1 //===-- ValueObject.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Core/ValueObject.h" 10 11 #include "lldb/Core/Address.h" 12 #include "lldb/Core/Module.h" 13 #include "lldb/Core/ValueObjectCast.h" 14 #include "lldb/Core/ValueObjectChild.h" 15 #include "lldb/Core/ValueObjectConstResult.h" 16 #include "lldb/Core/ValueObjectDynamicValue.h" 17 #include "lldb/Core/ValueObjectMemory.h" 18 #include "lldb/Core/ValueObjectSyntheticFilter.h" 19 #include "lldb/DataFormatters/DataVisualization.h" 20 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 21 #include "lldb/DataFormatters/FormatManager.h" 22 #include "lldb/DataFormatters/StringPrinter.h" 23 #include "lldb/DataFormatters/TypeFormat.h" 24 #include "lldb/DataFormatters/TypeSummary.h" 25 #include "lldb/DataFormatters/ValueObjectPrinter.h" 26 #include "lldb/Expression/ExpressionVariable.h" 27 #include "lldb/Host/Config.h" 28 #include "lldb/Symbol/CompileUnit.h" 29 #include "lldb/Symbol/CompilerType.h" 30 #include "lldb/Symbol/Declaration.h" 31 #include "lldb/Symbol/SymbolContext.h" 32 #include "lldb/Symbol/Type.h" 33 #include "lldb/Symbol/Variable.h" 34 #include "lldb/Target/ExecutionContext.h" 35 #include "lldb/Target/Language.h" 36 #include "lldb/Target/LanguageRuntime.h" 37 #include "lldb/Target/Process.h" 38 #include "lldb/Target/StackFrame.h" 39 #include "lldb/Target/Target.h" 40 #include "lldb/Target/Thread.h" 41 #include "lldb/Target/ThreadList.h" 42 #include "lldb/Utility/DataBuffer.h" 43 #include "lldb/Utility/DataBufferHeap.h" 44 #include "lldb/Utility/Flags.h" 45 #include "lldb/Utility/Log.h" 46 #include "lldb/Utility/Logging.h" 47 #include "lldb/Utility/Scalar.h" 48 #include "lldb/Utility/Stream.h" 49 #include "lldb/Utility/StreamString.h" 50 #include "lldb/lldb-private-types.h" 51 52 #include "llvm/Support/Compiler.h" 53 54 #include <algorithm> 55 #include <cstdint> 56 #include <cstdlib> 57 #include <memory> 58 #include <tuple> 59 60 #include <assert.h> 61 #include <inttypes.h> 62 #include <stdio.h> 63 #include <string.h> 64 65 namespace lldb_private { 66 class ExecutionContextScope; 67 } 68 namespace lldb_private { 69 class SymbolContextScope; 70 } 71 72 using namespace lldb; 73 using namespace lldb_private; 74 75 static user_id_t g_value_obj_uid = 0; 76 77 // ValueObject constructor 78 ValueObject::ValueObject(ValueObject &parent) 79 : UserID(++g_value_obj_uid), // Unique identifier for every value object 80 m_parent(&parent), m_root(nullptr), 81 m_update_point(parent.GetUpdatePoint()), m_name(), m_data(), m_value(), 82 m_error(), m_value_str(), m_old_value_str(), m_location_str(), 83 m_summary_str(), m_object_desc_str(), m_manager(parent.GetManager()), 84 m_children(), m_synthetic_children(), m_dynamic_value(nullptr), 85 m_synthetic_value(nullptr), m_deref_valobj(nullptr), 86 m_format(eFormatDefault), m_last_format(eFormatDefault), 87 m_last_format_mgr_revision(0), m_type_summary_sp(), m_type_format_sp(), 88 m_synthetic_children_sp(), m_user_id_of_forced_summary(), 89 m_address_type_of_ptr_or_ref_children(eAddressTypeInvalid), 90 m_value_checksum(), 91 m_preferred_display_language(lldb::eLanguageTypeUnknown), 92 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 93 m_children_count_valid(false), m_old_value_valid(false), 94 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 95 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 96 m_is_getting_summary(false), 97 m_did_calculate_complete_objc_class_type(false), 98 m_is_synthetic_children_generated( 99 parent.m_is_synthetic_children_generated) { 100 m_data.SetByteOrder(parent.GetDataExtractor().GetByteOrder()); 101 m_data.SetAddressByteSize(parent.GetDataExtractor().GetAddressByteSize()); 102 m_manager->ManageObject(this); 103 } 104 105 // ValueObject constructor 106 ValueObject::ValueObject(ExecutionContextScope *exe_scope, 107 ValueObjectManager &manager, 108 AddressType child_ptr_or_ref_addr_type) 109 : UserID(++g_value_obj_uid), // Unique identifier for every value object 110 m_parent(nullptr), m_root(nullptr), m_update_point(exe_scope), m_name(), 111 m_data(), m_value(), m_error(), m_value_str(), m_old_value_str(), 112 m_location_str(), m_summary_str(), m_object_desc_str(), 113 m_manager(&manager), m_children(), m_synthetic_children(), 114 m_dynamic_value(nullptr), m_synthetic_value(nullptr), 115 m_deref_valobj(nullptr), m_format(eFormatDefault), 116 m_last_format(eFormatDefault), m_last_format_mgr_revision(0), 117 m_type_summary_sp(), m_type_format_sp(), m_synthetic_children_sp(), 118 m_user_id_of_forced_summary(), 119 m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type), 120 m_value_checksum(), 121 m_preferred_display_language(lldb::eLanguageTypeUnknown), 122 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 123 m_children_count_valid(false), m_old_value_valid(false), 124 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 125 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 126 m_is_getting_summary(false), 127 m_did_calculate_complete_objc_class_type(false), 128 m_is_synthetic_children_generated(false) { 129 if (exe_scope) { 130 TargetSP target_sp(exe_scope->CalculateTarget()); 131 if (target_sp) { 132 const ArchSpec &arch = target_sp->GetArchitecture(); 133 m_data.SetByteOrder(arch.GetByteOrder()); 134 m_data.SetAddressByteSize(arch.GetAddressByteSize()); 135 } 136 } 137 m_manager->ManageObject(this); 138 } 139 140 // Destructor 141 ValueObject::~ValueObject() {} 142 143 void ValueObject::UpdateChildrenAddressType() { 144 Value::ValueType value_type = m_value.GetValueType(); 145 ExecutionContext exe_ctx(GetExecutionContextRef()); 146 Process *process = exe_ctx.GetProcessPtr(); 147 const bool process_is_alive = process && process->IsAlive(); 148 const uint32_t type_info = GetCompilerType().GetTypeInfo(); 149 const bool is_pointer_or_ref = 150 (type_info & (lldb::eTypeIsPointer | lldb::eTypeIsReference)) != 0; 151 152 switch (value_type) { 153 case Value::eValueTypeFileAddress: 154 // If this type is a pointer, then its children will be considered load 155 // addresses if the pointer or reference is dereferenced, but only if 156 // the process is alive. 157 // 158 // There could be global variables like in the following code: 159 // struct LinkedListNode { Foo* foo; LinkedListNode* next; }; 160 // Foo g_foo1; 161 // Foo g_foo2; 162 // LinkedListNode g_second_node = { &g_foo2, NULL }; 163 // LinkedListNode g_first_node = { &g_foo1, &g_second_node }; 164 // 165 // When we aren't running, we should be able to look at these variables 166 // using the "target variable" command. Children of the "g_first_node" 167 // always will be of the same address type as the parent. But children 168 // of the "next" member of LinkedListNode will become load addresses if 169 // we have a live process, or remain a file address if it was a file 170 // address. 171 if (process_is_alive && is_pointer_or_ref) 172 SetAddressTypeOfChildren(eAddressTypeLoad); 173 else 174 SetAddressTypeOfChildren(eAddressTypeFile); 175 break; 176 case Value::eValueTypeHostAddress: 177 // Same as above for load addresses, except children of pointer or refs 178 // are always load addresses. Host addresses are used to store freeze 179 // dried variables. If this type is a struct, the entire struct 180 // contents will be copied into the heap of the 181 // LLDB process, but we do not currently follow any pointers. 182 if (is_pointer_or_ref) 183 SetAddressTypeOfChildren(eAddressTypeLoad); 184 else 185 SetAddressTypeOfChildren(eAddressTypeHost); 186 break; 187 case Value::eValueTypeLoadAddress: 188 case Value::eValueTypeScalar: 189 case Value::eValueTypeVector: 190 SetAddressTypeOfChildren(eAddressTypeLoad); 191 break; 192 } 193 } 194 195 bool ValueObject::UpdateValueIfNeeded(bool update_format) { 196 197 bool did_change_formats = false; 198 199 if (update_format) 200 did_change_formats = UpdateFormatsIfNeeded(); 201 202 // If this is a constant value, then our success is predicated on whether we 203 // have an error or not 204 if (GetIsConstant()) { 205 // if you are constant, things might still have changed behind your back 206 // (e.g. you are a frozen object and things have changed deeper than you 207 // cared to freeze-dry yourself) in this case, your value has not changed, 208 // but "computed" entries might have, so you might now have a different 209 // summary, or a different object description. clear these so we will 210 // recompute them 211 if (update_format && !did_change_formats) 212 ClearUserVisibleData(eClearUserVisibleDataItemsSummary | 213 eClearUserVisibleDataItemsDescription); 214 return m_error.Success(); 215 } 216 217 bool first_update = IsChecksumEmpty(); 218 219 if (NeedsUpdating()) { 220 m_update_point.SetUpdated(); 221 222 // Save the old value using swap to avoid a string copy which also will 223 // clear our m_value_str 224 if (m_value_str.empty()) { 225 m_old_value_valid = false; 226 } else { 227 m_old_value_valid = true; 228 m_old_value_str.swap(m_value_str); 229 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 230 } 231 232 ClearUserVisibleData(); 233 234 if (IsInScope()) { 235 const bool value_was_valid = GetValueIsValid(); 236 SetValueDidChange(false); 237 238 m_error.Clear(); 239 240 // Call the pure virtual function to update the value 241 242 bool need_compare_checksums = false; 243 llvm::SmallVector<uint8_t, 16> old_checksum; 244 245 if (!first_update && CanProvideValue()) { 246 need_compare_checksums = true; 247 old_checksum.resize(m_value_checksum.size()); 248 std::copy(m_value_checksum.begin(), m_value_checksum.end(), 249 old_checksum.begin()); 250 } 251 252 bool success = UpdateValue(); 253 254 SetValueIsValid(success); 255 256 if (success) { 257 UpdateChildrenAddressType(); 258 const uint64_t max_checksum_size = 128; 259 m_data.Checksum(m_value_checksum, max_checksum_size); 260 } else { 261 need_compare_checksums = false; 262 m_value_checksum.clear(); 263 } 264 265 assert(!need_compare_checksums || 266 (!old_checksum.empty() && !m_value_checksum.empty())); 267 268 if (first_update) 269 SetValueDidChange(false); 270 else if (!m_value_did_change && !success) { 271 // The value wasn't gotten successfully, so we mark this as changed if 272 // the value used to be valid and now isn't 273 SetValueDidChange(value_was_valid); 274 } else if (need_compare_checksums) { 275 SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0], 276 m_value_checksum.size())); 277 } 278 279 } else { 280 m_error.SetErrorString("out of scope"); 281 } 282 } 283 return m_error.Success(); 284 } 285 286 bool ValueObject::UpdateFormatsIfNeeded() { 287 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_DATAFORMATTERS)); 288 LLDB_LOGF(log, 289 "[%s %p] checking for FormatManager revisions. ValueObject " 290 "rev: %d - Global rev: %d", 291 GetName().GetCString(), static_cast<void *>(this), 292 m_last_format_mgr_revision, 293 DataVisualization::GetCurrentRevision()); 294 295 bool any_change = false; 296 297 if ((m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) { 298 m_last_format_mgr_revision = DataVisualization::GetCurrentRevision(); 299 any_change = true; 300 301 SetValueFormat(DataVisualization::GetFormat(*this, eNoDynamicValues)); 302 SetSummaryFormat( 303 DataVisualization::GetSummaryFormat(*this, GetDynamicValueType())); 304 #if LLDB_ENABLE_PYTHON 305 SetSyntheticChildren( 306 DataVisualization::GetSyntheticChildren(*this, GetDynamicValueType())); 307 #endif 308 } 309 310 return any_change; 311 } 312 313 void ValueObject::SetNeedsUpdate() { 314 m_update_point.SetNeedsUpdate(); 315 // We have to clear the value string here so ConstResult children will notice 316 // if their values are changed by hand (i.e. with SetValueAsCString). 317 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 318 } 319 320 void ValueObject::ClearDynamicTypeInformation() { 321 m_children_count_valid = false; 322 m_did_calculate_complete_objc_class_type = false; 323 m_last_format_mgr_revision = 0; 324 m_override_type = CompilerType(); 325 SetValueFormat(lldb::TypeFormatImplSP()); 326 SetSummaryFormat(lldb::TypeSummaryImplSP()); 327 SetSyntheticChildren(lldb::SyntheticChildrenSP()); 328 } 329 330 CompilerType ValueObject::MaybeCalculateCompleteType() { 331 CompilerType compiler_type(GetCompilerTypeImpl()); 332 333 if (m_did_calculate_complete_objc_class_type) { 334 if (m_override_type.IsValid()) 335 return m_override_type; 336 else 337 return compiler_type; 338 } 339 340 m_did_calculate_complete_objc_class_type = true; 341 342 ProcessSP process_sp( 343 GetUpdatePoint().GetExecutionContextRef().GetProcessSP()); 344 345 if (!process_sp) 346 return compiler_type; 347 348 if (auto *runtime = 349 process_sp->GetLanguageRuntime(GetObjectRuntimeLanguage())) { 350 if (llvm::Optional<CompilerType> complete_type = 351 runtime->GetRuntimeType(compiler_type)) { 352 m_override_type = complete_type.getValue(); 353 if (m_override_type.IsValid()) 354 return m_override_type; 355 } 356 } 357 return compiler_type; 358 } 359 360 CompilerType ValueObject::GetCompilerType() { 361 return MaybeCalculateCompleteType(); 362 } 363 364 TypeImpl ValueObject::GetTypeImpl() { return TypeImpl(GetCompilerType()); } 365 366 DataExtractor &ValueObject::GetDataExtractor() { 367 UpdateValueIfNeeded(false); 368 return m_data; 369 } 370 371 const Status &ValueObject::GetError() { 372 UpdateValueIfNeeded(false); 373 return m_error; 374 } 375 376 ConstString ValueObject::GetName() const { return m_name; } 377 378 const char *ValueObject::GetLocationAsCString() { 379 return GetLocationAsCStringImpl(m_value, m_data); 380 } 381 382 const char *ValueObject::GetLocationAsCStringImpl(const Value &value, 383 const DataExtractor &data) { 384 if (UpdateValueIfNeeded(false)) { 385 if (m_location_str.empty()) { 386 StreamString sstr; 387 388 Value::ValueType value_type = value.GetValueType(); 389 390 switch (value_type) { 391 case Value::eValueTypeScalar: 392 case Value::eValueTypeVector: 393 if (value.GetContextType() == Value::eContextTypeRegisterInfo) { 394 RegisterInfo *reg_info = value.GetRegisterInfo(); 395 if (reg_info) { 396 if (reg_info->name) 397 m_location_str = reg_info->name; 398 else if (reg_info->alt_name) 399 m_location_str = reg_info->alt_name; 400 if (m_location_str.empty()) 401 m_location_str = (reg_info->encoding == lldb::eEncodingVector) 402 ? "vector" 403 : "scalar"; 404 } 405 } 406 if (m_location_str.empty()) 