1 //===-- ValueObject.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Core/ValueObject.h" 10 11 #include "lldb/Core/Address.h" 12 #include "lldb/Core/Module.h" 13 #include "lldb/Core/ValueObjectCast.h" 14 #include "lldb/Core/ValueObjectChild.h" 15 #include "lldb/Core/ValueObjectConstResult.h" 16 #include "lldb/Core/ValueObjectDynamicValue.h" 17 #include "lldb/Core/ValueObjectMemory.h" 18 #include "lldb/Core/ValueObjectSyntheticFilter.h" 19 #include "lldb/DataFormatters/DataVisualization.h" 20 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 21 #include "lldb/DataFormatters/FormatManager.h" 22 #include "lldb/DataFormatters/StringPrinter.h" 23 #include "lldb/DataFormatters/TypeFormat.h" 24 #include "lldb/DataFormatters/TypeSummary.h" 25 #include "lldb/DataFormatters/ValueObjectPrinter.h" 26 #include "lldb/Expression/ExpressionVariable.h" 27 #include "lldb/Host/Config.h" 28 #include "lldb/Symbol/CompileUnit.h" 29 #include "lldb/Symbol/CompilerType.h" 30 #include "lldb/Symbol/Declaration.h" 31 #include "lldb/Symbol/SymbolContext.h" 32 #include "lldb/Symbol/Type.h" 33 #include "lldb/Symbol/Variable.h" 34 #include "lldb/Target/ExecutionContext.h" 35 #include "lldb/Target/Language.h" 36 #include "lldb/Target/LanguageRuntime.h" 37 #include "lldb/Target/Process.h" 38 #include "lldb/Target/StackFrame.h" 39 #include "lldb/Target/Target.h" 40 #include "lldb/Target/Thread.h" 41 #include "lldb/Target/ThreadList.h" 42 #include "lldb/Utility/DataBuffer.h" 43 #include "lldb/Utility/DataBufferHeap.h" 44 #include "lldb/Utility/Flags.h" 45 #include "lldb/Utility/Log.h" 46 #include "lldb/Utility/Logging.h" 47 #include "lldb/Utility/Scalar.h" 48 #include "lldb/Utility/Stream.h" 49 #include "lldb/Utility/StreamString.h" 50 #include "lldb/lldb-private-types.h" 51 52 #include "llvm/Support/Compiler.h" 53 54 #include <algorithm> 55 #include <cstdint> 56 #include <cstdlib> 57 #include <memory> 58 #include <tuple> 59 60 #include <assert.h> 61 #include <inttypes.h> 62 #include <stdio.h> 63 #include <string.h> 64 65 namespace lldb_private { 66 class ExecutionContextScope; 67 } 68 namespace lldb_private { 69 class SymbolContextScope; 70 } 71 72 using namespace lldb; 73 using namespace lldb_private; 74 75 static user_id_t g_value_obj_uid = 0; 76 77 // ValueObject constructor 78 ValueObject::ValueObject(ValueObject &parent) 79 : UserID(++g_value_obj_uid), // Unique identifier for every value object 80 m_parent(&parent), m_root(nullptr), 81 m_update_point(parent.GetUpdatePoint()), m_name(), m_data(), m_value(), 82 m_error(), m_value_str(), m_old_value_str(), m_location_str(), 83 m_summary_str(), m_object_desc_str(), m_manager(parent.GetManager()), 84 m_children(), m_synthetic_children(), m_dynamic_value(nullptr), 85 m_synthetic_value(nullptr), m_deref_valobj(nullptr), 86 m_format(eFormatDefault), m_last_format(eFormatDefault), 87 m_last_format_mgr_revision(0), m_type_summary_sp(), m_type_format_sp(), 88 m_synthetic_children_sp(), m_user_id_of_forced_summary(), 89 m_address_type_of_ptr_or_ref_children(eAddressTypeInvalid), 90 m_value_checksum(), 91 m_preferred_display_language(lldb::eLanguageTypeUnknown), 92 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 93 m_children_count_valid(false), m_old_value_valid(false), 94 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 95 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 96 m_is_getting_summary(false), 97 m_did_calculate_complete_objc_class_type(false), 98 m_is_synthetic_children_generated( 99 parent.m_is_synthetic_children_generated) { 100 m_data.SetByteOrder(parent.GetDataExtractor().GetByteOrder()); 101 m_data.SetAddressByteSize(parent.GetDataExtractor().GetAddressByteSize()); 102 m_manager->ManageObject(this); 103 } 104 105 // ValueObject constructor 106 ValueObject::ValueObject(ExecutionContextScope *exe_scope, 107 ValueObjectManager &manager, 108 AddressType child_ptr_or_ref_addr_type) 109 : UserID(++g_value_obj_uid), // Unique identifier for every value object 110 m_parent(nullptr), m_root(nullptr), m_update_point(exe_scope), m_name(), 111 m_data(), m_value(), m_error(), m_value_str(), m_old_value_str(), 112 m_location_str(), m_summary_str(), m_object_desc_str(), 113 m_manager(&manager), m_children(), m_synthetic_children(), 114 m_dynamic_value(nullptr), m_synthetic_value(nullptr), 115 m_deref_valobj(nullptr), m_format(eFormatDefault), 116 m_last_format(eFormatDefault), m_last_format_mgr_revision(0), 117 m_type_summary_sp(), m_type_format_sp(), m_synthetic_children_sp(), 118 m_user_id_of_forced_summary(), 119 m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type), 120 m_value_checksum(), 121 m_preferred_display_language(lldb::eLanguageTypeUnknown), 122 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 123 m_children_count_valid(false), m_old_value_valid(false), 124 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 125 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 126 m_is_getting_summary(false), 127 m_did_calculate_complete_objc_class_type(false), 128 m_is_synthetic_children_generated(false) { 129 if (exe_scope) { 130 TargetSP target_sp(exe_scope->CalculateTarget()); 131 if (target_sp) { 132 const ArchSpec &arch = target_sp->GetArchitecture(); 133 m_data.SetByteOrder(arch.GetByteOrder()); 134 m_data.SetAddressByteSize(arch.GetAddressByteSize()); 135 } 136 } 137 m_manager->ManageObject(this); 138 } 139 140 // Destructor 141 ValueObject::~ValueObject() {} 142 143 void ValueObject::UpdateChildrenAddressType() { 144 Value::ValueType value_type = m_value.GetValueType(); 145 ExecutionContext exe_ctx(GetExecutionContextRef()); 146 Process *process = exe_ctx.GetProcessPtr(); 147 const bool process_is_alive = process && process->IsAlive(); 148 const uint32_t type_info = GetCompilerType().GetTypeInfo(); 149 const bool is_pointer_or_ref = 150 (type_info & (lldb::eTypeIsPointer | lldb::eTypeIsReference)) != 0; 151 152 switch (value_type) { 153 case Value::eValueTypeFileAddress: 154 // If this type is a pointer, then its children will be considered load 155 // addresses if the pointer or reference is dereferenced, but only if 156 // the process is alive. 157 // 158 // There could be global variables like in the following code: 159 // struct LinkedListNode { Foo* foo; LinkedListNode* next; }; 160 // Foo g_foo1; 161 // Foo g_foo2; 162 // LinkedListNode g_second_node = { &g_foo2, NULL }; 163 // LinkedListNode g_first_node = { &g_foo1, &g_second_node }; 164 // 165 // When we aren't running, we should be able to look at these variables 166 // using the "target variable" command. Children of the "g_first_node" 167 // always will be of the same address type as the parent. But children 168 // of the "next" member of LinkedListNode will become load addresses if 169 // we have a live process, or remain a file address if it was a file 170 // address. 171 if (process_is_alive && is_pointer_or_ref) 172 SetAddressTypeOfChildren(eAddressTypeLoad); 173 else 174 SetAddressTypeOfChildren(eAddressTypeFile); 175 break; 176 case Value::eValueTypeHostAddress: 177 // Same as above for load addresses, except children of pointer or refs 178 // are always load addresses. Host addresses are used to store freeze 179 // dried variables. If this type is a struct, the entire struct 180 // contents will be copied into the heap of the 181 // LLDB process, but we do not currently follow any pointers. 182 if (is_pointer_or_ref) 183 SetAddressTypeOfChildren(eAddressTypeLoad); 184 else 185 SetAddressTypeOfChildren(eAddressTypeHost); 186 break; 187 case Value::eValueTypeLoadAddress: 188 case Value::eValueTypeScalar: 189 case Value::eValueTypeVector: 190 SetAddressTypeOfChildren(eAddressTypeLoad); 191 break; 192 } 193 } 194 195 bool ValueObject::UpdateValueIfNeeded(bool update_format) { 196 197 bool did_change_formats = false; 198 199 if (update_format) 200 did_change_formats = UpdateFormatsIfNeeded(); 201 202 // If this is a constant value, then our success is predicated on whether we 203 // have an error or not 204 if (GetIsConstant()) { 205 // if you are constant, things might still have changed behind your back 206 // (e.g. you are a frozen object and things have changed deeper than you 207 // cared to freeze-dry yourself) in this case, your value has not changed, 208 // but "computed" entries might have, so you might now have a different 209 // summary, or a different object description. clear these so we will 210 // recompute them 211 if (update_format && !did_change_formats) 212 ClearUserVisibleData(eClearUserVisibleDataItemsSummary | 213 eClearUserVisibleDataItemsDescription); 214 return m_error.Success(); 215 } 216 217 bool first_update = IsChecksumEmpty(); 218 219 if (NeedsUpdating()) { 220 m_update_point.SetUpdated(); 221 222 // Save the old value using swap to avoid a string copy which also will 223 // clear our m_value_str 224 if (m_value_str.empty()) { 225 m_old_value_valid = false; 226 } else { 227 m_old_value_valid = true; 228 m_old_value_str.swap(m_value_str); 229 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 230 } 231 232 ClearUserVisibleData(); 233 234 if (IsInScope()) { 235 const bool value_was_valid = GetValueIsValid(); 236 SetValueDidChange(false); 237 238 m_error.Clear(); 239 240 // Call the pure virtual function to update the value 241 242 bool need_compare_checksums = false; 243 llvm::SmallVector<uint8_t, 16> old_checksum; 244 245 if (!first_update && CanProvideValue()) { 246 need_compare_checksums = true; 247 old_checksum.resize(m_value_checksum.size()); 248 std::copy(m_value_checksum.begin(), m_value_checksum.end(), 249 old_checksum.begin()); 250 } 251 252 bool success = UpdateValue(); 253 254 SetValueIsValid(success); 255 256 if (success) { 257 UpdateChildrenAddressType(); 258 const uint64_t max_checksum_size = 128; 259 m_data.Checksum(m_value_checksum, max_checksum_size); 260 } else { 261 need_compare_checksums = false; 262 m_value_checksum.clear(); 263 } 264 265 assert(!need_compare_checksums || 266 (!old_checksum.empty() && !m_value_checksum.empty())); 267 268 if (first_update) 269 SetValueDidChange(false); 270 else if (!m_value_did_change && !success) { 271 // The value wasn't gotten successfully, so we mark this as changed if 272 // the value used to be valid and now isn't 273 SetValueDidChange(value_was_valid); 274 } else if (need_compare_checksums) { 275 SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0], 276 m_value_checksum.size())); 277 } 278 279 } else { 280 m_error.SetErrorString("out of scope"); 281 } 282 } 283 return m_error.Success(); 284 } 285 286 bool ValueObject::UpdateFormatsIfNeeded() { 287 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_DATAFORMATTERS)); 288 LLDB_LOGF(log, 289 "[%s %p] checking for FormatManager revisions. ValueObject " 290 "rev: %d - Global rev: %d", 291 GetName().GetCString(), static_cast<void *>(this), 292 m_last_format_mgr_revision, 293 DataVisualization::GetCurrentRevision()); 294 295 bool any_change = false; 296 297 if ((m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) { 298 m_last_format_mgr_revision = DataVisualization::GetCurrentRevision(); 299 any_change = true; 300 301 SetValueFormat(DataVisualization::GetFormat(*this, eNoDynamicValues)); 302 SetSummaryFormat( 303 DataVisualization::GetSummaryFormat(*this, GetDynamicValueType())); 304 #if LLDB_ENABLE_PYTHON 305 SetSyntheticChildren( 306 DataVisualization::GetSyntheticChildren(*this, GetDynamicValueType())); 307 #endif 308 } 309 310 return any_change; 311 } 312 313 void ValueObject::SetNeedsUpdate() { 314 m_update_point.SetNeedsUpdate(); 315 // We have to clear the value string here so ConstResult children will notice 316 // if their values are changed by hand (i.e. with SetValueAsCString). 317 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 318 } 319 320 void ValueObject::ClearDynamicTypeInformation() { 321 m_children_count_valid = false; 322 m_did_calculate_complete_objc_class_type = false; 323 m_last_format_mgr_revision = 0; 324 m_override_type = CompilerType(); 325 SetValueFormat(lldb::TypeFormatImplSP()); 326 SetSummaryFormat(lldb::TypeSummaryImplSP()); 327 SetSyntheticChildren(lldb::SyntheticChildrenSP()); 328 } 329 330 CompilerType ValueObject::MaybeCalculateCompleteType() { 331 CompilerType compiler_type(GetCompilerTypeImpl()); 332 333 if (m_did_calculate_complete_objc_class_type) { 334 if (m_override_type.IsValid()) 335 return m_override_type; 336 else 337 return compiler_type; 338 } 339 340 m_did_calculate_complete_objc_class_type = true; 341 342 ProcessSP process_sp( 343 GetUpdatePoint().GetExecutionContextRef().GetProcessSP()); 344 345 if (!process_sp) 346 return compiler_type; 347 348 if (auto *runtime = 349 process_sp->GetLanguageRuntime(GetObjectRuntimeLanguage())) { 350 if (llvm::Optional<CompilerType> complete_type = 351 runtime->GetRuntimeType(compiler_type)) { 352 m_override_type = complete_type.getValue(); 353 if (m_override_type.IsValid()) 354 return m_override_type; 355 } 356 } 357 return compiler_type; 358 } 359 360 CompilerType ValueObject::GetCompilerType() { 361 return MaybeCalculateCompleteType(); 362 } 363 364 TypeImpl ValueObject::GetTypeImpl() { return TypeImpl(GetCompilerType()); } 365 366 DataExtractor &ValueObject::GetDataExtractor() { 367 UpdateValueIfNeeded(false); 368 return m_data; 369 } 370 371 const Status &ValueObject::GetError() { 372 UpdateValueIfNeeded(false); 373 return m_error; 374 } 375 376 ConstString ValueObject::GetName() const { return m_name; } 377 378 const char *ValueObject::GetLocationAsCString() { 379 return GetLocationAsCStringImpl(m_value, m_data); 380 } 381 382 const char *ValueObject::GetLocationAsCStringImpl(const Value &value, 383 const DataExtractor &data) { 384 if (UpdateValueIfNeeded(false)) { 385 if (m_location_str.empty()) { 386 StreamString sstr; 387 388 Value::ValueType value_type = value.GetValueType(); 389 390 switch (value_type) { 391 case Value::eValueTypeScalar: 392 case Value::eValueTypeVector: 393 if (value.GetContextType() == Value::eContextTypeRegisterInfo) { 394 RegisterInfo *reg_info = value.GetRegisterInfo(); 395 if (reg_info) { 396 if (reg_info->name) 397 m_location_str = reg_info->name; 398 else if (reg_info->alt_name) 399 