1 //===-- ValueObject.cpp -----------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/Core/ValueObject.h" 11 12 // C Includes 13 #include <stdlib.h> 14 15 // C++ Includes 16 // Other libraries and framework includes 17 #include "llvm/Support/raw_ostream.h" 18 19 // Project includes 20 #include "lldb/Core/DataBufferHeap.h" 21 #include "lldb/Core/Debugger.h" 22 #include "lldb/Core/Log.h" 23 #include "lldb/Core/Module.h" 24 #include "lldb/Core/StreamString.h" 25 #include "lldb/Core/ValueObjectCast.h" 26 #include "lldb/Core/ValueObjectChild.h" 27 #include "lldb/Core/ValueObjectConstResult.h" 28 #include "lldb/Core/ValueObjectDynamicValue.h" 29 #include "lldb/Core/ValueObjectList.h" 30 #include "lldb/Core/ValueObjectMemory.h" 31 #include "lldb/Core/ValueObjectSyntheticFilter.h" 32 33 #include "lldb/DataFormatters/DataVisualization.h" 34 #include "lldb/DataFormatters/StringPrinter.h" 35 #include "lldb/DataFormatters/ValueObjectPrinter.h" 36 37 #include "Plugins/ExpressionParser/Clang/ClangExpressionVariable.h" 38 #include "Plugins/ExpressionParser/Clang/ClangPersistentVariables.h" 39 40 #include "lldb/Host/Endian.h" 41 42 #include "lldb/Interpreter/CommandInterpreter.h" 43 44 #include "lldb/Symbol/CompilerType.h" 45 #include "lldb/Symbol/ClangASTContext.h" 46 #include "lldb/Symbol/CompileUnit.h" 47 #include "lldb/Symbol/Type.h" 48 49 #include "lldb/Target/ExecutionContext.h" 50 #include "lldb/Target/Language.h" 51 #include "lldb/Target/LanguageRuntime.h" 52 #include "lldb/Target/ObjCLanguageRuntime.h" 53 #include "lldb/Target/Process.h" 54 #include "lldb/Target/RegisterContext.h" 55 #include "lldb/Target/SectionLoadList.h" 56 #include "lldb/Target/Target.h" 57 #include "lldb/Target/Thread.h" 58 59 using namespace lldb; 60 using namespace lldb_private; 61 using namespace lldb_utility; 62 63 static user_id_t g_value_obj_uid = 0; 64 65 //---------------------------------------------------------------------- 66 // ValueObject constructor 67 //---------------------------------------------------------------------- 68 ValueObject::ValueObject (ValueObject &parent) : 69 UserID (++g_value_obj_uid), // Unique identifier for every value object 70 m_parent (&parent), 71 m_root (NULL), 72 m_update_point (parent.GetUpdatePoint ()), 73 m_name (), 74 m_data (), 75 m_value (), 76 m_error (), 77 m_value_str (), 78 m_old_value_str (), 79 m_location_str (), 80 m_summary_str (), 81 m_object_desc_str (), 82 m_validation_result(), 83 m_manager(parent.GetManager()), 84 m_children (), 85 m_synthetic_children (), 86 m_dynamic_value (NULL), 87 m_synthetic_value(NULL), 88 m_deref_valobj(NULL), 89 m_format (eFormatDefault), 90 m_last_format (eFormatDefault), 91 m_last_format_mgr_revision(0), 92 m_type_summary_sp(), 93 m_type_format_sp(), 94 m_synthetic_children_sp(), 95 m_type_validator_sp(), 96 m_user_id_of_forced_summary(), 97 m_address_type_of_ptr_or_ref_children(eAddressTypeInvalid), 98 m_value_checksum(), 99 m_preferred_display_language(lldb::eLanguageTypeUnknown), 100 m_language_flags(0), 101 m_value_is_valid (false), 102 m_value_did_change (false), 103 m_children_count_valid (false), 104 m_old_value_valid (false), 105 m_is_deref_of_parent (false), 106 m_is_array_item_for_pointer(false), 107 m_is_bitfield_for_scalar(false), 108 m_is_child_at_offset(false), 109 m_is_getting_summary(false), 110 m_did_calculate_complete_objc_class_type(false), 111 m_is_synthetic_children_generated(parent.m_is_synthetic_children_generated) 112 { 113 m_manager->ManageObject(this); 114 } 115 116 //---------------------------------------------------------------------- 117 // ValueObject constructor 118 //---------------------------------------------------------------------- 119 ValueObject::ValueObject (ExecutionContextScope *exe_scope, 120 AddressType child_ptr_or_ref_addr_type) : 121 UserID (++g_value_obj_uid), // Unique identifier for every value object 122 m_parent (NULL), 123 m_root (NULL), 124 m_update_point (exe_scope), 125 m_name (), 126 m_data (), 127 m_value (), 128 m_error (), 129 m_value_str (), 130 m_old_value_str (), 131 m_location_str (), 132 m_summary_str (), 133 m_object_desc_str (), 134 m_validation_result(), 135 m_manager(), 136 m_children (), 137 m_synthetic_children (), 138 m_dynamic_value (NULL), 139 m_synthetic_value(NULL), 140 m_deref_valobj(NULL), 141 m_format (eFormatDefault), 142 m_last_format (eFormatDefault), 143 m_last_format_mgr_revision(0), 144 m_type_summary_sp(), 145 m_type_format_sp(), 146 m_synthetic_children_sp(), 147 m_type_validator_sp(), 148 m_user_id_of_forced_summary(), 149 m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type), 150 m_value_checksum(), 151 m_preferred_display_language(lldb::eLanguageTypeUnknown), 152 m_language_flags(0), 153 m_value_is_valid (false), 154 m_value_did_change (false), 155 m_children_count_valid (false), 156 m_old_value_valid (false), 157 m_is_deref_of_parent (false), 158 m_is_array_item_for_pointer(false), 159 m_is_bitfield_for_scalar(false), 160 m_is_child_at_offset(false), 161 m_is_getting_summary(false), 162 m_did_calculate_complete_objc_class_type(false), 163 m_is_synthetic_children_generated(false) 164 { 165 m_manager = new ValueObjectManager(); 166 m_manager->ManageObject (this); 167 } 168 169 //---------------------------------------------------------------------- 170 // Destructor 171 //---------------------------------------------------------------------- 172 ValueObject::~ValueObject () 173 { 174 } 175 176 bool 177 ValueObject::UpdateValueIfNeeded (bool update_format) 178 { 179 180 bool did_change_formats = false; 181 182 if (update_format) 183 did_change_formats = UpdateFormatsIfNeeded(); 184 185 // If this is a constant value, then our success is predicated on whether 186 // we have an error or not 187 if (GetIsConstant()) 188 { 189 // if you are constant, things might still have changed behind your back 190 // (e.g. you are a frozen object and things have changed deeper than you cared to freeze-dry yourself) 191 // in this case, your value has not changed, but "computed" entries might have, so you might now have 192 // a different summary, or a different object description. clear these so we will recompute them 193 if (update_format && !did_change_formats) 194 ClearUserVisibleData(eClearUserVisibleDataItemsSummary | eClearUserVisibleDataItemsDescription); 195 return m_error.Success(); 196 } 197 198 bool first_update = IsChecksumEmpty(); 199 200 if (NeedsUpdating()) 201 { 202 m_update_point.SetUpdated(); 203 204 // Save the old value using swap to avoid a string copy which 205 // also will clear our m_value_str 206 if (m_value_str.empty()) 207 { 208 m_old_value_valid = false; 209 } 210 else 211 { 212 m_old_value_valid = true; 213 m_old_value_str.swap (m_value_str); 214 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 215 } 216 217 ClearUserVisibleData(); 218 219 if (IsInScope()) 220 { 221 const bool value_was_valid = GetValueIsValid(); 222 SetValueDidChange (false); 223 224 m_error.Clear(); 225 226 // Call the pure virtual function to update the value 227 228 bool need_compare_checksums = false; 229 llvm::SmallVector<uint8_t, 16> old_checksum; 230 231 if (!first_update && CanProvideValue()) 232 { 233 need_compare_checksums = true; 234 old_checksum.resize(m_value_checksum.size()); 235 std::copy(m_value_checksum.begin(), m_value_checksum.end(), old_checksum.begin()); 236 } 237 238 bool success = UpdateValue (); 239 240 SetValueIsValid (success); 241 242 if (success) 243 { 244 const uint64_t max_checksum_size = 128; 245 m_data.Checksum(m_value_checksum, 246 max_checksum_size); 247 } 248 else 249 { 250 need_compare_checksums = false; 251 m_value_checksum.clear(); 252 } 253 254 assert (!need_compare_checksums || (!old_checksum.empty() && !m_value_checksum.empty())); 255 256 if (first_update) 257 SetValueDidChange (false); 258 else if (!m_value_did_change && success == false) 259 { 260 // The value wasn't gotten successfully, so we mark this 261 // as changed if the value used to be valid and now isn't 262 SetValueDidChange (value_was_valid); 263 } 264 else if (need_compare_checksums) 265 { 266 SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0], m_value_checksum.size())); 267 } 268 269 } 270 else 271 { 272 m_error.SetErrorString("out of scope"); 273 } 274 } 275 return m_error.Success(); 276 } 277 278 bool 279 ValueObject::UpdateFormatsIfNeeded() 280 { 281 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_DATAFORMATTERS)); 282 if (log) 283 log->Printf("[%s %p] checking for FormatManager revisions. ValueObject rev: %d - Global rev: %d", 284 GetName().GetCString(), static_cast<void*>(this), 285 m_last_format_mgr_revision, 286 DataVisualization::GetCurrentRevision()); 287 288 bool any_change = false; 289 290 if ( (m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) 291 { 292 m_last_format_mgr_revision = DataVisualization::GetCurrentRevision(); 293 any_change = true; 294 295 SetValueFormat(DataVisualization::GetFormat (*this, eNoDynamicValues)); 296 SetSummaryFormat(DataVisualization::GetSummaryFormat (*this, GetDynamicValueType())); 297 #ifndef LLDB_DISABLE_PYTHON 298 SetSyntheticChildren(DataVisualization::GetSyntheticChildren (*this, GetDynamicValueType())); 299 #endif 300 SetValidator(DataVisualization::GetValidator(*this, GetDynamicValueType())); 301 } 302 303 return any_change; 304 } 305 306 void 307 ValueObject::SetNeedsUpdate () 308 { 309 m_update_point.SetNeedsUpdate(); 310 // We have to clear the value string here so ConstResult children will notice if their values are 311 // changed by hand (i.e. with SetValueAsCString). 312 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 313 } 314 315 void 316 ValueObject::ClearDynamicTypeInformation () 317 { 318 m_children_count_valid = false; 319 m_did_calculate_complete_objc_class_type = false; 320 m_last_format_mgr_revision = 0; 321 m_override_type = CompilerType(); 322 SetValueFormat(lldb::TypeFormatImplSP()); 323 SetSummaryFormat(lldb::TypeSummaryImplSP()); 324 SetSyntheticChildren(lldb::SyntheticChildrenSP()); 325 } 326 327 CompilerType 328 ValueObject::MaybeCalculateCompleteType () 329 { 330 CompilerType compiler_type(GetCompilerTypeImpl()); 331 332 if (m_did_calculate_complete_objc_class_type) 333 { 334 if (m_override_type.IsValid()) 335 return m_override_type; 336 else 337 return compiler_type; 338 } 339 340 CompilerType class_type; 341 bool is_pointer_type = false; 342 343 if (ClangASTContext::IsObjCObjectPointerType(compiler_type, &class_type)) 344 { 345 is_pointer_type = true; 346 } 347 else if (ClangASTContext::IsObjCObjectOrInterfaceType(compiler_type)) 348 { 349 class_type = compiler_type; 350 } 351 else 352 { 353 return compiler_type; 354 } 355 356 m_did_calculate_complete_objc_class_type = true; 357 358 if (class_type) 359 { 360 ConstString class_name (class_type.GetConstTypeName()); 361 362 if (class_name) 363 { 364 ProcessSP process_sp(GetUpdatePoint().GetExecutionContextRef().GetProcessSP()); 365 366 if (process_sp) 367 { 368 ObjCLanguageRuntime *objc_language_runtime(process_sp->GetObjCLanguageRuntime()); 369 370 if (objc_language_runtime) 371 { 372 TypeSP complete_objc_class_type_sp = objc_language_runtime->LookupInCompleteClassCache(class_name); 373 374 if (complete_objc_class_type_sp) 375 { 376 CompilerType complete_class(complete_objc_class_type_sp->GetFullCompilerType ()); 377 378 if (complete_class.GetCompleteType()) 379 { 380 if (is_pointer_type) 381 { 382 m_override_type = complete_class.GetPointerType(); 383 } 384 else 385 { 386 m_override_type = complete_class; 387 } 388 389 if (m_override_type.IsValid()) 390 return m_override_type; 391 } 392 } 393 } 394 } 395 } 396 } 397 return compiler_type; 398 } 399 400 CompilerType 401 ValueObject::GetCompilerType () 402 { 403 return MaybeCalculateCompleteType(); 404 } 405 406 TypeImpl 407 ValueObject::GetTypeImpl () 408 { 409 return TypeImpl(GetCompilerType()); 410 } 411 412 DataExtractor & 413 ValueObject::GetDataExtractor () 414 { 415 UpdateValueIfNeeded(false); 416 return m_data; 417 } 418 419 const Error & 420 ValueObject::GetError() 421 { 422 UpdateValueIfNeeded(false); 423 return m_error; 424 } 425 426 const ConstString & 427 ValueObject::GetName() const 428 { 429 return m_name; 430 } 431 432 const char * 433 ValueObject::GetLocationAsCString () 434 { 435 return GetLocationAsCStringImpl(m_value, 436 m_data); 437 } 438 439 const char * 440 ValueObject::GetLocationAsCStringImpl (const Value& value, 441 const DataExtractor& data) 442 { 443 if (UpdateValueIfNeeded(false)) 444 { 445 if (m_location_str.empty()) 446 { 447 StreamString sstr; 448 449 Value::ValueType value_type = value.GetValueType(); 450 451 switch (value_type) 452 { 453 case Value::eValueTypeScalar: 454 case Value::eValueTypeVector: 455 if (value.GetContextType() == Value::eContextTypeRegisterInfo) 456 { 457 RegisterInfo *reg_info = value.GetRegisterInfo(); 458 if (reg_info) 459 { 460 if (reg_info->name) 461 m_location_str = reg_info->name; 462 else if (reg_info->alt_name) 463 m_location_str = reg_info->alt_name; 464 if (m_location_str.empty()) 465 m_location_str = (reg_info->encoding == lldb::eEncodingVector) ? "vector" : "scalar"; 466 } 467 } 468 if (m_location_str.empty()) 469 m_location_str = (value_type == Value::eValueTypeVector) ? "vector" : "scalar"; 470 break; 471 472 case Value::eValueTypeLoadAddress: 473 case Value::eValueTypeFileAddress: 474 case Value::eValueTypeHostAddress: 475 { 476 uint32_t addr_nibble_size = data.GetAddressByteSize() * 2; 477 sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS)); 478 m_location_str.swap(sstr.GetString()); 479 } 480 break; 481 } 482 } 483 } 484 return m_location_str.c_str(); 485 } 486 487 Value & 488 ValueObject::GetValue() 489 { 490 return m_value; 491 } 492 493 const Value & 494 ValueObject::GetValue() const 495 { 496 return m_value; 497 } 498 499 bool 500 ValueObject::ResolveValue (Scalar &scalar) 501 { 502 if (UpdateValueIfNeeded(false)) // make sure that you are up to date before returning anything 503 { 504 ExecutionContext exe_ctx (GetExecutionContextRef()); 505 Value tmp_value(m_value); 506 scalar = tmp_value.ResolveValue(&exe_ctx); 507 if (scalar.IsValid()) 508 { 509 const uint32_t bitfield_bit_size = GetBitfieldBitSize(); 510 if (bitfield_bit_size) 511 return scalar.ExtractBitfield (bitfield_bit_size, GetBitfieldBitOffset()); 512 return true; 513 } 514 } 515 return false; 516 } 517 518 bool 519 ValueObject::IsLogicalTrue (Error& error) 520 { 521 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) 522 { 523 LazyBool is_logical_true = language->IsLogicalTrue(*this, error); 524 switch (is_logical_true) 525 { 526 case eLazyBoolYes: 527 case eLazyBoolNo: 528 return (is_logical_true == true); 529 case eLazyBoolCalculate: 530 break; 531 } 532 } 533 534 Scalar scalar_value; 535 536 if (!ResolveValue (scalar_value)) 537 { 538 error.SetErrorString("failed to get a scalar result"); 539 return false; 540 } 541 542 bool ret; 543 if (scalar_value.ULongLong(1) == 0) 544 ret = false; 545 else 546 ret = true; 547 error.Clear(); 548 return ret; 549 } 550 551 bool 552 ValueObject::GetValueIsValid () const 553 { 554 return m_value_is_valid; 555 } 556 557 558 void 559 ValueObject::SetValueIsValid (bool b) 560 { 561 m_value_is_valid = b; 562 } 563 564 bool 565 ValueObject::GetValueDidChange () 566 { 567 return m_value_did_change; 568 } 569 570 void 571 ValueObject::SetValueDidChange (bool value_changed) 572 { 573 m_value_did_change = value_changed; 574 } 575 576 ValueObjectSP 577 ValueObject::GetChildAtIndex (size_t idx, bool can_create) 578 { 579 ValueObjectSP child_sp; 580 // We may need to update our value if we are dynamic 581 if (IsPossibleDynamicType ()) 582 UpdateValueIfNeeded(false); 583 if (idx < GetNumChildren()) 584 { 585 // Check if we have already made the child value object? 586 if (can_create && !m_children.HasChildAtIndex(idx)) 587 { 588 // No we haven't created the child at this index, so lets have our 589 // subclass do it and cache the result for quick future access. 