407 m_location_str = 408 (value_type == Value::eValueTypeVector) ? "vector" : "scalar"; 409 break; 410 411 case Value::eValueTypeLoadAddress: 412 case Value::eValueTypeFileAddress: 413 case Value::eValueTypeHostAddress: { 414 uint32_t addr_nibble_size = data.GetAddressByteSize() * 2; 415 sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, 416 value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS)); 417 m_location_str = std::string(sstr.GetString()); 418 } break; 419 } 420 } 421 } 422 return m_location_str.c_str(); 423 } 424 425 Value &ValueObject::GetValue() { return m_value; } 426 427 const Value &ValueObject::GetValue() const { return m_value; } 428 429 bool ValueObject::ResolveValue(Scalar &scalar) { 430 if (UpdateValueIfNeeded( 431 false)) // make sure that you are up to date before returning anything 432 { 433 ExecutionContext exe_ctx(GetExecutionContextRef()); 434 Value tmp_value(m_value); 435 scalar = tmp_value.ResolveValue(&exe_ctx); 436 if (scalar.IsValid()) { 437 const uint32_t bitfield_bit_size = GetBitfieldBitSize(); 438 if (bitfield_bit_size) 439 return scalar.ExtractBitfield(bitfield_bit_size, 440 GetBitfieldBitOffset()); 441 return true; 442 } 443 } 444 return false; 445 } 446 447 bool ValueObject::IsLogicalTrue(Status &error) { 448 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 449 LazyBool is_logical_true = language->IsLogicalTrue(*this, error); 450 switch (is_logical_true) { 451 case eLazyBoolYes: 452 case eLazyBoolNo: 453 return (is_logical_true == true); 454 case eLazyBoolCalculate: 455 break; 456 } 457 } 458 459 Scalar scalar_value; 460 461 if (!ResolveValue(scalar_value)) { 462 error.SetErrorString("failed to get a scalar result"); 463 return false; 464 } 465 466 bool ret; 467 ret = scalar_value.ULongLong(1) != 0; 468 error.Clear(); 469 return ret; 470 } 471 472 bool ValueObject::GetValueIsValid() const { return m_value_is_valid; } 473 474 void ValueObject::SetValueIsValid(bool b) { m_value_is_valid = b; } 475 476 bool ValueObject::GetValueDidChange() { return m_value_did_change; } 477 478 void ValueObject::SetValueDidChange(bool value_changed) { 479 m_value_did_change = value_changed; 480 } 481 482 ValueObjectSP ValueObject::GetChildAtIndex(size_t idx, bool can_create) { 483 ValueObjectSP child_sp; 484 // We may need to update our value if we are dynamic 485 if (IsPossibleDynamicType()) 486 UpdateValueIfNeeded(false); 487 if (idx < GetNumChildren()) { 488 // Check if we have already made the child value object? 489 if (can_create && !m_children.HasChildAtIndex(idx)) { 490 // No we haven't created the child at this index, so lets have our 491 // subclass do it and cache the result for quick future access. 492 m_children.SetChildAtIndex(idx, CreateChildAtIndex(idx, false, 0)); 493 } 494 495 ValueObject *child = m_children.GetChildAtIndex(idx); 496 if (child != nullptr) 497 return child->GetSP(); 498 } 499 return child_sp; 500 } 501 502 lldb::ValueObjectSP 503 ValueObject::GetChildAtIndexPath(llvm::ArrayRef<size_t> idxs, 504 size_t *index_of_error) { 505 if (idxs.size() == 0) 506 return GetSP(); 507 ValueObjectSP root(GetSP()); 508 for (size_t idx : idxs) { 509 root = root->GetChildAtIndex(idx, true); 510 if (!root) { 511 if (index_of_error) 512 *index_of_error = idx; 513 return root; 514 } 515 } 516 return root; 517 } 518 519 lldb::ValueObjectSP ValueObject::GetChildAtIndexPath( 520 llvm::ArrayRef<std::pair<size_t, bool>> idxs, size_t *index_of_error) { 521 if (idxs.size() == 0) 522 return GetSP(); 523 ValueObjectSP root(GetSP()); 524 for (std::pair<size_t, bool> idx : idxs) { 525 root = root->GetChildAtIndex(idx.first, idx.second); 526 if (!root) { 527 if (index_of_error) 528 *index_of_error = idx.first; 529 return root; 530 } 531 } 532 return root; 533 } 534 535 lldb::ValueObjectSP 536 ValueObject::GetChildAtNamePath(llvm::ArrayRef<ConstString> names, 537 ConstString *name_of_error) { 538 if (names.size() == 0) 539 return GetSP(); 540 ValueObjectSP root(GetSP()); 541 for (ConstString name : names) { 542 root = root->GetChildMemberWithName(name, true); 543 if (!root) { 544 if (name_of_error) 545 *name_of_error = name; 546 return root; 547 } 548 } 549 return root; 550 } 551 552 lldb::ValueObjectSP ValueObject::GetChildAtNamePath( 553 llvm::ArrayRef<std::pair<ConstString, bool>> names, 554 ConstString *name_of_error) { 555 if (names.size() == 0) 556 return GetSP(); 557 ValueObjectSP root(GetSP()); 558 for (std::pair<ConstString, bool> name : names) { 559 root = root->GetChildMemberWithName(name.first, name.second); 560 if (!root) { 561 if (name_of_error) 562 *name_of_error = name.first; 563 return root; 564 } 565 } 566 return root; 567 } 568 569 size_t ValueObject::GetIndexOfChildWithName(ConstString name) { 570 bool omit_empty_base_classes = true; 571 return GetCompilerType().GetIndexOfChildWithName(name.GetCString(), 572 omit_empty_base_classes); 573 } 574 575 ValueObjectSP ValueObject::GetChildMemberWithName(ConstString name, 576 bool can_create) { 577 // We may need to update our value if we are dynamic. 578 if (IsPossibleDynamicType()) 579 UpdateValueIfNeeded(false); 580 581 // When getting a child by name, it could be buried inside some base classes 582 // (which really aren't part of the expression path), so we need a vector of 583 // indexes that can get us down to the correct child. 584 std::vector<uint32_t> child_indexes; 585 bool omit_empty_base_classes = true; 586 587 if (!GetCompilerType().IsValid()) 588 return ValueObjectSP(); 589 590 const size_t num_child_indexes = 591 GetCompilerType().GetIndexOfChildMemberWithName( 592 name.GetCString(), omit_empty_base_classes, child_indexes); 593 if (num_child_indexes == 0) 594 return nullptr; 595 596 ValueObjectSP child_sp = GetSP(); 597 for (uint32_t idx : child_indexes) 598 if (child_sp) 599 child_sp = child_sp->GetChildAtIndex(idx, can_create); 600 return child_sp; 601 } 602 603 size_t ValueObject::GetNumChildren(uint32_t max) { 604 UpdateValueIfNeeded(); 605 606 if (max < UINT32_MAX) { 607 if (m_children_count_valid) { 608 size_t children_count = m_children.GetChildrenCount(); 609 return children_count <= max ? children_count : max; 610 } else 611 return CalculateNumChildren(max); 612 } 613 614 if (!m_children_count_valid) { 615 SetNumChildren(CalculateNumChildren()); 616 } 617 return m_children.GetChildrenCount(); 618 } 619 620 bool ValueObject::MightHaveChildren() { 621 bool has_children = false; 622 const uint32_t type_info = GetTypeInfo(); 623 if (type_info) { 624 if (type_info & (eTypeHasChildren | eTypeIsPointer | eTypeIsReference)) 625 has_children = true; 626 } else { 627 has_children = GetNumChildren() > 0; 628 } 629 return has_children; 630 } 631 632 // Should only be called by ValueObject::GetNumChildren() 633 void ValueObject::SetNumChildren(size_t num_children) { 634 m_children_count_valid = true; 635 m_children.SetChildrenCount(num_children); 636 } 637 638 void ValueObject::SetName(ConstString name) { m_name = name; } 639 640 ValueObject *ValueObject::CreateChildAtIndex(size_t idx, 641 bool synthetic_array_member, 642 int32_t synthetic_index) { 643 ValueObject *valobj = nullptr; 644 645 bool omit_empty_base_classes = true; 646 bool ignore_array_bounds = synthetic_array_member; 647 std::string child_name_str; 648 uint32_t child_byte_size = 0; 649 int32_t child_byte_offset = 0; 650 uint32_t child_bitfield_bit_size = 0; 651 uint32_t child_bitfield_bit_offset = 0; 652 bool child_is_base_class = false; 653 bool child_is_deref_of_parent = false; 654 uint64_t language_flags = 0; 655 656 const bool transparent_pointers = !synthetic_array_member; 657 CompilerType child_compiler_type; 658 659 ExecutionContext exe_ctx(GetExecutionContextRef()); 660 661 child_compiler_type = GetCompilerType().GetChildCompilerTypeAtIndex( 662 &exe_ctx, idx, transparent_pointers, omit_empty_base_classes, 663 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 664 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 665 child_is_deref_of_parent, this, language_flags); 666 if (child_compiler_type) { 667 if (synthetic_index) 668 child_byte_offset += child_byte_size * synthetic_index; 669 670 ConstString child_name; 671 if (!child_name_str.empty()) 672 child_name.SetCString(child_name_str.c_str()); 673 674 valobj = new ValueObjectChild( 675 *this, child_compiler_type, child_name, child_byte_size, 676 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 677 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 678 language_flags); 679 } 680 681 // In case of an incomplete type, try to use the ValueObject's 682 // synthetic value to create the child ValueObject. 683 if (!valobj && synthetic_array_member) { 684 if (ValueObjectSP synth_valobj_sp = GetSyntheticValue()) { 685 valobj = synth_valobj_sp 686 ->GetChildAtIndex(synthetic_index, synthetic_array_member) 687 .get(); 688 } 689 } 690 691 return valobj; 692 } 693 694 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 695 std::string &destination, 696 lldb::LanguageType lang) { 697 return GetSummaryAsCString(summary_ptr, destination, 698 TypeSummaryOptions().SetLanguage(lang)); 699 } 700 701 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 702 std::string &destination, 703 const TypeSummaryOptions &options) { 704 destination.clear(); 705 706 // ideally we would like to bail out if passing NULL, but if we do so we end 707 // up not providing the summary for function pointers anymore 708 if (/*summary_ptr == NULL ||*/ m_is_getting_summary) 709 return false; 710 711 m_is_getting_summary = true; 712 713 TypeSummaryOptions actual_options(options); 714 715 if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown) 716 actual_options.SetLanguage(GetPreferredDisplayLanguage()); 717 718 // this is a hot path in code and we prefer to avoid setting this string all 719 // too often also clearing out other information that we might care to see in 720 // a crash log. might be useful in very specific situations though. 721 /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. 722 Summary provider's description is %s", 723 GetTypeName().GetCString(), 724 GetName().GetCString(), 725 summary_ptr->GetDescription().c_str());*/ 726 727 if (UpdateValueIfNeeded(false) && summary_ptr) { 728 if (HasSyntheticValue()) 729 m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on 730 // the synthetic children being 731 // up-to-date (e.g. ${svar%#}) 732 summary_ptr->FormatObject(this, destination, actual_options); 733 } 734 m_is_getting_summary = false; 735 return !destination.empty(); 736 } 737 738 const char *ValueObject::GetSummaryAsCString(lldb::LanguageType lang) { 739 if (UpdateValueIfNeeded(true) && m_summary_str.empty()) { 740 TypeSummaryOptions summary_options; 741 summary_options.SetLanguage(lang); 742 GetSummaryAsCString(GetSummaryFormat().get(), m_summary_str, 743 summary_options); 744 } 745 if (m_summary_str.empty()) 746 return nullptr; 747 return m_summary_str.c_str(); 748 } 749 750 bool ValueObject::GetSummaryAsCString(std::string &destination, 751 const TypeSummaryOptions &options) { 752 return GetSummaryAsCString(GetSummaryFormat().get(), destination, options); 753 } 754 755 bool ValueObject::IsCStringContainer(bool check_pointer) { 756 CompilerType pointee_or_element_compiler_type; 757 const Flags type_flags(GetTypeInfo(&pointee_or_element_compiler_type)); 758 bool is_char_arr_ptr(type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 759 pointee_or_element_compiler_type.IsCharType()); 760 if (!is_char_arr_ptr) 761 return false; 762 if (!check_pointer) 763 return true; 764 if (type_flags.Test(eTypeIsArray)) 765 return true; 766 addr_t cstr_address = LLDB_INVALID_ADDRESS; 767 AddressType cstr_address_type = eAddressTypeInvalid; 768 cstr_address = GetPointerValue(&cstr_address_type); 769 return (cstr_address != LLDB_INVALID_ADDRESS); 770 } 771 772 size_t ValueObject::GetPointeeData(DataExtractor &data, uint32_t item_idx, 773 uint32_t item_count) { 774 CompilerType pointee_or_element_compiler_type; 775 const uint32_t type_info = GetTypeInfo(&pointee_or_element_compiler_type); 776 const bool is_pointer_type = type_info & eTypeIsPointer; 777 const bool is_array_type = type_info & eTypeIsArray; 778 if (!(is_pointer_type || is_array_type)) 779 return 0; 780 781 if (item_count == 0) 782 return 0; 783 784 ExecutionContext exe_ctx(GetExecutionContextRef()); 785 786 llvm::Optional<uint64_t> item_type_size = 787 pointee_or_element_compiler_type.GetByteSize( 788 exe_ctx.GetBestExecutionContextScope()); 789 if (!item_type_size) 790 return 0; 791 const uint64_t bytes = item_count * *item_type_size; 792 const uint64_t offset = item_idx * *item_type_size; 793 794 if (item_idx == 0 && item_count == 1) // simply a deref 795 { 796 if (is_pointer_type) { 797 Status error; 798 ValueObjectSP pointee_sp = Dereference(error); 799 if (error.Fail() || pointee_sp.get() == nullptr) 800 return 0; 801 return pointee_sp->GetData(data, error); 802 } else { 803 ValueObjectSP child_sp = GetChildAtIndex(0, true); 804 if (child_sp.get() == nullptr) 805 return 0; 806 Status error; 807 return child_sp->GetData(data, error); 808 } 809 return true; 810 } else /* (items > 1) */ 811 { 812 Status error; 813 lldb_private::DataBufferHeap *heap_buf_ptr = nullptr; 814 lldb::DataBufferSP data_sp(heap_buf_ptr = 815 new lldb_private::DataBufferHeap()); 816 817 AddressType addr_type; 818 lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type) 819 : GetAddressOf(true, &addr_type); 820 821 switch (addr_type) { 822 case eAddressTypeFile: { 823 ModuleSP module_sp(GetModule()); 824 if (module_sp) { 825 addr = addr + offset; 826 Address so_addr; 827 module_sp->ResolveFileAddress(addr, so_addr); 828 ExecutionContext exe_ctx(GetExecutionContextRef()); 829 Target *target = exe_ctx.GetTargetPtr(); 830 if (target) { 831 heap_buf_ptr->SetByteSize(bytes); 832 size_t bytes_read = target->ReadMemory( 833 so_addr, false, heap_buf_ptr->GetBytes(), bytes, error); 834 if (error.Success()) { 835 data.SetData(data_sp); 836 return bytes_read; 837 } 838 } 839 } 840 } break; 841 case eAddressTypeLoad: { 842 ExecutionContext exe_ctx(GetExecutionContextRef()); 843 Process *process = exe_ctx.GetProcessPtr(); 844 if (process) { 845 heap_buf_ptr->SetByteSize(bytes); 846 size_t bytes_read = process->ReadMemory( 847 addr + offset, heap_buf_ptr->GetBytes(), bytes, error); 848 if (error.Success() || bytes_read > 0) { 849 data.SetData(data_sp); 850 return bytes_read; 851 } 852 } 853 } break; 854 case eAddressTypeHost: { 855 auto max_bytes = 856 GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope()); 857 if (max_bytes && *max_bytes > offset) { 858 size_t bytes_read = std::min<uint64_t>(*max_bytes - offset, bytes); 859 addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 860 if (addr == 0 || addr == LLDB_INVALID_ADDRESS) 861 break; 862 heap_buf_ptr->CopyData((uint8_t *)(addr + offset), bytes_read); 863 data.SetData(data_sp); 864 return bytes_read; 865 } 866 } break; 867 case eAddressTypeInvalid: 868 break; 869 } 870 } 871 return 0; 872 } 873 874 uint64_t ValueObject::GetData(DataExtractor &data, Status &error) { 875 UpdateValueIfNeeded(false); 876 ExecutionContext exe_ctx(GetExecutionContextRef()); 877 error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get()); 878 if (error.Fail()) { 879 if (m_data.GetByteSize()) { 880 data = m_data; 881 error.Clear(); 882 return data.GetByteSize(); 883 } else { 884 return 0; 885 } 886 } 887 data.SetAddressByteSize(m_data.GetAddressByteSize()); 888 data.SetByteOrder(m_data.GetByteOrder()); 889 return data.GetByteSize(); 890 } 891 892 bool ValueObject::SetData(DataExtractor &data, Status &error) { 893 error.Clear(); 894 // Make sure our value is up to date first so that our location and location 895 // type is valid. 