m_location_str = reg_info->alt_name; 400 if (m_location_str.empty()) 401 m_location_str = (reg_info->encoding == lldb::eEncodingVector) 402 ? "vector" 403 : "scalar"; 404 } 405 } 406 if (m_location_str.empty()) 407 m_location_str = 408 (value_type == Value::eValueTypeVector) ? "vector" : "scalar"; 409 break; 410 411 case Value::eValueTypeLoadAddress: 412 case Value::eValueTypeFileAddress: 413 case Value::eValueTypeHostAddress: { 414 uint32_t addr_nibble_size = data.GetAddressByteSize() * 2; 415 sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, 416 value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS)); 417 m_location_str = std::string(sstr.GetString()); 418 } break; 419 } 420 } 421 } 422 return m_location_str.c_str(); 423 } 424 425 Value &ValueObject::GetValue() { return m_value; } 426 427 const Value &ValueObject::GetValue() const { return m_value; } 428 429 bool ValueObject::ResolveValue(Scalar &scalar) { 430 if (UpdateValueIfNeeded( 431 false)) // make sure that you are up to date before returning anything 432 { 433 ExecutionContext exe_ctx(GetExecutionContextRef()); 434 Value tmp_value(m_value); 435 scalar = tmp_value.ResolveValue(&exe_ctx); 436 if (scalar.IsValid()) { 437 const uint32_t bitfield_bit_size = GetBitfieldBitSize(); 438 if (bitfield_bit_size) 439 return scalar.ExtractBitfield(bitfield_bit_size, 440 GetBitfieldBitOffset()); 441 return true; 442 } 443 } 444 return false; 445 } 446 447 bool ValueObject::IsLogicalTrue(Status &error) { 448 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 449 LazyBool is_logical_true = language->IsLogicalTrue(*this, error); 450 switch (is_logical_true) { 451 case eLazyBoolYes: 452 case eLazyBoolNo: 453 return (is_logical_true == true); 454 case eLazyBoolCalculate: 455 break; 456 } 457 } 458 459 Scalar scalar_value; 460 461 if (!ResolveValue(scalar_value)) { 462 error.SetErrorString("failed to get a scalar result"); 463 return false; 464 } 465 466 bool ret; 467 ret = scalar_value.ULongLong(1) != 0; 468 error.Clear(); 469 return ret; 470 } 471 472 bool ValueObject::GetValueIsValid() const { return m_value_is_valid; } 473 474 void ValueObject::SetValueIsValid(bool b) { m_value_is_valid = b; } 475 476 bool ValueObject::GetValueDidChange() { return m_value_did_change; } 477 478 void ValueObject::SetValueDidChange(bool value_changed) { 479 m_value_did_change = value_changed; 480 } 481 482 ValueObjectSP ValueObject::GetChildAtIndex(size_t idx, bool can_create) { 483 ValueObjectSP child_sp; 484 // We may need to update our value if we are dynamic 485 if (IsPossibleDynamicType()) 486 UpdateValueIfNeeded(false); 487 if (idx < GetNumChildren()) { 488 // Check if we have already made the child value object? 489 if (can_create && !m_children.HasChildAtIndex(idx)) { 490 // No we haven't created the child at this index, so lets have our 491 // subclass do it and cache the result for quick future access. 492 m_children.SetChildAtIndex(idx, CreateChildAtIndex(idx, false, 0)); 493 } 494 495 ValueObject *child = m_children.GetChildAtIndex(idx); 496 if (child != nullptr) 497 return child->GetSP(); 498 } 499 return child_sp; 500 } 501 502 lldb::ValueObjectSP 503 ValueObject::GetChildAtIndexPath(llvm::ArrayRef<size_t> idxs, 504 size_t *index_of_error) { 505 if (idxs.size() == 0) 506 return GetSP(); 507 ValueObjectSP root(GetSP()); 508 for (size_t idx : idxs) { 509 root = root->GetChildAtIndex(idx, true); 510 if (!root) { 511 if (index_of_error) 512 *index_of_error = idx; 513 return root; 514 } 515 } 516 return root; 517 } 518 519 lldb::ValueObjectSP ValueObject::GetChildAtIndexPath( 520 llvm::ArrayRef<std::pair<size_t, bool>> idxs, size_t *index_of_error) { 521 if (idxs.size() == 0) 522 return GetSP(); 523 ValueObjectSP root(GetSP()); 524 for (std::pair<size_t, bool> idx : idxs) { 525 root = root->GetChildAtIndex(idx.first, idx.second); 526 if (!root) { 527 if (index_of_error) 528 *index_of_error = idx.first; 529 return root; 530 } 531 } 532 return root; 533 } 534 535 lldb::ValueObjectSP 536 ValueObject::GetChildAtNamePath(llvm::ArrayRef<ConstString> names, 537 ConstString *name_of_error) { 538 if (names.size() == 0) 539 return GetSP(); 540 ValueObjectSP root(GetSP()); 541 for (ConstString name : names) { 542 root = root->GetChildMemberWithName(name, true); 543 if (!root) { 544 if (name_of_error) 545 *name_of_error = name; 546 return root; 547 } 548 } 549 return root; 550 } 551 552 lldb::ValueObjectSP ValueObject::GetChildAtNamePath( 553 llvm::ArrayRef<std::pair<ConstString, bool>> names, 554 ConstString *name_of_error) { 555 if (names.size() == 0) 556 return GetSP(); 557 ValueObjectSP root(GetSP()); 558 for (std::pair<ConstString, bool> name : names) { 559 root = root->GetChildMemberWithName(name.first, name.second); 560 if (!root) { 561 if (name_of_error) 562 *name_of_error = name.first; 563 return root; 564 } 565 } 566 return root; 567 } 568 569 size_t ValueObject::GetIndexOfChildWithName(ConstString name) { 570 bool omit_empty_base_classes = true; 571 return GetCompilerType().GetIndexOfChildWithName(name.GetCString(), 572 omit_empty_base_classes); 573 } 574 575 ValueObjectSP ValueObject::GetChildMemberWithName(ConstString name, 576 bool can_create) { 577 // when getting a child by name, it could be buried inside some base classes 578 // (which really aren't part of the expression path), so we need a vector of 579 // indexes that can get us down to the correct child 580 ValueObjectSP child_sp; 581 582 // We may need to update our value if we are dynamic 583 if (IsPossibleDynamicType()) 584 UpdateValueIfNeeded(false); 585 586 std::vector<uint32_t> child_indexes; 587 bool omit_empty_base_classes = true; 588 589 if (!GetCompilerType().IsValid()) 590 return ValueObjectSP(); 591 592 const size_t num_child_indexes = 593 GetCompilerType().GetIndexOfChildMemberWithName( 594 name.GetCString(), omit_empty_base_classes, child_indexes); 595 if (num_child_indexes > 0) { 596 std::vector<uint32_t>::const_iterator pos = child_indexes.begin(); 597 std::vector<uint32_t>::const_iterator end = child_indexes.end(); 598 599 child_sp = GetChildAtIndex(*pos, can_create); 600 for (++pos; pos != end; ++pos) { 601 if (child_sp) { 602 ValueObjectSP new_child_sp(child_sp->GetChildAtIndex(*pos, can_create)); 603 child_sp = new_child_sp; 604 } else { 605 child_sp.reset(); 606 } 607 } 608 } 609 return child_sp; 610 } 611 612 size_t ValueObject::GetNumChildren(uint32_t max) { 613 UpdateValueIfNeeded(); 614 615 if (max < UINT32_MAX) { 616 if (m_children_count_valid) { 617 size_t children_count = m_children.GetChildrenCount(); 618 return children_count <= max ? children_count : max; 619 } else 620 return CalculateNumChildren(max); 621 } 622 623 if (!m_children_count_valid) { 624 SetNumChildren(CalculateNumChildren()); 625 } 626 return m_children.GetChildrenCount(); 627 } 628 629 bool ValueObject::MightHaveChildren() { 630 bool has_children = false; 631 const uint32_t type_info = GetTypeInfo(); 632 if (type_info) { 633 if (type_info & (eTypeHasChildren | eTypeIsPointer | eTypeIsReference)) 634 has_children = true; 635 } else { 636 has_children = GetNumChildren() > 0; 637 } 638 return has_children; 639 } 640 641 // Should only be called by ValueObject::GetNumChildren() 642 void ValueObject::SetNumChildren(size_t num_children) { 643 m_children_count_valid = true; 644 m_children.SetChildrenCount(num_children); 645 } 646 647 void ValueObject::SetName(ConstString name) { m_name = name; } 648 649 ValueObject *ValueObject::CreateChildAtIndex(size_t idx, 650 bool synthetic_array_member, 651 int32_t synthetic_index) { 652 ValueObject *valobj = nullptr; 653 654 bool omit_empty_base_classes = true; 655 bool ignore_array_bounds = synthetic_array_member; 656 std::string child_name_str; 657 uint32_t child_byte_size = 0; 658 int32_t child_byte_offset = 0; 659 uint32_t child_bitfield_bit_size = 0; 660 uint32_t child_bitfield_bit_offset = 0; 661 bool child_is_base_class = false; 662 bool child_is_deref_of_parent = false; 663 uint64_t language_flags = 0; 664 665 const bool transparent_pointers = !synthetic_array_member; 666 CompilerType child_compiler_type; 667 668 ExecutionContext exe_ctx(GetExecutionContextRef()); 669 670 child_compiler_type = GetCompilerType().GetChildCompilerTypeAtIndex( 671 &exe_ctx, idx, transparent_pointers, omit_empty_base_classes, 672 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 673 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 674 child_is_deref_of_parent, this, language_flags); 675 if (child_compiler_type) { 676 if (synthetic_index) 677 child_byte_offset += child_byte_size * synthetic_index; 678 679 ConstString child_name; 680 if (!child_name_str.empty()) 681 child_name.SetCString(child_name_str.c_str()); 682 683 valobj = new ValueObjectChild( 684 *this, child_compiler_type, child_name, child_byte_size, 685 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 686 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 687 language_flags); 688 } 689 690 return valobj; 691 } 692 693 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 694 std::string &destination, 695 lldb::LanguageType lang) { 696 return GetSummaryAsCString(summary_ptr, destination, 697 TypeSummaryOptions().SetLanguage(lang)); 698 } 699 700 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 701 std::string &destination, 702 const TypeSummaryOptions &options) { 703 destination.clear(); 704 705 // ideally we would like to bail out if passing NULL, but if we do so we end 706 // up not providing the summary for function pointers anymore 707 if (/*summary_ptr == NULL ||*/ m_is_getting_summary) 708 return false; 709 710 m_is_getting_summary = true; 711 712 TypeSummaryOptions actual_options(options); 713 714 if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown) 715 actual_options.SetLanguage(GetPreferredDisplayLanguage()); 716 717 // this is a hot path in code and we prefer to avoid setting this string all 718 // too often also clearing out other information that we might care to see in 719 // a crash log. might be useful in very specific situations though. 720 /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. 721 Summary provider's description is %s", 722 GetTypeName().GetCString(), 723 GetName().GetCString(), 724 summary_ptr->GetDescription().c_str());*/ 725 726 if (UpdateValueIfNeeded(false) && summary_ptr) { 727 if (HasSyntheticValue()) 728 m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on 729 // the synthetic children being 730 // up-to-date (e.g. ${svar%#}) 731 summary_ptr->FormatObject(this, destination, actual_options); 732 } 733 m_is_getting_summary = false; 734 return !destination.empty(); 735 } 736 737 const char *ValueObject::GetSummaryAsCString(lldb::LanguageType lang) { 738 if (UpdateValueIfNeeded(true) && m_summary_str.empty()) { 739 TypeSummaryOptions summary_options; 740 summary_options.SetLanguage(lang); 741 GetSummaryAsCString(GetSummaryFormat().get(), m_summary_str, 742 summary_options); 743 } 744 if (m_summary_str.empty()) 745 return nullptr; 746 return m_summary_str.c_str(); 747 } 748 749 bool ValueObject::GetSummaryAsCString(std::string &destination, 750 const TypeSummaryOptions &options) { 751 return GetSummaryAsCString(GetSummaryFormat().get(), destination, options); 752 } 753 754 bool ValueObject::IsCStringContainer(bool check_pointer) { 755 CompilerType pointee_or_element_compiler_type; 756 const Flags type_flags(GetTypeInfo(&pointee_or_element_compiler_type)); 757 bool is_char_arr_ptr(type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 758 pointee_or_element_compiler_type.IsCharType()); 759 if (!is_char_arr_ptr) 760 return false; 761 if (!check_pointer) 762 return true; 763 if (type_flags.Test(eTypeIsArray)) 764 return true; 765 addr_t cstr_address = LLDB_INVALID_ADDRESS; 766 AddressType cstr_address_type = eAddressTypeInvalid; 767 cstr_address = GetPointerValue(&cstr_address_type); 768 return (cstr_address != LLDB_INVALID_ADDRESS); 769 } 770 771 size_t ValueObject::GetPointeeData(DataExtractor &data, uint32_t item_idx, 772 uint32_t item_count) { 773 CompilerType pointee_or_element_compiler_type; 774 const uint32_t type_info = GetTypeInfo(&pointee_or_element_compiler_type); 775 const bool is_pointer_type = type_info & eTypeIsPointer; 776 const bool is_array_type = type_info & eTypeIsArray; 777 if (!(is_pointer_type || is_array_type)) 778 return 0; 779 780 if (item_count == 0) 781 return 0; 782 783 ExecutionContext exe_ctx(GetExecutionContextRef()); 784 785 llvm::Optional<uint64_t> item_type_size = 786 pointee_or_element_compiler_type.GetByteSize( 787 exe_ctx.GetBestExecutionContextScope()); 788 if (!item_type_size) 789 return 0; 790 const uint64_t bytes = item_count * *item_type_size; 791 const uint64_t offset = item_idx * *item_type_size; 792 793 if (item_idx == 0 && item_count == 1) // simply a deref 794 { 795 if (is_pointer_type) { 796 Status error; 797 ValueObjectSP pointee_sp = Dereference(error); 798 if (error.Fail() || pointee_sp.get() == nullptr) 799 return 0; 800 return pointee_sp->GetData(data, error); 801 } else { 802 ValueObjectSP child_sp = GetChildAtIndex(0, true); 803 if (child_sp.get() == nullptr) 804 return 0; 805 Status error; 806 return child_sp->GetData(data, error); 807 } 808 return true; 809 } else /* (items > 1) */ 810 { 811 Status error; 812 lldb_private::DataBufferHeap *heap_buf_ptr = nullptr; 813 lldb::DataBufferSP data_sp(heap_buf_ptr = 814 new lldb_private::DataBufferHeap()); 815 816 AddressType addr_type; 817 lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type) 818 : GetAddressOf(true, &addr_type); 819 820 switch (addr_type) { 821 case eAddressTypeFile: { 822 ModuleSP module_sp(GetModule()); 823 if (module_sp) { 824 addr = addr + offset; 825 Address so_addr; 826 module_sp->ResolveFileAddress(addr, so_addr); 827 ExecutionContext exe_ctx(GetExecutionContextRef()); 828 Target *target = exe_ctx.GetTargetPtr(); 829 if (target) { 830 heap_buf_ptr->SetByteSize(bytes); 831 size_t bytes_read = target->ReadMemory( 832 so_addr, false, heap_buf_ptr->GetBytes(), bytes, error); 833 if (error.Success()) { 834 data.SetData(data_sp); 835 return bytes_read; 836 } 837 } 838 } 839 } break; 840 case eAddressTypeLoad: { 841 ExecutionContext exe_ctx(GetExecutionContextRef()); 842 Process *process = exe_ctx.GetProcessPtr(); 843 if (process) { 844 heap_buf_ptr->SetByteSize(bytes); 845 size_t bytes_read = process->ReadMemory( 846 addr + offset, heap_buf_ptr->GetBytes(), bytes, error); 847 if (error.Success() || bytes_read > 0) { 848 data.SetData(data_sp); 849 return bytes_read; 850 } 851 } 852 } break; 853 case eAddressTypeHost: { 854 auto max_bytes = 855 GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope()); 856 if (max_bytes && *max_bytes > offset) { 857 size_t bytes_read = std::min<uint64_t>(*max_bytes - offset, bytes); 858 addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 859 if (addr == 0 || addr == LLDB_INVALID_ADDRESS) 860 break; 861 heap_buf_ptr->CopyData((uint8_t *)(addr + offset), bytes_read); 862 data.SetData(data_sp); 863 return bytes_read; 864 } 865 } break; 866 case eAddressTypeInvalid: 867 break; 868 } 869 } 870 return 0; 871 } 872 873 uint64_t ValueObject::GetData(DataExtractor &data, Status &error) { 874 UpdateValueIfNeeded(false); 875 ExecutionContext exe_ctx(GetExecutionContextRef()); 876 error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get()); 877 if (error.Fail()) { 878 if (m_data.GetByteSize()) { 879 data = m_data; 880 error.Clear(); 881 return data.GetByteSize(); 882 } else { 883 return 0; 884 } 885 } 886 data.SetAddressByteSize(m_data.GetAddressByteSize()); 887 data.SetByteOrder(m_data.GetByteOrder()); 888 return data.GetByteSize(); 889 } 890 891 bool ValueObject::SetData(DataExtractor &data, Status &error) { 892 error.Clear(); 893 // Make sure our value is up to date first so that our location and location 894 // type is valid. 