590 m_children.SetChildAtIndex(idx,CreateChildAtIndex (idx, false, 0)); 591 } 592 593 ValueObject* child = m_children.GetChildAtIndex(idx); 594 if (child != NULL) 595 return child->GetSP(); 596 } 597 return child_sp; 598 } 599 600 ValueObjectSP 601 ValueObject::GetChildAtIndexPath (const std::initializer_list<size_t>& idxs, 602 size_t* index_of_error) 603 { 604 return GetChildAtIndexPath( std::vector<size_t>(idxs), 605 index_of_error ); 606 } 607 608 ValueObjectSP 609 ValueObject::GetChildAtIndexPath (const std::initializer_list< std::pair<size_t, bool> >& idxs, 610 size_t* index_of_error) 611 { 612 return GetChildAtIndexPath( std::vector<std::pair<size_t,bool>>(idxs), 613 index_of_error ); 614 } 615 616 lldb::ValueObjectSP 617 ValueObject::GetChildAtIndexPath (const std::vector<size_t> &idxs, 618 size_t* index_of_error) 619 { 620 if (idxs.size() == 0) 621 return GetSP(); 622 ValueObjectSP root(GetSP()); 623 for (size_t idx : idxs) 624 { 625 root = root->GetChildAtIndex(idx, true); 626 if (!root) 627 { 628 if (index_of_error) 629 *index_of_error = idx; 630 return root; 631 } 632 } 633 return root; 634 } 635 636 lldb::ValueObjectSP 637 ValueObject::GetChildAtIndexPath (const std::vector< std::pair<size_t, bool> > &idxs, 638 size_t* index_of_error) 639 { 640 if (idxs.size() == 0) 641 return GetSP(); 642 ValueObjectSP root(GetSP()); 643 for (std::pair<size_t, bool> idx : idxs) 644 { 645 root = root->GetChildAtIndex(idx.first, idx.second); 646 if (!root) 647 { 648 if (index_of_error) 649 *index_of_error = idx.first; 650 return root; 651 } 652 } 653 return root; 654 } 655 656 lldb::ValueObjectSP 657 ValueObject::GetChildAtNamePath (const std::initializer_list<ConstString> &names, 658 ConstString* name_of_error) 659 { 660 return GetChildAtNamePath( std::vector<ConstString>(names), 661 name_of_error ); 662 } 663 664 lldb::ValueObjectSP 665 ValueObject::GetChildAtNamePath (const std::initializer_list< std::pair<ConstString, bool> > &names, 666 ConstString* name_of_error) 667 { 668 return GetChildAtNamePath( std::vector<std::pair<ConstString,bool>>(names), 669 name_of_error ); 670 } 671 672 lldb::ValueObjectSP 673 ValueObject::GetChildAtNamePath (const std::vector<ConstString> &names, 674 ConstString* name_of_error) 675 { 676 if (names.size() == 0) 677 return GetSP(); 678 ValueObjectSP root(GetSP()); 679 for (ConstString name : names) 680 { 681 root = root->GetChildMemberWithName(name, true); 682 if (!root) 683 { 684 if (name_of_error) 685 *name_of_error = name; 686 return root; 687 } 688 } 689 return root; 690 } 691 692 lldb::ValueObjectSP 693 ValueObject::GetChildAtNamePath (const std::vector< std::pair<ConstString, bool> > &names, 694 ConstString* name_of_error) 695 { 696 if (names.size() == 0) 697 return GetSP(); 698 ValueObjectSP root(GetSP()); 699 for (std::pair<ConstString, bool> name : names) 700 { 701 root = root->GetChildMemberWithName(name.first, name.second); 702 if (!root) 703 { 704 if (name_of_error) 705 *name_of_error = name.first; 706 return root; 707 } 708 } 709 return root; 710 } 711 712 size_t 713 ValueObject::GetIndexOfChildWithName (const ConstString &name) 714 { 715 bool omit_empty_base_classes = true; 716 return GetCompilerType().GetIndexOfChildWithName (name.GetCString(), omit_empty_base_classes); 717 } 718 719 ValueObjectSP 720 ValueObject::GetChildMemberWithName (const ConstString &name, bool can_create) 721 { 722 // when getting a child by name, it could be buried inside some base 723 // classes (which really aren't part of the expression path), so we 724 // need a vector of indexes that can get us down to the correct child 725 ValueObjectSP child_sp; 726 727 // We may need to update our value if we are dynamic 728 if (IsPossibleDynamicType ()) 729 UpdateValueIfNeeded(false); 730 731 std::vector<uint32_t> child_indexes; 732 bool omit_empty_base_classes = true; 733 const size_t num_child_indexes = GetCompilerType().GetIndexOfChildMemberWithName (name.GetCString(), 734 omit_empty_base_classes, 735 child_indexes); 736 if (num_child_indexes > 0) 737 { 738 std::vector<uint32_t>::const_iterator pos = child_indexes.begin (); 739 std::vector<uint32_t>::const_iterator end = child_indexes.end (); 740 741 child_sp = GetChildAtIndex(*pos, can_create); 742 for (++pos; pos != end; ++pos) 743 { 744 if (child_sp) 745 { 746 ValueObjectSP new_child_sp(child_sp->GetChildAtIndex (*pos, can_create)); 747 child_sp = new_child_sp; 748 } 749 else 750 { 751 child_sp.reset(); 752 } 753 754 } 755 } 756 return child_sp; 757 } 758 759 760 size_t 761 ValueObject::GetNumChildren (uint32_t max) 762 { 763 UpdateValueIfNeeded(); 764 765 if (max < UINT32_MAX) 766 { 767 if (m_children_count_valid) 768 { 769 size_t children_count = m_children.GetChildrenCount(); 770 return children_count <= max ? children_count : max; 771 } 772 else 773 return CalculateNumChildren(max); 774 } 775 776 if (!m_children_count_valid) 777 { 778 SetNumChildren (CalculateNumChildren()); 779 } 780 return m_children.GetChildrenCount(); 781 } 782 783 bool 784 ValueObject::MightHaveChildren() 785 { 786 bool has_children = false; 787 const uint32_t type_info = GetTypeInfo(); 788 if (type_info) 789 { 790 if (type_info & (eTypeHasChildren | 791 eTypeIsPointer | 792 eTypeIsReference)) 793 has_children = true; 794 } 795 else 796 { 797 has_children = GetNumChildren () > 0; 798 } 799 return has_children; 800 } 801 802 // Should only be called by ValueObject::GetNumChildren() 803 void 804 ValueObject::SetNumChildren (size_t num_children) 805 { 806 m_children_count_valid = true; 807 m_children.SetChildrenCount(num_children); 808 } 809 810 void 811 ValueObject::SetName (const ConstString &name) 812 { 813 m_name = name; 814 } 815 816 ValueObject * 817 ValueObject::CreateChildAtIndex (size_t idx, bool synthetic_array_member, int32_t synthetic_index) 818 { 819 ValueObject *valobj = NULL; 820 821 bool omit_empty_base_classes = true; 822 bool ignore_array_bounds = synthetic_array_member; 823 std::string child_name_str; 824 uint32_t child_byte_size = 0; 825 int32_t child_byte_offset = 0; 826 uint32_t child_bitfield_bit_size = 0; 827 uint32_t child_bitfield_bit_offset = 0; 828 bool child_is_base_class = false; 829 bool child_is_deref_of_parent = false; 830 uint64_t language_flags = 0; 831 832 const bool transparent_pointers = synthetic_array_member == false; 833 CompilerType child_compiler_type; 834 835 ExecutionContext exe_ctx (GetExecutionContextRef()); 836 837 child_compiler_type = GetCompilerType().GetChildCompilerTypeAtIndex (&exe_ctx, 838 idx, 839 transparent_pointers, 840 omit_empty_base_classes, 841 ignore_array_bounds, 842 child_name_str, 843 child_byte_size, 844 child_byte_offset, 845 child_bitfield_bit_size, 846 child_bitfield_bit_offset, 847 child_is_base_class, 848 child_is_deref_of_parent, 849 this, 850 language_flags); 851 if (child_compiler_type) 852 { 853 if (synthetic_index) 854 child_byte_offset += child_byte_size * synthetic_index; 855 856 ConstString child_name; 857 if (!child_name_str.empty()) 858 child_name.SetCString (child_name_str.c_str()); 859 860 valobj = new ValueObjectChild (*this, 861 child_compiler_type, 862 child_name, 863 child_byte_size, 864 child_byte_offset, 865 child_bitfield_bit_size, 866 child_bitfield_bit_offset, 867 child_is_base_class, 868 child_is_deref_of_parent, 869 eAddressTypeInvalid, 870 language_flags); 871 //if (valobj) 872 // valobj->SetAddressTypeOfChildren(eAddressTypeInvalid); 873 } 874 875 return valobj; 876 } 877 878 bool 879 ValueObject::GetSummaryAsCString (TypeSummaryImpl* summary_ptr, 880 std::string& destination, 881 lldb::LanguageType lang) 882 { 883 return GetSummaryAsCString(summary_ptr, destination, TypeSummaryOptions().SetLanguage(lang)); 884 } 885 886 bool 887 ValueObject::GetSummaryAsCString (TypeSummaryImpl* summary_ptr, 888 std::string& destination, 889 const TypeSummaryOptions& options) 890 { 891 destination.clear(); 892 893 // ideally we would like to bail out if passing NULL, but if we do so 894 // we end up not providing the summary for function pointers anymore 895 if (/*summary_ptr == NULL ||*/ m_is_getting_summary) 896 return false; 897 898 m_is_getting_summary = true; 899 900 TypeSummaryOptions actual_options(options); 901 902 if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown) 903 actual_options.SetLanguage(GetPreferredDisplayLanguage()); 904 905 // this is a hot path in code and we prefer to avoid setting this string all too often also clearing out other 906 // information that we might care to see in a crash log. might be useful in very specific situations though. 907 /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. Summary provider's description is %s", 908 GetTypeName().GetCString(), 909 GetName().GetCString(), 910 summary_ptr->GetDescription().c_str());*/ 911 912 if (UpdateValueIfNeeded (false) && summary_ptr) 913 { 914 if (HasSyntheticValue()) 915 m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on the synthetic children being up-to-date (e.g. ${svar%#}) 916 summary_ptr->FormatObject(this, destination, actual_options); 917 } 918 m_is_getting_summary = false; 919 return !destination.empty(); 920 } 921 922 const char * 923 ValueObject::GetSummaryAsCString (lldb::LanguageType lang) 924 { 925 if (UpdateValueIfNeeded(true) && m_summary_str.empty()) 926 { 927 TypeSummaryOptions summary_options; 928 summary_options.SetLanguage(lang); 929 GetSummaryAsCString(GetSummaryFormat().get(), 930 m_summary_str, 931 summary_options); 932 } 933 if (m_summary_str.empty()) 934 return NULL; 935 return m_summary_str.c_str(); 936 } 937 938 bool 939 ValueObject::GetSummaryAsCString (std::string& destination, 940 const TypeSummaryOptions& options) 941 { 942 return GetSummaryAsCString(GetSummaryFormat().get(), 943 destination, 944 options); 945 } 946 947 bool 948 ValueObject::IsCStringContainer(bool check_pointer) 949 { 950 CompilerType pointee_or_element_compiler_type; 951 const Flags type_flags (GetTypeInfo (&pointee_or_element_compiler_type)); 952 bool is_char_arr_ptr (type_flags.AnySet (eTypeIsArray | eTypeIsPointer) && 953 pointee_or_element_compiler_type.IsCharType ()); 954 if (!is_char_arr_ptr) 955 return false; 956 if (!check_pointer) 957 return true; 958 if (type_flags.Test(eTypeIsArray)) 959 return true; 960 addr_t cstr_address = LLDB_INVALID_ADDRESS; 961 AddressType cstr_address_type = eAddressTypeInvalid; 962 cstr_address = GetAddressOf (true, &cstr_address_type); 963 return (cstr_address != LLDB_INVALID_ADDRESS); 964 } 965 966 size_t 967 ValueObject::GetPointeeData (DataExtractor& data, 968 uint32_t item_idx, 969 uint32_t item_count) 970 { 971 CompilerType pointee_or_element_compiler_type; 972 const uint32_t type_info = GetTypeInfo (&pointee_or_element_compiler_type); 973 const bool is_pointer_type = type_info & eTypeIsPointer; 974 const bool is_array_type = type_info & eTypeIsArray; 975 if (!(is_pointer_type || is_array_type)) 976 return 0; 977 978 if (item_count == 0) 979 return 0; 980 981 ExecutionContext exe_ctx (GetExecutionContextRef()); 982 983 const uint64_t item_type_size = pointee_or_element_compiler_type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 984 const uint64_t bytes = item_count * item_type_size; 985 const uint64_t offset = item_idx * item_type_size; 986 987 if (item_idx == 0 && item_count == 1) // simply a deref 988 { 989 if (is_pointer_type) 990 { 991 Error error; 992 ValueObjectSP pointee_sp = Dereference(error); 993 if (error.Fail() || pointee_sp.get() == NULL) 994 return 0; 995 return pointee_sp->GetData(data, error); 996 } 997 else 998 { 999 ValueObjectSP child_sp = GetChildAtIndex(0, true); 1000 if (child_sp.get() == NULL) 1001 return 0; 1002 Error error; 1003 return child_sp->GetData(data, error); 1004 } 1005 return true; 1006 } 1007 else /* (items > 1) */ 1008 { 1009 Error error; 1010 lldb_private::DataBufferHeap* heap_buf_ptr = NULL; 1011 lldb::DataBufferSP data_sp(heap_buf_ptr = new lldb_private::DataBufferHeap()); 1012 1013 AddressType addr_type; 1014 lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type) : GetAddressOf(true, &addr_type); 1015 1016 switch (addr_type) 1017 { 1018 case eAddressTypeFile: 1019 { 1020 ModuleSP module_sp (GetModule()); 1021 if (module_sp) 1022 { 1023 addr = addr + offset; 1024 Address so_addr; 1025 module_sp->ResolveFileAddress(addr, so_addr); 1026 ExecutionContext exe_ctx (GetExecutionContextRef()); 1027 Target* target = exe_ctx.GetTargetPtr(); 1028 if (target) 1029 { 1030 heap_buf_ptr->SetByteSize(bytes); 1031 size_t bytes_read = target->ReadMemory(so_addr, false, heap_buf_ptr->GetBytes(), bytes, error); 1032 if (error.Success()) 1033 { 1034 data.SetData(data_sp); 1035 return bytes_read; 1036 } 1037 } 1038 } 1039 } 1040 break; 1041 case eAddressTypeLoad: 1042 { 1043 ExecutionContext exe_ctx (GetExecutionContextRef()); 1044 Process *process = exe_ctx.GetProcessPtr(); 1045 if (process) 1046 { 1047 heap_buf_ptr->SetByteSize(bytes); 1048 size_t bytes_read = process->ReadMemory(addr + offset, heap_buf_ptr->GetBytes(), bytes, error); 1049 if (error.Success() || bytes_read > 0) 1050 { 1051 data.SetData(data_sp); 1052 return bytes_read; 1053 } 1054 } 1055 } 1056 break; 1057 case eAddressTypeHost: 1058 { 1059 const uint64_t max_bytes = GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1060 if (max_bytes > offset) 1061 { 1062 size_t bytes_read = std::min<uint64_t>(max_bytes - offset, bytes); 1063 addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1064 if (addr == 0 || addr == LLDB_INVALID_ADDRESS) 1065 break; 1066 heap_buf_ptr->CopyData((uint8_t*)(addr + offset), bytes_read); 1067 data.SetData(data_sp); 1068 return bytes_read; 1069 } 1070 } 1071 break; 1072 case eAddressTypeInvalid: 1073 break; 1074 } 1075 } 1076 return 0; 1077 } 1078 1079 uint64_t 1080 ValueObject::GetData (DataExtractor& data, Error &error) 1081 { 1082 UpdateValueIfNeeded(false); 1083 ExecutionContext exe_ctx (GetExecutionContextRef()); 1084 error = m_value.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 1085 if (error.Fail()) 1086 { 1087 if (m_data.GetByteSize()) 1088 { 1089 data = m_data; 1090 error.Clear(); 1091 return data.GetByteSize(); 1092 } 1093 else 1094 { 1095 return 0; 1096 } 1097 } 1098 data.SetAddressByteSize(m_data.GetAddressByteSize()); 1099 data.SetByteOrder(m_data.GetByteOrder()); 1100 return data.GetByteSize(); 1101 } 1102 1103 bool 1104 ValueObject::SetData (DataExtractor &data, Error &error) 1105 { 1106 error.Clear(); 1107 // Make sure our value is up to date first so that our location and location 1108 // type is valid. 1109 if (!UpdateValueIfNeeded(false)) 1110 { 1111 error.SetErrorString("unable to read value"); 1112 return false; 1113 } 1114 1115 uint64_t count = 0; 1116 const Encoding encoding = GetCompilerType().GetEncoding(count); 1117 1118 const size_t byte_size = GetByteSize(); 1119 1120 Value::ValueType value_type = m_value.GetValueType(); 1121 1122 switch (value_type) 1123 { 1124 case Value::eValueTypeScalar: 1125 { 1126 Error set_error = m_value.GetScalar().SetValueFromData(data, encoding, byte_size); 1127 1128 if (!set_error.Success()) 1129 { 1130 error.SetErrorStringWithFormat("unable to set scalar value: %s", set_error.AsCString()); 1131 return false; 1132 } 1133 } 1134 break; 1135 case Value::eValueTypeLoadAddress: 1136 { 1137 // If it is a load address, then the scalar value is the storage location 1138 // of the data, and we have to shove this value down to that load location. 1139 ExecutionContext exe_ctx (GetExecutionContextRef()); 1140 Process *process = exe_ctx.GetProcessPtr(); 1141 if (process) 1142 { 1143 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1144 size_t bytes_written = process->WriteMemory(target_addr, 1145 data.GetDataStart(), 1146 byte_size, 1147 error); 1148 if (!error.Success()) 1149 return false; 1150 if (bytes_written != byte_size) 1151 { 1152 error.SetErrorString("unable to write value to memory"); 1153 return false; 1154 } 1155 } 1156 } 1157 break; 1158 case Value::eValueTypeHostAddress: 1159 { 1160 // If it is a host address, then we stuff the scalar as a DataBuffer into the Value's data. 1161 DataBufferSP buffer_sp (new DataBufferHeap(byte_size, 0)); 1162 m_data.SetData(buffer_sp, 0); 1163 data.CopyByteOrderedData (0, 1164 byte_size, 1165 const_cast<uint8_t *>(m_data.GetDataStart()), 1166 byte_size, 1167 m_data.GetByteOrder()); 1168 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1169 } 1170 break; 1171 case Value::eValueTypeFileAddress: 1172 case Value::eValueTypeVector: 1173 break; 1174 } 1175 1176 // If we have reached this point, then we have successfully changed the value. 