896 if (!UpdateValueIfNeeded(false)) { 897 error.SetErrorString("unable to read value"); 898 return false; 899 } 900 901 uint64_t count = 0; 902 const Encoding encoding = GetCompilerType().GetEncoding(count); 903 904 const size_t byte_size = GetByteSize(); 905 906 Value::ValueType value_type = m_value.GetValueType(); 907 908 switch (value_type) { 909 case Value::eValueTypeScalar: { 910 Status set_error = 911 m_value.GetScalar().SetValueFromData(data, encoding, byte_size); 912 913 if (!set_error.Success()) { 914 error.SetErrorStringWithFormat("unable to set scalar value: %s", 915 set_error.AsCString()); 916 return false; 917 } 918 } break; 919 case Value::eValueTypeLoadAddress: { 920 // If it is a load address, then the scalar value is the storage location 921 // of the data, and we have to shove this value down to that load location. 922 ExecutionContext exe_ctx(GetExecutionContextRef()); 923 Process *process = exe_ctx.GetProcessPtr(); 924 if (process) { 925 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 926 size_t bytes_written = process->WriteMemory( 927 target_addr, data.GetDataStart(), byte_size, error); 928 if (!error.Success()) 929 return false; 930 if (bytes_written != byte_size) { 931 error.SetErrorString("unable to write value to memory"); 932 return false; 933 } 934 } 935 } break; 936 case Value::eValueTypeHostAddress: { 937 // If it is a host address, then we stuff the scalar as a DataBuffer into 938 // the Value's data. 939 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 940 m_data.SetData(buffer_sp, 0); 941 data.CopyByteOrderedData(0, byte_size, 942 const_cast<uint8_t *>(m_data.GetDataStart()), 943 byte_size, m_data.GetByteOrder()); 944 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 945 } break; 946 case Value::eValueTypeFileAddress: 947 case Value::eValueTypeVector: 948 break; 949 } 950 951 // If we have reached this point, then we have successfully changed the 952 // value. 953 SetNeedsUpdate(); 954 return true; 955 } 956 957 static bool CopyStringDataToBufferSP(const StreamString &source, 958 lldb::DataBufferSP &destination) { 959 destination = std::make_shared<DataBufferHeap>(source.GetSize() + 1, 0); 960 memcpy(destination->GetBytes(), source.GetString().data(), source.GetSize()); 961 return true; 962 } 963 964 std::pair<size_t, bool> 965 ValueObject::ReadPointedString(lldb::DataBufferSP &buffer_sp, Status &error, 966 uint32_t max_length, bool honor_array, 967 Format item_format) { 968 bool was_capped = false; 969 StreamString s; 970 ExecutionContext exe_ctx(GetExecutionContextRef()); 971 Target *target = exe_ctx.GetTargetPtr(); 972 973 if (!target) { 974 s << "<no target to read from>"; 975 error.SetErrorString("no target to read from"); 976 CopyStringDataToBufferSP(s, buffer_sp); 977 return {0, was_capped}; 978 } 979 980 if (max_length == 0) 981 max_length = target->GetMaximumSizeOfStringSummary(); 982 983 size_t bytes_read = 0; 984 size_t total_bytes_read = 0; 985 986 CompilerType compiler_type = GetCompilerType(); 987 CompilerType elem_or_pointee_compiler_type; 988 const Flags type_flags(GetTypeInfo(&elem_or_pointee_compiler_type)); 989 if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 990 elem_or_pointee_compiler_type.IsCharType()) { 991 addr_t cstr_address = LLDB_INVALID_ADDRESS; 992 AddressType cstr_address_type = eAddressTypeInvalid; 993 994 size_t cstr_len = 0; 995 bool capped_data = false; 996 const bool is_array = type_flags.Test(eTypeIsArray); 997 if (is_array) { 998 // We have an array 999 uint64_t array_size = 0; 1000 if (compiler_type.IsArrayType(nullptr, &array_size, nullptr)) { 1001 cstr_len = array_size; 1002 if (cstr_len > max_length) { 1003 capped_data = true; 1004 cstr_len = max_length; 1005 } 1006 } 1007 cstr_address = GetAddressOf(true, &cstr_address_type); 1008 } else { 1009 // We have a pointer 1010 cstr_address = GetPointerValue(&cstr_address_type); 1011 } 1012 1013 if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) { 1014 if (cstr_address_type == eAddressTypeHost && is_array) { 1015 const char *cstr = GetDataExtractor().PeekCStr(0); 1016 if (cstr == nullptr) { 1017 s << "<invalid address>"; 1018 error.SetErrorString("invalid address"); 1019 CopyStringDataToBufferSP(s, buffer_sp); 1020 return {0, was_capped}; 1021 } 1022 buffer_sp = std::make_shared<DataBufferHeap>(cstr_len, 0); 1023 memcpy(buffer_sp->GetBytes(), cstr, cstr_len); 1024 return {cstr_len, was_capped}; 1025 } else { 1026 s << "<invalid address>"; 1027 error.SetErrorString("invalid address"); 1028 CopyStringDataToBufferSP(s, buffer_sp); 1029 return {0, was_capped}; 1030 } 1031 } 1032 1033 Address cstr_so_addr(cstr_address); 1034 DataExtractor data; 1035 if (cstr_len > 0 && honor_array) { 1036 // I am using GetPointeeData() here to abstract the fact that some 1037 // ValueObjects are actually frozen pointers in the host but the pointed- 1038 // to data lives in the debuggee, and GetPointeeData() automatically 1039 // takes care of this 1040 GetPointeeData(data, 0, cstr_len); 1041 1042 if ((bytes_read = data.GetByteSize()) > 0) { 1043 total_bytes_read = bytes_read; 1044 for (size_t offset = 0; offset < bytes_read; offset++) 1045 s.Printf("%c", *data.PeekData(offset, 1)); 1046 if (capped_data) 1047 was_capped = true; 1048 } 1049 } else { 1050 cstr_len = max_length; 1051 const size_t k_max_buf_size = 64; 1052 1053 size_t offset = 0; 1054 1055 int cstr_len_displayed = -1; 1056 bool capped_cstr = false; 1057 // I am using GetPointeeData() here to abstract the fact that some 1058 // ValueObjects are actually frozen pointers in the host but the pointed- 1059 // to data lives in the debuggee, and GetPointeeData() automatically 1060 // takes care of this 1061 while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) { 1062 total_bytes_read += bytes_read; 1063 const char *cstr = data.PeekCStr(0); 1064 size_t len = strnlen(cstr, k_max_buf_size); 1065 if (cstr_len_displayed < 0) 1066 cstr_len_displayed = len; 1067 1068 if (len == 0) 1069 break; 1070 cstr_len_displayed += len; 1071 if (len > bytes_read) 1072 len = bytes_read; 1073 if (len > cstr_len) 1074 len = cstr_len; 1075 1076 for (size_t offset = 0; offset < bytes_read; offset++) 1077 s.Printf("%c", *data.PeekData(offset, 1)); 1078 1079 if (len < k_max_buf_size) 1080 break; 1081 1082 if (len >= cstr_len) { 1083 capped_cstr = true; 1084 break; 1085 } 1086 1087 cstr_len -= len; 1088 offset += len; 1089 } 1090 1091 if (cstr_len_displayed >= 0) { 1092 if (capped_cstr) 1093 was_capped = true; 1094 } 1095 } 1096 } else { 1097 error.SetErrorString("not a string object"); 1098 s << "<not a string object>"; 1099 } 1100 CopyStringDataToBufferSP(s, buffer_sp); 1101 return {total_bytes_read, was_capped}; 1102 } 1103 1104 const char *ValueObject::GetObjectDescription() { 1105 if (!UpdateValueIfNeeded(true)) 1106 return nullptr; 1107 1108 // Return cached value. 1109 if (!m_object_desc_str.empty()) 1110 return m_object_desc_str.c_str(); 1111 1112 ExecutionContext exe_ctx(GetExecutionContextRef()); 1113 Process *process = exe_ctx.GetProcessPtr(); 1114 if (!process) 1115 return nullptr; 1116 1117 // Returns the object description produced by one language runtime. 1118 auto get_object_description = [&](LanguageType language) -> const char * { 1119 if (LanguageRuntime *runtime = process->GetLanguageRuntime(language)) { 1120 StreamString s; 1121 if (runtime->GetObjectDescription(s, *this)) { 1122 m_object_desc_str.append(std::string(s.GetString())); 1123 return m_object_desc_str.c_str(); 1124 } 1125 } 1126 return nullptr; 1127 }; 1128 1129 // Try the native language runtime first. 1130 LanguageType native_language = GetObjectRuntimeLanguage(); 1131 if (const char *desc = get_object_description(native_language)) 1132 return desc; 1133 1134 // Try the Objective-C language runtime. This fallback is necessary 1135 // for Objective-C++ and mixed Objective-C / C++ programs. 1136 if (Language::LanguageIsCFamily(native_language)) 1137 return get_object_description(eLanguageTypeObjC); 1138 return nullptr; 1139 } 1140 1141 bool ValueObject::GetValueAsCString(const lldb_private::TypeFormatImpl &format, 1142 std::string &destination) { 1143 if (UpdateValueIfNeeded(false)) 1144 return format.FormatObject(this, destination); 1145 else 1146 return false; 1147 } 1148 1149 bool ValueObject::GetValueAsCString(lldb::Format format, 1150 std::string &destination) { 1151 return GetValueAsCString(TypeFormatImpl_Format(format), destination); 1152 } 1153 1154 const char *ValueObject::GetValueAsCString() { 1155 if (UpdateValueIfNeeded(true)) { 1156 lldb::TypeFormatImplSP format_sp; 1157 lldb::Format my_format = GetFormat(); 1158 if (my_format == lldb::eFormatDefault) { 1159 if (m_type_format_sp) 1160 format_sp = m_type_format_sp; 1161 else { 1162 if (m_is_bitfield_for_scalar) 1163 my_format = eFormatUnsigned; 1164 else { 1165 if (m_value.GetContextType() == Value::eContextTypeRegisterInfo) { 1166 const RegisterInfo *reg_info = m_value.GetRegisterInfo(); 1167 if (reg_info) 1168 my_format = reg_info->format; 1169 } else { 1170 my_format = GetValue().GetCompilerType().GetFormat(); 1171 } 1172 } 1173 } 1174 } 1175 if (my_format != m_last_format || m_value_str.empty()) { 1176 m_last_format = my_format; 1177 if (!format_sp) 1178 format_sp = std::make_shared<TypeFormatImpl_Format>(my_format); 1179 if (GetValueAsCString(*format_sp.get(), m_value_str)) { 1180 if (!m_value_did_change && m_old_value_valid) { 1181 // The value was gotten successfully, so we consider the value as 1182 // changed if the value string differs 1183 SetValueDidChange(m_old_value_str != m_value_str); 1184 } 1185 } 1186 } 1187 } 1188 if (m_value_str.empty()) 1189 return nullptr; 1190 return m_value_str.c_str(); 1191 } 1192 1193 // if > 8bytes, 0 is returned. this method should mostly be used to read 1194 // address values out of pointers 1195 uint64_t ValueObject::GetValueAsUnsigned(uint64_t fail_value, bool *success) { 1196 // If our byte size is zero this is an aggregate type that has children 1197 if (CanProvideValue()) { 1198 Scalar scalar; 1199 if (ResolveValue(scalar)) { 1200 if (success) 1201 *success = true; 1202 scalar.MakeUnsigned(); 1203 return scalar.ULongLong(fail_value); 1204 } 1205 // fallthrough, otherwise... 1206 } 1207 1208 if (success) 1209 *success = false; 1210 return fail_value; 1211 } 1212 1213 int64_t ValueObject::GetValueAsSigned(int64_t fail_value, bool *success) { 1214 // If our byte size is zero this is an aggregate type that has children 1215 if (CanProvideValue()) { 1216 Scalar scalar; 1217 if (ResolveValue(scalar)) { 1218 if (success) 1219 *success = true; 1220 scalar.MakeSigned(); 1221 return scalar.SLongLong(fail_value); 1222 } 1223 // fallthrough, otherwise... 1224 } 1225 1226 if (success) 1227 *success = false; 1228 return fail_value; 1229 } 1230 1231 // if any more "special cases" are added to 1232 // ValueObject::DumpPrintableRepresentation() please keep this call up to date 1233 // by returning true for your new special cases. We will eventually move to 1234 // checking this call result before trying to display special cases 1235 bool ValueObject::HasSpecialPrintableRepresentation( 1236 ValueObjectRepresentationStyle val_obj_display, Format custom_format) { 1237 Flags flags(GetTypeInfo()); 1238 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1239 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1240 if (IsCStringContainer(true) && 1241 (custom_format == eFormatCString || custom_format == eFormatCharArray || 1242 custom_format == eFormatChar || custom_format == eFormatVectorOfChar)) 1243 return true; 1244 1245 if (flags.Test(eTypeIsArray)) { 1246 if ((custom_format == eFormatBytes) || 1247 (custom_format == eFormatBytesWithASCII)) 1248 return true; 1249 1250 if ((custom_format == eFormatVectorOfChar) || 1251 (custom_format == eFormatVectorOfFloat32) || 1252 (custom_format == eFormatVectorOfFloat64) || 1253 (custom_format == eFormatVectorOfSInt16) || 1254 (custom_format == eFormatVectorOfSInt32) || 1255 (custom_format == eFormatVectorOfSInt64) || 1256 (custom_format == eFormatVectorOfSInt8) || 1257 (custom_format == eFormatVectorOfUInt128) || 1258 (custom_format == eFormatVectorOfUInt16) || 1259 (custom_format == eFormatVectorOfUInt32) || 1260 (custom_format == eFormatVectorOfUInt64) || 1261 (custom_format == eFormatVectorOfUInt8)) 1262 return true; 1263 } 1264 } 1265 return false; 1266 } 1267 1268 bool ValueObject::DumpPrintableRepresentation( 1269 Stream &s, ValueObjectRepresentationStyle val_obj_display, 1270 Format custom_format, PrintableRepresentationSpecialCases special, 1271 bool do_dump_error) { 1272 1273 Flags flags(GetTypeInfo()); 1274 1275 bool allow_special = 1276 (special == ValueObject::PrintableRepresentationSpecialCases::eAllow); 1277 const bool only_special = false; 1278 1279 if (allow_special) { 1280 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1281 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1282 // when being asked to get a printable