895 if (!UpdateValueIfNeeded(false)) { 896 error.SetErrorString("unable to read value"); 897 return false; 898 } 899 900 uint64_t count = 0; 901 const Encoding encoding = GetCompilerType().GetEncoding(count); 902 903 const size_t byte_size = GetByteSize(); 904 905 Value::ValueType value_type = m_value.GetValueType(); 906 907 switch (value_type) { 908 case Value::eValueTypeScalar: { 909 Status set_error = 910 m_value.GetScalar().SetValueFromData(data, encoding, byte_size); 911 912 if (!set_error.Success()) { 913 error.SetErrorStringWithFormat("unable to set scalar value: %s", 914 set_error.AsCString()); 915 return false; 916 } 917 } break; 918 case Value::eValueTypeLoadAddress: { 919 // If it is a load address, then the scalar value is the storage location 920 // of the data, and we have to shove this value down to that load location. 921 ExecutionContext exe_ctx(GetExecutionContextRef()); 922 Process *process = exe_ctx.GetProcessPtr(); 923 if (process) { 924 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 925 size_t bytes_written = process->WriteMemory( 926 target_addr, data.GetDataStart(), byte_size, error); 927 if (!error.Success()) 928 return false; 929 if (bytes_written != byte_size) { 930 error.SetErrorString("unable to write value to memory"); 931 return false; 932 } 933 } 934 } break; 935 case Value::eValueTypeHostAddress: { 936 // If it is a host address, then we stuff the scalar as a DataBuffer into 937 // the Value's data. 938 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 939 m_data.SetData(buffer_sp, 0); 940 data.CopyByteOrderedData(0, byte_size, 941 const_cast<uint8_t *>(m_data.GetDataStart()), 942 byte_size, m_data.GetByteOrder()); 943 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 944 } break; 945 case Value::eValueTypeFileAddress: 946 case Value::eValueTypeVector: 947 break; 948 } 949 950 // If we have reached this point, then we have successfully changed the 951 // value. 952 SetNeedsUpdate(); 953 return true; 954 } 955 956 static bool CopyStringDataToBufferSP(const StreamString &source, 957 lldb::DataBufferSP &destination) { 958 destination = std::make_shared<DataBufferHeap>(source.GetSize() + 1, 0); 959 memcpy(destination->GetBytes(), source.GetString().data(), source.GetSize()); 960 return true; 961 } 962 963 std::pair<size_t, bool> 964 ValueObject::ReadPointedString(lldb::DataBufferSP &buffer_sp, Status &error, 965 uint32_t max_length, bool honor_array, 966 Format item_format) { 967 bool was_capped = false; 968 StreamString s; 969 ExecutionContext exe_ctx(GetExecutionContextRef()); 970 Target *target = exe_ctx.GetTargetPtr(); 971 972 if (!target) { 973 s << "<no target to read from>"; 974 error.SetErrorString("no target to read from"); 975 CopyStringDataToBufferSP(s, buffer_sp); 976 return {0, was_capped}; 977 } 978 979 if (max_length == 0) 980 max_length = target->GetMaximumSizeOfStringSummary(); 981 982 size_t bytes_read = 0; 983 size_t total_bytes_read = 0; 984 985 CompilerType compiler_type = GetCompilerType(); 986 CompilerType elem_or_pointee_compiler_type; 987 const Flags type_flags(GetTypeInfo(&elem_or_pointee_compiler_type)); 988 if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 989 elem_or_pointee_compiler_type.IsCharType()) { 990 addr_t cstr_address = LLDB_INVALID_ADDRESS; 991 AddressType cstr_address_type = eAddressTypeInvalid; 992 993 size_t cstr_len = 0; 994 bool capped_data = false; 995 const bool is_array = type_flags.Test(eTypeIsArray); 996 if (is_array) { 997 // We have an array 998 uint64_t array_size = 0; 999 if (compiler_type.IsArrayType(nullptr, &array_size, nullptr)) { 1000 cstr_len = array_size; 1001 if (cstr_len > max_length) { 1002 capped_data = true; 1003 cstr_len = max_length; 1004 } 1005 } 1006 cstr_address = GetAddressOf(true, &cstr_address_type); 1007 } else { 1008 // We have a pointer 1009 cstr_address = GetPointerValue(&cstr_address_type); 1010 } 1011 1012 if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) { 1013 if (cstr_address_type == eAddressTypeHost && is_array) { 1014 const char *cstr = GetDataExtractor().PeekCStr(0); 1015 if (cstr == nullptr) { 1016 s << "<invalid address>"; 1017 error.SetErrorString("invalid address"); 1018 CopyStringDataToBufferSP(s, buffer_sp); 1019 return {0, was_capped}; 1020 } 1021 buffer_sp = std::make_shared<DataBufferHeap>(cstr_len, 0); 1022 memcpy(buffer_sp->GetBytes(), cstr, cstr_len); 1023 return {cstr_len, was_capped}; 1024 } else { 1025 s << "<invalid address>"; 1026 error.SetErrorString("invalid address"); 1027 CopyStringDataToBufferSP(s, buffer_sp); 1028 return {0, was_capped}; 1029 } 1030 } 1031 1032 Address cstr_so_addr(cstr_address); 1033 DataExtractor data; 1034 if (cstr_len > 0 && honor_array) { 1035 // I am using GetPointeeData() here to abstract the fact that some 1036 // ValueObjects are actually frozen pointers in the host but the pointed- 1037 // to data lives in the debuggee, and GetPointeeData() automatically 1038 // takes care of this 1039 GetPointeeData(data, 0, cstr_len); 1040 1041 if ((bytes_read = data.GetByteSize()) > 0) { 1042 total_bytes_read = bytes_read; 1043 for (size_t offset = 0; offset < bytes_read; offset++) 1044 s.Printf("%c", *data.PeekData(offset, 1)); 1045 if (capped_data) 1046 was_capped = true; 1047 } 1048 } else { 1049 cstr_len = max_length; 1050 const size_t k_max_buf_size = 64; 1051 1052 size_t offset = 0; 1053 1054 int cstr_len_displayed = -1; 1055 bool capped_cstr = false; 1056 // I am using GetPointeeData() here to abstract the fact that some 1057 // ValueObjects are actually frozen pointers in the host but the pointed- 1058 // to data lives in the debuggee, and GetPointeeData() automatically 1059 // takes care of this 1060 while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) { 1061 total_bytes_read += bytes_read; 1062 const char *cstr = data.PeekCStr(0); 1063 size_t len = strnlen(cstr, k_max_buf_size); 1064 if (cstr_len_displayed < 0) 1065 cstr_len_displayed = len; 1066 1067 if (len == 0) 1068 break; 1069 cstr_len_displayed += len; 1070 if (len > bytes_read) 1071 len = bytes_read; 1072 if (len > cstr_len) 1073 len = cstr_len; 1074 1075 for (size_t offset = 0; offset < bytes_read; offset++) 1076 s.Printf("%c", *data.PeekData(offset, 1)); 1077 1078 if (len < k_max_buf_size) 1079 break; 1080 1081 if (len >= cstr_len) { 1082 capped_cstr = true; 1083 break; 1084 } 1085 1086 cstr_len -= len; 1087 offset += len; 1088 } 1089 1090 if (cstr_len_displayed >= 0) { 1091 if (capped_cstr) 1092 was_capped = true; 1093 } 1094 } 1095 } else { 1096 error.SetErrorString("not a string object"); 1097 s << "<not a string object>"; 1098 } 1099 CopyStringDataToBufferSP(s, buffer_sp); 1100 return {total_bytes_read, was_capped}; 1101 } 1102 1103 const char *ValueObject::GetObjectDescription() { 1104 if (!UpdateValueIfNeeded(true)) 1105 return nullptr; 1106 1107 // Return cached value. 1108 if (!m_object_desc_str.empty()) 1109 return m_object_desc_str.c_str(); 1110 1111 ExecutionContext exe_ctx(GetExecutionContextRef()); 1112 Process *process = exe_ctx.GetProcessPtr(); 1113 if (!process) 1114 return nullptr; 1115 1116 // Returns the object description produced by one language runtime. 1117 auto get_object_description = [&](LanguageType language) -> const char * { 1118 if (LanguageRuntime *runtime = process->GetLanguageRuntime(language)) { 1119 StreamString s; 1120 if (runtime->GetObjectDescription(s, *this)) { 1121 m_object_desc_str.append(std::string(s.GetString())); 1122 return m_object_desc_str.c_str(); 1123 } 1124 } 1125 return nullptr; 1126 }; 1127 1128 // Try the native language runtime first. 1129 LanguageType native_language = GetObjectRuntimeLanguage(); 1130 if (const char *desc = get_object_description(native_language)) 1131 return desc; 1132 1133 // Try the Objective-C language runtime. This fallback is necessary 1134 // for Objective-C++ and mixed Objective-C / C++ programs. 1135 if (Language::LanguageIsCFamily(native_language)) 1136 return get_object_description(eLanguageTypeObjC); 1137 return nullptr; 1138 } 1139 1140 bool ValueObject::GetValueAsCString(const lldb_private::TypeFormatImpl &format, 1141 std::string &destination) { 1142 if (UpdateValueIfNeeded(false)) 1143 return format.FormatObject(this, destination); 1144 else 1145 return false; 1146 } 1147 1148 bool ValueObject::GetValueAsCString(lldb::Format format, 1149 std::string &destination) { 1150 return GetValueAsCString(TypeFormatImpl_Format(format), destination); 1151 } 1152 1153 const char *ValueObject::GetValueAsCString() { 1154 if (UpdateValueIfNeeded(true)) { 1155 lldb::TypeFormatImplSP format_sp; 1156 lldb::Format my_format = GetFormat(); 1157 if (my_format == lldb::eFormatDefault) { 1158 if (m_type_format_sp) 1159 format_sp = m_type_format_sp; 1160 else { 1161 if (m_is_bitfield_for_scalar) 1162 my_format = eFormatUnsigned; 1163 else { 1164 if (m_value.GetContextType() == Value::eContextTypeRegisterInfo) { 1165 const RegisterInfo *reg_info = m_value.GetRegisterInfo(); 1166 if (reg_info) 1167 my_format = reg_info->format; 1168 } else { 1169 my_format = GetValue().GetCompilerType().GetFormat(); 1170 } 1171 } 1172 } 1173 } 1174 if (my_format != m_last_format || m_value_str.empty()) { 1175 m_last_format = my_format; 1176 if (!format_sp) 1177 format_sp = std::make_shared<TypeFormatImpl_Format>(my_format); 1178 if (GetValueAsCString(*format_sp.get(), m_value_str)) { 1179 if (!m_value_did_change && m_old_value_valid) { 1180 // The value was gotten successfully, so we consider the value as 1181 // changed if the value string differs 1182 SetValueDidChange(m_old_value_str != m_value_str); 1183 } 1184 } 1185 } 1186 } 1187 if (m_value_str.empty()) 1188 return nullptr; 1189 return m_value_str.c_str(); 1190 } 1191 1192 // if > 8bytes, 0 is returned. this method should mostly be used to read 1193 // address values out of pointers 1194 uint64_t ValueObject::GetValueAsUnsigned(uint64_t fail_value, bool *success) { 1195 // If our byte size is zero this is an aggregate type that has children 1196 if (CanProvideValue()) { 1197 Scalar scalar; 1198 if (ResolveValue(scalar)) { 1199 if (success) 1200 *success = true; 1201 return scalar.ULongLong(fail_value); 1202 } 1203 // fallthrough, otherwise... 1204 } 1205 1206 if (success) 1207 *success = false; 1208 return fail_value; 1209 } 1210 1211 int64_t ValueObject::GetValueAsSigned(int64_t fail_value, bool *success) { 1212 // If our byte size is zero this is an aggregate type that has children 1213 if (CanProvideValue()) { 1214 Scalar scalar; 1215 if (ResolveValue(scalar)) { 1216 if (success) 1217 *success = true; 1218 return scalar.SLongLong(fail_value); 1219 } 1220 // fallthrough, otherwise... 