1177 SetNeedsUpdate(); 1178 return true; 1179 } 1180 1181 static bool 1182 CopyStringDataToBufferSP(const StreamString& source, 1183 lldb::DataBufferSP& destination) 1184 { 1185 destination.reset(new DataBufferHeap(source.GetSize()+1,0)); 1186 memcpy(destination->GetBytes(), source.GetString().c_str(), source.GetSize()); 1187 return true; 1188 } 1189 1190 std::pair<size_t,bool> 1191 ValueObject::ReadPointedString (lldb::DataBufferSP& buffer_sp, 1192 Error& error, 1193 uint32_t max_length, 1194 bool honor_array, 1195 Format item_format) 1196 { 1197 bool was_capped = false; 1198 StreamString s; 1199 ExecutionContext exe_ctx (GetExecutionContextRef()); 1200 Target* target = exe_ctx.GetTargetPtr(); 1201 1202 if (!target) 1203 { 1204 s << "<no target to read from>"; 1205 error.SetErrorString("no target to read from"); 1206 CopyStringDataToBufferSP(s, buffer_sp); 1207 return {0,was_capped}; 1208 } 1209 1210 if (max_length == 0) 1211 max_length = target->GetMaximumSizeOfStringSummary(); 1212 1213 size_t bytes_read = 0; 1214 size_t total_bytes_read = 0; 1215 1216 CompilerType compiler_type = GetCompilerType(); 1217 CompilerType elem_or_pointee_compiler_type; 1218 const Flags type_flags (GetTypeInfo (&elem_or_pointee_compiler_type)); 1219 if (type_flags.AnySet (eTypeIsArray | eTypeIsPointer) && 1220 elem_or_pointee_compiler_type.IsCharType ()) 1221 { 1222 addr_t cstr_address = LLDB_INVALID_ADDRESS; 1223 AddressType cstr_address_type = eAddressTypeInvalid; 1224 1225 size_t cstr_len = 0; 1226 bool capped_data = false; 1227 if (type_flags.Test (eTypeIsArray)) 1228 { 1229 // We have an array 1230 uint64_t array_size = 0; 1231 if (compiler_type.IsArrayType(NULL, &array_size, NULL)) 1232 { 1233 cstr_len = array_size; 1234 if (cstr_len > max_length) 1235 { 1236 capped_data = true; 1237 cstr_len = max_length; 1238 } 1239 } 1240 cstr_address = GetAddressOf (true, &cstr_address_type); 1241 } 1242 else 1243 { 1244 // We have a pointer 1245 cstr_address = GetPointerValue (&cstr_address_type); 1246 } 1247 1248 if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) 1249 { 1250 s << "<invalid address>"; 1251 error.SetErrorString("invalid address"); 1252 CopyStringDataToBufferSP(s, buffer_sp); 1253 return {0,was_capped}; 1254 } 1255 1256 Address cstr_so_addr (cstr_address); 1257 DataExtractor data; 1258 if (cstr_len > 0 && honor_array) 1259 { 1260 // I am using GetPointeeData() here to abstract the fact that some ValueObjects are actually frozen pointers in the host 1261 // but the pointed-to data lives in the debuggee, and GetPointeeData() automatically takes care of this 1262 GetPointeeData(data, 0, cstr_len); 1263 1264 if ((bytes_read = data.GetByteSize()) > 0) 1265 { 1266 total_bytes_read = bytes_read; 1267 for (size_t offset = 0; offset < bytes_read; offset++) 1268 s.Printf("%c", *data.PeekData(offset, 1)); 1269 if (capped_data) 1270 was_capped = true; 1271 } 1272 } 1273 else 1274 { 1275 cstr_len = max_length; 1276 const size_t k_max_buf_size = 64; 1277 1278 size_t offset = 0; 1279 1280 int cstr_len_displayed = -1; 1281 bool capped_cstr = false; 1282 // I am using GetPointeeData() here to abstract the fact that some ValueObjects are actually frozen pointers in the host 1283 // but the pointed-to data lives in the debuggee, and GetPointeeData() automatically takes care of this 1284 while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) 1285 { 1286 total_bytes_read += bytes_read; 1287 const char *cstr = data.PeekCStr(0); 1288 size_t len = strnlen (cstr, k_max_buf_size); 1289 if (cstr_len_displayed < 0) 1290 cstr_len_displayed = len; 1291 1292 if (len == 0) 1293 break; 1294 cstr_len_displayed += len; 1295 if (len > bytes_read) 1296 len = bytes_read; 1297 if (len > cstr_len) 1298 len = cstr_len; 1299 1300 for (size_t offset = 0; offset < bytes_read; offset++) 1301 s.Printf("%c", *data.PeekData(offset, 1)); 1302 1303 if (len < k_max_buf_size) 1304 break; 1305 1306 if (len >= cstr_len) 1307 { 1308 capped_cstr = true; 1309 break; 1310 } 1311 1312 cstr_len -= len; 1313 offset += len; 1314 } 1315 1316 if (cstr_len_displayed >= 0) 1317 { 1318 if (capped_cstr) 1319 was_capped = true; 1320 } 1321 } 1322 } 1323 else 1324 { 1325 error.SetErrorString("not a string object"); 1326 s << "<not a string object>"; 1327 } 1328 CopyStringDataToBufferSP(s, buffer_sp); 1329 return {total_bytes_read,was_capped}; 1330 } 1331 1332 std::pair<TypeValidatorResult, std::string> 1333 ValueObject::GetValidationStatus () 1334 { 1335 if (!UpdateValueIfNeeded(true)) 1336 return {TypeValidatorResult::Success,""}; // not the validator's job to discuss update problems 1337 1338 if (m_validation_result.hasValue()) 1339 return m_validation_result.getValue(); 1340 1341 if (!m_type_validator_sp) 1342 return {TypeValidatorResult::Success,""}; // no validator no failure 1343 1344 auto outcome = m_type_validator_sp->FormatObject(this); 1345 1346 return (m_validation_result = {outcome.m_result,outcome.m_message}).getValue(); 1347 } 1348 1349 const char * 1350 ValueObject::GetObjectDescription () 1351 { 1352 1353 if (!UpdateValueIfNeeded (true)) 1354 return NULL; 1355 1356 if (!m_object_desc_str.empty()) 1357 return m_object_desc_str.c_str(); 1358 1359 ExecutionContext exe_ctx (GetExecutionContextRef()); 1360 Process *process = exe_ctx.GetProcessPtr(); 1361 if (process == NULL) 1362 return NULL; 1363 1364 StreamString s; 1365 1366 LanguageType language = GetObjectRuntimeLanguage(); 1367 LanguageRuntime *runtime = process->GetLanguageRuntime(language); 1368 1369 if (runtime == NULL) 1370 { 1371 // Aw, hell, if the things a pointer, or even just an integer, let's try ObjC anyway... 1372 CompilerType compiler_type = GetCompilerType(); 1373 if (compiler_type) 1374 { 1375 bool is_signed; 1376 if (compiler_type.IsIntegerType (is_signed) || compiler_type.IsPointerType ()) 1377 { 1378 runtime = process->GetLanguageRuntime(eLanguageTypeObjC); 1379 } 1380 } 1381 } 1382 1383 if (runtime && runtime->GetObjectDescription(s, *this)) 1384 { 1385 m_object_desc_str.append (s.GetData()); 1386 } 1387 1388 if (m_object_desc_str.empty()) 1389 return NULL; 1390 else 1391 return m_object_desc_str.c_str(); 1392 } 1393 1394 bool 1395 ValueObject::GetValueAsCString (const lldb_private::TypeFormatImpl& format, 1396 std::string& destination) 1397 { 1398 if (UpdateValueIfNeeded(false)) 1399 return format.FormatObject(this,destination); 1400 else 1401 return false; 1402 } 1403 1404 bool 1405 ValueObject::GetValueAsCString (lldb::Format format, 1406 std::string& destination) 1407 { 1408 return GetValueAsCString(TypeFormatImpl_Format(format),destination); 1409 } 1410 1411 const char * 1412 ValueObject::GetValueAsCString () 1413 { 1414 if (UpdateValueIfNeeded(true)) 1415 { 1416 lldb::TypeFormatImplSP format_sp; 1417 lldb::Format my_format = GetFormat(); 1418 if (my_format == lldb::eFormatDefault) 1419 { 1420 if (m_type_format_sp) 1421 format_sp = m_type_format_sp; 1422 else 1423 { 1424 if (m_is_bitfield_for_scalar) 1425 my_format = eFormatUnsigned; 1426 else 1427 { 1428 if (m_value.GetContextType() == Value::eContextTypeRegisterInfo) 1429 { 1430 const RegisterInfo *reg_info = m_value.GetRegisterInfo(); 1431 if (reg_info) 1432 my_format = reg_info->format; 1433 } 1434 else 1435 { 1436 my_format = GetValue().GetCompilerType().GetFormat(); 1437 } 1438 } 1439 } 1440 } 1441 if (my_format != m_last_format || m_value_str.empty()) 1442 { 1443 m_last_format = my_format; 1444 if (!format_sp) 1445 format_sp.reset(new TypeFormatImpl_Format(my_format)); 1446 if (GetValueAsCString(*format_sp.get(), m_value_str)) 1447 { 1448 if (!m_value_did_change && m_old_value_valid) 1449 { 1450 // The value was gotten successfully, so we consider the 1451 // value as changed if the value string differs 1452 SetValueDidChange (m_old_value_str != m_value_str); 1453 } 1454 } 1455 } 1456 } 1457 if (m_value_str.empty()) 1458 return NULL; 1459 return m_value_str.c_str(); 1460 } 1461 1462 // if > 8bytes, 0 is returned. this method should mostly be used 1463 // to read address values out of pointers 1464 uint64_t 1465 ValueObject::GetValueAsUnsigned (uint64_t fail_value, bool *success) 1466 { 1467 // If our byte size is zero this is an aggregate type that has children 1468 if (CanProvideValue()) 1469 { 1470 Scalar scalar; 1471 if (ResolveValue (scalar)) 1472 { 1473 if (success) 1474 *success = true; 1475 return scalar.ULongLong(fail_value); 1476 } 1477 // fallthrough, otherwise... 1478 } 1479 1480 if (success) 1481 *success = false; 1482 return fail_value; 1483 } 1484 1485 int64_t 1486 ValueObject::GetValueAsSigned (int64_t fail_value, bool *success) 1487 { 1488 // If our byte size is zero this is an aggregate type that has children 1489 if (CanProvideValue()) 1490 { 1491 Scalar scalar; 1492 if (ResolveValue (scalar)) 1493 { 1494 if (success) 1495 *success = true; 1496 return scalar.SLongLong(fail_value); 1497 } 1498 // fallthrough, otherwise... 1499 } 1500 1501 if (success) 1502 *success = false; 1503 return fail_value; 1504 } 1505 1506 // if any more "special cases" are added to ValueObject::DumpPrintableRepresentation() please keep 1507 // this call up to date by returning true for your new special cases. We will eventually move 1508 // to checking this call result before trying to display special cases 1509 bool 1510 ValueObject::HasSpecialPrintableRepresentation(ValueObjectRepresentationStyle val_obj_display, 1511 Format custom_format) 1512 { 1513 Flags flags(GetTypeInfo()); 1514 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) 1515 && val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) 1516 { 1517 if (IsCStringContainer(true) && 1518 (custom_format == eFormatCString || 1519 custom_format == eFormatCharArray || 1520 custom_format == eFormatChar || 1521 custom_format == eFormatVectorOfChar)) 1522 return true; 1523 1524 if (flags.Test(eTypeIsArray)) 1525 { 1526 if ((custom_format == eFormatBytes) || 1527 (custom_format == eFormatBytesWithASCII)) 1528 return true; 1529 1530 if ((custom_format == eFormatVectorOfChar) || 1531 (custom_format == eFormatVectorOfFloat32) || 1532 (custom_format == eFormatVectorOfFloat64) || 1533 (custom_format == eFormatVectorOfSInt16) || 1534 (custom_format == eFormatVectorOfSInt32) || 1535 (custom_format == eFormatVectorOfSInt64) || 1536 (custom_format == eFormatVectorOfSInt8) || 1537 (custom_format == eFormatVectorOfUInt128) || 1538 (custom_format == eFormatVectorOfUInt16) || 1539 (custom_format == eFormatVectorOfUInt32) || 1540 (custom_format == eFormatVectorOfUInt64) || 1541 (custom_format == eFormatVectorOfUInt8)) 1542 return true; 1543 } 1544 } 1545 return false; 1546 } 1547 1548 bool 1549 ValueObject::DumpPrintableRepresentation(Stream& s, 1550 ValueObjectRepresentationStyle val_obj_display, 1551 Format custom_format, 1552 PrintableRepresentationSpecialCases special, 1553 bool do_dump_error) 1554 { 1555 1556 Flags flags(GetTypeInfo()); 1557 1558 bool allow_special = ((special & ePrintableRepresentationSpecialCasesAllow) == ePrintableRepresentationSpecialCasesAllow); 1559 bool only_special = ((special & ePrintableRepresentationSpecialCasesOnly) == ePrintableRepresentationSpecialCasesOnly); 1560 1561 if (allow_special) 1562 { 1563 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) 1564 && val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) 1565 { 1566 // when being asked to get a printable display an array or pointer type directly, 1567 // try to "do the right thing" 1568 1569 if (IsCStringContainer(true) && 1570 (custom_format == eFormatCString || 1571 custom_format == eFormatCharArray || 1572 custom_format == eFormatChar || 1573 custom_format == eFormatVectorOfChar)) // print char[] & char* directly 1574 { 1575 Error error; 1576 lldb::DataBufferSP buffer_sp; 1577 std::pair<size_t, bool> read_string = ReadPointedString(buffer_sp, 1578 error, 1579 0, 1580 (custom_format == eFormatVectorOfChar) || 1581 (custom_format == eFormatCharArray)); 1582 lldb_private::formatters::StringPrinter::ReadBufferAndDumpToStreamOptions options(*this); 1583 options.SetData(DataExtractor(buffer_sp, lldb::eByteOrderInvalid, 8)); // none of this matters for a string - pass some defaults 1584 options.SetStream(&s); 1585 options.SetPrefixToken(0); 1586 options.SetQuote('"'); 1587 options.SetSourceSize(buffer_sp->GetByteSize()); 1588 options.SetIsTruncated(read_string.second); 1589 formatters::StringPrinter::ReadBufferAndDumpToStream<lldb_private::formatters::StringPrinter::StringElementType::ASCII>(options); 1590 return !error.Fail(); 1591 } 1592 1593 if (custom_format == eFormatEnum) 1594 return false; 1595 1596 // this only works for arrays, because I have no way to know when 1597 // the pointed memory ends, and no special \0 end of data marker 1598 if (flags.Test(eTypeIsArray)) 1599 { 1600 if ((custom_format == eFormatBytes) || 1601 (custom_format == eFormatBytesWithASCII)) 1602 { 1603 const size_t count = GetNumChildren(); 1604 1605 s << '['; 1606 for (size_t low = 0; low < count; low++) 1607 { 1608 1609 if (low) 1610 s << ','; 1611 1612 ValueObjectSP child = GetChildAtIndex(low,true); 1613 if (!child.get()) 1614 { 1615 s << "<invalid child>"; 1616 continue; 1617 } 1618 child->DumpPrintableRepresentation(s, ValueObject::eValueObjectRepresentationStyleValue, custom_format); 1619 } 1620 1621 s << ']'; 1622 1623 return true; 1624 } 1625 1626 if ((custom_format == eFormatVectorOfChar) || 1627 (custom_format == eFormatVectorOfFloat32) || 1628 (custom_format == eFormatVectorOfFloat64) || 1629 (custom_format == eFormatVectorOfSInt16) || 1630 (custom_format == eFormatVectorOfSInt32) || 1631 (custom_format == eFormatVectorOfSInt64) || 1632 (custom_format == eFormatVectorOfSInt8) || 1633 (custom_format == eFormatVectorOfUInt128) || 1634 (custom_format == eFormatVectorOfUInt16) || 1635 (custom_format == eFormatVectorOfUInt32) || 1636 (custom_format == eFormatVectorOfUInt64) || 1637 (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes with ASCII or any vector format should be printed directly 1638 { 1639 const size_t count = GetNumChildren(); 1640 1641 Format format = FormatManager::GetSingleItemFormat(custom_format); 1642 1643 s << '['; 1644 for (size_t low = 0; low < count; low++) 1645 { 1646 1647 if (low) 1648 s << ','; 1649 1650 ValueObjectSP child = GetChildAtIndex(low,true); 1651 if (!child.get()) 1652 { 1653 s << "<invalid child>"; 1654 continue; 1655 } 1656 child->DumpPrintableRepresentation(s, ValueObject::eValueObjectRepresentationStyleValue, format); 1657 } 1658 1659 s << ']'; 1660 1661 return true; 1662 } 1663 } 1664 1665 if ((custom_format == eFormatBoolean) || 1666 (custom_format == eFormatBinary) || 1667 (custom_format == eFormatChar) || 1668 (custom_format == eFormatCharPrintable) || 1669 (custom_format == eFormatComplexFloat) || 1670 (custom_format == eFormatDecimal) || 1671 (custom_format == eFormatHex) || 1672 (custom_format == eFormatHexUppercase) || 1673 (custom_format == eFormatFloat) || 1674 (custom_format == eFormatOctal) || 1675 (custom_format == eFormatOSType) || 1676 (custom_format == eFormatUnicode16) || 1677 (custom_format == eFormatUnicode32) || 1678 (custom_format == eFormatUnsigned) || 1679 (custom_format == eFormatPointer) || 1680 (custom_format == eFormatComplexInteger) || 1681 (custom_format == eFormatComplex) || 1682 (custom_format == eFormatDefault)) // use the [] operator 1683 return false; 1684 } 1685 } 1686 1687 if (only_special) 1688 return false; 1689 1690 bool var_success = false; 1691 1692 { 1693 const char *cstr = NULL; 1694 1695 // this is a local stream that we are using to ensure that the data pointed to by cstr survives 1696 // long enough for us to copy it to its destination - it is necessary to have this temporary storage 1697 // area for cases where our desired output is not backed by some other longer-term storage 1698 StreamString strm; 1699 1700 if (custom_format != eFormatInvalid) 1701 SetFormat(custom_format); 1702 1703 switch(val_obj_display) 1704 { 1705 case eValueObjectRepresentationStyleValue: 1706 cstr = GetValueAsCString(); 1707 break; 1708 1709 case eValueObjectRepresentationStyleSummary: 1710 cstr = GetSummaryAsCString(); 1711 break; 1712 1713 case eValueObjectRepresentationStyleLanguageSpecific: 1714 cstr = GetObjectDescription(); 1715 break; 1716 1717 case eValueObjectRepresentationStyleLocation: 1718 cstr = GetLocationAsCString(); 1719 break; 1720 1721 case eValueObjectRepresentationStyleChildrenCount: 1722 strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren()); 1723 cstr = strm.GetString().c_str(); 1724 break; 1725 1726 case eValueObjectRepresentationStyleType: 1727 cstr = GetTypeName().AsCString(); 1728 break; 1729 1730 case eValueObjectRepresentationStyleName: 1731 cstr = GetName().AsCString(); 1732 break; 1733 1734 case eValueObjectRepresentationStyleExpressionPath: 1735 GetExpressionPath(strm, false); 1736 cstr = strm.GetString().c_str(); 1737 break; 1738 } 1739 1740 if (!cstr) 1741 { 1742 if (val_obj_display == eValueObjectRepresentationStyleValue) 1743 cstr = GetSummaryAsCString(); 1744 else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1745 { 1746 if (!CanProvideValue()) 1747 { 1748 strm.Printf("%s @ %s", GetTypeName().AsCString(), GetLocationAsCString()); 1749 cstr = strm.GetString().c_str(); 1750 } 1751 else 1752 cstr = GetValueAsCString(); 1753 } 1754 } 1755 1756 if (cstr) 1757 s.PutCString(cstr); 1758 else 1759 { 1760 if (m_error.Fail()) 1761 { 1762 if (do_dump_error) 1763 s.Printf("<%s>", m_error.AsCString()); 1764 else 1765 return false; 1766 } 1767 else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1768 s.PutCString("<no summary available>"); 1769 else if (val_obj_display == eValueObjectRepresentationStyleValue) 1770 s.PutCString("<no value available>"); 1771 else if (val_obj_display == eValueObjectRepresentationStyleLanguageSpecific) 1772 s.PutCString("<not a valid Objective-C object>"); // edit this if we have other runtimes that support a description 1773 else 1774 s.PutCString("<no printable representation>"); 1775 } 1776 1777 // we should only return false here if we could not do *anything* 1778 // even if we have an error message as output, that's a success 1779 // from our callers' perspective, so return true 1780 var_success = true; 1781 1782 if (custom_format != eFormatInvalid) 1783 SetFormat(eFormatDefault); 1784 } 1785 1786 return var_success; 1787 } 1788 1789 addr_t 1790 ValueObject::GetAddressOf (bool scalar_is_load_address, AddressType *address_type) 1791 { 1792 if (!UpdateValueIfNeeded(false)) 1793 return LLDB_INVALID_ADDRESS; 1794 1795 switch (m_value.GetValueType()) 1796 { 1797 case Value::eValueTypeScalar: 1798 case Value::eValueTypeVector: 1799 if (scalar_is_load_address) 1800 { 1801 if(address_type) 1802 *address_type = eAddressTypeLoad; 1803 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1804 } 1805 break; 1806 1807 case Value::eValueTypeLoadAddress: 1808 case Value::eValueTypeFileAddress: 1809 { 1810 if(address_type) 1811 *address_type = m_value.GetValueAddressType (); 1812 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1813 } 1814 break; 1815 case Value::eValueTypeHostAddress: 1816 { 1817 if(address_type) 1818 *address_type = m_value.GetValueAddressType (); 1819 return LLDB_INVALID_ADDRESS; 1820 } 1821 break; 1822 } 1823 if (address_type) 1824 *address_type = eAddressTypeInvalid; 1825 return LLDB_INVALID_ADDRESS; 1826 } 1827 1828 addr_t 1829 ValueObject::GetPointerValue (AddressType *address_type) 1830 { 1831 addr_t address = LLDB_INVALID_ADDRESS; 1832 if(address_type) 1833 *address_type = eAddressTypeInvalid; 1834 1835 if (!UpdateValueIfNeeded(false)) 1836 return address; 1837 1838 switch (m_value.GetValueType()) 1839 { 1840 case Value::eValueTypeScalar: 1841 case Value::eValueTypeVector: 1842 address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1843 break; 1844 1845 case Value::eValueTypeHostAddress: 1846 case Value::eValueTypeLoadAddress: 1847 case Value::eValueTypeFileAddress: 1848 { 1849 lldb::offset_t data_offset = 0; 1850 address = m_data.GetPointer(&data_offset); 1851 } 1852 break; 1853 } 1854 1855 if (address_type) 1856 *address_type = GetAddressTypeOfChildren(); 1857 1858 return address; 1859 } 1860 1861 bool 1862 ValueObject::SetValueFromCString (const char *value_str, Error& error) 1863 { 1864 error.Clear(); 1865 // Make sure our value is up to date first so that our location and location 1866 // type is valid. 1867 if (!UpdateValueIfNeeded(false)) 1868 { 1869 error.SetErrorString("unable to read value"); 1870 return false; 1871 } 1872 1873 uint64_t count = 0; 1874 const Encoding encoding = GetCompilerType().GetEncoding (count); 1875 1876 const size_t byte_size = GetByteSize(); 1877 1878 Value::ValueType value_type = m_value.GetValueType(); 1879 1880 if (value_type == Value::eValueTypeScalar) 1881 { 1882 // If the value is already a scalar, then let the scalar change itself: 1883 m_value.GetScalar().SetValueFromCString (value_str, encoding, byte_size); 1884 } 1885 else if (byte_size <= 16) 1886 { 1887 // If the value fits in a scalar, then make a new scalar and again let the 1888 // scalar code do the conversion, then figure out where to put the new value. 1889 Scalar new_scalar; 1890 error = new_scalar.SetValueFromCString (value_str, encoding, byte_size); 1891 if (error.Success()) 1892 { 1893 switch (value_type) 1894 { 1895 case Value::eValueTypeLoadAddress: 1896 { 1897 // If it is a load address, then the scalar value is the storage location 1898 // of the data, and we have to shove this value down to that load location. 1899 ExecutionContext exe_ctx (GetExecutionContextRef()); 1900 Process *process = exe_ctx.GetProcessPtr(); 1901 if (process) 1902 { 1903 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1904 size_t bytes_written = process->WriteScalarToMemory (target_addr, 1905 new_scalar, 1906 byte_size, 1907 error); 1908 if (!error.Success()) 1909 return false; 1910 if (bytes_written != byte_size) 1911 { 1912 error.SetErrorString("unable to write value to memory"); 1913 return false; 1914 } 1915 } 1916 } 1917 break; 1918 case Value::eValueTypeHostAddress: 1919 { 1920 // If it is a host address, then we stuff the scalar as a DataBuffer into the Value's data. 1921 DataExtractor new_data; 1922 new_data.SetByteOrder (m_data.GetByteOrder()); 1923 1924 DataBufferSP buffer_sp (new DataBufferHeap(byte_size, 0)); 1925 m_data.SetData(buffer_sp, 0); 1926 bool success = new_scalar.GetData(new_data); 1927 if (success) 1928 { 1929 new_data.CopyByteOrderedData (0, 1930 byte_size, 1931 const_cast<uint8_t *>(m_data.GetDataStart()), 1932 byte_size, 1933 m_data.GetByteOrder()); 1934 } 1935 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1936 1937 } 1938 break; 1939 case Value::eValueTypeFileAddress: 1940 case Value::eValueTypeScalar: 1941 case Value::eValueTypeVector: 1942 break; 1943 } 1944 } 1945 else 1946 { 1947 return false; 1948 } 1949 } 1950 else 1951 { 1952 // We don't support setting things bigger than a scalar at present. 1953 error.SetErrorString("unable to write aggregate data type"); 1954 return false; 1955 } 1956 1957 // If we have reached this point, then we have successfully changed the value. 1958 SetNeedsUpdate(); 1959 return true; 1960 } 1961 1962 bool 1963 ValueObject::GetDeclaration (Declaration &decl) 1964 { 1965 decl.Clear(); 1966 return false; 1967 } 1968 1969 ConstString 1970 ValueObject::GetTypeName() 1971 { 1972 return GetCompilerType().GetConstTypeName(); 1973 } 1974 1975 ConstString 1976 ValueObject::GetDisplayTypeName() 1977 { 1978 return GetTypeName(); 1979 } 1980 1981 ConstString 1982 ValueObject::GetQualifiedTypeName() 1983 { 1984 return GetCompilerType().GetConstQualifiedTypeName(); 1985 } 1986 1987 1988 LanguageType 1989 ValueObject::GetObjectRuntimeLanguage () 1990 { 1991 return GetCompilerType().GetMinimumLanguage (); 1992 } 1993 1994 void 1995 ValueObject::AddSyntheticChild (const ConstString &key, ValueObject *valobj) 1996 { 1997 m_synthetic_children[key] = valobj; 1998 } 1999 2000 ValueObjectSP 2001 ValueObject::GetSyntheticChild (const ConstString &key) const 2002 { 2003 ValueObjectSP synthetic_child_sp; 2004 std::map<ConstString, ValueObject *>::const_iterator pos = m_synthetic_children.find (key); 2005 if (pos != m_synthetic_children.end()) 2006 synthetic_child_sp = pos->second->GetSP(); 2007 return synthetic_child_sp; 2008 } 2009 2010 uint32_t 2011 ValueObject::GetTypeInfo (CompilerType *pointee_or_element_compiler_type) 2012 { 2013 return GetCompilerType().GetTypeInfo (pointee_or_element_compiler_type); 2014 } 2015 2016 bool 2017 ValueObject::IsPointerType () 2018 { 2019 return GetCompilerType().IsPointerType(); 2020 } 2021 2022 bool 2023 ValueObject::IsArrayType () 2024 { 2025 return GetCompilerType().IsArrayType (NULL, NULL, NULL); 2026 } 2027 2028 bool 2029 ValueObject::IsScalarType () 2030 { 2031 return GetCompilerType().IsScalarType (); 2032 } 2033 2034 bool 2035 ValueObject::IsIntegerType (bool &is_signed) 2036 { 2037 return GetCompilerType().IsIntegerType (is_signed); 2038 } 2039 2040 bool 2041 ValueObject::IsPointerOrReferenceType () 2042 { 2043 return GetCompilerType().IsPointerOrReferenceType (); 2044 } 2045 2046 bool 2047 ValueObject::IsPossibleDynamicType () 2048 { 2049 ExecutionContext exe_ctx (GetExecutionContextRef()); 2050 Process *process = exe_ctx.GetProcessPtr(); 2051 if (process) 2052 return process->IsPossibleDynamicValue(*this); 2053 else 2054 return GetCompilerType().IsPossibleDynamicType (NULL, true, true); 2055 } 2056 2057 bool 2058 ValueObject::IsRuntimeSupportValue () 2059 { 2060 Process *process(GetProcessSP().get()); 2061 if (process) 2062 { 2063 LanguageRuntime *runtime = process->GetLanguageRuntime(GetObjectRuntimeLanguage()); 2064 if (!runtime) 2065 runtime = process->GetObjCLanguageRuntime(); 2066 if (runtime) 2067 return runtime->IsRuntimeSupportValue(*this); 2068 } 2069 return false; 2070 } 2071 2072 bool 2073 ValueObject::IsNilReference () 2074 { 2075 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) 2076 { 2077 return language->IsNilReference(*this); 2078 } 2079 return false; 2080 } 2081 2082 bool 2083 ValueObject::IsUninitializedReference () 2084 { 2085 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) 2086 { 2087 return language->IsUninitializedReference(*this); 2088 } 2089 return false; 2090 } 2091 2092 // This allows you to create an array member using and index 2093 // that doesn't not fall in the normal bounds of the array. 2094 // Many times structure can be defined as: 2095 // struct Collection 2096 // { 2097 // uint32_t item_count; 2098 // Item item_array[0]; 2099 // }; 2100 // The size of the "item_array" is 1, but many times in practice 2101 // there are more items in "item_array". 2102 2103 ValueObjectSP 2104 ValueObject::GetSyntheticArrayMember (size_t index, bool can_create) 2105 { 2106 ValueObjectSP synthetic_child_sp; 2107 if (IsPointerType () || IsArrayType()) 2108 { 2109 char index_str[64]; 2110 snprintf(index_str, sizeof(index_str), "[%" PRIu64 "]", (uint64_t)index); 2111 ConstString index_const_str(index_str); 2112 // Check if we have already created a synthetic array member in this 2113 // valid object. If we have we will re-use it. 2114 synthetic_child_sp = GetSyntheticChild (index_const_str); 2115 if (!synthetic_child_sp) 2116 { 2117 ValueObject *synthetic_child; 2118 // We haven't made a synthetic array member for INDEX yet, so 2119 // lets make one and cache it for any future reference. 2120 synthetic_child = CreateChildAtIndex(0, true, index); 2121 2122 // Cache the value if we got one back... 2123 if (synthetic_child) 2124 { 2125 AddSyntheticChild(index_const_str, synthetic_child); 2126 synthetic_child_sp = synthetic_child->GetSP(); 2127 synthetic_child_sp->SetName(ConstString(index_str)); 2128 synthetic_child_sp->m_is_array_item_for_pointer = true; 2129 } 2130 } 2131 } 2132 return synthetic_child_sp; 2133 } 2134 2135 ValueObjectSP 2136 ValueObject::GetSyntheticBitFieldChild (uint32_t from, uint32_t to, bool can_create) 2137 { 2138 ValueObjectSP synthetic_child_sp; 2139 if (IsScalarType ()) 2140 { 2141 char index_str[64]; 2142 snprintf(index_str, sizeof(index_str), "[%i-%i]", from, to); 2143 ConstString index_const_str(index_str); 2144 // Check if we have already created a synthetic array member in this 2145 // valid object. If we have we will re-use it. 2146 synthetic_child_sp = GetSyntheticChild (index_const_str); 2147 if (!synthetic_child_sp) 2148 { 2149 uint32_t bit_field_size = to - from + 1; 2150 uint32_t bit_field_offset = from; 2151 if (GetDataExtractor().GetByteOrder() == eByteOrderBig) 2152 bit_field_offset = GetByteSize() * 8 - bit_field_size - bit_field_offset; 2153 // We haven't made a synthetic array member for INDEX yet, so 2154 // lets make one and cache it for any future reference. 2155 ValueObjectChild *synthetic_child = new ValueObjectChild (*this, 2156 GetCompilerType(), 2157 index_const_str, 2158 GetByteSize(), 2159 0, 2160 bit_field_size, 2161 bit_field_offset, 2162 false, 2163 false, 2164 eAddressTypeInvalid, 2165 0); 2166 2167 // Cache the value if we got one back... 2168 if (synthetic_child) 2169 { 2170 AddSyntheticChild(index_const_str, synthetic_child); 2171 synthetic_child_sp = synthetic_child->GetSP(); 2172 synthetic_child_sp->SetName(ConstString(index_str)); 2173 synthetic_child_sp->m_is_bitfield_for_scalar = true; 2174 } 2175 } 2176 } 2177 return synthetic_child_sp; 2178 } 2179 2180 ValueObjectSP 2181 ValueObject::GetSyntheticChildAtOffset(uint32_t offset, 2182 const CompilerType& type, 2183 bool can_create, 2184 ConstString name_const_str) 2185 { 2186 2187 ValueObjectSP synthetic_child_sp; 2188 2189 if (name_const_str.IsEmpty()) 2190 { 2191 char name_str[64]; 2192 snprintf(name_str, sizeof(name_str), "@%i", offset); 2193 name_const_str.SetCString(name_str); 2194 } 2195 2196 // Check if we have already created a synthetic array member in this 2197 // valid object. If we have we will re-use it. 2198 synthetic_child_sp = GetSyntheticChild (name_const_str); 2199 2200 if (synthetic_child_sp.get()) 2201 return synthetic_child_sp; 2202 2203 if (!can_create) 2204 return ValueObjectSP(); 2205 2206 ExecutionContext exe_ctx (GetExecutionContextRef()); 2207 2208 ValueObjectChild *synthetic_child = new ValueObjectChild(*this, 2209 type, 2210 name_const_str, 2211 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()), 2212 offset, 2213 0, 2214 0, 2215 false, 2216 false, 2217 eAddressTypeInvalid, 2218 0); 2219 if (synthetic_child) 2220 { 2221 AddSyntheticChild(name_const_str, synthetic_child); 2222 synthetic_child_sp = synthetic_child->GetSP(); 2223 synthetic_child_sp->SetName(name_const_str); 2224 synthetic_child_sp->m_is_child_at_offset = true; 2225 } 2226 return synthetic_child_sp; 2227 } 2228 2229 ValueObjectSP 2230 ValueObject::GetSyntheticBase (uint32_t offset, const CompilerType& type, bool can_create) 2231 { 2232 ValueObjectSP synthetic_child_sp; 2233 2234 char name_str[64]; 2235 snprintf(name_str, sizeof(name_str), "%s", type.GetTypeName().AsCString("<unknown>")); 2236 ConstString name_const_str(name_str); 2237 2238 // Check if we have already created a synthetic array member in this 2239 // valid object. If we have we will re-use it. 2240 synthetic_child_sp = GetSyntheticChild (name_const_str); 2241 2242 if (synthetic_child_sp.get()) 2243 return synthetic_child_sp; 2244 2245 if (!can_create) 2246 return ValueObjectSP(); 2247 2248 const bool is_base_class = true; 2249 2250 ExecutionContext exe_ctx (GetExecutionContextRef()); 2251 2252 ValueObjectChild *synthetic_child = new ValueObjectChild(*this, 2253 type, 2254 name_const_str, 2255 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()), 2256 offset, 2257 0, 2258 0, 2259 is_base_class, 2260 false, 2261 eAddressTypeInvalid, 2262 0); 2263 if (synthetic_child) 2264 { 2265 AddSyntheticChild(name_const_str, synthetic_child); 2266 synthetic_child_sp = synthetic_child->GetSP(); 2267 synthetic_child_sp->SetName(name_const_str); 2268 } 2269 return synthetic_child_sp; 2270 } 2271 2272 2273 // your expression path needs to have a leading . or -> 2274 // (unless it somehow "looks like" an array, in which case it has 2275 // a leading [ symbol). while the [ is meaningful and should be shown 2276 // to the user, . and -> are just parser design, but by no means 2277 // added information for the user.. strip them off 2278 static const char* 2279 SkipLeadingExpressionPathSeparators(const char* expression) 2280 { 2281 if (!expression || !expression[0]) 2282 return expression; 2283 if (expression[0] == '.') 