display an array or pointer type 1283 // directly, try to "do the right thing" 1284 1285 if (IsCStringContainer(true) && 1286 (custom_format == eFormatCString || 1287 custom_format == eFormatCharArray || custom_format == eFormatChar || 1288 custom_format == 1289 eFormatVectorOfChar)) // print char[] & char* directly 1290 { 1291 Status error; 1292 lldb::DataBufferSP buffer_sp; 1293 std::pair<size_t, bool> read_string = ReadPointedString( 1294 buffer_sp, error, 0, (custom_format == eFormatVectorOfChar) || 1295 (custom_format == eFormatCharArray)); 1296 lldb_private::formatters::StringPrinter:: 1297 ReadBufferAndDumpToStreamOptions options(*this); 1298 options.SetData(DataExtractor( 1299 buffer_sp, lldb::eByteOrderInvalid, 1300 8)); // none of this matters for a string - pass some defaults 1301 options.SetStream(&s); 1302 options.SetPrefixToken(nullptr); 1303 options.SetQuote('"'); 1304 options.SetSourceSize(buffer_sp->GetByteSize()); 1305 options.SetIsTruncated(read_string.second); 1306 formatters::StringPrinter::ReadBufferAndDumpToStream< 1307 lldb_private::formatters::StringPrinter::StringElementType::ASCII>( 1308 options); 1309 return !error.Fail(); 1310 } 1311 1312 if (custom_format == eFormatEnum) 1313 return false; 1314 1315 // this only works for arrays, because I have no way to know when the 1316 // pointed memory ends, and no special \0 end of data marker 1317 if (flags.Test(eTypeIsArray)) { 1318 if ((custom_format == eFormatBytes) || 1319 (custom_format == eFormatBytesWithASCII)) { 1320 const size_t count = GetNumChildren(); 1321 1322 s << '['; 1323 for (size_t low = 0; low < count; low++) { 1324 1325 if (low) 1326 s << ','; 1327 1328 ValueObjectSP child = GetChildAtIndex(low, true); 1329 if (!child.get()) { 1330 s << "<invalid child>"; 1331 continue; 1332 } 1333 child->DumpPrintableRepresentation( 1334 s, ValueObject::eValueObjectRepresentationStyleValue, 1335 custom_format); 1336 } 1337 1338 s << ']'; 1339 1340 return true; 1341 } 1342 1343 if ((custom_format == eFormatVectorOfChar) || 1344 (custom_format == eFormatVectorOfFloat32) || 1345 (custom_format == eFormatVectorOfFloat64) || 1346 (custom_format == eFormatVectorOfSInt16) || 1347 (custom_format == eFormatVectorOfSInt32) || 1348 (custom_format == eFormatVectorOfSInt64) || 1349 (custom_format == eFormatVectorOfSInt8) || 1350 (custom_format == eFormatVectorOfUInt128) || 1351 (custom_format == eFormatVectorOfUInt16) || 1352 (custom_format == eFormatVectorOfUInt32) || 1353 (custom_format == eFormatVectorOfUInt64) || 1354 (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes 1355 // with ASCII or any vector 1356 // format should be printed 1357 // directly 1358 { 1359 const size_t count = GetNumChildren(); 1360 1361 Format format = FormatManager::GetSingleItemFormat(custom_format); 1362 1363 s << '['; 1364 for (size_t low = 0; low < count; low++) { 1365 1366 if (low) 1367 s << ','; 1368 1369 ValueObjectSP child = GetChildAtIndex(low, true); 1370 if (!child.get()) { 1371 s << "<invalid child>"; 1372 continue; 1373 } 1374 child->DumpPrintableRepresentation( 1375 s, ValueObject::eValueObjectRepresentationStyleValue, format); 1376 } 1377 1378 s << ']'; 1379 1380 return true; 1381 } 1382 } 1383 1384 if ((custom_format == eFormatBoolean) || 1385 (custom_format == eFormatBinary) || (custom_format == eFormatChar) || 1386 (custom_format == eFormatCharPrintable) || 1387 (custom_format == eFormatComplexFloat) || 1388 (custom_format == eFormatDecimal) || (custom_format == eFormatHex) || 1389 (custom_format == eFormatHexUppercase) || 1390 (custom_format == eFormatFloat) || (custom_format == eFormatOctal) || 1391 (custom_format == eFormatOSType) || 1392 (custom_format == eFormatUnicode16) || 1393 (custom_format == eFormatUnicode32) || 1394 (custom_format == eFormatUnsigned) || 1395 (custom_format == eFormatPointer) || 1396 (custom_format == eFormatComplexInteger) || 1397 (custom_format == eFormatComplex) || 1398 (custom_format == eFormatDefault)) // use the [] operator 1399 return false; 1400 } 1401 } 1402 1403 if (only_special) 1404 return false; 1405 1406 bool var_success = false; 1407 1408 { 1409 llvm::StringRef str; 1410 1411 // this is a local stream that we are using to ensure that the data pointed 1412 // to by cstr survives long enough for us to copy it to its destination - 1413 // it is necessary to have this temporary storage area for cases where our 1414 // desired output is not backed by some other longer-term storage 1415 StreamString strm; 1416 1417 if (custom_format != eFormatInvalid) 1418 SetFormat(custom_format); 1419 1420 switch (val_obj_display) { 1421 case eValueObjectRepresentationStyleValue: 1422 str = GetValueAsCString(); 1423 break; 1424 1425 case eValueObjectRepresentationStyleSummary: 1426 str = GetSummaryAsCString(); 1427 break; 1428 1429 case eValueObjectRepresentationStyleLanguageSpecific: 1430 str = GetObjectDescription(); 1431 break; 1432 1433 case eValueObjectRepresentationStyleLocation: 1434 str = GetLocationAsCString(); 1435 break; 1436 1437 case eValueObjectRepresentationStyleChildrenCount: 1438 strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren()); 1439 str = strm.GetString(); 1440 break; 1441 1442 case eValueObjectRepresentationStyleType: 1443 str = GetTypeName().GetStringRef(); 1444 break; 1445 1446 case eValueObjectRepresentationStyleName: 1447 str = GetName().GetStringRef(); 1448 break; 1449 1450 case eValueObjectRepresentationStyleExpressionPath: 1451 GetExpressionPath(strm); 1452 str = strm.GetString(); 1453 break; 1454 } 1455 1456 if (str.empty()) { 1457 if (val_obj_display == eValueObjectRepresentationStyleValue) 1458 str = GetSummaryAsCString(); 1459 else if (val_obj_display == eValueObjectRepresentationStyleSummary) { 1460 if (!CanProvideValue()) { 1461 strm.Printf("%s @ %s", GetTypeName().AsCString(), 1462 GetLocationAsCString()); 1463 str = strm.GetString(); 1464 } else 1465 str = GetValueAsCString(); 1466 } 1467 } 1468 1469 if (!str.empty()) 1470 s << str; 1471 else { 1472 if (m_error.Fail()) { 1473 if (do_dump_error) 1474 s.Printf("<%s>", m_error.AsCString()); 1475 else 1476 return false; 1477 } else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1478 s.PutCString("<no summary available>"); 1479 else if (val_obj_display == eValueObjectRepresentationStyleValue) 1480 s.PutCString("<no value available>"); 1481 else if (val_obj_display == 1482 eValueObjectRepresentationStyleLanguageSpecific) 1483 s.PutCString("<not a valid Objective-C object>"); // edit this if we 1484 // have other runtimes 1485 // that support a 1486 // description 1487 else 1488 s.PutCString("<no printable representation>"); 1489 } 1490 1491 // we should only return false here if we could not do *anything* even if 1492 // we have an error message as output, that's a success from our callers' 1493 // perspective, so return true 1494 var_success = true; 1495 1496 if (custom_format != eFormatInvalid) 1497 SetFormat(eFormatDefault); 1498 } 1499 1500 return var_success; 1501 } 1502 1503 addr_t ValueObject::GetAddressOf(bool scalar_is_load_address, 1504 AddressType *address_type) { 1505 // Can't take address of a bitfield 1506 if (IsBitfield()) 1507 return LLDB_INVALID_ADDRESS; 1508 1509 if (!UpdateValueIfNeeded(false)) 1510 return LLDB_INVALID_ADDRESS; 1511 1512 switch (m_value.GetValueType()) { 1513 case Value::eValueTypeScalar: 1514 case Value::eValueTypeVector: 1515 if (scalar_is_load_address) { 1516 if (address_type) 1517 *address_type = eAddressTypeLoad; 1518 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1519 } 1520 break; 1521 1522 case Value::eValueTypeLoadAddress: 1523 case Value::eValueTypeFileAddress: { 1524 if (address_type) 1525 *address_type = m_value.GetValueAddressType(); 1526 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1527 } break; 1528 case Value::eValueTypeHostAddress: { 1529 if (address_type) 1530 *address_type = m_value.GetValueAddressType(); 1531 return LLDB_INVALID_ADDRESS; 1532 } break; 1533 } 1534 if (address_type) 1535 *address_type = eAddressTypeInvalid; 1536 return LLDB_INVALID_ADDRESS; 1537 } 1538 1539 addr_t ValueObject::GetPointerValue(AddressType *address_type) { 1540 addr_t address = LLDB_INVALID_ADDRESS; 1541 if (address_type) 1542 *address_type = eAddressTypeInvalid; 1543 1544 if (!UpdateValueIfNeeded(false)) 1545 return address; 1546 1547 switch (m_value.GetValueType()) { 1548 case Value::eValueTypeScalar: 1549 case Value::eValueTypeVector: 1550 address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1551 break; 1552 1553 case Value::eValueTypeHostAddress: 1554 case Value::eValueTypeLoadAddress: 1555 case Value::eValueTypeFileAddress: { 1556 lldb::offset_t data_offset = 0; 1557 address = m_data.GetAddress(&data_offset); 1558 } break; 1559 } 1560 1561 if (address_type) 1562 *address_type = GetAddressTypeOfChildren(); 1563 1564 return address; 1565 } 1566 1567 bool ValueObject::SetValueFromCString(const char *value_str, Status &error) { 1568 error.Clear(); 1569 // Make sure our value is up to date first so that our location and location 1570 // type is valid. 1571 if (!UpdateValueIfNeeded(false)) { 1572 error.SetErrorString("unable to read value"); 1573 return false; 1574 } 1575 1576 uint64_t count = 0; 1577 const Encoding encoding = GetCompilerType().GetEncoding(count); 1578 1579 const size_t byte_size = GetByteSize(); 1580 1581 Value::ValueType value_type = m_value.GetValueType(); 1582 1583 if (value_type == Value::eValueTypeScalar) { 1584 // If the value is already a scalar, then let the scalar change itself: 1585 m_value.GetScalar().SetValueFromCString(value_str, encoding, byte_size); 1586 } else if (byte_size <= 16) { 1587 // If the value fits in a scalar, then make a new scalar and again let the 1588 // scalar code do the conversion, then figure out where to put the new 1589 // value. 1590 Scalar new_scalar; 1591 error = new_scalar.SetValueFromCString(value_str, encoding, byte_size); 1592 if (error.Success()) { 1593 switch (value_type) { 1594 case Value::eValueTypeLoadAddress: { 1595 // If it is a load address, then the scalar value is the storage 1596 // location of the data, and we have to shove this value down to that 1597 // load location. 1598 ExecutionContext exe_ctx(GetExecutionContextRef()); 1599 Process *process = exe_ctx.GetProcessPtr(); 1600 if (process) { 1601 addr_t target_addr = 1602 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1603 size_t bytes_written = process->WriteScalarToMemory( 1604 target_addr, new_scalar, byte_size, error); 1605 if (!error.Success()) 1606 return false; 1607 if (bytes_written != byte_size) { 1608 error.SetErrorString("unable to write value to memory"); 1609 return false; 1610 } 1611 } 1612 } break; 1613 case Value::eValueTypeHostAddress: { 1614 // If it is a host address, then we stuff the scalar as a DataBuffer 1615 // into the Value's data. 1616 DataExtractor new_data; 1617 new_data.SetByteOrder(m_data.GetByteOrder()); 1618 1619 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 1620 m_data.SetData(buffer_sp, 0); 1621 bool success = new_scalar.GetData(new_data); 1622 if (success) { 1623 new_data.CopyByteOrderedData( 1624 0, byte_size, const_cast<uint8_t *>(m_data.GetDataStart()), 1625 byte_size, m_data.GetByteOrder()); 1626 } 1627 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1628 1629 } break; 1630 case Value::eValueTypeFileAddress: 1631 case Value::eValueTypeScalar: 1632 case Value::eValueTypeVector: 1633 break; 1634 } 1635 } else { 1636 return false; 1637 } 1638 } else { 1639 // We don't support setting things bigger than a scalar at present. 1640 error.SetErrorString("unable to write aggregate data type"); 1641 return false; 1642 } 1643 1644 // If we have reached this point, then we have successfully changed the 1645 // value. 1646 SetNeedsUpdate(); 1647 return true; 1648 } 1649 1650 bool ValueObject::GetDeclaration(Declaration &decl) { 1651 decl.Clear(); 1652 return false; 1653 } 1654 1655 ConstString ValueObject::GetTypeName() { 1656 return GetCompilerType().GetTypeName(); 1657 } 1658 1659 ConstString ValueObject::GetDisplayTypeName() { return GetTypeName(); } 1660 1661 ConstString ValueObject::GetQualifiedTypeName() { 1662 return GetCompilerType().GetTypeName(); 1663 } 1664 1665 LanguageType ValueObject::GetObjectRuntimeLanguage() { 1666 return GetCompilerType().GetMinimumLanguage(); 1667 } 1668 1669 void ValueObject::AddSyntheticChild(ConstString key, 1670 ValueObject *valobj) { 1671 m_synthetic_children[key] = valobj; 1672 } 1673 1674 ValueObjectSP ValueObject::GetSyntheticChild(ConstString key) const { 1675 ValueObjectSP synthetic_child_sp; 1676 std::map<ConstString, ValueObject *>::const_iterator pos = 1677 m_synthetic_children.find(key); 1678 if (pos != m_synthetic_children.end()) 1679 synthetic_child_sp = pos->second->GetSP(); 1680 return synthetic_child_sp; 1681 } 1682 1683 uint32_t 1684 ValueObject::GetTypeInfo(CompilerType *pointee_or_element_compiler_type) { 1685 return GetCompilerType().GetTypeInfo(pointee_or_element_compiler_type); 1686 } 1687 1688 bool ValueObject::IsPointerType() { return GetCompilerType().IsPointerType(); } 1689 1690 bool ValueObject::IsArrayType() { 1691 return GetCompilerType().IsArrayType(nullptr, nullptr, nullptr); 1692 } 1693 1694 bool ValueObject::IsScalarType() { return GetCompilerType().IsScalarType(); } 1695 1696 bool ValueObject::IsIntegerType(bool &is_signed) { 1697 return GetCompilerType().IsIntegerType(is_signed); 1698 } 1699 1700 bool ValueObject::IsPointerOrReferenceType() { 1701 return GetCompilerType().IsPointerOrReferenceType(); 1702 } 1703 1704 bool ValueObject::IsPossibleDynamicType() { 1705 ExecutionContext exe_ctx(GetExecutionContextRef()); 1706 Process *process = exe_ctx.GetProcessPtr(); 1707 if (process) 1708 return process->IsPossibleDynamicValue(*this); 1709 else 1710 return GetCompilerType().IsPossibleDynamicType(nullptr, true, true); 1711 } 1712 1713 bool ValueObject::IsRuntimeSupportValue() { 1714 Process *process(GetProcessSP().get()); 1715 if (!process) 1716 return false; 1717 1718 // We trust the the compiler did the right thing and marked runtime support 1719 // values as artificial. 