSize())); 3152 if (ptr_result_valobj_sp) { 3153 ptr_result_valobj_sp->GetValue().SetValueType( 3154 Value::eValueTypeLoadAddress); 3155 Status err; 3156 ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err); 3157 if (ptr_result_valobj_sp && !name.empty()) 3158 ptr_result_valobj_sp->SetName(ConstString(name)); 3159 } 3160 return ptr_result_valobj_sp; 3161 } 3162 } 3163 return lldb::ValueObjectSP(); 3164 } 3165 3166 lldb::ValueObjectSP ValueObject::CreateValueObjectFromData( 3167 llvm::StringRef name, const DataExtractor &data, 3168 const ExecutionContext &exe_ctx, CompilerType type) { 3169 lldb::ValueObjectSP new_value_sp; 3170 new_value_sp = ValueObjectConstResult::Create( 3171 exe_ctx.GetBestExecutionContextScope(), type, ConstString(name), data, 3172 LLDB_INVALID_ADDRESS); 3173 new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad); 3174 if (new_value_sp && !name.empty()) 3175 new_value_sp->SetName(ConstString(name)); 3176 return new_value_sp; 3177 } 3178 3179 ModuleSP ValueObject::GetModule() { 3180 ValueObject *root(GetRoot()); 3181 if (root != this) 3182 return root->GetModule(); 3183 return lldb::ModuleSP(); 3184 } 3185 3186 ValueObject *ValueObject::GetRoot() { 3187 if (m_root) 3188 return m_root; 3189 return (m_root = FollowParentChain([](ValueObject *vo) -> bool { 3190 return (vo->m_parent != nullptr); 3191 })); 3192 } 3193 3194 ValueObject * 3195 ValueObject::FollowParentChain(std::function<bool(ValueObject *)> f) { 3196 ValueObject *vo = this; 3197 while (vo) { 3198 if (f(vo) == false) 3199 break; 3200 vo = vo->m_parent; 3201 } 3202 return vo; 3203 } 3204 3205 AddressType ValueObject::GetAddressTypeOfChildren() { 3206 if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) { 3207 ValueObject *root(GetRoot()); 3208 if (root != this) 3209 return root->GetAddressTypeOfChildren(); 3210 } 3211 return m_address_type_of_ptr_or_ref_children; 3212 } 3213 3214 lldb::DynamicValueType ValueObject::GetDynamicValueType() { 3215 ValueObject *with_dv_info = this; 3216 while (with_dv_info) { 3217 if (with_dv_info->HasDynamicValueTypeInfo()) 3218 return with_dv_info->GetDynamicValueTypeImpl(); 3219 with_dv_info = with_dv_info->m_parent; 3220 } 3221 return lldb::eNoDynamicValues; 3222 } 3223 3224 lldb::Format ValueObject::GetFormat() const { 3225 const ValueObject *with_fmt_info = this; 3226 while (with_fmt_info) { 3227 if (with_fmt_info->m_format != lldb::eFormatDefault) 3228 return with_fmt_info->m_format; 3229 with_fmt_info = with_fmt_info->m_parent; 3230 } 3231 return m_format; 3232 } 3233 3234 lldb::LanguageType ValueObject::GetPreferredDisplayLanguage() { 3235 lldb::LanguageType type = m_preferred_display_language; 3236 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) { 3237 if (GetRoot()) { 3238 if (GetRoot() == this) { 3239 if (StackFrameSP frame_sp = GetFrameSP()) { 3240 const SymbolContext &sc( 3241 frame_sp->GetSymbolContext(eSymbolContextCompUnit)); 3242 if (CompileUnit *cu = sc.comp_unit) 3243 type = cu->GetLanguage(); 3244 } 3245 } else { 3246 type = GetRoot()->GetPreferredDisplayLanguage(); 3247 } 3248 } 3249 } 3250 return (m_preferred_display_language = type); // only compute it once 3251 } 3252 3253 void ValueObject::SetPreferredDisplayLanguage(lldb::LanguageType lt) { 3254 m_preferred_display_language = lt; 3255 } 3256 3257 void ValueObject::SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType lt) { 3258 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 3259 SetPreferredDisplayLanguage(lt); 3260 } 3261 3262 bool ValueObject::CanProvideValue() { 3263 // we need to support invalid types as providers of values because some bare- 3264 // board debugging scenarios have no notion of types, but still manage to 3265 // have raw numeric values for things like registers. sigh. 3266 const CompilerType &type(GetCompilerType()); 3267 return (false == type.IsValid()) || 3268 (0 != (type.GetTypeInfo() & eTypeHasValue)); 3269 } 3270 3271 bool ValueObject::IsChecksumEmpty() { return m_value_checksum.empty(); } 3272 3273 ValueObjectSP ValueObject::Persist() { 3274 if (!UpdateValueIfNeeded()) 3275 return nullptr; 3276 3277 TargetSP target_sp(GetTargetSP()); 3278 