2284 return expression+1; 2285 if (expression[0] == '-' && expression[1] == '>') 2286 return expression+2; 2287 return expression; 2288 } 2289 2290 ValueObjectSP 2291 ValueObject::GetSyntheticExpressionPathChild(const char* expression, bool can_create) 2292 { 2293 ValueObjectSP synthetic_child_sp; 2294 ConstString name_const_string(expression); 2295 // Check if we have already created a synthetic array member in this 2296 // valid object. If we have we will re-use it. 2297 synthetic_child_sp = GetSyntheticChild (name_const_string); 2298 if (!synthetic_child_sp) 2299 { 2300 // We haven't made a synthetic array member for expression yet, so 2301 // lets make one and cache it for any future reference. 2302 synthetic_child_sp = GetValueForExpressionPath(expression, 2303 NULL, NULL, NULL, 2304 GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal(GetValueForExpressionPathOptions::SyntheticChildrenTraversal::None)); 2305 2306 // Cache the value if we got one back... 2307 if (synthetic_child_sp.get()) 2308 { 2309 // FIXME: this causes a "real" child to end up with its name changed to the contents of expression 2310 AddSyntheticChild(name_const_string, synthetic_child_sp.get()); 2311 synthetic_child_sp->SetName(ConstString(SkipLeadingExpressionPathSeparators(expression))); 2312 } 2313 } 2314 return synthetic_child_sp; 2315 } 2316 2317 void 2318 ValueObject::CalculateSyntheticValue (bool use_synthetic) 2319 { 2320 if (use_synthetic == false) 2321 return; 2322 2323 TargetSP target_sp(GetTargetSP()); 2324 if (target_sp && target_sp->GetEnableSyntheticValue() == false) 2325 { 2326 m_synthetic_value = NULL; 2327 return; 2328 } 2329 2330 lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp); 2331 2332 if (!UpdateFormatsIfNeeded() && m_synthetic_value) 2333 return; 2334 2335 if (m_synthetic_children_sp.get() == NULL) 2336 return; 2337 2338 if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value) 2339 return; 2340 2341 m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp); 2342 } 2343 2344 void 2345 ValueObject::CalculateDynamicValue (DynamicValueType use_dynamic) 2346 { 2347 if (use_dynamic == eNoDynamicValues) 2348 return; 2349 2350 if (!m_dynamic_value && !IsDynamic()) 2351 { 2352 ExecutionContext exe_ctx (GetExecutionContextRef()); 2353 Process *process = exe_ctx.GetProcessPtr(); 2354 if (process && process->IsPossibleDynamicValue(*this)) 2355 { 2356 ClearDynamicTypeInformation (); 2357 m_dynamic_value = new ValueObjectDynamicValue (*this, use_dynamic); 2358 } 2359 } 2360 } 2361 2362 ValueObjectSP 2363 ValueObject::GetDynamicValue (DynamicValueType use_dynamic) 2364 { 2365 if (use_dynamic == eNoDynamicValues) 2366 return ValueObjectSP(); 2367 2368 if (!IsDynamic() && m_dynamic_value == NULL) 2369 { 2370 CalculateDynamicValue(use_dynamic); 2371 } 2372 if (m_dynamic_value) 2373 return m_dynamic_value->GetSP(); 2374 else 2375 return ValueObjectSP(); 2376 } 2377 2378 ValueObjectSP 2379 ValueObject::GetStaticValue() 2380 { 2381 return GetSP(); 2382 } 2383 2384 lldb::ValueObjectSP 2385 ValueObject::GetNonSyntheticValue () 2386 { 2387 return GetSP(); 2388 } 2389 2390 ValueObjectSP 2391 ValueObject::GetSyntheticValue (bool use_synthetic) 2392 { 2393 if (use_synthetic == false) 2394 return ValueObjectSP(); 2395 2396 CalculateSyntheticValue(use_synthetic); 2397 2398 if (m_synthetic_value) 2399 return m_synthetic_value->GetSP(); 2400 else 2401 return ValueObjectSP(); 2402 } 2403 2404 bool 2405 ValueObject::HasSyntheticValue() 2406 { 2407 UpdateFormatsIfNeeded(); 2408 2409 if (m_synthetic_children_sp.get() == NULL) 2410 return false; 2411 2412 CalculateSyntheticValue(true); 2413 2414 if (m_synthetic_value) 2415 return true; 2416 else 2417 return false; 2418 } 2419 2420 bool 2421 ValueObject::GetBaseClassPath (Stream &s) 2422 { 2423 if (IsBaseClass()) 2424 { 2425 bool parent_had_base_class = GetParent() && GetParent()->GetBaseClassPath (s); 2426 CompilerType compiler_type = GetCompilerType(); 2427 std::string cxx_class_name; 2428 bool this_had_base_class = ClangASTContext::GetCXXClassName (compiler_type, cxx_class_name); 2429 if (this_had_base_class) 2430 { 2431 if (parent_had_base_class) 2432 s.PutCString("::"); 2433 s.PutCString(cxx_class_name.c_str()); 2434 } 2435 return parent_had_base_class || this_had_base_class; 2436 } 2437 return false; 2438 } 2439 2440 2441 ValueObject * 2442 ValueObject::GetNonBaseClassParent() 2443 { 2444 if (GetParent()) 2445 { 2446 if (GetParent()->IsBaseClass()) 2447 return GetParent()->GetNonBaseClassParent(); 2448 else 2449 return GetParent(); 2450 } 2451 return NULL; 2452 } 2453 2454 2455 bool 2456 ValueObject::IsBaseClass (uint32_t& depth) 2457 { 2458 if (!IsBaseClass()) 2459 { 2460 depth = 0; 2461 return false; 2462 } 2463 if (GetParent()) 2464 { 2465 GetParent()->IsBaseClass(depth); 2466 depth = depth + 1; 2467 return true; 2468 } 2469 // TODO: a base of no parent? weird.. 2470 depth = 1; 2471 return true; 2472 } 2473 2474 void 2475 ValueObject::GetExpressionPath (Stream &s, bool qualify_cxx_base_classes, GetExpressionPathFormat epformat) 2476 { 2477 // synthetic children do not actually "exist" as part of the hierarchy, and sometimes they are consed up in ways 2478 // that don't make sense from an underlying language/API standpoint. So, use a special code path here to return 2479 // something that can hopefully be used in expression 2480 if (m_is_synthetic_children_generated) 2481 { 2482 UpdateValueIfNeeded(); 2483 2484 if (m_value.GetValueType() == Value::eValueTypeLoadAddress) 2485 { 2486 if (IsPointerOrReferenceType()) 2487 { 2488 s.Printf("((%s)0x%" PRIx64 ")", 2489 GetTypeName().AsCString("void"), 2490 GetValueAsUnsigned(0)); 2491 return; 2492 } 2493 else 2494 { 2495 uint64_t load_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2496 if (load_addr != LLDB_INVALID_ADDRESS) 2497 { 2498 s.Printf("(*( (%s *)0x%" PRIx64 "))", 2499 GetTypeName().AsCString("void"), 2500 load_addr); 2501 return; 2502 } 2503 } 2504 } 2505 2506 if (CanProvideValue()) 2507 { 2508 s.Printf("((%s)%s)", 2509 GetTypeName().AsCString("void"), 2510 GetValueAsCString()); 2511 return; 2512 } 2513 2514 return; 2515 } 2516 2517 const bool is_deref_of_parent = IsDereferenceOfParent (); 2518 2519 if (is_deref_of_parent && epformat == eGetExpressionPathFormatDereferencePointers) 2520 { 2521 // this is the original format of GetExpressionPath() producing code like *(a_ptr).memberName, which is entirely 2522 // fine, until you put this into StackFrame::GetValueForVariableExpressionPath() which prefers to see a_ptr->memberName. 2523 // the eHonorPointers mode is meant to produce strings in this latter format 2524 s.PutCString("*("); 2525 } 2526 2527 ValueObject* parent = GetParent(); 2528 2529 if (parent) 2530 parent->GetExpressionPath (s, qualify_cxx_base_classes, epformat); 2531 2532 // if we are a deref_of_parent just because we are synthetic array 2533 // members made up to allow ptr[%d] syntax to work in variable 2534 // printing, then add our name ([%d]) to the expression path 2535 if (m_is_array_item_for_pointer && epformat == eGetExpressionPathFormatHonorPointers) 2536 s.PutCString(m_name.AsCString()); 2537 2538 if (!IsBaseClass()) 2539 { 2540 if (!is_deref_of_parent) 2541 { 2542 ValueObject *non_base_class_parent = GetNonBaseClassParent(); 2543 if (non_base_class_parent && !non_base_class_parent->GetName().IsEmpty()) 2544 { 2545 CompilerType non_base_class_parent_compiler_type = non_base_class_parent->GetCompilerType(); 2546 if (non_base_class_parent_compiler_type) 2547 { 2548 if (parent && parent->IsDereferenceOfParent() && epformat == eGetExpressionPathFormatHonorPointers) 2549 { 2550 s.PutCString("->"); 2551 } 2552 else 2553 { 2554 const uint32_t non_base_class_parent_type_info = non_base_class_parent_compiler_type.GetTypeInfo(); 2555 2556 if (non_base_class_parent_type_info & eTypeIsPointer) 2557 { 2558 s.PutCString("->"); 2559 } 2560 else if ((non_base_class_parent_type_info & eTypeHasChildren) && 2561 !(non_base_class_parent_type_info & eTypeIsArray)) 2562 { 2563 s.PutChar('.'); 2564 } 2565 } 2566 } 2567 } 2568 2569 const char *name = GetName().GetCString(); 2570 if (name) 2571 { 2572 if (qualify_cxx_base_classes) 2573 { 2574 if (GetBaseClassPath (s)) 2575 s.PutCString("::"); 2576 } 2577 s.PutCString(name); 2578 } 2579 } 2580 } 2581 2582 if (is_deref_of_parent && epformat == eGetExpressionPathFormatDereferencePointers) 2583 { 2584 s.PutChar(')'); 2585 } 2586 } 2587 2588 ValueObjectSP 2589 ValueObject::GetValueForExpressionPath(const char* expression, 2590 const char** first_unparsed, 2591 ExpressionPathScanEndReason* reason_to_stop, 2592 ExpressionPathEndResultType* final_value_type, 2593 const GetValueForExpressionPathOptions& options, 2594 ExpressionPathAftermath* final_task_on_target) 2595 { 2596 2597 const char* dummy_first_unparsed; 2598 ExpressionPathScanEndReason dummy_reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnknown; 2599 ExpressionPathEndResultType dummy_final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2600 ExpressionPathAftermath dummy_final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2601 2602 ValueObjectSP ret_val = GetValueForExpressionPath_Impl(expression, 2603 first_unparsed ? first_unparsed : &dummy_first_unparsed, 2604 reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2605 final_value_type ? final_value_type : &dummy_final_value_type, 2606 options, 2607 final_task_on_target ? final_task_on_target : &dummy_final_task_on_target); 2608 2609 if (!final_task_on_target || *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2610 return ret_val; 2611 2612 if (ret_val.get() && ((final_value_type ? *final_value_type : dummy_final_value_type) == eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress of plain objects 2613 { 2614 if ( (final_task_on_target ? *final_task_on_target : dummy_final_task_on_target) == ValueObject::eExpressionPathAftermathDereference) 2615 { 2616 Error error; 2617 ValueObjectSP final_value = ret_val->Dereference(error); 2618 if (error.Fail() || !final_value.get()) 2619 { 2620 if (reason_to_stop) 2621 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2622 if (final_value_type) 2623 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2624 return ValueObjectSP(); 2625 } 2626 else 2627 { 2628 if (final_task_on_target) 2629 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2630 return final_value; 2631 } 2632 } 2633 if (*final_task_on_target == ValueObject::eExpressionPathAftermathTakeAddress) 2634 { 2635 Error error; 2636 ValueObjectSP final_value = ret_val->AddressOf(error); 2637 if (error.Fail() || !final_value.get()) 2638 { 2639 if (reason_to_stop) 2640 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2641 if (final_value_type) 2642 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2643 return ValueObjectSP(); 2644 } 2645 else 2646 { 2647 if (final_task_on_target) 2648 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2649 return final_value; 2650 } 2651 } 2652 } 2653 return ret_val; // final_task_on_target will still have its original value, so you know I did not do it 2654 } 2655 2656 int 2657 ValueObject::GetValuesForExpressionPath(const char* expression, 2658 ValueObjectListSP& list, 2659 const char** first_unparsed, 2660 ExpressionPathScanEndReason* reason_to_stop, 2661 ExpressionPathEndResultType* final_value_type, 2662 const GetValueForExpressionPathOptions& options, 2663 ExpressionPathAftermath* final_task_on_target) 2664 { 2665 const char* dummy_first_unparsed; 2666 ExpressionPathScanEndReason dummy_reason_to_stop; 2667 ExpressionPathEndResultType dummy_final_value_type; 2668 ExpressionPathAftermath dummy_final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2669 2670 ValueObjectSP ret_val = GetValueForExpressionPath_Impl(expression, 2671 first_unparsed ? first_unparsed : &dummy_first_unparsed, 2672 reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2673 final_value_type ? final_value_type : &dummy_final_value_type, 2674 options, 2675 final_task_on_target ? final_task_on_target : &dummy_final_task_on_target); 2676 2677 if (!ret_val.get()) // if there are errors, I add nothing to the list 2678 return 0; 2679 2680 if ( (reason_to_stop ? *reason_to_stop : dummy_reason_to_stop) != eExpressionPathScanEndReasonArrayRangeOperatorMet) 2681 { 2682 // I need not expand a range, just post-process the final value and return 2683 if (!final_task_on_target || *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2684 { 2685 list->Append(ret_val); 2686 return 1; 2687 } 2688 if (ret_val.get() && (final_value_type ? *final_value_type : dummy_final_value_type) == eExpressionPathEndResultTypePlain) // I can only deref and takeaddress of plain objects 2689 { 2690 if (*final_task_on_target == ValueObject::eExpressionPathAftermathDereference) 2691 { 2692 Error error; 2693 ValueObjectSP final_value = ret_val->Dereference(error); 2694 if (error.Fail() || !final_value.get()) 2695 { 2696 if (reason_to_stop) 2697 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2698 if (final_value_type) 2699 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2700 return 0; 2701 } 2702 else 2703 { 2704 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2705 list->Append(final_value); 2706 return 1; 2707 } 2708 } 2709 if (*final_task_on_target == ValueObject::eExpressionPathAftermathTakeAddress) 2710 { 2711 Error error; 2712 ValueObjectSP final_value = ret_val->AddressOf(error); 2713 if (error.Fail() || !final_value.get()) 2714 { 2715 if (reason_to_stop) 2716 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2717 if (final_value_type) 2718 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2719 return 0; 2720 } 2721 else 2722 { 2723 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2724 list->Append(final_value); 2725 return 1; 2726 } 2727 } 2728 } 2729 } 2730 else 2731 { 2732 return ExpandArraySliceExpression(first_unparsed ? *first_unparsed : dummy_first_unparsed, 2733 first_unparsed ? first_unparsed : &dummy_first_unparsed, 2734 ret_val, 2735 list, 2736 reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2737 final_value_type ? final_value_type : &dummy_final_value_type, 2738 options, 2739 final_task_on_target ? final_task_on_target : &dummy_final_task_on_target); 2740 } 2741 // in any non-covered case, just do the obviously right thing 2742 list->Append(ret_val); 2743 return 1; 2744 } 2745 2746 ValueObjectSP 2747 ValueObject::GetValueForExpressionPath_Impl(const char* expression_cstr, 2748 const char** first_unparsed, 2749 ExpressionPathScanEndReason* reason_to_stop, 2750 ExpressionPathEndResultType* final_result, 2751 const GetValueForExpressionPathOptions& options, 2752 ExpressionPathAftermath* what_next) 2753 { 2754 ValueObjectSP root = GetSP(); 2755 2756 if (!root.get()) 2757 return ValueObjectSP(); 2758 2759 *first_unparsed = expression_cstr; 2760 2761 while (true) 2762 { 2763 2764 const char* expression_cstr = *first_unparsed; // hide the top level expression_cstr 2765 2766 CompilerType root_compiler_type = root->GetCompilerType(); 2767 CompilerType pointee_compiler_type; 2768 Flags pointee_compiler_type_info; 2769 2770 Flags root_compiler_type_info(root_compiler_type.GetTypeInfo(&pointee_compiler_type)); 2771 if (pointee_compiler_type) 2772 pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo()); 2773 2774 if (!expression_cstr || *expression_cstr == '\0') 2775 { 2776 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2777 return root; 2778 } 2779 2780 switch (*expression_cstr) 2781 { 2782 case '-': 2783 { 2784 if (options.m_check_dot_vs_arrow_syntax && 2785 root_compiler_type_info.Test(eTypeIsPointer) ) // if you are trying to use -> on a non-pointer and I must catch the error 2786 { 2787 *first_unparsed = expression_cstr; 2788 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot; 2789 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2790 return ValueObjectSP(); 2791 } 2792 if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to extract an ObjC IVar when this is forbidden 2793 root_compiler_type_info.Test(eTypeIsPointer) && 2794 options.m_no_fragile_ivar) 2795 { 2796 *first_unparsed = expression_cstr; 2797 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed; 2798 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2799 return ValueObjectSP(); 2800 } 2801 if (expression_cstr[1] != '>') 2802 { 2803 *first_unparsed = expression_cstr; 2804 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2805 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2806 return ValueObjectSP(); 2807 } 2808 expression_cstr++; // skip the - 2809 } 2810 LLVM_FALLTHROUGH; 2811 case '.': // or fallthrough from -> 2812 { 2813 if (options.m_check_dot_vs_arrow_syntax && *expression_cstr == '.' && 2814 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to use . on a pointer and I must catch the error 2815 { 2816 *first_unparsed = expression_cstr; 2817 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow; 2818 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2819 return ValueObjectSP(); 2820 } 2821 expression_cstr++; // skip . 