1221 } 1222 1223 if (success) 1224 *success = false; 1225 return fail_value; 1226 } 1227 1228 // if any more "special cases" are added to 1229 // ValueObject::DumpPrintableRepresentation() please keep this call up to date 1230 // by returning true for your new special cases. We will eventually move to 1231 // checking this call result before trying to display special cases 1232 bool ValueObject::HasSpecialPrintableRepresentation( 1233 ValueObjectRepresentationStyle val_obj_display, Format custom_format) { 1234 Flags flags(GetTypeInfo()); 1235 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1236 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1237 if (IsCStringContainer(true) && 1238 (custom_format == eFormatCString || custom_format == eFormatCharArray || 1239 custom_format == eFormatChar || custom_format == eFormatVectorOfChar)) 1240 return true; 1241 1242 if (flags.Test(eTypeIsArray)) { 1243 if ((custom_format == eFormatBytes) || 1244 (custom_format == eFormatBytesWithASCII)) 1245 return true; 1246 1247 if ((custom_format == eFormatVectorOfChar) || 1248 (custom_format == eFormatVectorOfFloat32) || 1249 (custom_format == eFormatVectorOfFloat64) || 1250 (custom_format == eFormatVectorOfSInt16) || 1251 (custom_format == eFormatVectorOfSInt32) || 1252 (custom_format == eFormatVectorOfSInt64) || 1253 (custom_format == eFormatVectorOfSInt8) || 1254 (custom_format == eFormatVectorOfUInt128) || 1255 (custom_format == eFormatVectorOfUInt16) || 1256 (custom_format == eFormatVectorOfUInt32) || 1257 (custom_format == eFormatVectorOfUInt64) || 1258 (custom_format == eFormatVectorOfUInt8)) 1259 return true; 1260 } 1261 } 1262 return false; 1263 } 1264 1265 bool ValueObject::DumpPrintableRepresentation( 1266 Stream &s, ValueObjectRepresentationStyle val_obj_display, 1267 Format custom_format, PrintableRepresentationSpecialCases special, 1268 bool do_dump_error) { 1269 1270 Flags flags(GetTypeInfo()); 1271 1272 bool allow_special = 1273 (special == ValueObject::PrintableRepresentationSpecialCases::eAllow); 1274 const bool only_special = false; 1275 1276 if (allow_special) { 1277 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1278 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1279 // when being asked to get a printable display an array or pointer type 1280 // directly, try to "do the right thing" 1281 1282 if (IsCStringContainer(true) && 1283 (custom_format == eFormatCString || 1284 custom_format == eFormatCharArray || custom_format == eFormatChar || 1285 custom_format == 1286 eFormatVectorOfChar)) // print char[] & char* directly 1287 { 1288 Status error; 1289 lldb::DataBufferSP buffer_sp; 1290 std::pair<size_t, bool> read_string = ReadPointedString( 1291 buffer_sp, error, 0, (custom_format == eFormatVectorOfChar) || 1292 (custom_format == eFormatCharArray)); 1293 lldb_private::formatters::StringPrinter:: 1294 ReadBufferAndDumpToStreamOptions options(*this); 1295 options.SetData(DataExtractor( 1296 buffer_sp, lldb::eByteOrderInvalid, 1297 8)); // none of this matters for a string - pass some defaults 1298 options.SetStream(&s); 1299 options.SetPrefixToken(nullptr); 1300 options.SetQuote('"'); 1301 options.SetSourceSize(buffer_sp->GetByteSize()); 1302 options.SetIsTruncated(read_string.second); 1303 formatters::StringPrinter::ReadBufferAndDumpToStream< 1304 lldb_private::formatters::StringPrinter::StringElementType::ASCII>( 1305 options); 1306 return !error.Fail(); 1307 } 1308 1309 if (custom_format == eFormatEnum) 1310 return false; 1311 1312 // this only works for arrays, because I have no way to know when the 1313 // pointed memory ends, and no special \0 end of data marker 1314 if (flags.Test(eTypeIsArray)) { 1315 if ((custom_format == eFormatBytes) || 1316 (custom_format == eFormatBytesWithASCII)) { 1317 const size_t count = GetNumChildren(); 1318 1319 s << '['; 1320 for (size_t low = 0; low < count; low++) { 1321 1322 if (low) 1323 s << ','; 1324 1325 ValueObjectSP child = GetChildAtIndex(low, true); 1326 if (!child.get()) { 1327 s << "<invalid child>"; 1328 continue; 1329 } 1330 child->DumpPrintableRepresentation( 1331 s, ValueObject::eValueObjectRepresentationStyleValue, 1332 custom_format); 1333 } 1334 1335 s << ']'; 1336 1337 return true; 1338 } 1339 1340 if ((custom_format == eFormatVectorOfChar) || 1341 (custom_format == eFormatVectorOfFloat32) || 1342 (custom_format == eFormatVectorOfFloat64) || 1343 (custom_format == eFormatVectorOfSInt16) || 1344 (custom_format == eFormatVectorOfSInt32) || 1345 (custom_format == eFormatVectorOfSInt64) || 1346 (custom_format == eFormatVectorOfSInt8) || 1347 (custom_format == eFormatVectorOfUInt128) || 1348 (custom_format == eFormatVectorOfUInt16) || 1349 (custom_format == eFormatVectorOfUInt32) || 1350 (custom_format == eFormatVectorOfUInt64) || 1351 (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes 1352 // with ASCII or any vector 1353 // format should be printed 1354 // directly 1355 { 1356 const size_t count = GetNumChildren(); 1357 1358 Format format = FormatManager::GetSingleItemFormat(custom_format); 1359 1360 s << '['; 1361 for (size_t low = 0; low < count; low++) { 1362 1363 if (low) 1364 s << ','; 1365 1366 ValueObjectSP child = GetChildAtIndex(low, true); 1367 if (!child.get()) { 1368 s << "<invalid child>"; 1369 continue; 1370 } 1371 child->DumpPrintableRepresentation( 1372 s, ValueObject::eValueObjectRepresentationStyleValue, format); 1373 } 1374 1375 s << ']'; 1376 1377 return true; 1378 } 1379 } 1380 1381 if ((custom_format == eFormatBoolean) || 1382 (custom_format == eFormatBinary) || (custom_format == eFormatChar) || 1383 (custom_format == eFormatCharPrintable) || 1384 (custom_format == eFormatComplexFloat) || 1385 (custom_format == eFormatDecimal) || (custom_format == eFormatHex) || 1386 (custom_format == eFormatHexUppercase) || 1387 (custom_format == eFormatFloat) || (custom_format == eFormatOctal) || 1388 (custom_format == eFormatOSType) || 1389 (custom_format == eFormatUnicode16) || 1390 (custom_format == eFormatUnicode32) || 1391 (custom_format == eFormatUnsigned) || 1392 (custom_format == eFormatPointer) || 1393 (custom_format == eFormatComplexInteger) || 1394 (custom_format == eFormatComplex) || 1395 (custom_format == eFormatDefault)) // use the [] operator 1396 return false; 1397 } 1398 } 1399 1400 if (only_special) 1401 return false; 1402 1403 bool var_success = false; 1404 1405 { 1406 llvm::StringRef str; 1407 1408 // this is a local stream that we are using to ensure that the data pointed 1409 // to by cstr survives long enough for us to copy it to its destination - 1410 // it is necessary to have this temporary storage area for cases where our 1411 // desired output is not backed by some other longer-term storage 1412 StreamString strm; 1413 1414 if (custom_format != eFormatInvalid) 1415 SetFormat(custom_format); 1416 1417 switch (val_obj_display) { 1418 case eValueObjectRepresentationStyleValue: 1419 str = GetValueAsCString(); 1420 break; 1421 1422 case eValueObjectRepresentationStyleSummary: 1423 str = GetSummaryAsCString(); 1424 break; 1425 1426 case eValueObjectRepresentationStyleLanguageSpecific: 1427 str = GetObjectDescription(); 1428 break; 1429 1430 case eValueObjectRepresentationStyleLocation: 1431 str = GetLocationAsCString(); 1432 break; 1433 1434 case eValueObjectRepresentationStyleChildrenCount: 1435 strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren()); 1436 str = strm.GetString(); 1437 break; 1438 1439 case eValueObjectRepresentationStyleType: 1440 str = GetTypeName().GetStringRef(); 1441 break; 1442 1443 case eValueObjectRepresentationStyleName: 1444 str = GetName().GetStringRef(); 1445 break; 1446 1447 case eValueObjectRepresentationStyleExpressionPath: 1448 GetExpressionPath(strm); 1449 str = strm.GetString(); 1450 break; 1451 } 1452 1453 if (str.empty()) { 1454 if (val_obj_display == eValueObjectRepresentationStyleValue) 1455 str = GetSummaryAsCString(); 1456 else if (val_obj_display == eValueObjectRepresentationStyleSummary) { 1457 if (!CanProvideValue()) { 1458 strm.Printf("%s @ %s", GetTypeName().AsCString(), 1459 GetLocationAsCString()); 1460 str = strm.GetString(); 1461 } else 1462 str = GetValueAsCString(); 1463 } 1464 } 1465 1466 if (!str.empty()) 1467 s << str; 1468 else { 1469 if (m_error.Fail()) { 1470 if (do_dump_error) 1471 s.Printf("<%s>", m_error.AsCString()); 1472 else 1473 return false; 1474 } else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1475 s.PutCString("<no summary available>"); 1476 else if (val_obj_display == eValueObjectRepresentationStyleValue) 1477 s.PutCString("<no value available>"); 1478 else if (val_obj_display == 1479 eValueObjectRepresentationStyleLanguageSpecific) 1480 s.PutCString("<not a valid Objective-C object>"); // edit this if we 1481 // have other runtimes 1482 // that support a 1483 // description 1484 else 1485 s.PutCString("<no printable representation>"); 1486 } 1487 1488 // we should only return false here if we could not do *anything* even if 1489 // we have an error message as output, that's a success from our callers' 1490 // perspective, so return true 1491 var_success = true; 1492 1493 if (custom_format != eFormatInvalid) 1494 SetFormat(eFormatDefault); 1495 } 1496 1497 return var_success; 1498 } 1499 1500 addr_t ValueObject::GetAddressOf(bool scalar_is_load_address, 1501 AddressType *address_type) { 1502 // Can't take address of a bitfield 1503 if (IsBitfield()) 1504 return LLDB_INVALID_ADDRESS; 1505 1506 if (!UpdateValueIfNeeded(false)) 1507 return LLDB_INVALID_ADDRESS; 1508 1509 switch (m_value.GetValueType()) { 1510 case Value::eValueTypeScalar: 1511 case Value::eValueTypeVector: 1512 if (scalar_is_load_address) { 1513 if (address_type) 1514 *address_type = eAddressTypeLoad; 1515 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1516 } 1517 break; 1518 1519 case Value::eValueTypeLoadAddress: 1520 case Value::eValueTypeFileAddress: { 1521 if (address_type) 1522 *address_type = m_value.GetValueAddressType(); 1523 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1524 } break; 1525 case Value::eValueTypeHostAddress: { 1526 if (address_type) 1527 *address_type = m_value.GetValueAddressType(); 1528 return LLDB_INVALID_ADDRESS; 1529 } break; 1530 } 1531 if (address_type) 1532 *address_type = eAddressTypeInvalid; 1533 return LLDB_INVALID_ADDRESS; 1534 } 1535 1536 addr_t ValueObject::GetPointerValue(AddressType *address_type) { 1537 addr_t address = LLDB_INVALID_ADDRESS; 1538 if (address_type) 1539 *address_type = eAddressTypeInvalid; 1540 1541 if (!UpdateValueIfNeeded(false)) 1542 return address; 1543 1544 switch (m_value.GetValueType()) { 1545 case Value::eValueTypeScalar: 1546 case Value::eValueTypeVector: 1547 address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1548 break; 1549 1550 case Value::eValueTypeHostAddress: 1551 case Value::eValueTypeLoadAddress: 1552 case Value::eValueTypeFileAddress: { 1553 lldb::offset_t data_offset = 0; 1554 address = m_data.GetAddress(&data_offset); 1555 } break; 1556 } 1557 1558 if (address_type) 1559 *address_type = GetAddressTypeOfChildren(); 1560 1561 return address; 1562 } 1563 1564 bool ValueObject::SetValueFromCString(const char *value_str, Status &error) { 1565 error.Clear(); 1566 // Make sure our value is up to date first so that our location and location 1567 // type is valid. 1568 if (!UpdateValueIfNeeded(false)) { 1569 error.SetErrorString("unable to read value"); 1570 return false; 1571 } 1572 1573 uint64_t count = 0; 1574 const Encoding encoding = GetCompilerType().GetEncoding(count); 1575 1576 const size_t byte_size = GetByteSize(); 1577 1578 Value::ValueType value_type = m_value.GetValueType(); 1579 1580 if (value_type == Value::eValueTypeScalar) { 1581 // If the value is already a scalar, then let the scalar change itself: 1582 m_value.GetScalar().SetValueFromCString(value_str, encoding, byte_size); 1583 } else if (byte_size <= 16) { 1584 // If the value fits in a scalar, then make a new scalar and again let the 1585 // scalar code do the conversion, then figure out where to put the new 1586 // value. 1587 Scalar new_scalar; 1588 error = new_scalar.SetValueFromCString(value_str, encoding, byte_size); 1589 if (error.Success()) { 1590 switch (value_type) { 1591 case Value::eValueTypeLoadAddress: { 1592 // If it is a load address, then the scalar value is the storage 1593 // location of the data, and we have to shove this value down to that 1594 // load location. 1595 ExecutionContext exe_ctx(GetExecutionContextRef()); 1596 Process *process = exe_ctx.GetProcessPtr(); 1597 if (process) { 1598 addr_t target_addr = 1599 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1600 size_t bytes_written = process->WriteScalarToMemory( 1601 target_addr, new_scalar, byte_size, error); 1602 if (!error.Success()) 1603 return false; 1604 if (bytes_written != byte_size) { 1605 error.SetErrorString("unable to write value to memory"); 1606 return false; 1607 } 1608 } 1609 } break; 1610 case Value::eValueTypeHostAddress: { 1611 // If it is a host address, then we stuff the scalar as a DataBuffer 1612 // into the Value's data. 1613 DataExtractor new_data; 1614 new_data.SetByteOrder(m_data.GetByteOrder()); 1615 1616 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 1617 m_data.SetData(buffer_sp, 0); 1618 bool success = new_scalar.GetData(new_data); 1619 if (success) { 1620 new_data.CopyByteOrderedData( 1621 0, byte_size, const_cast<uint8_t *>(m_data.GetDataStart()), 1622 byte_size, m_data.GetByteOrder()); 1623 } 1624 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1625 1626 } break; 1627 case Value::eValueTypeFileAddress: 1628 case Value::eValueTypeScalar: 1629 case Value::eValueTypeVector: 1630 break; 1631 } 1632 } else { 1633 return false; 1634 } 1635 } else { 1636 // We don't support setting things bigger than a scalar at present. 1637 error.SetErrorString("unable to write aggregate data type"); 1638 return false; 1639 } 1640 1641 // If we have reached this point, then we have successfully changed the 1642 // value. 1643 SetNeedsUpdate(); 1644 return true; 1645 } 1646 1647 bool ValueObject::GetDeclaration(Declaration &decl) { 1648 decl.Clear(); 1649 return false; 1650 } 1651 1652 ConstString ValueObject::GetTypeName() { 1653 return GetCompilerType().GetTypeName(); 1654 } 1655 1656 ConstString ValueObject::GetDisplayTypeName() { return GetTypeName(); } 1657 1658 ConstString ValueObject::GetQualifiedTypeName() { 1659 return GetCompilerType().GetTypeName(); 1660 } 1661 1662 LanguageType ValueObject::GetObjectRuntimeLanguage() { 1663 return GetCompilerType().GetMinimumLanguage(); 1664 } 1665 1666 void ValueObject::AddSyntheticChild(ConstString key, 1667 ValueObject *valobj) { 1668 m_synthetic_children[key] = valobj; 1669 } 1670 1671 ValueObjectSP ValueObject::GetSyntheticChild(ConstString key) const { 1672 ValueObjectSP synthetic_child_sp; 1673 std::map<ConstString, ValueObject *>::const_iterator pos = 1674 m_synthetic_children.find(key); 1675 if (pos != m_synthetic_children.end()) 1676 synthetic_child_sp = pos->second->GetSP(); 1677 return synthetic_child_sp; 1678 } 1679 1680 uint32_t 1681 ValueObject::GetTypeInfo(CompilerType *pointee_or_element_compiler_type) { 1682 return GetCompilerType().GetTypeInfo(pointee_or_element_compiler_type); 1683 } 1684 1685 bool ValueObject::IsPointerType() { return GetCompilerType().IsPointerType(); } 1686 1687 bool ValueObject::IsArrayType() { 1688 return GetCompilerType().IsArrayType(nullptr, nullptr, nullptr); 1689 } 1690 1691 bool ValueObject::IsScalarType() { return GetCompilerType().IsScalarType(); } 1692 1693 bool ValueObject::IsIntegerType(bool &is_signed) { 1694 return GetCompilerType().IsIntegerType(is_signed); 1695 } 1696 1697 bool ValueObject::IsPointerOrReferenceType() { 1698 return GetCompilerType().IsPointerOrReferenceType(); 1699 } 1700 1701 bool ValueObject::IsPossibleDynamicType() { 1702 ExecutionContext exe_ctx(GetExecutionContextRef()); 1703 Process *process = exe_ctx.GetProcessPtr(); 1704 if (process) 1705 return process->IsPossibleDynamicValue(*this); 1706 else 1707 return GetCompilerType().IsPossibleDynamicType(nullptr, true, true); 1708 } 1709 1710 bool ValueObject::IsRuntimeSupportValue() { 1711 Process *process(GetProcessSP().get()); 1712 if (!process) 1713 return false; 1714 1715 // We trust the the compiler did the right thing and marked runtime support 1716 // values as artificial. 