1720 if (!GetVariable() || !GetVariable()->IsArtificial()) 1721 return false; 1722 1723 if (auto *runtime = process->GetLanguageRuntime(GetVariable()->GetLanguage())) 1724 if (runtime->IsAllowedRuntimeValue(GetName())) 1725 return false; 1726 1727 return true; 1728 } 1729 1730 bool ValueObject::IsNilReference() { 1731 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1732 return language->IsNilReference(*this); 1733 } 1734 return false; 1735 } 1736 1737 bool ValueObject::IsUninitializedReference() { 1738 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1739 return language->IsUninitializedReference(*this); 1740 } 1741 return false; 1742 } 1743 1744 // This allows you to create an array member using and index that doesn't not 1745 // fall in the normal bounds of the array. Many times structure can be defined 1746 // as: struct Collection { 1747 // uint32_t item_count; 1748 // Item item_array[0]; 1749 // }; 1750 // The size of the "item_array" is 1, but many times in practice there are more 1751 // items in "item_array". 1752 1753 ValueObjectSP ValueObject::GetSyntheticArrayMember(size_t index, 1754 bool can_create) { 1755 ValueObjectSP synthetic_child_sp; 1756 if (IsPointerType() || IsArrayType()) { 1757 char index_str[64]; 1758 snprintf(index_str, sizeof(index_str), "[%" PRIu64 "]", (uint64_t)index); 1759 ConstString index_const_str(index_str); 1760 // Check if we have already created a synthetic array member in this valid 1761 // object. If we have we will re-use it. 1762 synthetic_child_sp = GetSyntheticChild(index_const_str); 1763 if (!synthetic_child_sp) { 1764 ValueObject *synthetic_child; 1765 // We haven't made a synthetic array member for INDEX yet, so lets make 1766 // one and cache it for any future reference. 1767 synthetic_child = CreateChildAtIndex(0, true, index); 1768 1769 // Cache the value if we got one back... 1770 if (synthetic_child) { 1771 AddSyntheticChild(index_const_str, synthetic_child); 1772 synthetic_child_sp = synthetic_child->GetSP(); 1773 synthetic_child_sp->SetName(ConstString(index_str)); 1774 synthetic_child_sp->m_is_array_item_for_pointer = true; 1775 } 1776 } 1777 } 1778 return synthetic_child_sp; 1779 } 1780 1781 ValueObjectSP ValueObject::GetSyntheticBitFieldChild(uint32_t from, uint32_t to, 1782 bool can_create) { 1783 ValueObjectSP synthetic_child_sp; 1784 if (IsScalarType()) { 1785 char index_str[64]; 1786 snprintf(index_str, sizeof(index_str), "[%i-%i]", from, to); 1787 ConstString index_const_str(index_str); 1788 // Check if we have already created a synthetic array member in this valid 1789 // object. If we have we will re-use it. 1790 synthetic_child_sp = GetSyntheticChild(index_const_str); 1791 if (!synthetic_child_sp) { 1792 uint32_t bit_field_size = to - from + 1; 1793 uint32_t bit_field_offset = from; 1794 if (GetDataExtractor().GetByteOrder() == eByteOrderBig) 1795 bit_field_offset = 1796 GetByteSize() * 8 - bit_field_size - bit_field_offset; 1797 // We haven't made a synthetic array member for INDEX yet, so lets make 1798 // one and cache it for any future reference. 1799 ValueObjectChild *synthetic_child = new ValueObjectChild( 1800 *this, GetCompilerType(), index_const_str, GetByteSize(), 0, 1801 bit_field_size, bit_field_offset, false, false, eAddressTypeInvalid, 1802 0); 1803 1804 // Cache the value if we got one back... 1805 if (synthetic_child) { 1806 AddSyntheticChild(index_const_str, synthetic_child); 1807 synthetic_child_sp = synthetic_child->GetSP(); 1808 synthetic_child_sp->SetName(ConstString(index_str)); 1809 synthetic_child_sp->m_is_bitfield_for_scalar = true; 1810 } 1811 } 1812 } 1813 return synthetic_child_sp; 1814 } 1815 1816 ValueObjectSP ValueObject::GetSyntheticChildAtOffset( 1817 uint32_t offset, const CompilerType &type, bool can_create, 1818 ConstString name_const_str) { 1819 1820 ValueObjectSP synthetic_child_sp; 1821 1822 if (name_const_str.IsEmpty()) { 1823 char name_str[64]; 1824 snprintf(name_str, sizeof(name_str), "@%i", offset); 1825 name_const_str.SetCString(name_str); 1826 } 1827 1828 // Check if we have already created a synthetic array member in this valid 1829 // object. If we have we will re-use it. 1830 synthetic_child_sp = GetSyntheticChild(name_const_str); 1831 1832 if (synthetic_child_sp.get()) 1833 return synthetic_child_sp; 1834 1835 if (!can_create) 1836 return {}; 1837 1838 ExecutionContext exe_ctx(GetExecutionContextRef()); 1839 llvm::Optional<uint64_t> size = 1840 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1841 if (!size) 1842 return {}; 1843 ValueObjectChild *synthetic_child = 1844 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1845 false, false, eAddressTypeInvalid, 0); 1846 if (synthetic_child) { 1847 AddSyntheticChild(name_const_str, synthetic_child); 1848 synthetic_child_sp = synthetic_child->GetSP(); 1849 synthetic_child_sp->SetName(name_const_str); 1850 synthetic_child_sp->m_is_child_at_offset = true; 1851 } 1852 return synthetic_child_sp; 1853 } 1854 1855 ValueObjectSP ValueObject::GetSyntheticBase(uint32_t offset, 1856 const CompilerType &type, 1857 bool can_create, 1858 ConstString name_const_str) { 1859 ValueObjectSP synthetic_child_sp; 1860 1861 if (name_const_str.IsEmpty()) { 1862 char name_str[128]; 1863 snprintf(name_str, sizeof(name_str), "base%s@%i", 1864 type.GetTypeName().AsCString("<unknown>"), offset); 1865 name_const_str.SetCString(name_str); 1866 } 1867 1868 // Check if we have already created a synthetic array member in this valid 1869 // object. If we have we will re-use it. 1870 synthetic_child_sp = GetSyntheticChild(name_const_str); 1871 1872 if (synthetic_child_sp.get()) 1873 return synthetic_child_sp; 1874 1875 if (!can_create) 1876 return {}; 1877 1878 const bool is_base_class = true; 1879 1880 ExecutionContext exe_ctx(GetExecutionContextRef()); 1881 llvm::Optional<uint64_t> size = 1882 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1883 if (!size) 1884 return {}; 1885 ValueObjectChild *synthetic_child = 1886 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1887 is_base_class, false, eAddressTypeInvalid, 0); 1888 if (synthetic_child) { 1889 AddSyntheticChild(name_const_str, synthetic_child); 1890 synthetic_child_sp = synthetic_child->GetSP(); 1891 synthetic_child_sp->SetName(name_const_str); 1892 } 1893 return synthetic_child_sp; 1894 } 1895 1896 // your expression path needs to have a leading . or -> (unless it somehow 1897 // "looks like" an array, in which case it has a leading [ symbol). while the [ 1898 // is meaningful and should be shown to the user, . and -> are just parser 1899 // design, but by no means added information for the user.. strip them off 1900 static const char *SkipLeadingExpressionPathSeparators(const char *expression) { 1901 if (!expression || !expression[0]) 1902 return expression; 1903 if (expression[0] == '.') 1904 return expression + 1; 1905 if (expression[0] == '-' && expression[1] == '>') 1906 return expression + 2; 1907 return expression; 1908 } 1909 1910 ValueObjectSP 1911 ValueObject::GetSyntheticExpressionPathChild(const char *expression, 1912 bool can_create) { 1913 ValueObjectSP synthetic_child_sp; 1914 ConstString name_const_string(expression); 1915 // Check if we have already created a synthetic array member in this valid 1916 // object. If we have we will re-use it. 1917 synthetic_child_sp = GetSyntheticChild(name_const_string); 1918 if (!synthetic_child_sp) { 1919 // We haven't made a synthetic array member for expression yet, so lets 1920 // make one and cache it for any future reference. 1921 synthetic_child_sp = GetValueForExpressionPath( 1922 expression, nullptr, nullptr, 1923 GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal( 1924 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 1925 None)); 1926 1927 // Cache the value if we got one back... 1928 if (synthetic_child_sp.get()) { 1929 // FIXME: this causes a "real" child to end up with its name changed to 1930 // the contents of expression 1931 AddSyntheticChild(name_const_string, synthetic_child_sp.get()); 1932 synthetic_child_sp->SetName( 1933 ConstString(SkipLeadingExpressionPathSeparators(expression))); 1934 } 1935 } 1936 return synthetic_child_sp; 1937 } 1938 1939 void ValueObject::CalculateSyntheticValue() { 1940 TargetSP target_sp(GetTargetSP()); 1941 if (target_sp && !target_sp->GetEnableSyntheticValue()) { 1942 m_synthetic_value = nullptr; 1943 return; 1944 } 1945 1946 lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp); 1947 1948 if (!UpdateFormatsIfNeeded() && m_synthetic_value) 1949 return; 1950 1951 if (m_synthetic_children_sp.get() == nullptr) 1952 return; 1953 1954 if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value) 1955 return; 1956 1957 m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp); 1958 } 1959 1960 void ValueObject::CalculateDynamicValue(DynamicValueType use_dynamic) { 1961 if (use_dynamic == eNoDynamicValues) 1962 return; 1963 1964 if (!m_dynamic_value && !IsDynamic()) { 1965 ExecutionContext exe_ctx(GetExecutionContextRef()); 1966 Process *process = exe_ctx.GetProcessPtr(); 1967 if (process && process->IsPossibleDynamicValue(*this)) { 1968 ClearDynamicTypeInformation(); 1969 m_dynamic_value = new ValueObjectDynamicValue(*this, use_dynamic); 1970 } 1971 } 1972 } 1973 1974 ValueObjectSP ValueObject::GetDynamicValue(DynamicValueType use_dynamic) { 1975 if (use_dynamic == eNoDynamicValues) 1976 return ValueObjectSP(); 1977 1978 if (!IsDynamic() && m_dynamic_value == nullptr) { 1979 CalculateDynamicValue(use_dynamic); 1980 } 1981 if (m_dynamic_value) 1982 return m_dynamic_value->GetSP(); 1983 else 1984 return ValueObjectSP(); 1985 } 1986 1987 ValueObjectSP ValueObject::GetStaticValue() { return GetSP(); } 1988 1989 lldb::ValueObjectSP ValueObject::GetNonSyntheticValue() { return GetSP(); } 1990 1991 ValueObjectSP ValueObject::GetSyntheticValue() { 1992 CalculateSyntheticValue(); 1993 1994 if (m_synthetic_value) 1995 return m_synthetic_value->GetSP(); 1996 else 1997 return ValueObjectSP(); 1998 } 1999 2000 bool ValueObject::HasSyntheticValue() { 2001 UpdateFormatsIfNeeded(); 2002 2003 if (m_synthetic_children_sp.get() == nullptr) 2004 return false; 2005 2006 CalculateSyntheticValue(); 2007 2008 return m_synthetic_value != nullptr; 2009 } 2010 2011 ValueObject *ValueObject::GetNonBaseClassParent() { 2012 if (GetParent()) { 2013 if (GetParent()->IsBaseClass()) 2014 return GetParent()->GetNonBaseClassParent(); 2015 else 2016 return GetParent(); 2017 } 2018 return nullptr; 2019 } 2020 2021 bool ValueObject::IsBaseClass(uint32_t &depth) { 2022 if (!IsBaseClass()) { 2023 depth = 0; 2024 return false; 2025 } 2026 if (GetParent()) { 2027 GetParent()->IsBaseClass(depth); 2028 depth = depth + 1; 2029 return true; 2030 } 2031 // TODO: a base of no parent? weird.. 2032 depth = 1; 2033 return true; 2034 } 2035 2036 void ValueObject::GetExpressionPath(Stream &s, 2037 GetExpressionPathFormat epformat) { 2038 // synthetic children do not actually "exist" as part of the hierarchy, and 2039 // sometimes they are consed up in ways that don't make sense from an 2040 // underlying language/API standpoint. So, use a special code path here to 2041 // return something that can hopefully be used in expression 2042 if (m_is_synthetic_children_generated) { 2043 UpdateValueIfNeeded(); 2044 2045 if (m_value.GetValueType() == Value::eValueTypeLoadAddress) { 2046 if (IsPointerOrReferenceType()) { 2047 s.Printf("((%s)0x%" PRIx64 ")", GetTypeName().AsCString("void"), 2048 GetValueAsUnsigned(0)); 2049 return; 2050 } else { 2051 uint64_t load_addr = 2052 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2053 if (load_addr != LLDB_INVALID_ADDRESS) { 2054 s.Printf("(*( (%s *)0x%" PRIx64 "))", GetTypeName().AsCString("void"), 2055 load_addr); 2056 return; 2057 } 2058 } 2059 } 2060 2061 if (CanProvideValue()) { 2062 s.Printf("((%s)%s)", GetTypeName().AsCString("void"), 2063 GetValueAsCString()); 2064 return; 2065 } 2066 2067 return; 2068 } 2069 2070 const bool is_deref_of_parent = IsDereferenceOfParent(); 2071 2072 if (is_deref_of_parent && 2073 epformat == eGetExpressionPathFormatDereferencePointers) { 2074 // this is the original format of GetExpressionPath() producing code like 2075 // *(a_ptr).memberName, which is entirely fine, until you put this into 2076 // StackFrame::GetValueForVariableExpressionPath() which prefers to see 2077 // a_ptr->memberName. the eHonorPointers mode is meant to produce strings 2078 // in this latter format 2079 s.PutCString("*("); 2080 } 2081 2082 ValueObject *parent = GetParent(); 2083 2084 if (parent) 2085 parent->GetExpressionPath(s, epformat); 2086 2087 // if we are a deref_of_parent just because we are synthetic array members 2088 // made up to allow ptr[%d] syntax to work in variable printing, then add our 2089 // name ([%d]) to the expression path 2090 if (m_is_array_item_for_pointer && 2091 epformat == eGetExpressionPathFormatHonorPointers) 2092 s.PutCString(m_name.GetStringRef()); 2093 2094 if (!IsBaseClass()) { 2095 if (!is_deref_of_parent) { 2096 ValueObject *non_base_class_parent = GetNonBaseClassParent(); 2097 if (non_base_class_parent && 2098 !non_base_class_parent->GetName().IsEmpty()) { 2099 CompilerType non_base_class_parent_compiler_type = 2100 non_base_class_parent->GetCompilerType(); 2101 if (non_base_class_parent_compiler_type) { 2102 if (parent && parent->IsDereferenceOfParent() && 2103 epformat == eGetExpressionPathFormatHonorPointers) { 2104 s.PutCString("->"); 2105 } else { 2106 const uint32_t non_base_class_parent_type_info = 2107 non_base_class_parent_compiler_type.GetTypeInfo(); 2108 2109 if (non_base_class_parent_type_info & eTypeIsPointer) { 2110 s.PutCString("->"); 2111 } else if ((non_base_class_parent_type_info & eTypeHasChildren) && 2112 !