2822 const char *next_separator = strpbrk(expression_cstr+1,"-.["); 2823 ConstString child_name; 2824 if (!next_separator) // if no other separator just expand this last layer 2825 { 2826 child_name.SetCString (expression_cstr); 2827 ValueObjectSP child_valobj_sp = root->GetChildMemberWithName(child_name, true); 2828 2829 if (child_valobj_sp.get()) // we know we are done, so just return 2830 { 2831 *first_unparsed = ""; 2832 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2833 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2834 return child_valobj_sp; 2835 } 2836 else 2837 { 2838 switch (options.m_synthetic_children_traversal) 2839 { 2840 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::None: 2841 break; 2842 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::FromSynthetic: 2843 if (root->IsSynthetic()) 2844 { 2845 child_valobj_sp = root->GetNonSyntheticValue(); 2846 if (child_valobj_sp.get()) 2847 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2848 } 2849 break; 2850 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::ToSynthetic: 2851 if (!root->IsSynthetic()) 2852 { 2853 child_valobj_sp = root->GetSyntheticValue(); 2854 if (child_valobj_sp.get()) 2855 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2856 } 2857 break; 2858 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::Both: 2859 if (root->IsSynthetic()) 2860 { 2861 child_valobj_sp = root->GetNonSyntheticValue(); 2862 if (child_valobj_sp.get()) 2863 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2864 } 2865 else 2866 { 2867 child_valobj_sp = root->GetSyntheticValue(); 2868 if (child_valobj_sp.get()) 2869 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2870 } 2871 break; 2872 } 2873 } 2874 2875 // if we are here and options.m_no_synthetic_children is true, child_valobj_sp is going to be a NULL SP, 2876 // so we hit the "else" branch, and return an error 2877 if(child_valobj_sp.get()) // if it worked, just return 2878 { 2879 *first_unparsed = ""; 2880 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2881 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2882 return child_valobj_sp; 2883 } 2884 else 2885 { 2886 *first_unparsed = expression_cstr; 2887 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2888 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2889 return ValueObjectSP(); 2890 } 2891 } 2892 else // other layers do expand 2893 { 2894 child_name.SetCStringWithLength(expression_cstr, next_separator - expression_cstr); 2895 ValueObjectSP child_valobj_sp = root->GetChildMemberWithName(child_name, true); 2896 if (child_valobj_sp.get()) // store the new root and move on 2897 { 2898 root = child_valobj_sp; 2899 *first_unparsed = next_separator; 2900 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2901 continue; 2902 } 2903 else 2904 { 2905 switch (options.m_synthetic_children_traversal) 2906 { 2907 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::None: 2908 break; 2909 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::FromSynthetic: 2910 if (root->IsSynthetic()) 2911 { 2912 child_valobj_sp = root->GetNonSyntheticValue(); 2913 if (child_valobj_sp.get()) 2914 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2915 } 2916 break; 2917 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::ToSynthetic: 2918 if (!root->IsSynthetic()) 2919 { 2920 child_valobj_sp = root->GetSyntheticValue(); 2921 if (child_valobj_sp.get()) 2922 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2923 } 2924 break; 2925 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::Both: 2926 if (root->IsSynthetic()) 2927 { 2928 child_valobj_sp = root->GetNonSyntheticValue(); 2929 if (child_valobj_sp.get()) 2930 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2931 } 2932 else 2933 { 2934 child_valobj_sp = root->GetSyntheticValue(); 2935 if (child_valobj_sp.get()) 2936 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2937 } 2938 break; 2939 } 2940 } 2941 2942 // if we are here and options.m_no_synthetic_children is true, child_valobj_sp is going to be a NULL SP, 2943 // so we hit the "else" branch, and return an error 2944 if(child_valobj_sp.get()) // if it worked, move on 2945 { 2946 root = child_valobj_sp; 2947 *first_unparsed = next_separator; 2948 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2949 continue; 2950 } 2951 else 2952 { 2953 *first_unparsed = expression_cstr; 2954 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2955 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2956 return ValueObjectSP(); 2957 } 2958 } 2959 break; 2960 } 2961 case '[': 2962 { 2963 if (!root_compiler_type_info.Test(eTypeIsArray) && !root_compiler_type_info.Test(eTypeIsPointer) && !root_compiler_type_info.Test(eTypeIsVector)) // if this is not a T[] nor a T* 2964 { 2965 if (!root_compiler_type_info.Test(eTypeIsScalar)) // if this is not even a scalar... 2966 { 2967 if (options.m_synthetic_children_traversal == GetValueForExpressionPathOptions::SyntheticChildrenTraversal::None) // ...only chance left is synthetic 2968 { 2969 *first_unparsed = expression_cstr; 2970 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 2971 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2972 return ValueObjectSP(); 2973 } 2974 } 2975 else if (!options.m_allow_bitfields_syntax) // if this is a scalar, check that we can expand bitfields 2976 { 2977 *first_unparsed = expression_cstr; 2978 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 2979 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2980 return ValueObjectSP(); 2981 } 2982 } 2983 if (*(expression_cstr+1) == ']') // if this is an unbounded range it only works for arrays 2984 { 2985 if (!root_compiler_type_info.Test(eTypeIsArray)) 2986 { 2987 *first_unparsed = expression_cstr; 2988 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 2989 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2990 return ValueObjectSP(); 2991 } 2992 else // even if something follows, we cannot expand unbounded ranges, just let the caller do it 2993 { 2994 *first_unparsed = expression_cstr+2; 2995 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2996 *final_result = ValueObject::eExpressionPathEndResultTypeUnboundedRange; 2997 return root; 2998 } 2999 } 3000 const char *separator_position = ::strchr(expression_cstr+1,'-'); 3001 const char *close_bracket_position = ::strchr(expression_cstr+1,']'); 3002 if (!close_bracket_position) // if there is no ], this is a syntax error 3003 { 3004 *first_unparsed = expression_cstr; 3005 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3006 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3007 return ValueObjectSP(); 3008 } 3009 if (!separator_position || separator_position > close_bracket_position) // if no separator, this is either [] or [N] 3010 { 3011 char *end = NULL; 3012 unsigned long index = ::strtoul (expression_cstr+1, &end, 0); 3013 if (!end || end != close_bracket_position) // if something weird is in our way return an error 3014 { 3015 *first_unparsed = expression_cstr; 3016 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3017 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3018 return ValueObjectSP(); 3019 } 3020 if (end - expression_cstr == 1) // if this is [], only return a valid value for arrays 3021 { 3022 if (root_compiler_type_info.Test(eTypeIsArray)) 3023 { 3024 *first_unparsed = expression_cstr+2; 3025 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 3026 *final_result = ValueObject::eExpressionPathEndResultTypeUnboundedRange; 3027 return root; 3028 } 3029 else 3030 { 3031 *first_unparsed = expression_cstr; 3032 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 3033 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3034 return ValueObjectSP(); 3035 } 3036 } 3037 // from here on we do have a valid index 3038 if (root_compiler_type_info.Test(eTypeIsArray)) 3039 { 3040 ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true); 3041 if (!child_valobj_sp) 3042 child_valobj_sp = root->GetSyntheticArrayMember(index, true); 3043 if (!child_valobj_sp) 3044 if (root->HasSyntheticValue() && root->GetSyntheticValue()->GetNumChildren() > index) 3045 child_valobj_sp = root->GetSyntheticValue()->GetChildAtIndex(index, true); 3046 if (child_valobj_sp) 3047 { 3048 root = child_valobj_sp; 3049 *first_unparsed = end+1; // skip ] 3050 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 3051 continue; 3052 } 3053 else 3054 { 3055 *first_unparsed = expression_cstr; 3056 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3057 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3058 return ValueObjectSP(); 3059 } 3060 } 3061 else if (root_compiler_type_info.Test(eTypeIsPointer)) 3062 { 3063 if (*what_next == ValueObject::eExpressionPathAftermathDereference && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield 3064 pointee_compiler_type_info.Test(eTypeIsScalar)) 3065 { 3066 Error error; 3067 root = root->Dereference(error); 3068 if (error.Fail() || !root.get()) 3069 { 3070 *first_unparsed = expression_cstr; 3071 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 3072 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3073 return ValueObjectSP(); 3074 } 3075 else 3076 { 3077 *what_next = eExpressionPathAftermathNothing; 3078 continue; 3079 } 3080 } 3081 else 3082 { 3083 if (root->GetCompilerType().GetMinimumLanguage() == eLanguageTypeObjC 3084 && pointee_compiler_type_info.AllClear(eTypeIsPointer) 3085 && root->HasSyntheticValue() 3086 && (options.m_synthetic_children_traversal == GetValueForExpressionPathOptions::SyntheticChildrenTraversal::ToSynthetic || 3087 options.m_synthetic_children_traversal == GetValueForExpressionPathOptions::SyntheticChildrenTraversal::Both)) 3088 { 3089 root = root->GetSyntheticValue()->GetChildAtIndex(index, true); 3090 } 3091 else 3092 root = root->GetSyntheticArrayMember(index, true); 3093 if (!root.get()) 3094 { 3095 *first_unparsed = expression_cstr; 3096 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3097 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3098 return ValueObjectSP(); 3099 } 3100 else 3101 { 3102 *first_unparsed = end+1; // skip ] 3103 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 3104 continue; 3105 } 3106 } 3107 } 3108 else if (root_compiler_type_info.Test(eTypeIsScalar)) 3109 { 3110 root = root->GetSyntheticBitFieldChild(index, index, true); 3111 if (!root.get()) 3112 { 3113 *first_unparsed = expression_cstr; 3114 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3115 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3116 return ValueObjectSP(); 3117 } 3118 else // we do not know how to expand members of bitfields, so we just return and let the caller do any further processing 3119 { 3120 *first_unparsed = end+1; // skip ] 3121 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 3122 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 3123 return root; 3124 } 3125 } 3126 else if (root_compiler_type_info.Test(eTypeIsVector)) 3127 { 3128 root = root->GetChildAtIndex(index, true); 3129 if (!root.get()) 3130 { 3131 *first_unparsed = expression_cstr; 3132 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3133 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3134 return ValueObjectSP(); 3135 } 3136 else 3137 { 3138 *first_unparsed = end+1; // skip ] 3139 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 3140 continue; 3141 } 3142 } 3143 else if (options.m_synthetic_children_traversal == GetValueForExpressionPathOptions::SyntheticChildrenTraversal::ToSynthetic || 3144 options.m_synthetic_children_traversal == GetValueForExpressionPathOptions::SyntheticChildrenTraversal::Both) 3145 { 3146 if (root->HasSyntheticValue()) 3147 root = root->GetSyntheticValue(); 3148 else if (!root->IsSynthetic()) 3149 { 3150 *first_unparsed = expression_cstr; 3151 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 3152 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3153 return ValueObjectSP(); 3154 } 3155 // if we are here, then root itself is a synthetic VO.. should be good to go 3156 3157 if (!root.get()) 3158 { 3159 *first_unparsed = expression_cstr; 3160 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 3161 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3162 return ValueObjectSP(); 3163 } 3164 root = root->GetChildAtIndex(index, true); 3165 if (!root.get()) 3166 { 3167 *first_unparsed = expression_cstr; 3168 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3169 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3170 return ValueObjectSP(); 3171 } 3172 else 3173 { 3174 *first_unparsed = end+1; // skip ] 3175 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 3176 continue; 3177 } 3178 } 3179 else 3180 { 3181 *first_unparsed = expression_cstr; 3182 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3183 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3184 return ValueObjectSP(); 3185 } 3186 } 3187 else // we have a low and a high index 3188 { 3189 char *end = NULL; 3190 unsigned long index_lower = ::strtoul (expression_cstr+1, &end, 0); 3191 if (!end || end != separator_position) // if something weird is in our way return an error 3192 { 3193 *first_unparsed = expression_cstr; 3194 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3195 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3196 return ValueObjectSP(); 3197 } 3198 unsigned long index_higher = ::strtoul (separator_position+1, &end, 0); 3199 if (!end || end != close_bracket_position) // if something weird is in our way return an error 3200 { 3201 *first_unparsed = expression_cstr; 3202 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3203 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3204 return ValueObjectSP(); 3205 } 3206 if (index_lower > index_higher) // swap indices if required 3207 { 3208 unsigned long temp = index_lower; 3209 index_lower = index_higher; 3210 index_higher = temp; 3211 } 3212 if (root_compiler_type_info.Test(eTypeIsScalar)) // expansion only works for scalars 3213 { 3214 root = root->GetSyntheticBitFieldChild(index_lower, index_higher, true); 3215 if (!root.get()) 3216 { 3217 *first_unparsed = expression_cstr; 3218 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3219 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3220 return ValueObjectSP(); 3221 } 3222 else 3223 { 3224 *first_unparsed = end+1; // skip ] 3225 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 3226 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 3227 return root; 3228 } 3229 } 3230 else if (root_compiler_type_info.Test(eTypeIsPointer) && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield 3231 *what_next == ValueObject::eExpressionPathAftermathDereference && 3232 pointee_compiler_type_info.Test(eTypeIsScalar)) 3233 { 3234 Error error; 3235 root = root->Dereference(error); 3236 if (error.Fail() || !root.get()) 3237 { 3238 *first_unparsed = expression_cstr; 3239 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 3240 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3241 return ValueObjectSP(); 3242 } 3243 else 3244 { 3245 *what_next = ValueObject::eExpressionPathAftermathNothing; 3246 continue; 3247 } 3248 } 3249 else 3250 { 3251 *first_unparsed = expression_cstr; 3252 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 3253 *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange; 3254 return root; 3255 } 3256 } 3257 break; 3258 } 3259 default: // some non-separator is in the way 3260 { 3261 *first_unparsed = expression_cstr; 3262 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3263 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3264 return ValueObjectSP(); 3265 break; 3266 } 3267 } 3268 } 3269 } 3270 3271 int 3272 ValueObject::ExpandArraySliceExpression(const char* expression_cstr, 3273 const char** first_unparsed, 3274 ValueObjectSP root, 3275 ValueObjectListSP& list, 3276 ExpressionPathScanEndReason* reason_to_stop, 3277 ExpressionPathEndResultType* final_result, 3278 const GetValueForExpressionPathOptions& options, 3279 ExpressionPathAftermath* what_next) 3280 { 3281 if (!root.get()) 3282 return 0; 3283 3284 *first_unparsed = expression_cstr; 3285 3286 while (true) 3287 { 3288 3289 const char* expression_cstr = *first_unparsed; // hide the top level expression_cstr 3290 3291 CompilerType root_compiler_type = root->GetCompilerType(); 3292 CompilerType pointee_compiler_type; 3293 Flags pointee_compiler_type_info; 3294 Flags root_compiler_type_info(root_compiler_type.GetTypeInfo(&pointee_compiler_type)); 3295 if (pointee_compiler_type) 3296 pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo()); 3297 3298 if (!expression_cstr || *expression_cstr == '\0') 3299 { 3300 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 3301 list->Append(root); 3302 return 1; 3303 } 3304 3305 switch (*expression_cstr) 3306 { 3307 case '[': 3308 { 3309 if (!root_compiler_type_info.Test(eTypeIsArray) && !root_compiler_type_info.Test(eTypeIsPointer)) // if this is not a T[] nor a T* 3310 { 3311 if (!root_compiler_type_info.Test(eTypeIsScalar)) // if this is not even a scalar, this syntax is just plain wrong! 