1717 if (!GetVariable() || !GetVariable()->IsArtificial()) 1718 return false; 1719 1720 if (auto *runtime = process->GetLanguageRuntime(GetVariable()->GetLanguage())) 1721 if (runtime->IsWhitelistedRuntimeValue(GetName())) 1722 return false; 1723 1724 return true; 1725 } 1726 1727 bool ValueObject::IsNilReference() { 1728 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1729 return language->IsNilReference(*this); 1730 } 1731 return false; 1732 } 1733 1734 bool ValueObject::IsUninitializedReference() { 1735 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1736 return language->IsUninitializedReference(*this); 1737 } 1738 return false; 1739 } 1740 1741 // This allows you to create an array member using and index that doesn't not 1742 // fall in the normal bounds of the array. Many times structure can be defined 1743 // as: struct Collection { 1744 // uint32_t item_count; 1745 // Item item_array[0]; 1746 // }; 1747 // The size of the "item_array" is 1, but many times in practice there are more 1748 // items in "item_array". 1749 1750 ValueObjectSP ValueObject::GetSyntheticArrayMember(size_t index, 1751 bool can_create) { 1752 ValueObjectSP synthetic_child_sp; 1753 if (IsPointerType() || IsArrayType()) { 1754 char index_str[64]; 1755 snprintf(index_str, sizeof(index_str), "[%" PRIu64 "]", (uint64_t)index); 1756 ConstString index_const_str(index_str); 1757 // Check if we have already created a synthetic array member in this valid 1758 // object. If we have we will re-use it. 1759 synthetic_child_sp = GetSyntheticChild(index_const_str); 1760 if (!synthetic_child_sp) { 1761 ValueObject *synthetic_child; 1762 // We haven't made a synthetic array member for INDEX yet, so lets make 1763 // one and cache it for any future reference. 1764 synthetic_child = CreateChildAtIndex(0, true, index); 1765 1766 // Cache the value if we got one back... 1767 if (synthetic_child) { 1768 AddSyntheticChild(index_const_str, synthetic_child); 1769 synthetic_child_sp = synthetic_child->GetSP(); 1770 synthetic_child_sp->SetName(ConstString(index_str)); 1771 synthetic_child_sp->m_is_array_item_for_pointer = true; 1772 } 1773 } 1774 } 1775 return synthetic_child_sp; 1776 } 1777 1778 ValueObjectSP ValueObject::GetSyntheticBitFieldChild(uint32_t from, uint32_t to, 1779 bool can_create) { 1780 ValueObjectSP synthetic_child_sp; 1781 if (IsScalarType()) { 1782 char index_str[64]; 1783 snprintf(index_str, sizeof(index_str), "[%i-%i]", from, to); 1784 ConstString index_const_str(index_str); 1785 // Check if we have already created a synthetic array member in this valid 1786 // object. If we have we will re-use it. 1787 synthetic_child_sp = GetSyntheticChild(index_const_str); 1788 if (!synthetic_child_sp) { 1789 uint32_t bit_field_size = to - from + 1; 1790 uint32_t bit_field_offset = from; 1791 if (GetDataExtractor().GetByteOrder() == eByteOrderBig) 1792 bit_field_offset = 1793 GetByteSize() * 8 - bit_field_size - bit_field_offset; 1794 // We haven't made a synthetic array member for INDEX yet, so lets make 1795 // one and cache it for any future reference. 1796 ValueObjectChild *synthetic_child = new ValueObjectChild( 1797 *this, GetCompilerType(), index_const_str, GetByteSize(), 0, 1798 bit_field_size, bit_field_offset, false, false, eAddressTypeInvalid, 1799 0); 1800 1801 // Cache the value if we got one back... 1802 if (synthetic_child) { 1803 AddSyntheticChild(index_const_str, synthetic_child); 1804 synthetic_child_sp = synthetic_child->GetSP(); 1805 synthetic_child_sp->SetName(ConstString(index_str)); 1806 synthetic_child_sp->m_is_bitfield_for_scalar = true; 1807 } 1808 } 1809 } 1810 return synthetic_child_sp; 1811 } 1812 1813 ValueObjectSP ValueObject::GetSyntheticChildAtOffset( 1814 uint32_t offset, const CompilerType &type, bool can_create, 1815 ConstString name_const_str) { 1816 1817 ValueObjectSP synthetic_child_sp; 1818 1819 if (name_const_str.IsEmpty()) { 1820 char name_str[64]; 1821 snprintf(name_str, sizeof(name_str), "@%i", offset); 1822 name_const_str.SetCString(name_str); 1823 } 1824 1825 // Check if we have already created a synthetic array member in this valid 1826 // object. If we have we will re-use it. 1827 synthetic_child_sp = GetSyntheticChild(name_const_str); 1828 1829 if (synthetic_child_sp.get()) 1830 return synthetic_child_sp; 1831 1832 if (!can_create) 1833 return {}; 1834 1835 ExecutionContext exe_ctx(GetExecutionContextRef()); 1836 llvm::Optional<uint64_t> size = 1837 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1838 if (!size) 1839 return {}; 1840 ValueObjectChild *synthetic_child = 1841 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1842 false, false, eAddressTypeInvalid, 0); 1843 if (synthetic_child) { 1844 AddSyntheticChild(name_const_str, synthetic_child); 1845 synthetic_child_sp = synthetic_child->GetSP(); 1846 synthetic_child_sp->SetName(name_const_str); 1847 synthetic_child_sp->m_is_child_at_offset = true; 1848 } 1849 return synthetic_child_sp; 1850 } 1851 1852 ValueObjectSP ValueObject::GetSyntheticBase(uint32_t offset, 1853 const CompilerType &type, 1854 bool can_create, 1855 ConstString name_const_str) { 1856 ValueObjectSP synthetic_child_sp; 1857 1858 if (name_const_str.IsEmpty()) { 1859 char name_str[128]; 1860 snprintf(name_str, sizeof(name_str), "base%s@%i", 1861 type.GetTypeName().AsCString("<unknown>"), offset); 1862 name_const_str.SetCString(name_str); 1863 } 1864 1865 // Check if we have already created a synthetic array member in this valid 1866 // object. If we have we will re-use it. 1867 synthetic_child_sp = GetSyntheticChild(name_const_str); 1868 1869 if (synthetic_child_sp.get()) 1870 return synthetic_child_sp; 1871 1872 if (!can_create) 1873 return {}; 1874 1875 const bool is_base_class = true; 1876 1877 ExecutionContext exe_ctx(GetExecutionContextRef()); 1878 llvm::Optional<uint64_t> size = 1879 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1880 if (!size) 1881 return {}; 1882 ValueObjectChild *synthetic_child = 1883 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1884 is_base_class, false, eAddressTypeInvalid, 0); 1885 if (synthetic_child) { 1886 AddSyntheticChild(name_const_str, synthetic_child); 1887 synthetic_child_sp = synthetic_child->GetSP(); 1888 synthetic_child_sp->SetName(name_const_str); 1889 } 1890 return synthetic_child_sp; 1891 } 1892 1893 // your expression path needs to have a leading . or -> (unless it somehow 1894 // "looks like" an array, in which case it has a leading [ symbol). while the [ 1895 // is meaningful and should be shown to the user, . and -> are just parser 1896 // design, but by no means added information for the user.. strip them off 1897 static const char *SkipLeadingExpressionPathSeparators(const char *expression) { 1898 if (!expression || !expression[0]) 1899 return expression; 1900 if (expression[0] == '.') 1901 return expression + 1; 1902 if (expression[0] == '-' && expression[1] == '>') 1903 return expression + 2; 1904 return expression; 1905 } 1906 1907 ValueObjectSP 1908 ValueObject::GetSyntheticExpressionPathChild(const char *expression, 1909 bool can_create) { 1910 ValueObjectSP synthetic_child_sp; 1911 ConstString name_const_string(expression); 1912 // Check if we have already created a synthetic array member in this valid 1913 // object. If we have we will re-use it. 1914 synthetic_child_sp = GetSyntheticChild(name_const_string); 1915 if (!synthetic_child_sp) { 1916 // We haven't made a synthetic array member for expression yet, so lets 1917 // make one and cache it for any future reference. 1918 synthetic_child_sp = GetValueForExpressionPath( 1919 expression, nullptr, nullptr, 1920 GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal( 1921 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 1922 None)); 1923 1924 // Cache the value if we got one back... 1925 if (synthetic_child_sp.get()) { 1926 // FIXME: this causes a "real" child to end up with its name changed to 1927 // the contents of expression 1928 AddSyntheticChild(name_const_string, synthetic_child_sp.get()); 1929 synthetic_child_sp->SetName( 1930 ConstString(SkipLeadingExpressionPathSeparators(expression))); 1931 } 1932 } 1933 return synthetic_child_sp; 1934 } 1935 1936 void ValueObject::CalculateSyntheticValue() { 1937 TargetSP target_sp(GetTargetSP()); 1938 if (target_sp && !target_sp->GetEnableSyntheticValue()) { 1939 m_synthetic_value = nullptr; 1940 return; 1941 } 1942 1943 lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp); 1944 1945 if (!UpdateFormatsIfNeeded() && m_synthetic_value) 1946 return; 1947 1948 if (m_synthetic_children_sp.get() == nullptr) 1949 return; 1950 1951 if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value) 1952 return; 1953 1954 m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp); 1955 } 1956 1957 void ValueObject::CalculateDynamicValue(DynamicValueType use_dynamic) { 1958 if (use_dynamic == eNoDynamicValues) 1959 return; 1960 1961 if (!m_dynamic_value && !IsDynamic()) { 1962 ExecutionContext exe_ctx(GetExecutionContextRef()); 1963 Process *process = exe_ctx.GetProcessPtr(); 1964 if (process && process->IsPossibleDynamicValue(*this)) { 1965 ClearDynamicTypeInformation(); 1966 m_dynamic_value = new ValueObjectDynamicValue(*this, use_dynamic); 1967 } 1968 } 1969 } 1970 1971 ValueObjectSP ValueObject::GetDynamicValue(DynamicValueType use_dynamic) { 1972 if (use_dynamic == eNoDynamicValues) 1973 return ValueObjectSP(); 1974 1975 if (!IsDynamic() && m_dynamic_value == nullptr) { 1976 CalculateDynamicValue(use_dynamic); 1977 } 1978 if (m_dynamic_value) 1979 return m_dynamic_value->GetSP(); 1980 else 1981 return ValueObjectSP(); 1982 } 1983 1984 ValueObjectSP ValueObject::GetStaticValue() { return GetSP(); } 1985 1986 lldb::ValueObjectSP ValueObject::GetNonSyntheticValue() { return GetSP(); } 1987 1988 ValueObjectSP ValueObject::GetSyntheticValue() { 1989 CalculateSyntheticValue(); 1990 1991 if (m_synthetic_value) 1992 return m_synthetic_value->GetSP(); 1993 else 1994 return ValueObjectSP(); 1995 } 1996 1997 bool ValueObject::HasSyntheticValue() { 1998 UpdateFormatsIfNeeded(); 1999 2000 if (m_synthetic_children_sp.get() == nullptr) 2001 return false; 2002 2003 CalculateSyntheticValue(); 2004 2005 return m_synthetic_value != nullptr; 2006 } 2007 2008 ValueObject *ValueObject::GetNonBaseClassParent() { 2009 if (GetParent()) { 2010 if (GetParent()->IsBaseClass()) 2011 return GetParent()->GetNonBaseClassParent(); 2012 else 2013 return GetParent(); 2014 } 2015 return nullptr; 2016 } 2017 2018 bool ValueObject::IsBaseClass(uint32_t &depth) { 2019 if (!IsBaseClass()) { 2020 depth = 0; 2021 return false; 2022 } 2023 if (GetParent()) { 2024 GetParent()->IsBaseClass(depth); 2025 depth = depth + 1; 2026 return true; 2027 } 2028 // TODO: a base of no parent? weird.. 2029 depth = 1; 2030 return true; 2031 } 2032 2033 void ValueObject::GetExpressionPath(Stream &s, 2034 GetExpressionPathFormat epformat) { 2035 // synthetic children do not actually "exist" as part of the hierarchy, and 2036 // sometimes they are consed up in ways that don't make sense from an 2037 // underlying language/API standpoint. So, use a special code path here to 2038 // return something that can hopefully be used in expression 2039 if (m_is_synthetic_children_generated) { 2040 UpdateValueIfNeeded(); 2041 2042 if (m_value.GetValueType() == Value::eValueTypeLoadAddress) { 2043 if (IsPointerOrReferenceType()) { 2044 s.Printf("((%s)0x%" PRIx64 ")", GetTypeName().AsCString("void"), 2045 GetValueAsUnsigned(0)); 2046 return; 2047 } else { 2048 uint64_t load_addr = 2049 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2050 if (load_addr != LLDB_INVALID_ADDRESS) { 2051 s.Printf("(*( (%s *)0x%" PRIx64 "))", GetTypeName().AsCString("void"), 2052 load_addr); 2053 return; 2054 } 2055 } 2056 } 2057 2058 if (CanProvideValue()) { 2059 s.Printf("((%s)%s)", GetTypeName().AsCString("void"), 2060 GetValueAsCString()); 2061 return; 2062 } 2063 2064 return; 2065 } 2066 2067 const bool is_deref_of_parent = IsDereferenceOfParent(); 2068 2069 if (is_deref_of_parent && 2070 epformat == eGetExpressionPathFormatDereferencePointers) { 2071 // this is the original format of GetExpressionPath() producing code like 2072 // *(a_ptr).memberName, which is entirely fine, until you put this into 2073 // StackFrame::GetValueForVariableExpressionPath() which prefers to see 2074 // a_ptr->memberName. the eHonorPointers mode is meant to produce strings 2075 // in this latter format 2076 s.PutCString("*("); 2077 } 2078 2079 ValueObject *parent = GetParent(); 2080 2081 if (parent) 2082 parent->GetExpressionPath(s, epformat); 2083 2084 // if we are a deref_of_parent just because we are synthetic array members 2085 // made up to allow ptr[%d] syntax to work in variable printing, then add our 2086 // name ([%d]) to the expression path 2087 if (m_is_array_item_for_pointer && 2088 epformat == eGetExpressionPathFormatHonorPointers) 2089 s.PutCString(m_name.GetStringRef()); 2090 2091 if (!IsBaseClass()) { 2092 if (!is_deref_of_parent) { 2093 ValueObject *non_base_class_parent = GetNonBaseClassParent(); 2094 if (non_base_class_parent && 2095 !non_base_class_parent->GetName().IsEmpty()) { 2096 CompilerType non_base_class_parent_compiler_type = 2097 non_base_class_parent->GetCompilerType(); 2098 if (non_base_class_parent_compiler_type) { 2099 if (parent && parent->IsDereferenceOfParent() && 2100 epformat == eGetExpressionPathFormatHonorPointers) { 2101 s.PutCString("->"); 2102 } else { 2103 const uint32_t non_base_class_parent_type_info = 2104 non_base_class_parent_compiler_type.GetTypeInfo(); 2105 2106 if (non_base_class_parent_type_info & eTypeIsPointer) { 2107 s.PutCString("->"); 2108 } else if ((non_base_class_parent_type_info & eTypeHasChildren) && 2109 !