(non_base_class_parent_type_info & eTypeIsArray)) { 2113 s.PutChar('.'); 2114 } 2115 } 2116 } 2117 } 2118 2119 const char *name = GetName().GetCString(); 2120 if (name) 2121 s.PutCString(name); 2122 } 2123 } 2124 2125 if (is_deref_of_parent && 2126 epformat == eGetExpressionPathFormatDereferencePointers) { 2127 s.PutChar(')'); 2128 } 2129 } 2130 2131 ValueObjectSP ValueObject::GetValueForExpressionPath( 2132 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2133 ExpressionPathEndResultType *final_value_type, 2134 const GetValueForExpressionPathOptions &options, 2135 ExpressionPathAftermath *final_task_on_target) { 2136 2137 ExpressionPathScanEndReason dummy_reason_to_stop = 2138 ValueObject::eExpressionPathScanEndReasonUnknown; 2139 ExpressionPathEndResultType dummy_final_value_type = 2140 ValueObject::eExpressionPathEndResultTypeInvalid; 2141 ExpressionPathAftermath dummy_final_task_on_target = 2142 ValueObject::eExpressionPathAftermathNothing; 2143 2144 ValueObjectSP ret_val = GetValueForExpressionPath_Impl( 2145 expression, reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2146 final_value_type ? final_value_type : &dummy_final_value_type, options, 2147 final_task_on_target ? final_task_on_target 2148 : &dummy_final_task_on_target); 2149 2150 if (!final_task_on_target || 2151 *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2152 return ret_val; 2153 2154 if (ret_val.get() && 2155 ((final_value_type ? *final_value_type : dummy_final_value_type) == 2156 eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress 2157 // of plain objects 2158 { 2159 if ((final_task_on_target ? *final_task_on_target 2160 : dummy_final_task_on_target) == 2161 ValueObject::eExpressionPathAftermathDereference) { 2162 Status error; 2163 ValueObjectSP final_value = ret_val->Dereference(error); 2164 if (error.Fail() || !final_value.get()) { 2165 if (reason_to_stop) 2166 *reason_to_stop = 2167 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2168 if (final_value_type) 2169 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2170 return ValueObjectSP(); 2171 } else { 2172 if (final_task_on_target) 2173 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2174 return final_value; 2175 } 2176 } 2177 if (*final_task_on_target == 2178 ValueObject::eExpressionPathAftermathTakeAddress) { 2179 Status error; 2180 ValueObjectSP final_value = ret_val->AddressOf(error); 2181 if (error.Fail() || !final_value.get()) { 2182 if (reason_to_stop) 2183 *reason_to_stop = 2184 ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2185 if (final_value_type) 2186 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2187 return ValueObjectSP(); 2188 } else { 2189 if (final_task_on_target) 2190 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2191 return final_value; 2192 } 2193 } 2194 } 2195 return ret_val; // final_task_on_target will still have its original value, so 2196 // you know I did not do it 2197 } 2198 2199 ValueObjectSP ValueObject::GetValueForExpressionPath_Impl( 2200 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2201 ExpressionPathEndResultType *final_result, 2202 const GetValueForExpressionPathOptions &options, 2203 ExpressionPathAftermath *what_next) { 2204 ValueObjectSP root = GetSP(); 2205 2206 if (!root) 2207 return nullptr; 2208 2209 llvm::StringRef remainder = expression; 2210 2211 while (true) { 2212 llvm::StringRef temp_expression = remainder; 2213 2214 CompilerType root_compiler_type = root->GetCompilerType(); 2215 CompilerType pointee_compiler_type; 2216 Flags pointee_compiler_type_info; 2217 2218 Flags root_compiler_type_info( 2219 root_compiler_type.GetTypeInfo(&pointee_compiler_type)); 2220 if (pointee_compiler_type) 2221 pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo()); 2222 2223 if (temp_expression.empty()) { 2224 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2225 return root; 2226 } 2227 2228 switch (temp_expression.front()) { 2229 case '-': { 2230 temp_expression = temp_expression.drop_front(); 2231 if (options.m_check_dot_vs_arrow_syntax && 2232 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2233 // use -> on a 2234 // non-pointer and I 2235 // must catch the error 2236 { 2237 *reason_to_stop = 2238 ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot; 2239 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2240 return ValueObjectSP(); 2241 } 2242 if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to 2243 // extract an ObjC IVar 2244 // when this is forbidden 2245 root_compiler_type_info.Test(eTypeIsPointer) && 2246 options.m_no_fragile_ivar) { 2247 *reason_to_stop = 2248 ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed; 2249 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2250 return ValueObjectSP(); 2251 } 2252 if (!temp_expression.startswith(">")) { 2253 *reason_to_stop = 2254 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2255 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2256 return ValueObjectSP(); 2257 } 2258 } 2259 LLVM_FALLTHROUGH; 2260 case '.': // or fallthrough from -> 2261 { 2262 if (options.m_check_dot_vs_arrow_syntax && 2263 temp_expression.front() == '.' && 2264 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2265 // use . on a pointer 2266 // and I must catch the 2267 // error 2268 { 2269 *reason_to_stop = 2270 ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow; 2271 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2272 return nullptr; 2273 } 2274 temp_expression = temp_expression.drop_front(); // skip . or > 2275 2276 size_t next_sep_pos = temp_expression.find_first_of("-.[", 1); 2277 ConstString child_name; 2278 if (next_sep_pos == llvm::StringRef::npos) // if no other separator just 2279 // expand this last layer 2280 { 2281 child_name.SetString(temp_expression); 2282 ValueObjectSP child_valobj_sp = 2283 root->GetChildMemberWithName(child_name, true); 2284 2285 if (child_valobj_sp.get()) // we know we are done, so just return 2286 { 2287 *reason_to_stop = 2288 ValueObject::eExpressionPathScanEndReasonEndOfString; 2289 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2290 return child_valobj_sp; 2291 } else { 2292 switch (options.m_synthetic_children_traversal) { 2293 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2294 None: 2295 break; 2296 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2297 FromSynthetic: 2298 if (root->IsSynthetic()) { 2299 child_valobj_sp = root->GetNonSyntheticValue(); 2300 if (child_valobj_sp.get()) 2301 child_valobj_sp = 2302 child_valobj_sp->GetChildMemberWithName(child_name, true); 2303 } 2304 break; 2305 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2306 ToSynthetic: 2307 if (!root->IsSynthetic()) { 2308 child_valobj_sp = root->GetSyntheticValue(); 2309 if (child_valobj_sp.get()) 2310 child_valobj_sp = 2311 child_valobj_sp->GetChildMemberWithName(child_name, true); 2312 } 2313 break; 2314 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2315 Both: 2316 if (root->IsSynthetic()) { 2317 child_valobj_sp = root->GetNonSyntheticValue(); 2318 if (child_valobj_sp.get()) 2319 child_valobj_sp = 2320 child_valobj_sp->GetChildMemberWithName(child_name, true); 2321 } else { 2322 child_valobj_sp = root->GetSyntheticValue(); 2323 if (child_valobj_sp.get()) 2324 child_valobj_sp = 2325 child_valobj_sp->GetChildMemberWithName(child_name, true); 2326 } 2327 break; 2328 } 2329 } 2330 2331 // if we are here and options.m_no_synthetic_children is true, 2332 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2333 // branch, and return an error 2334 if (child_valobj_sp.get()) // if it worked, just return 2335 { 2336 *reason_to_stop = 2337 ValueObject::eExpressionPathScanEndReasonEndOfString; 2338 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2339 return child_valobj_sp; 2340 } else { 2341 *reason_to_stop = 2342 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2343 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2344 return nullptr; 2345 } 2346 } else // other layers do expand 2347 { 2348 llvm::StringRef next_separator = temp_expression.substr(next_sep_pos); 2349 2350 child_name.SetString(temp_expression.slice(0, next_sep_pos)); 2351 2352 ValueObjectSP child_valobj_sp = 2353 root->GetChildMemberWithName(child_name, true); 2354 if (child_valobj_sp.get()) // store the new root and move on 2355 { 2356 root = child_valobj_sp; 2357 remainder = next_separator; 2358 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2359 continue; 2360 } else { 2361 switch (options.m_synthetic_children_traversal) { 2362 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2363 None: 2364 break; 2365 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2366 FromSynthetic: 2367 if (root->IsSynthetic()) { 2368 child_valobj_sp = root->GetNonSyntheticValue(); 2369 if (child_valobj_sp.get()) 2370 child_valobj_sp = 2371 child_valobj_sp->GetChildMemberWithName(child_name, true); 2372 } 2373 break; 2374 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2375 ToSynthetic: 2376 if (!root->IsSynthetic()) { 2377 child_valobj_sp = root->GetSyntheticValue(); 2378 if (child_valobj_sp.get()) 2379 child_valobj_sp = 2380 child_valobj_sp->GetChildMemberWithName(child_name, true); 2381 } 2382 break; 2383 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2384 Both: 2385 if (root->IsSynthetic()) { 2386 child_valobj_sp = root->GetNonSyntheticValue(); 2387 if (child_valobj_sp.get()) 2388 child_valobj_sp = 2389 child_valobj_sp->GetChildMemberWithName(child_name, true); 2390 } else { 2391 child_valobj_sp = root->GetSyntheticValue(); 2392 if (child_valobj_sp.get()) 2393 child_valobj_sp = 2394 child_valobj_sp->GetChildMemberWithName(child_name, true); 2395 } 2396 break; 2397 } 2398 } 2399 2400 // if we are here and options.m_no_synthetic_children is true, 2401 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2402 // branch, and return an error 2403 if (child_valobj_sp.get()) // if it worked, move on 2404 { 2405 root = child_valobj_sp; 2406 remainder = next_separator; 2407 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2408 continue; 2409 } else { 2410 *reason_to_stop = 2411 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2412 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2413 return nullptr; 2414 } 2415 } 2416 break; 2417 } 2418 case '[': { 2419 if (!root_compiler_type_info.Test(eTypeIsArray) && 2420 !root_compiler_type_info.Test(eTypeIsPointer) && 2421 !root_compiler_type_info.Test( 2422 eTypeIsVector)) // if this is not a T[] nor a T* 2423 { 2424 if (!root_compiler_type_info.Test( 2425 eTypeIsScalar)) // if this is not even a scalar... 2426 { 2427 if (options.m_synthetic_children_traversal == 2428 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2429 None) // ...only chance left is synthetic 2430 { 2431 *reason_to_stop = 2432 ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 2433 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2434 return ValueObjectSP(); 2435 } 2436 } else if (!options.m_allow_bitfields_syntax) // if this is a scalar, 2437 // check that we can 2438 // expand bitfields 2439 { 2440 *reason_to_stop = 2441 ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 2442 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2443 return ValueObjectSP(); 2444 } 2445 } 2446 if (temp_expression[1] == 2447 ']') // if this is an unbounded range it only works for arrays 2448 { 2449 if (!root_compiler_type_info.Test(eTypeIsArray)) { 2450 *reason_to_stop = 2451 ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 2452 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2453 return nullptr; 2454 } else // even if something follows, we cannot expand unbounded ranges, 2455 // just let the caller do it 2456 { 2457 *reason_to_stop = 2458 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2459 *final_result = 2460 ValueObject::eExpressionPathEndResultTypeUnboundedRange; 2461 return root; 2462 } 2463 } 2464 2465 size_t close_bracket_position = temp_expression.find(']', 1); 2466 if (close_bracket_position == 2467 llvm::StringRef::npos) // if there is no ], this is a syntax error 2468 { 2469 *reason_to_stop = 2470 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2471 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2472 return nullptr; 2473 } 2474 2475 llvm::StringRef bracket_expr = 2476 temp_expression.slice(1, close_bracket_position); 2477 2478 // If this was an empty expression it would have been caught by the if 2479 // above. 2480 assert(!bracket_expr.empty()); 2481 2482 if (!bracket_expr.contains('-')) { 2483 // if no separator, this is of the form [N]. Note that this cannot be 2484 // an unbounded range of the form [], because that case was handled 2485 // above with an unconditional return. 2486 unsigned long index = 0; 2487 if (bracket_expr.getAsInteger(0, index)) { 2488 *reason_to_stop = 2489 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2490 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2491 return nullptr; 2492 } 2493 2494 // from here on we do have a valid index 2495 if (root_compiler_type_info.Test(eTypeIsArray)) { 2496 ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true); 2497 if (!child_valobj_sp) 2498 child_valobj_sp = root->GetSyntheticArrayMember(index, true); 2499 if (!child_valobj_sp) 2500 if (root->HasSyntheticValue() && 2501 root->GetSyntheticValue()->GetNumChildren() > index) 2502 child_valobj_sp = 2503 root->GetSyntheticValue()->GetChildAtIndex(index, true); 2504 if (child_valobj_sp) { 2505 root = child_valobj_sp; 2506 remainder = 2507 temp_expression.substr(close_bracket_position + 1); // skip ] 2508 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2509 continue; 2510 } else { 2511 *reason_to_stop = 2512 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2513 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2514 return nullptr; 2515 } 2516 } else if (root_compiler_type_info.Test(eTypeIsPointer)) { 2517 if (*what_next == 2518 ValueObject:: 2519 eExpressionPathAftermathDereference && // if this is a 2520 // ptr-to-scalar, I 2521 // am accessing it 2522 // by index and I 2523 // would have 2524 // deref'ed anyway, 2525 // then do it now 2526 // and use this as 2527 // a bitfield 2528 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2529 Status error; 2530 root = root->Dereference(error); 2531 if (error.Fail() || !root) { 2532 *reason_to_stop = 2533 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2534 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2535 return nullptr; 2536 } else { 2537 *what_next = eExpressionPathAftermathNothing; 2538 continue; 2539 } 2540 } else { 2541 if (root->GetCompilerType().GetMinimumLanguage() == 2542 eLanguageTypeObjC && 2543 pointee_compiler_type_info.AllClear(eTypeIsPointer) && 2544 root->HasSyntheticValue() && 2545 (options.m_synthetic_children_traversal == 2546 GetValueForExpressionPathOptions:: 2547 SyntheticChildrenTraversal::ToSynthetic || 2548 options.m_synthetic_children_traversal == 2549 GetValueForExpressionPathOptions:: 2550 SyntheticChildrenTraversal::Both)) { 2551 root = root->GetSyntheticValue()->GetChildAtIndex(index, true); 2552 } else 2553 root = root->GetSyntheticArrayMember(index, true); 2554 if (!root) { 2555 *reason_to_stop = 2556 