3312 { 3313 *first_unparsed = expression_cstr; 3314 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 3315 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3316 return 0; 3317 } 3318 else if (!options.m_allow_bitfields_syntax) // if this is a scalar, check that we can expand bitfields 3319 { 3320 *first_unparsed = expression_cstr; 3321 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 3322 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3323 return 0; 3324 } 3325 } 3326 if (*(expression_cstr+1) == ']') // if this is an unbounded range it only works for arrays 3327 { 3328 if (!root_compiler_type_info.Test(eTypeIsArray)) 3329 { 3330 *first_unparsed = expression_cstr; 3331 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 3332 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3333 return 0; 3334 } 3335 else // expand this into list 3336 { 3337 const size_t max_index = root->GetNumChildren() - 1; 3338 for (size_t index = 0; index < max_index; index++) 3339 { 3340 ValueObjectSP child = 3341 root->GetChildAtIndex(index, true); 3342 list->Append(child); 3343 } 3344 *first_unparsed = expression_cstr+2; 3345 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3346 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3347 return max_index; // tell me number of items I added to the VOList 3348 } 3349 } 3350 const char *separator_position = ::strchr(expression_cstr+1,'-'); 3351 const char *close_bracket_position = ::strchr(expression_cstr+1,']'); 3352 if (!close_bracket_position) // if there is no ], this is a syntax error 3353 { 3354 *first_unparsed = expression_cstr; 3355 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3356 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3357 return 0; 3358 } 3359 if (!separator_position || separator_position > close_bracket_position) // if no separator, this is either [] or [N] 3360 { 3361 char *end = NULL; 3362 unsigned long index = ::strtoul (expression_cstr+1, &end, 0); 3363 if (!end || end != close_bracket_position) // if something weird is in our way return an error 3364 { 3365 *first_unparsed = expression_cstr; 3366 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3367 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3368 return 0; 3369 } 3370 if (end - expression_cstr == 1) // if this is [], only return a valid value for arrays 3371 { 3372 if (root_compiler_type_info.Test(eTypeIsArray)) 3373 { 3374 const size_t max_index = root->GetNumChildren() - 1; 3375 for (size_t index = 0; index < max_index; index++) 3376 { 3377 ValueObjectSP child = 3378 root->GetChildAtIndex(index, true); 3379 list->Append(child); 3380 } 3381 *first_unparsed = expression_cstr+2; 3382 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3383 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3384 return max_index; // tell me number of items I added to the VOList 3385 } 3386 else 3387 { 3388 *first_unparsed = expression_cstr; 3389 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 3390 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3391 return 0; 3392 } 3393 } 3394 // from here on we do have a valid index 3395 if (root_compiler_type_info.Test(eTypeIsArray)) 3396 { 3397 root = root->GetChildAtIndex(index, true); 3398 if (!root.get()) 3399 { 3400 *first_unparsed = expression_cstr; 3401 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3402 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3403 return 0; 3404 } 3405 else 3406 { 3407 list->Append(root); 3408 *first_unparsed = end+1; // skip ] 3409 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3410 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3411 return 1; 3412 } 3413 } 3414 else if (root_compiler_type_info.Test(eTypeIsPointer)) 3415 { 3416 if (*what_next == ValueObject::eExpressionPathAftermathDereference && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield 3417 pointee_compiler_type_info.Test(eTypeIsScalar)) 3418 { 3419 Error error; 3420 root = root->Dereference(error); 3421 if (error.Fail() || !root.get()) 3422 { 3423 *first_unparsed = expression_cstr; 3424 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 3425 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3426 return 0; 3427 } 3428 else 3429 { 3430 *what_next = eExpressionPathAftermathNothing; 3431 continue; 3432 } 3433 } 3434 else 3435 { 3436 root = root->GetSyntheticArrayMember(index, true); 3437 if (!root.get()) 3438 { 3439 *first_unparsed = expression_cstr; 3440 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3441 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3442 return 0; 3443 } 3444 else 3445 { 3446 list->Append(root); 3447 *first_unparsed = end+1; // skip ] 3448 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3449 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3450 return 1; 3451 } 3452 } 3453 } 3454 else /*if (ClangASTContext::IsScalarType(root_compiler_type))*/ 3455 { 3456 root = root->GetSyntheticBitFieldChild(index, index, true); 3457 if (!root.get()) 3458 { 3459 *first_unparsed = expression_cstr; 3460 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3461 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3462 return 0; 3463 } 3464 else // we do not know how to expand members of bitfields, so we just return and let the caller do any further processing 3465 { 3466 list->Append(root); 3467 *first_unparsed = end+1; // skip ] 3468 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3469 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3470 return 1; 3471 } 3472 } 3473 } 3474 else // we have a low and a high index 3475 { 3476 char *end = NULL; 3477 unsigned long index_lower = ::strtoul (expression_cstr+1, &end, 0); 3478 if (!end || end != separator_position) // if something weird is in our way return an error 3479 { 3480 *first_unparsed = expression_cstr; 3481 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3482 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3483 return 0; 3484 } 3485 unsigned long index_higher = ::strtoul (separator_position+1, &end, 0); 3486 if (!end || end != close_bracket_position) // if something weird is in our way return an error 3487 { 3488 *first_unparsed = expression_cstr; 3489 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3490 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3491 return 0; 3492 } 3493 if (index_lower > index_higher) // swap indices if required 3494 { 3495 unsigned long temp = index_lower; 3496 index_lower = index_higher; 3497 index_higher = temp; 3498 } 3499 if (root_compiler_type_info.Test(eTypeIsScalar)) // expansion only works for scalars 3500 { 3501 root = root->GetSyntheticBitFieldChild(index_lower, index_higher, true); 3502 if (!root.get()) 3503 { 3504 *first_unparsed = expression_cstr; 3505 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3506 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3507 return 0; 3508 } 3509 else 3510 { 3511 list->Append(root); 3512 *first_unparsed = end+1; // skip ] 3513 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3514 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3515 return 1; 3516 } 3517 } 3518 else if (root_compiler_type_info.Test(eTypeIsPointer) && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield 3519 *what_next == ValueObject::eExpressionPathAftermathDereference && 3520 pointee_compiler_type_info.Test(eTypeIsScalar)) 3521 { 3522 Error error; 3523 root = root->Dereference(error); 3524 if (error.Fail() || !root.get()) 3525 { 3526 *first_unparsed = expression_cstr; 3527 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 3528 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3529 return 0; 3530 } 3531 else 3532 { 3533 *what_next = ValueObject::eExpressionPathAftermathNothing; 3534 continue; 3535 } 3536 } 3537 else 3538 { 3539 for (unsigned long index = index_lower; 3540 index <= index_higher; index++) 3541 { 3542 ValueObjectSP child = 3543 root->GetChildAtIndex(index, true); 3544 list->Append(child); 3545 } 3546 *first_unparsed = end+1; 3547 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3548 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3549 return index_higher-index_lower+1; // tell me number of items I added to the VOList 3550 } 3551 } 3552 break; 3553 } 3554 default: // some non-[ separator, or something entirely wrong, is in the way 3555 { 3556 *first_unparsed = expression_cstr; 3557 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3558 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3559 return 0; 3560 break; 3561 } 3562 } 3563 } 3564 } 3565 3566 void 3567 ValueObject::LogValueObject (Log *log) 3568 { 3569 if (log) 3570 return LogValueObject (log, DumpValueObjectOptions(*this)); 3571 } 3572 3573 void 3574 ValueObject::LogValueObject (Log *log, const DumpValueObjectOptions& options) 3575 { 3576 if (log) 3577 { 3578 StreamString s; 3579 Dump (s, options); 3580 if (s.GetSize()) 3581 log->PutCString(s.GetData()); 3582 } 3583 } 3584 3585 void 3586 ValueObject::Dump (Stream &s) 3587 { 3588 Dump (s, DumpValueObjectOptions(*this)); 3589 } 3590 3591 void 3592 ValueObject::Dump (Stream &s, 3593 const DumpValueObjectOptions& options) 3594 { 3595 ValueObjectPrinter printer(this,&s,options); 3596 printer.PrintValueObject(); 3597 } 3598 3599 ValueObjectSP 3600 ValueObject::CreateConstantValue (const ConstString &name) 3601 { 3602 ValueObjectSP valobj_sp; 3603 3604 if (UpdateValueIfNeeded(false) && m_error.Success()) 3605 { 3606 ExecutionContext exe_ctx (GetExecutionContextRef()); 3607 3608 DataExtractor data; 3609 data.SetByteOrder (m_data.GetByteOrder()); 3610 data.SetAddressByteSize(m_data.GetAddressByteSize()); 3611 3612 if (IsBitfield()) 3613 { 3614 Value v(Scalar(GetValueAsUnsigned(UINT64_MAX))); 3615 m_error = v.GetValueAsData (&exe_ctx, data, 0, GetModule().get()); 3616 } 3617 else 3618 m_error = m_value.GetValueAsData (&exe_ctx, data, 0, GetModule().get()); 3619 3620 valobj_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), 3621 GetCompilerType(), 3622 name, 3623 data, 3624 GetAddressOf()); 3625 } 3626 3627 if (!valobj_sp) 3628 { 3629 ExecutionContext exe_ctx (GetExecutionContextRef()); 3630 valobj_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), m_error); 3631 } 3632 return valobj_sp; 3633 } 3634 3635 ValueObjectSP 3636 ValueObject::GetQualifiedRepresentationIfAvailable (lldb::DynamicValueType dynValue, 3637 bool synthValue) 3638 { 3639 ValueObjectSP result_sp(GetSP()); 3640 3641 switch (dynValue) 3642 { 3643 case lldb::eDynamicCanRunTarget: 3644 case lldb::eDynamicDontRunTarget: 3645 { 3646 if (!result_sp->IsDynamic()) 3647 { 3648 if (result_sp->GetDynamicValue(dynValue)) 3649 result_sp = result_sp->GetDynamicValue(dynValue); 3650 } 3651 } 3652 break; 3653 case lldb::eNoDynamicValues: 3654 { 3655 if (result_sp->IsDynamic()) 3656 { 3657 if (result_sp->GetStaticValue()) 3658 result_sp = result_sp->GetStaticValue(); 3659 } 3660 } 3661 break; 3662 } 3663 3664 if (synthValue) 3665 { 3666 if (!result_sp->IsSynthetic()) 3667 { 3668 if (result_sp->GetSyntheticValue()) 3669 result_sp = result_sp->GetSyntheticValue(); 3670 } 3671 } 3672 else 3673 { 3674 if (result_sp->IsSynthetic()) 3675 { 3676 if (result_sp->GetNonSyntheticValue()) 3677 result_sp = result_sp->GetNonSyntheticValue(); 3678 } 3679 } 3680 3681 return result_sp; 3682 } 3683 3684 lldb::addr_t 3685 ValueObject::GetCPPVTableAddress (AddressType &address_type) 3686 { 3687 CompilerType pointee_type; 3688 CompilerType this_type(GetCompilerType()); 3689 uint32_t type_info = this_type.GetTypeInfo(&pointee_type); 3690 if (type_info) 3691 { 3692 bool ptr_or_ref = false; 3693 if (type_info & (eTypeIsPointer | eTypeIsReference)) 3694 { 3695 ptr_or_ref = true; 3696 type_info = pointee_type.GetTypeInfo(); 3697 } 3698 3699 const uint32_t cpp_class = eTypeIsClass | eTypeIsCPlusPlus; 3700 if ((type_info & cpp_class) == cpp_class) 3701 { 3702 if (ptr_or_ref) 3703 { 3704 address_type = GetAddressTypeOfChildren(); 3705 return GetValueAsUnsigned(LLDB_INVALID_ADDRESS); 3706 } 3707 else 3708 return GetAddressOf (false, &address_type); 3709 } 3710 } 3711 3712 address_type = eAddressTypeInvalid; 3713 return LLDB_INVALID_ADDRESS; 3714 } 3715 3716 ValueObjectSP 3717 ValueObject::Dereference (Error &error) 3718 { 3719 if (m_deref_valobj) 3720 return m_deref_valobj->GetSP(); 3721 3722 const bool is_pointer_or_reference_type = IsPointerOrReferenceType(); 3723 if (is_pointer_or_reference_type) 3724 { 3725 bool omit_empty_base_classes = true; 3726 bool ignore_array_bounds = false; 3727 3728 std::string child_name_str; 3729 uint32_t child_byte_size = 0; 3730 int32_t child_byte_offset = 0; 3731 uint32_t child_bitfield_bit_size = 0; 3732 uint32_t child_bitfield_bit_offset = 0; 3733 bool child_is_base_class = false; 3734 bool child_is_deref_of_parent = false; 3735 const bool transparent_pointers = false; 3736 CompilerType compiler_type = GetCompilerType(); 3737 CompilerType child_compiler_type; 3738 uint64_t language_flags; 3739 3740 ExecutionContext exe_ctx (GetExecutionContextRef()); 3741 3742 child_compiler_type = compiler_type.GetChildCompilerTypeAtIndex (&exe_ctx, 3743 0, 3744 transparent_pointers, 3745 omit_empty_base_classes, 3746 ignore_array_bounds, 3747 child_name_str, 3748 child_byte_size, 3749 child_byte_offset, 3750 child_bitfield_bit_size, 3751 child_bitfield_bit_offset, 3752 child_is_base_class, 3753 child_is_deref_of_parent, 3754 this, 3755 language_flags); 3756 if (child_compiler_type && child_byte_size) 3757 { 3758 ConstString child_name; 3759 if (!child_name_str.empty()) 3760 child_name.SetCString (child_name_str.c_str()); 3761 3762 m_deref_valobj = new ValueObjectChild (*this, 3763 child_compiler_type, 3764 child_name, 3765 child_byte_size, 3766 child_byte_offset, 3767 child_bitfield_bit_size, 3768 