(non_base_class_parent_type_info & eTypeIsArray)) { 2110 s.PutChar('.'); 2111 } 2112 } 2113 } 2114 } 2115 2116 const char *name = GetName().GetCString(); 2117 if (name) 2118 s.PutCString(name); 2119 } 2120 } 2121 2122 if (is_deref_of_parent && 2123 epformat == eGetExpressionPathFormatDereferencePointers) { 2124 s.PutChar(')'); 2125 } 2126 } 2127 2128 ValueObjectSP ValueObject::GetValueForExpressionPath( 2129 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2130 ExpressionPathEndResultType *final_value_type, 2131 const GetValueForExpressionPathOptions &options, 2132 ExpressionPathAftermath *final_task_on_target) { 2133 2134 ExpressionPathScanEndReason dummy_reason_to_stop = 2135 ValueObject::eExpressionPathScanEndReasonUnknown; 2136 ExpressionPathEndResultType dummy_final_value_type = 2137 ValueObject::eExpressionPathEndResultTypeInvalid; 2138 ExpressionPathAftermath dummy_final_task_on_target = 2139 ValueObject::eExpressionPathAftermathNothing; 2140 2141 ValueObjectSP ret_val = GetValueForExpressionPath_Impl( 2142 expression, reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2143 final_value_type ? final_value_type : &dummy_final_value_type, options, 2144 final_task_on_target ? final_task_on_target 2145 : &dummy_final_task_on_target); 2146 2147 if (!final_task_on_target || 2148 *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2149 return ret_val; 2150 2151 if (ret_val.get() && 2152 ((final_value_type ? *final_value_type : dummy_final_value_type) == 2153 eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress 2154 // of plain objects 2155 { 2156 if ((final_task_on_target ? *final_task_on_target 2157 : dummy_final_task_on_target) == 2158 ValueObject::eExpressionPathAftermathDereference) { 2159 Status error; 2160 ValueObjectSP final_value = ret_val->Dereference(error); 2161 if (error.Fail() || !final_value.get()) { 2162 if (reason_to_stop) 2163 *reason_to_stop = 2164 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2165 if (final_value_type) 2166 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2167 return ValueObjectSP(); 2168 } else { 2169 if (final_task_on_target) 2170 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2171 return final_value; 2172 } 2173 } 2174 if (*final_task_on_target == 2175 ValueObject::eExpressionPathAftermathTakeAddress) { 2176 Status error; 2177 ValueObjectSP final_value = ret_val->AddressOf(error); 2178 if (error.Fail() || !final_value.get()) { 2179 if (reason_to_stop) 2180 *reason_to_stop = 2181 ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2182 if (final_value_type) 2183 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2184 return ValueObjectSP(); 2185 } else { 2186 if (final_task_on_target) 2187 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2188 return final_value; 2189 } 2190 } 2191 } 2192 return ret_val; // final_task_on_target will still have its original value, so 2193 // you know I did not do it 2194 } 2195 2196 ValueObjectSP ValueObject::GetValueForExpressionPath_Impl( 2197 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2198 ExpressionPathEndResultType *final_result, 2199 const GetValueForExpressionPathOptions &options, 2200 ExpressionPathAftermath *what_next) { 2201 ValueObjectSP root = GetSP(); 2202 2203 if (!root) 2204 return nullptr; 2205 2206 llvm::StringRef remainder = expression; 2207 2208 while (true) { 2209 llvm::StringRef temp_expression = remainder; 2210 2211 CompilerType root_compiler_type = root->GetCompilerType(); 2212 CompilerType pointee_compiler_type; 2213 Flags pointee_compiler_type_info; 2214 2215 Flags root_compiler_type_info( 2216 root_compiler_type.GetTypeInfo(&pointee_compiler_type)); 2217 if (pointee_compiler_type) 2218 pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo()); 2219 2220 if (temp_expression.empty()) { 2221 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2222 return root; 2223 } 2224 2225 switch (temp_expression.front()) { 2226 case '-': { 2227 temp_expression = temp_expression.drop_front(); 2228 if (options.m_check_dot_vs_arrow_syntax && 2229 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2230 // use -> on a 2231 // non-pointer and I 2232 // must catch the error 2233 { 2234 *reason_to_stop = 2235 ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot; 2236 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2237 return ValueObjectSP(); 2238 } 2239 if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to 2240 // extract an ObjC IVar 2241 // when this is forbidden 2242 root_compiler_type_info.Test(eTypeIsPointer) && 2243 options.m_no_fragile_ivar) { 2244 *reason_to_stop = 2245 ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed; 2246 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2247 return ValueObjectSP(); 2248 } 2249 if (!temp_expression.startswith(">")) { 2250 *reason_to_stop = 2251 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2252 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2253 return ValueObjectSP(); 2254 } 2255 } 2256 LLVM_FALLTHROUGH; 2257 case '.': // or fallthrough from -> 2258 { 2259 if (options.m_check_dot_vs_arrow_syntax && 2260 temp_expression.front() == '.' && 2261 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2262 // use . on a pointer 2263 // and I must catch the 2264 // error 2265 { 2266 *reason_to_stop = 2267 ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow; 2268 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2269 return nullptr; 2270 } 2271 temp_expression = temp_expression.drop_front(); // skip . or > 2272 2273 size_t next_sep_pos = temp_expression.find_first_of("-.[", 1); 2274 ConstString child_name; 2275 if (next_sep_pos == llvm::StringRef::npos) // if no other separator just 2276 // expand this last layer 2277 { 2278 child_name.SetString(temp_expression); 2279 ValueObjectSP child_valobj_sp = 2280 root->GetChildMemberWithName(child_name, true); 2281 2282 if (child_valobj_sp.get()) // we know we are done, so just return 2283 { 2284 *reason_to_stop = 2285 ValueObject::eExpressionPathScanEndReasonEndOfString; 2286 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2287 return child_valobj_sp; 2288 } else { 2289 switch (options.m_synthetic_children_traversal) { 2290 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2291 None: 2292 break; 2293 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2294 FromSynthetic: 2295 if (root->IsSynthetic()) { 2296 child_valobj_sp = root->GetNonSyntheticValue(); 2297 if (child_valobj_sp.get()) 2298 child_valobj_sp = 2299 child_valobj_sp->GetChildMemberWithName(child_name, true); 2300 } 2301 break; 2302 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2303 ToSynthetic: 2304 if (!root->IsSynthetic()) { 2305 child_valobj_sp = root->GetSyntheticValue(); 2306 if (child_valobj_sp.get()) 2307 child_valobj_sp = 2308 child_valobj_sp->GetChildMemberWithName(child_name, true); 2309 } 2310 break; 2311 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2312 Both: 2313 if (root->IsSynthetic()) { 2314 child_valobj_sp = root->GetNonSyntheticValue(); 2315 if (child_valobj_sp.get()) 2316 child_valobj_sp = 2317 child_valobj_sp->GetChildMemberWithName(child_name, true); 2318 } else { 2319 child_valobj_sp = root->GetSyntheticValue(); 2320 if (child_valobj_sp.get()) 2321 child_valobj_sp = 2322 child_valobj_sp->GetChildMemberWithName(child_name, true); 2323 } 2324 break; 2325 } 2326 } 2327 2328 // if we are here and options.m_no_synthetic_children is true, 2329 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2330 // branch, and return an error 2331 if (child_valobj_sp.get()) // if it worked, just return 2332 { 2333 *reason_to_stop = 2334 ValueObject::eExpressionPathScanEndReasonEndOfString; 2335 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2336 return child_valobj_sp; 2337 } else { 2338 *reason_to_stop = 2339 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2340 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2341 return nullptr; 2342 } 2343 } else // other layers do expand 2344 { 2345 llvm::StringRef next_separator = temp_expression.substr(next_sep_pos); 2346 2347 child_name.SetString(temp_expression.slice(0, next_sep_pos)); 2348 2349 ValueObjectSP child_valobj_sp = 2350 root->GetChildMemberWithName(child_name, true); 2351 if (child_valobj_sp.get()) // store the new root and move on 2352 { 2353 root = child_valobj_sp; 2354 remainder = next_separator; 2355 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2356 continue; 2357 } else { 2358 switch (options.m_synthetic_children_traversal) { 2359 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2360 None: 2361 break; 2362 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2363 FromSynthetic: 2364 if (root->IsSynthetic()) { 2365 child_valobj_sp = root->GetNonSyntheticValue(); 2366 if (child_valobj_sp.get()) 2367 child_valobj_sp = 2368 child_valobj_sp->GetChildMemberWithName(child_name, true); 2369 } 2370 break; 2371 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2372 ToSynthetic: 2373 if (!root->IsSynthetic()) { 2374 child_valobj_sp = root->GetSyntheticValue(); 2375 if (child_valobj_sp.get()) 2376 child_valobj_sp = 2377 child_valobj_sp->GetChildMemberWithName(child_name, true); 2378 } 2379 break; 2380 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2381 Both: 2382 if (root->IsSynthetic()) { 2383 child_valobj_sp = root->GetNonSyntheticValue(); 2384 if (child_valobj_sp.get()) 2385 child_valobj_sp = 2386 child_valobj_sp->GetChildMemberWithName(child_name, true); 2387 } else { 2388 child_valobj_sp = root->GetSyntheticValue(); 2389 if (child_valobj_sp.get()) 2390 child_valobj_sp = 2391 child_valobj_sp->GetChildMemberWithName(child_name, true); 2392 } 2393 break; 2394 } 2395 } 2396 2397 // if we are here and options.m_no_synthetic_children is true, 2398 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2399 // branch, and return an error 2400 if (child_valobj_sp.get()) // if it worked, move on 2401 { 2402 root = child_valobj_sp; 2403 remainder = next_separator; 2404 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2405 continue; 2406 } else { 2407 *reason_to_stop = 2408 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2409 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2410 return nullptr; 2411 } 2412 } 2413 break; 2414 } 2415 case '[': { 2416 if (!root_compiler_type_info.Test(eTypeIsArray) && 2417 !root_compiler_type_info.Test(eTypeIsPointer) && 2418 !root_compiler_type_info.Test( 2419 eTypeIsVector)) // if this is not a T[] nor a T* 2420 { 2421 if (!root_compiler_type_info.Test( 2422 eTypeIsScalar)) // if this is not even a scalar... 2423 { 2424 if (options.m_synthetic_children_traversal == 2425 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2426 None) // ...only chance left is synthetic 2427 { 2428 *reason_to_stop = 2429 ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 2430 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2431 return ValueObjectSP(); 2432 } 2433 } else if (!options.m_allow_bitfields_syntax) // if this is a scalar, 2434 // check that we can 2435 // expand bitfields 2436 { 2437 *reason_to_stop = 2438 ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 2439 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2440 return ValueObjectSP(); 2441 } 2442 } 2443 if (temp_expression[1] == 2444 ']') // if this is an unbounded range it only works for arrays 2445 { 2446 if (!root_compiler_type_info.Test(eTypeIsArray)) { 2447 *reason_to_stop = 2448 ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 2449 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2450 return nullptr; 2451 } else // even if something follows, we cannot expand unbounded ranges, 2452 // just let the caller do it 2453 { 2454 *reason_to_stop = 2455 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2456 *final_result = 2457 ValueObject::eExpressionPathEndResultTypeUnboundedRange; 2458 return root; 2459 } 2460 } 2461 2462 size_t close_bracket_position = temp_expression.find(']', 1); 2463 if (close_bracket_position == 2464 llvm::StringRef::npos) // if there is no ], this is a syntax error 2465 { 2466 *reason_to_stop = 2467 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2468 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2469 return nullptr; 2470 } 2471 2472 llvm::StringRef bracket_expr = 2473 temp_expression.slice(1, close_bracket_position); 2474 2475 // If this was an empty expression it would have been caught by the if 2476 // above. 2477 assert(!bracket_expr.empty()); 2478 2479 if (!bracket_expr.contains('-')) { 2480 // if no separator, this is of the form [N]. Note that this cannot be 2481 // an unbounded range of the form [], because that case was handled 2482 // above with an unconditional return. 