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2557 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2558 return nullptr; 2559 } else { 2560 remainder = 2561 temp_expression.substr(close_bracket_position + 1); // skip ] 2562 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2563 continue; 2564 } 2565 } 2566 } else if (root_compiler_type_info.Test(eTypeIsScalar)) { 2567 root = root->GetSyntheticBitFieldChild(index, index, true); 2568 if (!root) { 2569 *reason_to_stop = 2570 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2571 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2572 return nullptr; 2573 } else // we do not know how to expand members of bitfields, so we 2574 // just return and let the caller do any further processing 2575 { 2576 *reason_to_stop = ValueObject:: 2577 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2578 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2579 return root; 2580 } 2581 } else if (root_compiler_type_info.Test(eTypeIsVector)) { 2582 root = root->GetChildAtIndex(index, true); 2583 if (!root) { 2584 *reason_to_stop = 2585 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2586 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2587 return ValueObjectSP(); 2588 } else { 2589 remainder = 2590 temp_expression.substr(close_bracket_position + 1); // skip ] 2591 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2592 continue; 2593 } 2594 } else if (options.m_synthetic_children_traversal == 2595 GetValueForExpressionPathOptions:: 2596 SyntheticChildrenTraversal::ToSynthetic || 2597 options.m_synthetic_children_traversal == 2598 GetValueForExpressionPathOptions:: 2599 SyntheticChildrenTraversal::Both) { 2600 if (root->HasSyntheticValue()) 2601 root = root->GetSyntheticValue(); 2602 else if (!root->IsSynthetic()) { 2603 *reason_to_stop = 2604 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2605 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2606 return nullptr; 2607 } 2608 // if we are here, then root itself is a synthetic VO.. should be 2609 // good to go 2610 2611 if (!root) { 2612 *reason_to_stop = 2613 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2614 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2615 return nullptr; 2616 } 2617 root = root->GetChildAtIndex(index, true); 2618 if (!root) { 2619 *reason_to_stop = 2620 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2621 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2622 return nullptr; 2623 } else { 2624 remainder = 2625 temp_expression.substr(close_bracket_position + 1); // skip ] 2626 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2627 continue; 2628 } 2629 } else { 2630 *reason_to_stop = 2631 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2632 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2633 return nullptr; 2634 } 2635 } else { 2636 // we have a low and a high index 2637 llvm::StringRef sleft, sright; 2638 unsigned long low_index, high_index; 2639 std::tie(sleft, sright) = bracket_expr.split('-'); 2640 if (sleft.getAsInteger(0, low_index) || 2641 sright.getAsInteger(0, high_index)) { 2642 *reason_to_stop = 2643 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2644 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2645 return nullptr; 2646 } 2647 2648 if (low_index > high_index) // swap indices if required 2649 std::swap(low_index, high_index); 2650 2651 if (root_compiler_type_info.Test( 2652 eTypeIsScalar)) // expansion only works for scalars 2653 { 2654 root = root->GetSyntheticBitFieldChild(low_index, high_index, true); 2655 if (!root) { 2656 *reason_to_stop = 2657 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2658 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2659 return nullptr; 2660 } else { 2661 *reason_to_stop = ValueObject:: 2662 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2663 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2664 return root; 2665 } 2666 } else if (root_compiler_type_info.Test( 2667 eTypeIsPointer) && // if this is a ptr-to-scalar, I am 2668 // accessing it by index and I would 2669 // have deref'ed anyway, then do it 2670 // now and use this as a bitfield 2671 *what_next == 2672 ValueObject::eExpressionPathAftermathDereference && 2673 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2674 Status error; 2675 root = root->Dereference(error); 2676 if (error.Fail() || !root) { 2677 *reason_to_stop = 2678 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2679 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2680 return nullptr; 2681 } else { 2682 *what_next = ValueObject::eExpressionPathAftermathNothing; 2683 continue; 2684 } 2685 } else { 2686 *reason_to_stop = 2687 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2688 *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange; 2689 return root; 2690 } 2691 } 2692 break; 2693 } 2694 default: // some non-separator is in the way 2695 { 2696 *reason_to_stop = 2697 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2698 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2699 return nullptr; 2700 } 2701 } 2702 } 2703 } 2704 2705 void ValueObject::LogValueObject(Log *log) { 2706 if (log) 2707 return LogValueObject(log, DumpValueObjectOptions(*this)); 2708 } 2709 2710 void ValueObject::LogValueObject(Log *log, 2711 const DumpValueObjectOptions &options) { 2712 if (log) { 2713 StreamString s; 2714 Dump(s, options); 2715 if (s.GetSize()) 2716 log->PutCString(s.GetData()); 2717 } 2718 } 2719 2720 void ValueObject::Dump(Stream &s) { Dump(s, DumpValueObjectOptions(*this)); } 2721 2722 void ValueObject::Dump(Stream &s, const DumpValueObjectOptions &options) { 2723 ValueObjectPrinter printer(this, &s, options); 2724 printer.PrintValueObject(); 2725 } 2726 2727 ValueObjectSP ValueObject::CreateConstantValue(ConstString name) { 2728 ValueObjectSP valobj_sp; 2729 2730 if (UpdateValueIfNeeded(false) && m_error.Success()) { 2731 ExecutionContext exe_ctx(GetExecutionContextRef()); 2732 2733 DataExtractor data; 2734 data.SetByteOrder(m_data.GetByteOrder()); 2735 data.SetAddressByteSize(m_data.GetAddressByteSize()); 2736 2737 if (IsBitfield()) { 2738 Value v(Scalar(GetValueAsUnsigned(UINT64_MAX))); 2739 m_error = v.GetValueAsData(&exe_ctx, data, GetModule().get()); 2740 } else 2741 m_error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get()); 2742 2743 valobj_sp = ValueObjectConstResult::Create( 2744 exe_ctx.GetBestExecutionContextScope(), GetCompilerType(), name, data, 2745 GetAddressOf()); 2746 } 2747 2748 if (!valobj_sp) { 2749 ExecutionContext exe_ctx(GetExecutionContextRef()); 2750 valobj_sp = ValueObjectConstResult::Create( 2751 exe_ctx.GetBestExecutionContextScope(), m_error); 2752 } 2753 return valobj_sp; 2754 } 2755 2756 ValueObjectSP ValueObject::GetQualifiedRepresentationIfAvailable( 2757 lldb::DynamicValueType dynValue, bool synthValue) { 2758 ValueObjectSP result_sp(GetSP()); 2759 2760 switch (dynValue) { 2761 case lldb::eDynamicCanRunTarget: 2762 case lldb::eDynamicDontRunTarget: { 2763 if (!result_sp->IsDynamic()) { 2764 if (result_sp->GetDynamicValue(dynValue)) 2765 result_sp = result_sp->GetDynamicValue(dynValue); 2766 } 2767 } break; 2768 case lldb::eNoDynamicValues: { 2769 if (result_sp->IsDynamic()) { 2770 if (result_sp->GetStaticValue()) 2771 result_sp = result_sp->GetStaticValue(); 2772 } 2773 } break; 2774 } 2775 2776 if (synthValue) { 2777 if (!result_sp->IsSynthetic()) { 2778 if (result_sp->GetSyntheticValue()) 2779 result_sp = result_sp->GetSyntheticValue(); 2780 } 2781 } else { 2782 if (result_sp->IsSynthetic()) { 2783 if (result_sp->GetNonSyntheticValue()) 2784 result_sp = result_sp->GetNonSyntheticValue(); 2785 } 2786 } 2787 2788 return result_sp; 2789 } 2790 2791 ValueObjectSP ValueObject::Dereference(Status &error) { 2792 if (m_deref_valobj) 2793 return m_deref_valobj->GetSP(); 2794 2795 const bool is_pointer_or_reference_type = IsPointerOrReferenceType(); 2796 if (is_pointer_or_reference_type) { 2797 bool omit_empty_base_classes = true; 2798 bool ignore_array_bounds = false; 2799 2800 std::string child_name_str; 2801 uint32_t child_byte_size = 0; 2802 int32_t child_byte_offset = 0; 2803 uint32_t child_bitfield_bit_size = 0; 2804 uint32_t child_bitfield_bit_offset = 0; 2805 bool child_is_base_class = false; 2806 bool child_is_deref_of_parent = false; 2807 const bool transparent_pointers = false; 2808 CompilerType compiler_type = GetCompilerType(); 2809 CompilerType child_compiler_type; 2810 uint64_t language_flags = 0; 2811 2812 ExecutionContext exe_ctx(GetExecutionContextRef()); 2813 2814 child_compiler_type = compiler_type.GetChildCompilerTypeAtIndex( 2815 &exe_ctx, 0, transparent_pointers, omit_empty_base_classes, 2816 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 2817 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 2818 child_is_deref_of_parent, this, language_flags); 2819 if (child_compiler_type && child_byte_size) { 2820 ConstString child_name; 2821 if (!child_name_str.empty()) 2822 child_name.SetCString(child_name_str.c_str()); 2823 2824 m_deref_valobj = new ValueObjectChild( 2825 *this, child_compiler_type, child_name, child_byte_size, 2826 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 2827 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 2828 language_flags); 2829 } 2830 2831 // In case of incomplete child compiler type, use the pointee type and try 2832 // to recreate a new ValueObjectChild using it. 2833 if (!m_deref_valobj) { 2834 if (HasSyntheticValue()) { 2835 child_compiler_type = compiler_type.GetPointeeType(); 2836 2837 if (child_compiler_type) { 2838 ConstString child_name; 2839 if (!child_name_str.empty()) 2840 child_name.SetCString(child_name_str.c_str()); 2841 2842 m_deref_valobj = new ValueObjectChild( 2843 *this, child_compiler_type, child_name, child_byte_size, 2844 child_byte_offset, child_bitfield_bit_size, 2845 child_bitfield_bit_offset, child_is_base_class, 2846 child_is_deref_of_parent, eAddressTypeInvalid, language_flags); 2847 } 2848 } 2849 } 2850 2851 } else if (HasSyntheticValue()) { 2852 m_deref_valobj = 2853 GetSyntheticValue() 2854 ->GetChildMemberWithName(ConstString("$$dereference$$"), true) 2855 .get(); 2856 } else if (IsSynthetic()) { 2857 m_deref_valobj = 2858 GetChildMemberWithName(ConstString("$$dereference$$"), true).get(); 2859 } 2860 2861 if (m_deref_valobj) { 2862 error.Clear(); 2863 return m_deref_valobj->GetSP(); 2864 } else { 2865 StreamString strm; 2866 GetExpressionPath(strm); 2867 2868 if (is_pointer_or_reference_type) 2869 error.SetErrorStringWithFormat("dereference failed: (%s) %s", 2870 GetTypeName().AsCString("<invalid type>"), 2871 strm.GetData()); 2872 else 2873 error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s", 2874 GetTypeName().AsCString("<invalid type>"), 2875 strm.GetData()); 2876 return ValueObjectSP(); 2877 } 2878 } 2879 2880 ValueObjectSP ValueObject::AddressOf(Status &error) { 2881 if (m_addr_of_valobj_sp) 2882 return m_addr_of_valobj_sp; 2883 2884 AddressType address_type = eAddressTypeInvalid; 2885 const bool scalar_is_load_address = false; 2886 addr_t addr = GetAddressOf(scalar_is_load_address, &address_type); 2887 error.Clear(); 2888 if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) { 2889 switch (address_type) { 2890 case eAddressTypeInvalid: { 2891 StreamString expr_path_strm; 2892 GetExpressionPath(expr_path_strm); 2893 error.SetErrorStringWithFormat("'%s' is not in memory", 2894 expr_path_strm.GetData()); 2895 } break; 2896 2897 case eAddressTypeFile: 2898 case eAddressTypeLoad: { 2899 CompilerType compiler_type = GetCompilerType(); 2900 if (compiler_type) { 2901 std::string name(1, '&'); 2902 name.append(m_name.AsCString("")); 2903 ExecutionContext exe_ctx(GetExecutionContextRef()); 2904 m_addr_of_valobj_sp = ValueObjectConstResult::Create( 2905 exe_ctx.GetBestExecutionContextScope(), 2906 compiler_type.GetPointerType(), ConstString(name.c_str()), addr, 2907 eAddressTypeInvalid, m_data.GetAddressByteSize()); 2908 } 2909 } break; 2910 default: 2911 break; 2912 } 2913 } else { 2914 StreamString expr_path_strm; 2915 GetExpressionPath(expr_path_strm); 2916 error.SetErrorStringWithFormat("'%s' doesn't have a valid address", 2917 expr_path_strm.GetData()); 2918 } 2919 2920 return m_addr_of_valobj_sp; 2921 } 2922 2923 ValueObjectSP ValueObject::Cast(const CompilerType &compiler_type) { 2924 return ValueObjectCast::Create(*this, GetName(), compiler_type); 2925 } 2926 2927 lldb::ValueObjectSP ValueObject::Clone(ConstString new_name) { 2928 return ValueObjectCast::Create(*this, new_name, GetCompilerType()); 2929 } 2930 2931 ValueObjectSP ValueObject::CastPointerType(const char *name, 2932 CompilerType &compiler_type) { 2933 ValueObjectSP valobj_sp; 2934 AddressType address_type; 2935 addr_t ptr_value = GetPointerValue(&address_type); 2936 2937 if (ptr_value != LLDB_INVALID_ADDRESS) { 2938 Address ptr_addr(ptr_value); 2939 ExecutionContext exe_ctx(GetExecutionContextRef()); 2940 valobj_sp = ValueObjectMemory::Create( 2941 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, compiler_type); 2942 } 2943 return valobj_sp; 2944 } 2945 2946 ValueObjectSP ValueObject::CastPointerType(const char *name, TypeSP &type_sp) { 2947 ValueObjectSP valobj_sp; 2948 AddressType address_type; 2949 addr_t ptr_value = GetPointerValue(&address_type); 2950 2951 if (ptr_value != LLDB_INVALID_ADDRESS) { 2952 Address ptr_addr(ptr_value); 2953 ExecutionContext exe_ctx(GetExecutionContextRef()); 2954 valobj_sp = ValueObjectMemory::Create( 2955 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, type_sp); 2956 } 2957 return valobj_sp; 2958 } 2959 2960 ValueObject::EvaluationPoint::EvaluationPoint() 2961 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) {} 2962 2963 ValueObject::EvaluationPoint::EvaluationPoint(ExecutionContextScope *exe_scope, 2964 bool use_selected) 2965 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) { 2966 ExecutionContext exe_ctx(exe_scope); 2967 TargetSP target_sp(exe_ctx.GetTargetSP()); 2968 if (target_sp) { 2969 m_exe_ctx_ref.SetTargetSP(target_sp); 2970 ProcessSP process_sp(exe_ctx.GetProcessSP()); 2971 if (!process_sp) 2972 process_sp = target_sp->GetProcessSP(); 2973 2974 if (process_sp) { 2975 m_mod_id = process_sp->GetModID(); 2976 m_exe_ctx_ref.SetProcessSP(process_sp); 2977 2978 ThreadSP thread_sp(exe_ctx.GetThreadSP()); 2979 2980 if (!thread_sp) { 2981 if (use_selected) 2982 thread_sp = process_sp->GetThreadList().GetSelectedThread(); 2983 } 2984 2985 if (thread_sp) { 2986 m_exe_ctx_ref.SetThreadSP(thread_sp); 2987 2988 StackFrameSP frame_sp(exe_ctx.GetFrameSP()); 2989 if (!frame_sp) { 2990 if (use_selected) 2991 frame_sp = thread_sp->GetSelectedFrame(); 2992 } 2993 if (frame_sp) 2994 m_exe_ctx_ref.SetFrameSP(frame_sp); 2995 } 2996 } 2997 } 2998 } 2999 3000 ValueObject::EvaluationPoint::EvaluationPoint( 3001 const ValueObject::EvaluationPoint &rhs) 3002 : m_mod_id(), m_exe_ctx_ref(rhs.m_exe_ctx_ref), m_needs_update(true) {} 3003 3004 ValueObject::EvaluationPoint::~EvaluationPoint() {} 3005 3006 // This function checks the EvaluationPoint against the current process state. 