child_bitfield_bit_offset, 3769 child_is_base_class, 3770 child_is_deref_of_parent, 3771 eAddressTypeInvalid, 3772 language_flags); 3773 } 3774 } 3775 3776 if (m_deref_valobj) 3777 { 3778 error.Clear(); 3779 return m_deref_valobj->GetSP(); 3780 } 3781 else 3782 { 3783 StreamString strm; 3784 GetExpressionPath(strm, true); 3785 3786 if (is_pointer_or_reference_type) 3787 error.SetErrorStringWithFormat("dereference failed: (%s) %s", GetTypeName().AsCString("<invalid type>"), strm.GetString().c_str()); 3788 else 3789 error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s", GetTypeName().AsCString("<invalid type>"), strm.GetString().c_str()); 3790 return ValueObjectSP(); 3791 } 3792 } 3793 3794 ValueObjectSP 3795 ValueObject::AddressOf (Error &error) 3796 { 3797 if (m_addr_of_valobj_sp) 3798 return m_addr_of_valobj_sp; 3799 3800 AddressType address_type = eAddressTypeInvalid; 3801 const bool scalar_is_load_address = false; 3802 addr_t addr = GetAddressOf (scalar_is_load_address, &address_type); 3803 error.Clear(); 3804 if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) 3805 { 3806 switch (address_type) 3807 { 3808 case eAddressTypeInvalid: 3809 { 3810 StreamString expr_path_strm; 3811 GetExpressionPath(expr_path_strm, true); 3812 error.SetErrorStringWithFormat("'%s' is not in memory", expr_path_strm.GetString().c_str()); 3813 } 3814 break; 3815 3816 case eAddressTypeFile: 3817 case eAddressTypeLoad: 3818 { 3819 CompilerType compiler_type = GetCompilerType(); 3820 if (compiler_type) 3821 { 3822 std::string name (1, '&'); 3823 name.append (m_name.AsCString("")); 3824 ExecutionContext exe_ctx (GetExecutionContextRef()); 3825 m_addr_of_valobj_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), 3826 compiler_type.GetPointerType(), 3827 ConstString (name.c_str()), 3828 addr, 3829 eAddressTypeInvalid, 3830 m_data.GetAddressByteSize()); 3831 } 3832 } 3833 break; 3834 default: 3835 break; 3836 } 3837 } 3838 else 3839 { 3840 StreamString expr_path_strm; 3841 GetExpressionPath(expr_path_strm, true); 3842 error.SetErrorStringWithFormat("'%s' doesn't have a valid address", expr_path_strm.GetString().c_str()); 3843 } 3844 3845 return m_addr_of_valobj_sp; 3846 } 3847 3848 ValueObjectSP 3849 ValueObject::Cast (const CompilerType &compiler_type) 3850 { 3851 return ValueObjectCast::Create (*this, GetName(), compiler_type); 3852 } 3853 3854 ValueObjectSP 3855 ValueObject::CastPointerType (const char *name, CompilerType &compiler_type) 3856 { 3857 ValueObjectSP valobj_sp; 3858 AddressType address_type; 3859 addr_t ptr_value = GetPointerValue (&address_type); 3860 3861 if (ptr_value != LLDB_INVALID_ADDRESS) 3862 { 3863 Address ptr_addr (ptr_value); 3864 ExecutionContext exe_ctx (GetExecutionContextRef()); 3865 valobj_sp = ValueObjectMemory::Create (exe_ctx.GetBestExecutionContextScope(), 3866 name, 3867 ptr_addr, 3868 compiler_type); 3869 } 3870 return valobj_sp; 3871 } 3872 3873 ValueObjectSP 3874 ValueObject::CastPointerType (const char *name, TypeSP &type_sp) 3875 { 3876 ValueObjectSP valobj_sp; 3877 AddressType address_type; 3878 addr_t ptr_value = GetPointerValue (&address_type); 3879 3880 if (ptr_value != LLDB_INVALID_ADDRESS) 3881 { 3882 Address ptr_addr (ptr_value); 3883 ExecutionContext exe_ctx (GetExecutionContextRef()); 3884 valobj_sp = ValueObjectMemory::Create (exe_ctx.GetBestExecutionContextScope(), 3885 name, 3886 ptr_addr, 3887 type_sp); 3888 } 3889 return valobj_sp; 3890 } 3891 3892 ValueObject::EvaluationPoint::EvaluationPoint () : 3893 m_mod_id(), 3894 m_exe_ctx_ref(), 3895 m_needs_update (true) 3896 { 3897 } 3898 3899 ValueObject::EvaluationPoint::EvaluationPoint (ExecutionContextScope *exe_scope, bool use_selected): 3900 m_mod_id(), 3901 m_exe_ctx_ref(), 3902 m_needs_update (true) 3903 { 3904 ExecutionContext exe_ctx(exe_scope); 3905 TargetSP target_sp (exe_ctx.GetTargetSP()); 3906 if (target_sp) 3907 { 3908 m_exe_ctx_ref.SetTargetSP (target_sp); 3909 ProcessSP process_sp (exe_ctx.GetProcessSP()); 3910 if (!process_sp) 3911 process_sp = target_sp->GetProcessSP(); 3912 3913 if (process_sp) 3914 { 3915 m_mod_id = process_sp->GetModID(); 3916 m_exe_ctx_ref.SetProcessSP (process_sp); 3917 3918 ThreadSP thread_sp (exe_ctx.GetThreadSP()); 3919 3920 if (!thread_sp) 3921 { 3922 if (use_selected) 3923 thread_sp = process_sp->GetThreadList().GetSelectedThread(); 3924 } 3925 3926 if (thread_sp) 3927 { 3928 m_exe_ctx_ref.SetThreadSP(thread_sp); 3929 3930 StackFrameSP frame_sp (exe_ctx.GetFrameSP()); 3931 if (!frame_sp) 3932 { 3933 if (use_selected) 3934 frame_sp = thread_sp->GetSelectedFrame(); 3935 } 3936 if (frame_sp) 3937 m_exe_ctx_ref.SetFrameSP(frame_sp); 3938 } 3939 } 3940 } 3941 } 3942 3943 ValueObject::EvaluationPoint::EvaluationPoint (const ValueObject::EvaluationPoint &rhs) : 3944 m_mod_id(), 3945 m_exe_ctx_ref(rhs.m_exe_ctx_ref), 3946 m_needs_update (true) 3947 { 3948 } 3949 3950 ValueObject::EvaluationPoint::~EvaluationPoint () 3951 { 3952 } 3953 3954 // This function checks the EvaluationPoint against the current process state. If the current 3955 // state matches the evaluation point, or the evaluation point is already invalid, then we return 3956 // false, meaning "no change". If the current state is different, we update our state, and return 3957 // true meaning "yes, change". If we did see a change, we also set m_needs_update to true, so 3958 // future calls to NeedsUpdate will return true. 3959 // exe_scope will be set to the current execution context scope. 3960 3961 bool 3962 ValueObject::EvaluationPoint::SyncWithProcessState(bool accept_invalid_exe_ctx) 3963 { 3964 // Start with the target, if it is NULL, then we're obviously not going to get any further: 3965 const bool thread_and_frame_only_if_stopped = true; 3966 ExecutionContext exe_ctx(m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped)); 3967 3968 if (exe_ctx.GetTargetPtr() == NULL) 3969 return false; 3970 3971 // If we don't have a process nothing can change. 3972 Process *process = exe_ctx.GetProcessPtr(); 3973 if (process == NULL) 3974 return false; 3975 3976 // If our stop id is the current stop ID, nothing has changed: 3977 ProcessModID current_mod_id = process->GetModID(); 3978 3979 // If the current stop id is 0, either we haven't run yet, or the process state has been cleared. 3980 // In either case, we aren't going to be able to sync with the process state. 3981 if (current_mod_id.GetStopID() == 0) 3982 return false; 3983 3984 bool changed = false; 3985 const bool was_valid = m_mod_id.IsValid(); 3986 if (was_valid) 3987 { 3988 if (m_mod_id == current_mod_id) 3989 { 3990 // Everything is already up to date in this object, no need to 3991 // update the execution context scope. 3992 changed = false; 3993 } 3994 else 3995 { 3996 m_mod_id = current_mod_id; 3997 m_needs_update = true; 3998 changed = true; 3999 } 4000 } 4001 4002 // Now re-look up the thread and frame in case the underlying objects have gone away & been recreated. 4003 // That way we'll be sure to return a valid exe_scope. 4004 // If we used to have a thread or a frame but can't find it anymore, then mark ourselves as invalid. 4005 4006 if (!accept_invalid_exe_ctx) 4007 { 4008 if (m_exe_ctx_ref.HasThreadRef()) 4009 { 4010 ThreadSP thread_sp (m_exe_ctx_ref.GetThreadSP()); 4011 if (thread_sp) 4012 { 4013 if (m_exe_ctx_ref.HasFrameRef()) 4014 { 4015 StackFrameSP frame_sp (m_exe_ctx_ref.GetFrameSP()); 4016 if (!frame_sp) 4017 { 4018 // We used to have a frame, but now it is gone 4019 SetInvalid(); 4020 changed = was_valid; 4021 } 4022 } 4023 } 4024 else 4025 { 4026 // We used to have a thread, but now it is gone 4027 SetInvalid(); 4028 changed = was_valid; 4029 } 4030 } 4031 } 4032 4033 return changed; 4034 } 4035 4036 void 4037 ValueObject::EvaluationPoint::SetUpdated () 4038 { 4039 ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP()); 4040 if (process_sp) 4041 m_mod_id = process_sp->GetModID(); 4042 m_needs_update = false; 4043 } 4044 4045 4046 4047 void 4048 ValueObject::ClearUserVisibleData(uint32_t clear_mask) 4049 { 4050 if ((clear_mask & eClearUserVisibleDataItemsValue) == eClearUserVisibleDataItemsValue) 4051 m_value_str.clear(); 4052 4053 if ((clear_mask & eClearUserVisibleDataItemsLocation) == eClearUserVisibleDataItemsLocation) 4054 m_location_str.clear(); 4055 4056 if ((clear_mask & eClearUserVisibleDataItemsSummary) == eClearUserVisibleDataItemsSummary) 4057 m_summary_str.clear(); 4058 4059 if ((clear_mask & eClearUserVisibleDataItemsDescription) == eClearUserVisibleDataItemsDescription) 4060 m_object_desc_str.clear(); 4061 4062 if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == eClearUserVisibleDataItemsSyntheticChildren) 4063 { 4064 if (m_synthetic_value) 4065 m_synthetic_value = NULL; 4066 } 4067 4068 if ((clear_mask & eClearUserVisibleDataItemsValidator) == eClearUserVisibleDataItemsValidator) 4069 m_validation_result.reset(); 4070 } 4071 4072 SymbolContextScope * 4073 ValueObject::GetSymbolContextScope() 4074 { 4075 if (m_parent) 4076 { 4077 if (!m_parent->IsPointerOrReferenceType()) 4078 return m_parent->GetSymbolContextScope(); 4079 } 4080 return NULL; 4081 } 4082 4083 lldb::ValueObjectSP 4084 ValueObject::CreateValueObjectFromExpression (const char* name, 4085 const char* expression, 4086 const ExecutionContext& exe_ctx) 4087 { 4088 return CreateValueObjectFromExpression(name, expression, exe_ctx, EvaluateExpressionOptions()); 4089 } 4090 4091 4092 lldb::ValueObjectSP 4093 ValueObject::CreateValueObjectFromExpression (const char* name, 4094 const char* expression, 4095 const ExecutionContext& exe_ctx, 4096 const EvaluateExpressionOptions& options) 4097 { 4098 lldb::ValueObjectSP retval_sp; 4099 lldb::TargetSP target_sp(exe_ctx.GetTargetSP()); 4100 if (!target_sp) 4101 return retval_sp; 4102 if (!expression || !*expression) 4103 return retval_sp; 4104 target_sp->EvaluateExpression (expression, 4105 exe_ctx.GetFrameSP().get(), 4106 retval_sp, 4107 options); 4108 if (retval_sp && name && *name) 4109 retval_sp->SetName(ConstString(name)); 4110 return retval_sp; 4111 } 4112 4113 lldb::ValueObjectSP 4114 ValueObject::CreateValueObjectFromAddress (const char* name, 4115 uint64_t address, 4116 const ExecutionContext& exe_ctx, 4117 CompilerType type) 4118 { 4119 if (type) 4120 { 4121 CompilerType pointer_type(type.GetPointerType()); 4122 if (pointer_type) 4123 { 4124 lldb::DataBufferSP buffer(new lldb_private::DataBufferHeap(&address,sizeof(lldb::addr_t))); 4125 lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), 4126 pointer_type, 4127 ConstString(name), 4128 buffer, 4129 exe_ctx.GetByteOrder(), 4130 exe_ctx.GetAddressByteSize())); 4131 if (ptr_result_valobj_sp) 4132 { 4133 ptr_result_valobj_sp->GetValue().SetValueType(Value::eValueTypeLoadAddress); 4134 Error err; 4135 ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err); 4136 if (ptr_result_valobj_sp && name && *name) 4137 ptr_result_valobj_sp->SetName(ConstString(name)); 4138 } 4139 return ptr_result_valobj_sp; 4140 } 4141 } 4142 return lldb::ValueObjectSP(); 4143 } 4144 4145 lldb::ValueObjectSP 4146 ValueObject::CreateValueObjectFromData (const char* name, 4147 const DataExtractor& data, 4148 const ExecutionContext& exe_ctx, 4149 CompilerType type) 4150 { 4151 lldb::ValueObjectSP new_value_sp; 4152 new_value_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), 4153 type, 4154 ConstString(name), 4155 data, 4156 LLDB_INVALID_ADDRESS); 4157 new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad); 4158 if (new_value_sp && name && *name) 4159 new_value_sp->SetName(ConstString(name)); 4160 return new_value_sp; 4161 } 4162 4163 ModuleSP 4164 ValueObject::GetModule () 4165 { 4166 ValueObject* root(GetRoot()); 4167 if (root != this) 4168 return root->GetModule(); 4169 return lldb::ModuleSP(); 4170 } 4171 4172 ValueObject* 4173 ValueObject::GetRoot () 4174 { 4175 if (m_root) 4176 return m_root; 4177 return (m_root = FollowParentChain( [] (ValueObject* vo) -> bool { 4178 return (vo->m_parent != nullptr); 4179 })); 4180 } 4181 4182 ValueObject* 4183 ValueObject::FollowParentChain (std::function<bool(ValueObject*)> f) 4184 { 4185 ValueObject* vo = this; 4186 while (vo) 4187 { 4188 if (f(vo) == false) 4189 break; 4190 vo = vo->m_parent; 4191 } 4192 return vo; 4193 } 4194 4195 AddressType 4196 ValueObject::GetAddressTypeOfChildren() 4197 { 4198 if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) 4199 { 4200 ValueObject* root(GetRoot()); 4201 if (root != this) 4202 return root->GetAddressTypeOfChildren(); 4203 } 4204 return m_address_type_of_ptr_or_ref_children; 4205 } 4206 4207 lldb::DynamicValueType 4208 ValueObject::GetDynamicValueType () 4209 { 4210 ValueObject* with_dv_info = this; 4211 while (with_dv_info) 4212 { 4213 if (with_dv_info->HasDynamicValueTypeInfo()) 4214 return with_dv_info->GetDynamicValueTypeImpl(); 4215 with_dv_info = with_dv_info->m_parent; 4216 } 4217 return lldb::eNoDynamicValues; 4218 } 4219 4220 lldb::Format 4221 ValueObject::GetFormat () const 4222 { 4223 const ValueObject* with_fmt_info = this; 4224 while (with_fmt_info) 4225 { 4226 if (with_fmt_info->m_format != lldb::eFormatDefault) 4227 return with_fmt_info->m_format; 4228 with_fmt_info = with_fmt_info->m_parent; 4229 } 4230 return m_format; 4231 } 4232 4233 lldb::LanguageType 4234 ValueObject::GetPreferredDisplayLanguage () 4235 { 4236 lldb::LanguageType type = m_preferred_display_language; 4237 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 4238 { 4239 if (GetRoot()) 4240 { 4241 if (GetRoot() == this) 4242 { 4243 if (StackFrameSP frame_sp = GetFrameSP()) 4244 { 4245 const SymbolContext& sc(frame_sp->GetSymbolContext(eSymbolContextCompUnit)); 4246 if (CompileUnit* cu = sc.comp_unit) 4247 type = cu->GetLanguage(); 4248 } 4249 } 4250 else 4251 { 4252 type = GetRoot()->GetPreferredDisplayLanguage(); 4253 } 4254 } 4255 } 4256 return (m_preferred_display_language = type); // only compute it once 4257 } 4258 4259 void 4260 ValueObject::SetPreferredDisplayLanguage (lldb::LanguageType lt) 4261 { 4262 m_preferred_display_language = lt; 4263 } 4264 4265 void 4266 ValueObject::SetPreferredDisplayLanguageIfNeeded (lldb::LanguageType lt) 4267 { 4268 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 4269 SetPreferredDisplayLanguage(lt); 4270 } 4271 4272 bool 4273 ValueObject::CanProvideValue () 4274 { 4275 // we need to support invalid types as providers of values because some bare-board 4276 // debugging scenarios have no notion of types, but still manage to have raw numeric 4277 // values for things like registers. sigh. 4278 const CompilerType &type(GetCompilerType()); 4279 return (false == type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue)); 4280 } 4281 4282 bool 4283 ValueObject::IsChecksumEmpty () 4284 { 4285 return m_value_checksum.empty(); 4286 } 4287 4288 ValueObjectSP 4289 ValueObject::Persist () 4290 { 4291 if (!UpdateValueIfNeeded()) 4292 return nullptr; 4293 4294 TargetSP target_sp(GetTargetSP()); 4295 if (!target_sp) 4296 return nullptr; 4297 4298 PersistentExpressionState *persistent_state = target_sp->GetPersistentExpressionStateForLanguage(GetPreferredDisplayLanguage()); 4299 4300 if (!persistent_state) 4301 return nullptr; 4302 4303 ConstString name(persistent_state->GetNextPersistentVariableName()); 4304 4305 ValueObjectSP const_result_sp = ValueObjectConstResult::Create (target_sp.get(), GetValue(), name); 4306 4307 ExpressionVariableSP clang_var_sp = persistent_state->CreatePersistentVariable(const_result_sp); 4308 clang_var_sp->m_live_sp = clang_var_sp->m_frozen_sp; 4309 clang_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference; 4310 4311 return clang_var_sp->GetValueObject(); 4312 } 4313 4314 bool 4315 ValueObject::IsSyntheticChildrenGenerated () 4316 { 4317 return m_is_synthetic_children_generated; 4318 } 4319 4320 void 4321 ValueObject::SetSyntheticChildrenGenerated (bool b) 4322 { 4323 m_is_synthetic_children_generated = b; 4324 } 4325 4326 uint64_t 4327 ValueObject::GetLanguageFlags () 4328 { 4329 return m_language_flags; 4330 } 4331 4332 void 4333 ValueObject::SetLanguageFlags (uint64_t flags) 4334 { 4335 m_language_flags = flags; 4336 } 4337