2483 unsigned long index = 0; 2484 if (bracket_expr.getAsInteger(0, index)) { 2485 *reason_to_stop = 2486 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2487 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2488 return nullptr; 2489 } 2490 2491 // from here on we do have a valid index 2492 if (root_compiler_type_info.Test(eTypeIsArray)) { 2493 ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true); 2494 if (!child_valobj_sp) 2495 child_valobj_sp = root->GetSyntheticArrayMember(index, true); 2496 if (!child_valobj_sp) 2497 if (root->HasSyntheticValue() && 2498 root->GetSyntheticValue()->GetNumChildren() > index) 2499 child_valobj_sp = 2500 root->GetSyntheticValue()->GetChildAtIndex(index, true); 2501 if (child_valobj_sp) { 2502 root = child_valobj_sp; 2503 remainder = 2504 temp_expression.substr(close_bracket_position + 1); // skip ] 2505 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2506 continue; 2507 } else { 2508 *reason_to_stop = 2509 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2510 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2511 return nullptr; 2512 } 2513 } else if (root_compiler_type_info.Test(eTypeIsPointer)) { 2514 if (*what_next == 2515 ValueObject:: 2516 eExpressionPathAftermathDereference && // if this is a 2517 // ptr-to-scalar, I 2518 // am accessing it 2519 // by index and I 2520 // would have 2521 // deref'ed anyway, 2522 // then do it now 2523 // and use this as 2524 // a bitfield 2525 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2526 Status error; 2527 root = root->Dereference(error); 2528 if (error.Fail() || !root) { 2529 *reason_to_stop = 2530 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2531 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2532 return nullptr; 2533 } else { 2534 *what_next = eExpressionPathAftermathNothing; 2535 continue; 2536 } 2537 } else { 2538 if (root->GetCompilerType().GetMinimumLanguage() == 2539 eLanguageTypeObjC && 2540 pointee_compiler_type_info.AllClear(eTypeIsPointer) && 2541 root->HasSyntheticValue() && 2542 (options.m_synthetic_children_traversal == 2543 GetValueForExpressionPathOptions:: 2544 SyntheticChildrenTraversal::ToSynthetic || 2545 options.m_synthetic_children_traversal == 2546 GetValueForExpressionPathOptions:: 2547 SyntheticChildrenTraversal::Both)) { 2548 root = root->GetSyntheticValue()->GetChildAtIndex(index, true); 2549 } else 2550 root = root->GetSyntheticArrayMember(index, true); 2551 if (!root) { 2552 *reason_to_stop = 2553 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2554 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2555 return nullptr; 2556 } else { 2557 remainder = 2558 temp_expression.substr(close_bracket_position + 1); // skip ] 2559 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2560 continue; 2561 } 2562 } 2563 } else if (root_compiler_type_info.Test(eTypeIsScalar)) { 2564 root = root->GetSyntheticBitFieldChild(index, index, true); 2565 if (!root) { 2566 *reason_to_stop = 2567 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2568 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2569 return nullptr; 2570 } else // we do not know how to expand members of bitfields, so we 2571 // just return and let the caller do any further processing 2572 { 2573 *reason_to_stop = ValueObject:: 2574 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2575 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2576 return root; 2577 } 2578 } else if (root_compiler_type_info.Test(eTypeIsVector)) { 2579 root = root->GetChildAtIndex(index, true); 2580 if (!root) { 2581 *reason_to_stop = 2582 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2583 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2584 return ValueObjectSP(); 2585 } else { 2586 remainder = 2587 temp_expression.substr(close_bracket_position + 1); // skip ] 2588 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2589 continue; 2590 } 2591 } else if (options.m_synthetic_children_traversal == 2592 GetValueForExpressionPathOptions:: 2593 SyntheticChildrenTraversal::ToSynthetic || 2594 options.m_synthetic_children_traversal == 2595 GetValueForExpressionPathOptions:: 2596 SyntheticChildrenTraversal::Both) { 2597 if (root->HasSyntheticValue()) 2598 root = root->GetSyntheticValue(); 2599 else if (!root->IsSynthetic()) { 2600 *reason_to_stop = 2601 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2602 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2603 return nullptr; 2604 } 2605 // if we are here, then root itself is a synthetic VO.. should be 2606 // good to go 2607 2608 if (!root) { 2609 *reason_to_stop = 2610 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2611 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2612 return nullptr; 2613 } 2614 root = root->GetChildAtIndex(index, true); 2615 if (!root) { 2616 *reason_to_stop = 2617 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2618 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2619 return nullptr; 2620 } else { 2621 remainder = 2622 temp_expression.substr(close_bracket_position + 1); // skip ] 2623 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2624 continue; 2625 } 2626 } else { 2627 *reason_to_stop = 2628 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2629 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2630 return nullptr; 2631 } 2632 } else { 2633 // we have a low and a high index 2634 llvm::StringRef sleft, sright; 2635 unsigned long low_index, high_index; 2636 std::tie(sleft, sright) = bracket_expr.split('-'); 2637 if (sleft.getAsInteger(0, low_index) || 2638 sright.getAsInteger(0, high_index)) { 2639 *reason_to_stop = 2640 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2641 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2642 return nullptr; 2643 } 2644 2645 if (low_index > high_index) // swap indices if required 2646 std::swap(low_index, high_index); 2647 2648 if (root_compiler_type_info.Test( 2649 eTypeIsScalar)) // expansion only works for scalars 2650 { 2651 root = root->GetSyntheticBitFieldChild(low_index, high_index, true); 2652 if (!root) { 2653 *reason_to_stop = 2654 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2655 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2656 return nullptr; 2657 } else { 2658 *reason_to_stop = ValueObject:: 2659 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2660 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2661 return root; 2662 } 2663 } else if (root_compiler_type_info.Test( 2664 eTypeIsPointer) && // if this is a ptr-to-scalar, I am 2665 // accessing it by index and I would 2666 // have deref'ed anyway, then do it 2667 // now and use this as a bitfield 2668 *what_next == 2669 ValueObject::eExpressionPathAftermathDereference && 2670 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2671 Status error; 2672 root = root->Dereference(error); 2673 if (error.Fail() || !root) { 2674 *reason_to_stop = 2675 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2676 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2677 return nullptr; 2678 } else { 2679 *what_next = ValueObject::eExpressionPathAftermathNothing; 2680 continue; 2681 } 2682 } else { 2683 *reason_to_stop = 2684 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2685 *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange; 2686 return root; 2687 } 2688 } 2689 break; 2690 } 2691 default: // some non-separator is in the way 2692 { 2693 *reason_to_stop = 2694 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2695 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2696 return nullptr; 2697 } 2698 } 2699 } 2700 } 2701 2702 void ValueObject::LogValueObject(Log *log) { 2703 if (log) 2704 return LogValueObject(log, DumpValueObjectOptions(*this)); 2705 } 2706 2707 void ValueObject::LogValueObject(Log *log, 2708 const DumpValueObjectOptions &options) { 2709 if (log) { 2710 StreamString s; 2711 Dump(s, options); 2712 if (s.GetSize()) 2713 log->PutCString(s.GetData()); 2714 } 2715 } 2716 2717 void ValueObject::Dump(Stream &s) { Dump(s, DumpValueObjectOptions(*this)); } 2718 2719 void ValueObject::Dump(Stream &s, const DumpValueObjectOptions &options) { 2720 ValueObjectPrinter printer(this, &s, options); 2721 printer.PrintValueObject(); 2722 } 2723 2724 ValueObjectSP ValueObject::CreateConstantValue(ConstString name) { 2725 ValueObjectSP valobj_sp; 2726 2727 if (UpdateValueIfNeeded(false) && m_error.Success()) { 2728 ExecutionContext exe_ctx(GetExecutionContextRef()); 2729 2730 DataExtractor data; 2731 data.SetByteOrder(m_data.GetByteOrder()); 2732 data.SetAddressByteSize(m_data.GetAddressByteSize()); 2733 2734 if (IsBitfield()) { 2735 Value v(Scalar(GetValueAsUnsigned(UINT64_MAX))); 2736 m_error = v.GetValueAsData(&exe_ctx, data, GetModule().get()); 2737 } else 2738 m_error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get()); 2739 2740 valobj_sp = ValueObjectConstResult::Create( 2741 exe_ctx.GetBestExecutionContextScope(), GetCompilerType(), name, data, 2742 GetAddressOf()); 2743 } 2744 2745 if (!valobj_sp) { 2746 ExecutionContext exe_ctx(GetExecutionContextRef()); 2747 valobj_sp = ValueObjectConstResult::Create( 2748 exe_ctx.GetBestExecutionContextScope(), m_error); 2749 } 2750 return valobj_sp; 2751 } 2752 2753 ValueObjectSP ValueObject::GetQualifiedRepresentationIfAvailable( 2754 lldb::DynamicValueType dynValue, bool synthValue) { 2755 ValueObjectSP result_sp(GetSP()); 2756 2757 switch (dynValue) { 2758 case lldb::eDynamicCanRunTarget: 2759 case lldb::eDynamicDontRunTarget: { 2760 if (!result_sp->IsDynamic()) { 2761 if (result_sp->GetDynamicValue(dynValue)) 2762 result_sp = result_sp->GetDynamicValue(dynValue); 2763 } 2764 } break; 2765 case lldb::eNoDynamicValues: { 2766 if (result_sp->IsDynamic()) { 2767 if (result_sp->GetStaticValue()) 2768 result_sp = result_sp->GetStaticValue(); 2769 } 2770 } break; 2771 } 2772 2773 if (synthValue) { 2774 if (!result_sp->IsSynthetic()) { 2775 if (result_sp->GetSyntheticValue()) 2776 result_sp = result_sp->GetSyntheticValue(); 2777 } 2778 } else { 2779 if (result_sp->IsSynthetic()) { 2780 if (result_sp->GetNonSyntheticValue()) 2781 result_sp = result_sp->GetNonSyntheticValue(); 2782 } 2783 } 2784 2785 return result_sp; 2786 } 2787 2788 ValueObjectSP ValueObject::Dereference(Status &error) { 2789 if (m_deref_valobj) 2790 return m_deref_valobj->GetSP(); 2791 2792 const bool is_pointer_or_reference_type = IsPointerOrReferenceType(); 2793 if (is_pointer_or_reference_type) { 2794 bool omit_empty_base_classes = true; 2795 bool ignore_array_bounds = false; 2796 2797 std::string child_name_str; 2798 uint32_t child_byte_size = 0; 2799 int32_t child_byte_offset = 0; 2800 uint32_t child_bitfield_bit_size = 0; 2801 uint32_t child_bitfield_bit_offset = 0; 2802 bool child_is_base_class = false; 2803 bool child_is_deref_of_parent = false; 2804 const bool transparent_pointers = false; 2805 CompilerType compiler_type = GetCompilerType(); 2806 CompilerType child_compiler_type; 2807 uint64_t language_flags = 0; 2808 2809 ExecutionContext exe_ctx(GetExecutionContextRef()); 2810 2811 child_compiler_type = compiler_type.GetChildCompilerTypeAtIndex( 2812 &exe_ctx, 0, transparent_pointers, omit_empty_base_classes, 2813 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 2814 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 2815 child_is_deref_of_parent, this, language_flags); 2816 if (child_compiler_type && child_byte_size) { 2817 ConstString child_name; 2818 if (!child_name_str.empty()) 2819 child_name.SetCString(child_name_str.c_str()); 2820 2821 m_deref_valobj = new ValueObjectChild( 2822 *this, child_compiler_type, child_name, child_byte_size, 2823 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 2824 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 2825 language_flags); 2826 } 2827 } else if (HasSyntheticValue()) { 2828 m_deref_valobj = 2829 GetSyntheticValue() 2830 ->GetChildMemberWithName(ConstString("$$dereference$$"), true) 2831 .get(); 2832 } else if (IsSynthetic()) { 2833 m_deref_valobj = 2834 GetChildMemberWithName(ConstString("$$dereference$$"), true).get(); 2835 } 2836 2837 if (m_deref_valobj) { 2838 error.Clear(); 2839 return m_deref_valobj->GetSP(); 2840 } else { 2841 StreamString strm; 2842 GetExpressionPath(strm); 2843 2844 if (is_pointer_or_reference_type) 2845 error.SetErrorStringWithFormat("dereference failed: (%s) %s", 2846 GetTypeName().AsCString("<invalid type>"), 2847 strm.GetData()); 2848 else 2849 error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s", 2850 GetTypeName().AsCString("<invalid type>"), 2851 strm.GetData()); 2852 return ValueObjectSP(); 2853 } 2854 } 2855 2856 ValueObjectSP ValueObject::AddressOf(Status &error) { 2857 if (m_addr_of_valobj_sp) 2858 return m_addr_of_valobj_sp; 2859 2860 AddressType address_type = eAddressTypeInvalid; 2861 const bool scalar_is_load_address = false; 2862 addr_t addr = GetAddressOf(scalar_is_load_address, &address_type); 2863 error.Clear(); 2864 if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) { 2865 switch (address_type) { 2866 case eAddressTypeInvalid: { 2867 StreamString expr_path_strm; 2868 GetExpressionPath(expr_path_strm); 2869 error.SetErrorStringWithFormat("'%s' is not in memory", 2870 expr_path_strm.GetData()); 2871 } break; 2872 2873 case eAddressTypeFile: 2874 case eAddressTypeLoad: { 2875 CompilerType compiler_type = GetCompilerType(); 2876 if (compiler_type) { 2877 std::string name(1, '&'); 2878 name.append(m_name.AsCString("")); 2879 ExecutionContext exe_ctx(GetExecutionContextRef()); 2880 m_addr_of_valobj_sp = ValueObjectConstResult::Create( 2881 exe_ctx.GetBestExecutionContextScope(), 2882 compiler_type.GetPointerType(), ConstString(name.c_str()), addr, 2883 eAddressTypeInvalid, m_data.GetAddressByteSize()); 2884 } 2885 } break; 2886 default: 2887 break; 2888 } 2889 } else { 2890 StreamString expr_path_strm; 2891 GetExpressionPath(expr_path_strm); 2892 error.SetErrorStringWithFormat("'%s' doesn't have a valid address", 2893 expr_path_strm.GetData()); 2894 } 2895 2896 return m_addr_of_valobj_sp; 2897 } 2898 2899 ValueObjectSP ValueObject::Cast(const CompilerType &compiler_type) { 2900 return ValueObjectCast::Create(*this, GetName(), compiler_type); 2901 } 2902 2903 lldb::ValueObjectSP ValueObject::Clone(ConstString new_name) { 2904 return ValueObjectCast::Create(*this, new_name, GetCompilerType()); 2905 } 2906 2907 ValueObjectSP ValueObject::CastPointerType(const char *name, 2908 CompilerType &compiler_type) { 2909 ValueObjectSP valobj_sp; 2910 AddressType address_type; 2911 addr_t ptr_value = GetPointerValue(&address_type); 2912 2913 if (ptr_value != LLDB_INVALID_ADDRESS) { 2914 Address ptr_addr(ptr_value); 2915 ExecutionContext exe_ctx(GetExecutionContextRef()); 2916 valobj_sp = ValueObjectMemory::Create( 2917 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, compiler_type); 2918 } 2919 return valobj_sp; 2920 } 2921 2922 ValueObjectSP ValueObject::CastPointerType(const char *name, TypeSP &type_sp) { 2923 ValueObjectSP valobj_sp; 2924 AddressType address_type; 2925 addr_t ptr_value = GetPointerValue(&address_type); 2926 2927 if (ptr_value != LLDB_INVALID_ADDRESS) { 2928 Address ptr_addr(ptr_value); 2929 ExecutionContext exe_ctx(GetExecutionContextRef()); 2930 valobj_sp = ValueObjectMemory::Create( 2931 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, type_sp); 2932 } 2933 return valobj_sp; 2934 } 2935 2936 ValueObject::EvaluationPoint::EvaluationPoint() 2937 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) {} 2938 2939 ValueObject::EvaluationPoint::EvaluationPoint(ExecutionContextScope *exe_scope, 2940 bool use_selected) 2941 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) { 2942 ExecutionContext exe_ctx(exe_scope); 2943 TargetSP target_sp(exe_ctx.GetTargetSP()); 2944 if (target_sp) { 2945 m_exe_ctx_ref.SetTargetSP(target_sp); 2946 ProcessSP process_sp(exe_ctx.GetProcessSP()); 2947 if (!process_sp) 2948 process_sp = target_sp->GetProcessSP(); 2949 2950 if (process_sp) { 2951 m_mod_id = process_sp->GetModID(); 2952 m_exe_ctx_ref.SetProcessSP(process_sp); 2953 2954 ThreadSP thread_sp(exe_ctx.GetThreadSP()); 2955 2956 if (!thread_sp) { 2957 if (use_selected) 2958 thread_sp = process_sp->GetThreadList().GetSelectedThread(); 2959 } 2960 2961 if (thread_sp) { 2962 m_exe_ctx_ref.SetThreadSP(thread_sp); 2963 2964 StackFrameSP frame_sp(exe_ctx.GetFrameSP()); 2965 if (!frame_sp) { 2966 if (use_selected) 2967 frame_sp = thread_sp->GetSelectedFrame(); 2968 } 2969 if (frame_sp) 2970 m_exe_ctx_ref.SetFrameSP(frame_sp); 2971 } 2972 } 2973 } 2974 } 2975 2976 ValueObject::EvaluationPoint::EvaluationPoint( 2977 const ValueObject::EvaluationPoint &rhs) 2978 : m_mod_id(), m_exe_ctx_ref(rhs.m_exe_ctx_ref), m_needs_update(true) {} 2979 2980 ValueObject::EvaluationPoint::~EvaluationPoint() {} 2981 2982 // This function checks the EvaluationPoint against the current process state. 