if (!target_sp) 3279 return nullptr; 3280 3281 PersistentExpressionState *persistent_state = 3282 target_sp->GetPersistentExpressionStateForLanguage( 3283 GetPreferredDisplayLanguage()); 3284 3285 if (!persistent_state) 3286 return nullptr; 3287 3288 auto prefix = persistent_state->GetPersistentVariablePrefix(); 3289 ConstString name = 3290 persistent_state->GetNextPersistentVariableName(*target_sp, prefix); 3291 3292 ValueObjectSP const_result_sp = 3293 ValueObjectConstResult::Create(target_sp.get(), GetValue(), name); 3294 3295 ExpressionVariableSP clang_var_sp = 3296 persistent_state->CreatePersistentVariable(const_result_sp); 3297 clang_var_sp->m_live_sp = clang_var_sp->m_frozen_sp; 3298 clang_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference; 3299 3300 return clang_var_sp->GetValueObject(); 3301 } 3302 3303 bool ValueObject::IsSyntheticChildrenGenerated() { 3304 return m_is_synthetic_children_generated; 3305 } 3306 3307 void ValueObject::SetSyntheticChildrenGenerated(bool b) { 3308 m_is_synthetic_children_generated = b; 3309 } 3310 3311 uint64_t ValueObject::GetLanguageFlags() { return m_language_flags; } 3312 3313 void ValueObject::SetLanguageFlags(uint64_t flags) { m_language_flags = flags; } 3314 3315 ValueObjectManager::ValueObjectManager(lldb::ValueObjectSP in_valobj_sp, 3316 lldb::DynamicValueType use_dynamic, 3317 bool use_synthetic) : m_root_valobj_sp(), 3318 m_user_valobj_sp(), m_use_dynamic(use_dynamic), m_stop_id(UINT32_MAX), 3319 m_use_synthetic(use_synthetic) { 3320 if (!in_valobj_sp) 3321 return; 3322 // If the user passes in a value object that is dynamic or synthetic, then 3323 // water it down to the static type. 3324 m_root_valobj_sp = in_valobj_sp->GetQualifiedRepresentationIfAvailable(lldb::eNoDynamicValues, false); 3325 } 3326 3327 bool ValueObjectManager::IsValid() const { 3328 if (!m_root_valobj_sp) 3329 return false; 3330 lldb::TargetSP target_sp = GetTargetSP(); 3331 if (target_sp) 3332 return target_sp->IsValid(); 3333 return false; 3334 } 3335 3336 lldb::ValueObjectSP ValueObjectManager::GetSP() { 3337 lldb::ProcessSP process_sp = GetProcessSP(); 3338 if (!process_sp) 3339 return lldb::ValueObjectSP(); 3340 3341 const uint32_t current_stop_id = process_sp->GetLastNaturalStopID(); 3342 if (current_stop_id == m_stop_id) 3343 return m_user_valobj_sp; 3344 3345 m_stop_id = current_stop_id; 3346 3347 if (!m_root_valobj_sp) { 3348 m_user_valobj_sp.reset(); 3349 return m_root_valobj_sp; 3350 } 3351 3352 m_user_valobj_sp = m_root_valobj_sp; 3353 3354 if (m_use_dynamic != lldb::eNoDynamicValues) { 3355 lldb::ValueObjectSP dynamic_sp = m_user_valobj_sp->GetDynamicValue(m_use_dynamic); 3356 if (dynamic_sp) 3357 m_user_valobj_sp = dynamic_sp; 3358 } 3359 3360 if (m_use_synthetic) { 3361 lldb::ValueObjectSP synthetic_sp = m_user_valobj_sp->GetSyntheticValue(m_use_synthetic); 3362 if (synthetic_sp) 3363 m_user_valobj_sp = synthetic_sp; 3364 } 3365 3366 return m_user_valobj_sp; 3367 } 3368 3369 void ValueObjectManager::SetUseDynamic(lldb::DynamicValueType use_dynamic) { 3370 if (use_dynamic != m_use_dynamic) { 3371 m_use_dynamic = use_dynamic; 3372 m_user_valobj_sp.reset(); 3373 m_stop_id = UINT32_MAX; 3374 } 3375 } 3376 3377 void ValueObjectManager::SetUseSynthetic(bool use_synthetic) { 3378 if (m_use_synthetic != use_synthetic) { 3379 m_use_synthetic = use_synthetic; 3380 m_user_valobj_sp.reset(); 3381 m_stop_id = UINT32_MAX; 3382 } 3383 } 3384 3385 lldb::TargetSP ValueObjectManager::GetTargetSP() const { 3386 if (!m_root_valobj_sp) 3387 return m_root_valobj_sp->GetTargetSP(); 3388 return lldb::TargetSP(); 3389 } 3390 3391 lldb::ProcessSP ValueObjectManager::GetProcessSP() const { 3392 if (m_root_valobj_sp) 3393 return m_root_valobj_sp->GetProcessSP(); 3394 return lldb::ProcessSP(); 3395 } 3396 3397 lldb::ThreadSP ValueObjectManager::GetThreadSP() const { 3398 if (m_root_valobj_sp) 3399 return m_root_valobj_sp->GetThreadSP(); 3400 return lldb::ThreadSP(); 3401 } 3402 3403 lldb::StackFrameSP ValueObjectManager::GetFrameSP() const { 3404 if (m_root_valobj_sp) 3405 return m_root_valobj_sp->GetFrameSP(); 3406 return lldb::StackFrameSP(); 3407 } 3408 3409