3007 // If the current state matches the evaluation point, or the evaluation point 3008 // is already invalid, then we return false, meaning "no change". If the 3009 // current state is different, we update our state, and return true meaning 3010 // "yes, change". If we did see a change, we also set m_needs_update to true, 3011 // so future calls to NeedsUpdate will return true. exe_scope will be set to 3012 // the current execution context scope. 3013 3014 bool ValueObject::EvaluationPoint::SyncWithProcessState( 3015 bool accept_invalid_exe_ctx) { 3016 // Start with the target, if it is NULL, then we're obviously not going to 3017 // get any further: 3018 const bool thread_and_frame_only_if_stopped = true; 3019 ExecutionContext exe_ctx( 3020 m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped)); 3021 3022 if (exe_ctx.GetTargetPtr() == nullptr) 3023 return false; 3024 3025 // If we don't have a process nothing can change. 3026 Process *process = exe_ctx.GetProcessPtr(); 3027 if (process == nullptr) 3028 return false; 3029 3030 // If our stop id is the current stop ID, nothing has changed: 3031 ProcessModID current_mod_id = process->GetModID(); 3032 3033 // If the current stop id is 0, either we haven't run yet, or the process 3034 // state has been cleared. In either case, we aren't going to be able to sync 3035 // with the process state. 3036 if (current_mod_id.GetStopID() == 0) 3037 return false; 3038 3039 bool changed = false; 3040 const bool was_valid = m_mod_id.IsValid(); 3041 if (was_valid) { 3042 if (m_mod_id == current_mod_id) { 3043 // Everything is already up to date in this object, no need to update the 3044 // execution context scope. 3045 changed = false; 3046 } else { 3047 m_mod_id = current_mod_id; 3048 m_needs_update = true; 3049 changed = true; 3050 } 3051 } 3052 3053 // Now re-look up the thread and frame in case the underlying objects have 3054 // gone away & been recreated. That way we'll be sure to return a valid 3055 // exe_scope. If we used to have a thread or a frame but can't find it 3056 // anymore, then mark ourselves as invalid. 3057 3058 if (!accept_invalid_exe_ctx) { 3059 if (m_exe_ctx_ref.HasThreadRef()) { 3060 ThreadSP thread_sp(m_exe_ctx_ref.GetThreadSP()); 3061 if (thread_sp) { 3062 if (m_exe_ctx_ref.HasFrameRef()) { 3063 StackFrameSP frame_sp(m_exe_ctx_ref.GetFrameSP()); 3064 if (!frame_sp) { 3065 // We used to have a frame, but now it is gone 3066 SetInvalid(); 3067 changed = was_valid; 3068 } 3069 } 3070 } else { 3071 // We used to have a thread, but now it is gone 3072 SetInvalid(); 3073 changed = was_valid; 3074 } 3075 } 3076 } 3077 3078 return changed; 3079 } 3080 3081 void ValueObject::EvaluationPoint::SetUpdated() { 3082 ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP()); 3083 if (process_sp) 3084 m_mod_id = process_sp->GetModID(); 3085 m_needs_update = false; 3086 } 3087 3088 void ValueObject::ClearUserVisibleData(uint32_t clear_mask) { 3089 if ((clear_mask & eClearUserVisibleDataItemsValue) == 3090 eClearUserVisibleDataItemsValue) 3091 m_value_str.clear(); 3092 3093 if ((clear_mask & eClearUserVisibleDataItemsLocation) == 3094 eClearUserVisibleDataItemsLocation) 3095 m_location_str.clear(); 3096 3097 if ((clear_mask & eClearUserVisibleDataItemsSummary) == 3098 eClearUserVisibleDataItemsSummary) 3099 m_summary_str.clear(); 3100 3101 if ((clear_mask & eClearUserVisibleDataItemsDescription) == 3102 eClearUserVisibleDataItemsDescription) 3103 m_object_desc_str.clear(); 3104 3105 if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == 3106 eClearUserVisibleDataItemsSyntheticChildren) { 3107 if (m_synthetic_value) 3108 m_synthetic_value = nullptr; 3109 } 3110 } 3111 3112 SymbolContextScope *ValueObject::GetSymbolContextScope() { 3113 if (m_parent) { 3114 if (!m_parent->IsPointerOrReferenceType()) 3115 return m_parent->GetSymbolContextScope(); 3116 } 3117 return nullptr; 3118 } 3119 3120 lldb::ValueObjectSP 3121 ValueObject::CreateValueObjectFromExpression(llvm::StringRef name, 3122 llvm::StringRef expression, 3123 const ExecutionContext &exe_ctx) { 3124 return CreateValueObjectFromExpression(name, expression, exe_ctx, 3125 EvaluateExpressionOptions()); 3126 } 3127 3128 lldb::ValueObjectSP ValueObject::CreateValueObjectFromExpression( 3129 llvm::StringRef name, llvm::StringRef expression, 3130 const ExecutionContext &exe_ctx, const EvaluateExpressionOptions &options) { 3131 lldb::ValueObjectSP retval_sp; 3132 lldb::TargetSP target_sp(exe_ctx.GetTargetSP()); 3133 if (!target_sp) 3134 return retval_sp; 3135 if (expression.empty()) 3136 return retval_sp; 3137 target_sp->EvaluateExpression(expression, exe_ctx.GetFrameSP().get(), 3138 retval_sp, options); 3139 if (retval_sp && !name.empty()) 3140 retval_sp->SetName(ConstString(name)); 3141 return retval_sp; 3142 } 3143 3144 lldb::ValueObjectSP ValueObject::CreateValueObjectFromAddress( 3145 llvm::StringRef name, uint64_t address, const ExecutionContext &exe_ctx, 3146 CompilerType type) { 3147 if (type) { 3148 CompilerType pointer_type(type.GetPointerType()); 3149 if (pointer_type) { 3150 lldb::DataBufferSP buffer( 3151 new lldb_private::DataBufferHeap(&address, sizeof(lldb::addr_t))); 3152 lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create( 3153 exe_ctx.GetBestExecutionContextScope(), pointer_type, 3154 ConstString(name), buffer, exe_ctx.GetByteOrder(), 3155 exe_ctx.GetAddressByteSize())); 3156 if (ptr_result_valobj_sp) { 3157 ptr_result_valobj_sp->GetValue().SetValueType( 3158 Value::eValueTypeLoadAddress); 3159 Status err; 3160 ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err); 3161 if (ptr_result_valobj_sp && !name.empty()) 3162 ptr_result_valobj_sp->SetName(ConstString(name)); 3163 } 3164 return ptr_result_valobj_sp; 3165 } 3166 } 3167 return lldb::ValueObjectSP(); 3168 } 3169 3170 lldb::ValueObjectSP ValueObject::CreateValueObjectFromData( 3171 llvm::StringRef name, const DataExtractor &data, 3172 const ExecutionContext &exe_ctx, CompilerType type) { 3173 lldb::ValueObjectSP new_value_sp; 3174 new_value_sp = ValueObjectConstResult::Create( 3175 exe_ctx.GetBestExecutionContextScope(), type, ConstString(name), data, 3176 LLDB_INVALID_ADDRESS); 3177 new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad); 3178 if (new_value_sp && !name.empty()) 3179 new_value_sp->SetName(ConstString(name)); 3180 return new_value_sp; 3181 } 3182 3183 ModuleSP ValueObject::GetModule() { 3184 ValueObject *root(GetRoot()); 3185 if (root != this) 3186 return root->GetModule(); 3187 return lldb::ModuleSP(); 3188 } 3189 3190 ValueObject *ValueObject::GetRoot() { 3191 if (m_root) 3192 return m_root; 3193 return (m_root = FollowParentChain([](ValueObject *vo) -> bool { 3194 return (vo->m_parent != nullptr); 3195 })); 3196 } 3197 3198 ValueObject * 3199 ValueObject::FollowParentChain(std::function<bool(ValueObject *)> f) { 3200 ValueObject *vo = this; 3201 while (vo) { 3202 if (!f(vo)) 3203 break; 3204 vo = vo->m_parent; 3205 } 3206 return vo; 3207 } 3208 3209 AddressType ValueObject::GetAddressTypeOfChildren() { 3210 if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) { 3211 ValueObject *root(GetRoot()); 3212 if (root != this) 3213 return root->GetAddressTypeOfChildren(); 3214 } 3215 return m_address_type_of_ptr_or_ref_children; 3216 } 3217 3218 lldb::DynamicValueType ValueObject::GetDynamicValueType() { 3219 ValueObject *with_dv_info = this; 3220 while (with_dv_info) { 3221 if (with_dv_info->HasDynamicValueTypeInfo()) 3222 return with_dv_info->GetDynamicValueTypeImpl(); 3223 with_dv_info = with_dv_info->m_parent; 3224 } 3225 return lldb::eNoDynamicValues; 3226 } 3227 3228 lldb::Format ValueObject::GetFormat() const { 3229 const ValueObject *with_fmt_info = this; 3230 while (with_fmt_info) { 3231 if (with_fmt_info->m_format != lldb::eFormatDefault) 3232 return with_fmt_info->m_format; 3233 with_fmt_info = with_fmt_info->m_parent; 3234 } 3235 return m_format; 3236 } 3237 3238 lldb::LanguageType ValueObject::GetPreferredDisplayLanguage() { 3239 lldb::LanguageType type = m_preferred_display_language; 3240 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) { 3241 if (GetRoot()) { 3242 if (GetRoot() == this) { 3243 if (StackFrameSP frame_sp = GetFrameSP()) { 3244 const SymbolContext &sc( 3245 frame_sp->GetSymbolContext(eSymbolContextCompUnit)); 3246 if (CompileUnit *cu = sc.comp_unit) 3247 type = cu->GetLanguage(); 3248 } 3249 } else { 3250 type = GetRoot()->GetPreferredDisplayLanguage(); 3251 } 3252 } 3253 } 3254 return (m_preferred_display_language = type); // only compute it once 3255 } 3256 3257 void ValueObject::SetPreferredDisplayLanguage(lldb::LanguageType lt) { 3258 m_preferred_display_language = lt; 3259 } 3260 3261 void ValueObject::SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType lt) { 3262 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 3263 SetPreferredDisplayLanguage(lt); 3264 } 3265 3266 bool ValueObject::CanProvideValue() { 3267 // we need to support invalid types as providers of values because some bare- 3268 // board debugging scenarios have no notion of types, but still manage to 3269 // have raw numeric values for things like registers. sigh. 3270 const CompilerType &type(GetCompilerType()); 3271 return (!type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue)); 3272 } 3273 3274 bool ValueObject::IsChecksumEmpty() { return m_value_checksum.empty(); } 3275 3276 ValueObjectSP ValueObject::Persist() { 3277 if (!UpdateValueIfNeeded()) 3278 return nullptr; 3279 3280 TargetSP target_sp(GetTargetSP()); 3281 if (!target_sp) 3282 return nullptr; 3283 3284 PersistentExpressionState *persistent_state = 3285 target_sp->GetPersistentExpressionStateForLanguage( 3286 GetPreferredDisplayLanguage()); 3287 3288 if (!persistent_state) 3289 return nullptr; 3290 3291 ConstString name = persistent_state->GetNextPersistentVariableName(); 3292 3293 ValueObjectSP const_result_sp = 3294 ValueObjectConstResult::Create(target_sp.get(), GetValue(), name); 3295 3296 ExpressionVariableSP persistent_var_sp = 3297 persistent_state->CreatePersistentVariable(const_result_sp); 3298 persistent_var_sp->m_live_sp = persistent_var_sp->m_frozen_sp; 3299 persistent_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference; 3300 3301 return persistent_var_sp->GetValueObject(); 3302 } 3303 3304 bool ValueObject::IsSyntheticChildrenGenerated() { 3305 return m_is_synthetic_children_generated; 3306 } 3307 3308 void ValueObject::SetSyntheticChildrenGenerated(bool b) { 3309 m_is_synthetic_children_generated = b; 3310 } 3311 3312 uint64_t ValueObject::GetLanguageFlags() { return m_language_flags; } 3313 3314 void ValueObject::SetLanguageFlags(uint64_t flags) { m_language_flags = flags; } 3315 3316 ValueObjectManager::ValueObjectManager(lldb::ValueObjectSP in_valobj_sp, 3317 lldb::DynamicValueType use_dynamic, 3318 bool use_synthetic) : m_root_valobj_sp(), 3319 m_user_valobj_sp(), m_use_dynamic(use_dynamic), m_stop_id(UINT32_MAX), 3320 m_use_synthetic(use_synthetic) { 3321 if (!in_valobj_sp) 3322 return; 3323 // If the user passes in a value object that is dynamic or synthetic, then 3324 // water it down to the static type. 3325 m_root_valobj_sp = in_valobj_sp->GetQualifiedRepresentationIfAvailable(lldb::eNoDynamicValues, false); 3326 } 3327 3328 bool ValueObjectManager::IsValid() const { 3329 if (!m_root_valobj_sp) 3330 return false; 3331 lldb::TargetSP target_sp = GetTargetSP(); 3332 if (target_sp) 3333 return target_sp->IsValid(); 3334 return false; 3335 } 3336 3337 lldb::ValueObjectSP ValueObjectManager::GetSP() { 3338 lldb::ProcessSP process_sp = GetProcessSP(); 3339 if (!process_sp) 3340 return lldb::ValueObjectSP(); 3341 3342 const uint32_t current_stop_id = process_sp->GetLastNaturalStopID(); 3343 if (current_stop_id == m_stop_id) 3344 return m_user_valobj_sp; 3345 3346 m_stop_id = current_stop_id; 3347 3348 if (!m_root_valobj_sp) { 3349 m_user_valobj_sp.reset(); 3350 return m_root_valobj_sp; 3351 } 3352 3353 m_user_valobj_sp = m_root_valobj_sp; 3354 3355 if (m_use_dynamic != lldb::eNoDynamicValues) { 3356 lldb::ValueObjectSP dynamic_sp = m_user_valobj_sp->GetDynamicValue(m_use_dynamic); 3357 if (dynamic_sp) 3358 m_user_valobj_sp = dynamic_sp; 3359 } 3360 3361 if (m_use_synthetic) { 3362 lldb::ValueObjectSP synthetic_sp = m_user_valobj_sp->GetSyntheticValue(); 3363 if (synthetic_sp) 3364 m_user_valobj_sp = synthetic_sp; 3365 } 3366 3367 return m_user_valobj_sp; 3368 } 3369 3370 void ValueObjectManager::SetUseDynamic(lldb::DynamicValueType use_dynamic) { 3371 if (use_dynamic != m_use_dynamic) { 3372 m_use_dynamic = use_dynamic; 3373 m_user_valobj_sp.reset(); 3374 m_stop_id = UINT32_MAX; 3375 } 3376 } 3377 3378 void ValueObjectManager::SetUseSynthetic(bool use_synthetic) { 3379 if (m_use_synthetic != use_synthetic) { 3380 m_use_synthetic = use_synthetic; 3381 m_user_valobj_sp.reset(); 3382 m_stop_id = UINT32_MAX; 3383 } 3384 } 3385 3386 lldb::TargetSP ValueObjectManager::GetTargetSP() const { 3387 if (!m_root_valobj_sp) 3388 return m_root_valobj_sp->GetTargetSP(); 3389 return lldb::TargetSP(); 3390 } 3391 3392 lldb::ProcessSP ValueObjectManager::GetProcessSP() const { 3393 if (m_root_valobj_sp) 3394 return m_root_valobj_sp->GetProcessSP(); 3395 return lldb::ProcessSP(); 3396 } 3397 3398 lldb::ThreadSP ValueObjectManager::GetThreadSP() const { 3399 if (m_root_valobj_sp) 3400 return m_root_valobj_sp->GetThreadSP(); 3401 return lldb::ThreadSP(); 3402 } 3403 3404 lldb::StackFrameSP ValueObjectManager::GetFrameSP() const { 3405 if (m_root_valobj_sp) 3406 return m_root_valobj_sp->GetFrameSP(); 3407 return lldb::StackFrameSP(); 3408 } 3409