2983 // If the current state matches the evaluation point, or the evaluation point 2984 // is already invalid, then we return false, meaning "no change". If the 2985 // current state is different, we update our state, and return true meaning 2986 // "yes, change". If we did see a change, we also set m_needs_update to true, 2987 // so future calls to NeedsUpdate will return true. exe_scope will be set to 2988 // the current execution context scope. 2989 2990 bool ValueObject::EvaluationPoint::SyncWithProcessState( 2991 bool accept_invalid_exe_ctx) { 2992 // Start with the target, if it is NULL, then we're obviously not going to 2993 // get any further: 2994 const bool thread_and_frame_only_if_stopped = true; 2995 ExecutionContext exe_ctx( 2996 m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped)); 2997 2998 if (exe_ctx.GetTargetPtr() == nullptr) 2999 return false; 3000 3001 // If we don't have a process nothing can change. 3002 Process *process = exe_ctx.GetProcessPtr(); 3003 if (process == nullptr) 3004 return false; 3005 3006 // If our stop id is the current stop ID, nothing has changed: 3007 ProcessModID current_mod_id = process->GetModID(); 3008 3009 // If the current stop id is 0, either we haven't run yet, or the process 3010 // state has been cleared. In either case, we aren't going to be able to sync 3011 // with the process state. 3012 if (current_mod_id.GetStopID() == 0) 3013 return false; 3014 3015 bool changed = false; 3016 const bool was_valid = m_mod_id.IsValid(); 3017 if (was_valid) { 3018 if (m_mod_id == current_mod_id) { 3019 // Everything is already up to date in this object, no need to update the 3020 // execution context scope. 3021 changed = false; 3022 } else { 3023 m_mod_id = current_mod_id; 3024 m_needs_update = true; 3025 changed = true; 3026 } 3027 } 3028 3029 // Now re-look up the thread and frame in case the underlying objects have 3030 // gone away & been recreated. That way we'll be sure to return a valid 3031 // exe_scope. If we used to have a thread or a frame but can't find it 3032 // anymore, then mark ourselves as invalid. 3033 3034 if (!accept_invalid_exe_ctx) { 3035 if (m_exe_ctx_ref.HasThreadRef()) { 3036 ThreadSP thread_sp(m_exe_ctx_ref.GetThreadSP()); 3037 if (thread_sp) { 3038 if (m_exe_ctx_ref.HasFrameRef()) { 3039 StackFrameSP frame_sp(m_exe_ctx_ref.GetFrameSP()); 3040 if (!frame_sp) { 3041 // We used to have a frame, but now it is gone 3042 SetInvalid(); 3043 changed = was_valid; 3044 } 3045 } 3046 } else { 3047 // We used to have a thread, but now it is gone 3048 SetInvalid(); 3049 changed = was_valid; 3050 } 3051 } 3052 } 3053 3054 return changed; 3055 } 3056 3057 void ValueObject::EvaluationPoint::SetUpdated() { 3058 ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP()); 3059 if (process_sp) 3060 m_mod_id = process_sp->GetModID(); 3061 m_needs_update = false; 3062 } 3063 3064 void ValueObject::ClearUserVisibleData(uint32_t clear_mask) { 3065 if ((clear_mask & eClearUserVisibleDataItemsValue) == 3066 eClearUserVisibleDataItemsValue) 3067 m_value_str.clear(); 3068 3069 if ((clear_mask & eClearUserVisibleDataItemsLocation) == 3070 eClearUserVisibleDataItemsLocation) 3071 m_location_str.clear(); 3072 3073 if ((clear_mask & eClearUserVisibleDataItemsSummary) == 3074 eClearUserVisibleDataItemsSummary) 3075 m_summary_str.clear(); 3076 3077 if ((clear_mask & eClearUserVisibleDataItemsDescription) == 3078 eClearUserVisibleDataItemsDescription) 3079 m_object_desc_str.clear(); 3080 3081 if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == 3082 eClearUserVisibleDataItemsSyntheticChildren) { 3083 if (m_synthetic_value) 3084 m_synthetic_value = nullptr; 3085 } 3086 } 3087 3088 SymbolContextScope *ValueObject::GetSymbolContextScope() { 3089 if (m_parent) { 3090 if (!m_parent->IsPointerOrReferenceType()) 3091 return m_parent->GetSymbolContextScope(); 3092 } 3093 return nullptr; 3094 } 3095 3096 lldb::ValueObjectSP 3097 ValueObject::CreateValueObjectFromExpression(llvm::StringRef name, 3098 llvm::StringRef expression, 3099 const ExecutionContext &exe_ctx) { 3100 return CreateValueObjectFromExpression(name, expression, exe_ctx, 3101 EvaluateExpressionOptions()); 3102 } 3103 3104 lldb::ValueObjectSP ValueObject::CreateValueObjectFromExpression( 3105 llvm::StringRef name, llvm::StringRef expression, 3106 const ExecutionContext &exe_ctx, const EvaluateExpressionOptions &options) { 3107 lldb::ValueObjectSP retval_sp; 3108 lldb::TargetSP target_sp(exe_ctx.GetTargetSP()); 3109 if (!target_sp) 3110 return retval_sp; 3111 if (expression.empty()) 3112 return retval_sp; 3113 target_sp->EvaluateExpression(expression, exe_ctx.GetFrameSP().get(), 3114 retval_sp, options); 3115 if (retval_sp && !name.empty()) 3116 retval_sp->SetName(ConstString(name)); 3117 return retval_sp; 3118 } 3119 3120 lldb::ValueObjectSP ValueObject::CreateValueObjectFromAddress( 3121 llvm::StringRef name, uint64_t address, const ExecutionContext &exe_ctx, 3122 CompilerType type) { 3123 if (type) { 3124 CompilerType pointer_type(type.GetPointerType()); 3125 if (pointer_type) { 3126 lldb::DataBufferSP buffer( 3127 new lldb_private::DataBufferHeap(&address, sizeof(lldb::addr_t))); 3128 lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create( 3129 exe_ctx.GetBestExecutionContextScope(), pointer_type, 3130 ConstString(name), buffer, exe_ctx.GetByteOrder(), 3131 exe_ctx.GetAddressByteSize())); 3132 if (ptr_result_valobj_sp) { 3133 ptr_result_valobj_sp->GetValue().SetValueType( 3134 Value::eValueTypeLoadAddress); 3135 Status err; 3136 ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err); 3137 if (ptr_result_valobj_sp && !name.empty()) 3138 ptr_result_valobj_sp->SetName(ConstString(name)); 3139 } 3140 return ptr_result_valobj_sp; 3141 } 3142 } 3143 return lldb::ValueObjectSP(); 3144 } 3145 3146 lldb::ValueObjectSP ValueObject::CreateValueObjectFromData( 3147 llvm::StringRef name, const DataExtractor &data, 3148 const ExecutionContext &exe_ctx, CompilerType type) { 3149 lldb::ValueObjectSP new_value_sp; 3150 new_value_sp = ValueObjectConstResult::Create( 3151 exe_ctx.GetBestExecutionContextScope(), type, ConstString(name), data, 3152 LLDB_INVALID_ADDRESS); 3153 new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad); 3154 if (new_value_sp && !name.empty()) 3155 new_value_sp->SetName(ConstString(name)); 3156 return new_value_sp; 3157 } 3158 3159 ModuleSP ValueObject::GetModule() { 3160 ValueObject *root(GetRoot()); 3161 if (root != this) 3162 return root->GetModule(); 3163 return lldb::ModuleSP(); 3164 } 3165 3166 ValueObject *ValueObject::GetRoot() { 3167 if (m_root) 3168 return m_root; 3169 return (m_root = FollowParentChain([](ValueObject *vo) -> bool { 3170 return (vo->m_parent != nullptr); 3171 })); 3172 } 3173 3174 ValueObject * 3175 ValueObject::FollowParentChain(std::function<bool(ValueObject *)> f) { 3176 ValueObject *vo = this; 3177 while (vo) { 3178 if (!f(vo)) 3179 break; 3180 vo = vo->m_parent; 3181 } 3182 return vo; 3183 } 3184 3185 AddressType ValueObject::GetAddressTypeOfChildren() { 3186 if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) { 3187 ValueObject *root(GetRoot()); 3188 if (root != this) 3189 return root->GetAddressTypeOfChildren(); 3190 } 3191 return m_address_type_of_ptr_or_ref_children; 3192 } 3193 3194 lldb::DynamicValueType ValueObject::GetDynamicValueType() { 3195 ValueObject *with_dv_info = this; 3196 while (with_dv_info) { 3197 if (with_dv_info->HasDynamicValueTypeInfo()) 3198 return with_dv_info->GetDynamicValueTypeImpl(); 3199 with_dv_info = with_dv_info->m_parent; 3200 } 3201 return lldb::eNoDynamicValues; 3202 } 3203 3204 lldb::Format ValueObject::GetFormat() const { 3205 const ValueObject *with_fmt_info = this; 3206 while (with_fmt_info) { 3207 if (with_fmt_info->m_format != lldb::eFormatDefault) 3208 return with_fmt_info->m_format; 3209 with_fmt_info = with_fmt_info->m_parent; 3210 } 3211 return m_format; 3212 } 3213 3214 lldb::LanguageType ValueObject::GetPreferredDisplayLanguage() { 3215 lldb::LanguageType type = m_preferred_display_language; 3216 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) { 3217 if (GetRoot()) { 3218 if (GetRoot() == this) { 3219 if (StackFrameSP frame_sp = GetFrameSP()) { 3220 const SymbolContext &sc( 3221 frame_sp->GetSymbolContext(eSymbolContextCompUnit)); 3222 if (CompileUnit *cu = sc.comp_unit) 3223 type = cu->GetLanguage(); 3224 } 3225 } else { 3226 type = GetRoot()->GetPreferredDisplayLanguage(); 3227 } 3228 } 3229 } 3230 return (m_preferred_display_language = type); // only compute it once 3231 } 3232 3233 void ValueObject::SetPreferredDisplayLanguage(lldb::LanguageType lt) { 3234 m_preferred_display_language = lt; 3235 } 3236 3237 void ValueObject::SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType lt) { 3238 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 3239 SetPreferredDisplayLanguage(lt); 3240 } 3241 3242 bool ValueObject::CanProvideValue() { 3243 // we need to support invalid types as providers of values because some bare- 3244 // board debugging scenarios have no notion of types, but still manage to 3245 // have raw numeric values for things like registers. sigh. 3246 const CompilerType &type(GetCompilerType()); 3247 return (!type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue)); 3248 } 3249 3250 bool ValueObject::IsChecksumEmpty() { return m_value_checksum.empty(); } 3251 3252 ValueObjectSP ValueObject::Persist() { 3253 if (!UpdateValueIfNeeded()) 3254 return nullptr; 3255 3256 TargetSP target_sp(GetTargetSP()); 3257 if (!target_sp) 3258 return nullptr; 3259 3260 PersistentExpressionState *persistent_state = 3261 target_sp->GetPersistentExpressionStateForLanguage( 3262 GetPreferredDisplayLanguage()); 3263 3264 if (!persistent_state) 3265 return nullptr; 3266 3267 ConstString name = persistent_state->GetNextPersistentVariableName(); 3268 3269 ValueObjectSP const_result_sp = 3270 ValueObjectConstResult::Create(target_sp.get(), GetValue(), name); 3271 3272 ExpressionVariableSP persistent_var_sp = 3273 persistent_state->CreatePersistentVariable(const_result_sp); 3274 persistent_var_sp->m_live_sp = persistent_var_sp->m_frozen_sp; 3275 persistent_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference; 3276 3277 return persistent_var_sp->GetValueObject(); 3278 } 3279 3280 bool ValueObject::IsSyntheticChildrenGenerated() { 3281 return m_is_synthetic_children_generated; 3282 } 3283 3284 void ValueObject::SetSyntheticChildrenGenerated(bool b) { 3285 m_is_synthetic_children_generated = b; 3286 } 3287 3288 uint64_t ValueObject::GetLanguageFlags() { return m_language_flags; } 3289 3290 void ValueObject::SetLanguageFlags(uint64_t flags) { m_language_flags = flags; } 3291 3292 ValueObjectManager::ValueObjectManager(lldb::ValueObjectSP in_valobj_sp, 3293 lldb::DynamicValueType use_dynamic, 3294 bool use_synthetic) : m_root_valobj_sp(), 3295 m_user_valobj_sp(), m_use_dynamic(use_dynamic), m_stop_id(UINT32_MAX), 3296 m_use_synthetic(use_synthetic) { 3297 if (!in_valobj_sp) 3298 return; 3299 // If the user passes in a value object that is dynamic or synthetic, then 3300 // water it down to the static type. 3301 m_root_valobj_sp = in_valobj_sp->GetQualifiedRepresentationIfAvailable(lldb::eNoDynamicValues, false); 3302 } 3303 3304 bool ValueObjectManager::IsValid() const { 3305 if (!m_root_valobj_sp) 3306 return false; 3307 lldb::TargetSP target_sp = GetTargetSP(); 3308 if (target_sp) 3309 return target_sp->IsValid(); 3310 return false; 3311 } 3312 3313 lldb::ValueObjectSP ValueObjectManager::GetSP() { 3314 lldb::ProcessSP process_sp = GetProcessSP(); 3315 if (!process_sp) 3316 return lldb::ValueObjectSP(); 3317 3318 const uint32_t current_stop_id = process_sp->GetLastNaturalStopID(); 3319 if (current_stop_id == m_stop_id) 3320 return m_user_valobj_sp; 3321 3322 m_stop_id = current_stop_id; 3323 3324 if (!m_root_valobj_sp) { 3325 m_user_valobj_sp.reset(); 3326 return m_root_valobj_sp; 3327 } 3328 3329 m_user_valobj_sp = m_root_valobj_sp; 3330 3331 if (m_use_dynamic != lldb::eNoDynamicValues) { 3332 lldb::ValueObjectSP dynamic_sp = m_user_valobj_sp->GetDynamicValue(m_use_dynamic); 3333 if (dynamic_sp) 3334 m_user_valobj_sp = dynamic_sp; 3335 } 3336 3337 if (m_use_synthetic) { 3338 lldb::ValueObjectSP synthetic_sp = m_user_valobj_sp->GetSyntheticValue(); 3339 if (synthetic_sp) 3340 m_user_valobj_sp = synthetic_sp; 3341 } 3342 3343 return m_user_valobj_sp; 3344 } 3345 3346 void ValueObjectManager::SetUseDynamic(lldb::DynamicValueType use_dynamic) { 3347 if (use_dynamic != m_use_dynamic) { 3348 m_use_dynamic = use_dynamic; 3349 m_user_valobj_sp.reset(); 3350 m_stop_id = UINT32_MAX; 3351 } 3352 } 3353 3354 void ValueObjectManager::SetUseSynthetic(bool use_synthetic) { 3355 if (m_use_synthetic != use_synthetic) { 3356 m_use_synthetic = use_synthetic; 3357 m_user_valobj_sp.reset(); 3358 m_stop_id = UINT32_MAX; 3359 } 3360 } 3361 3362 lldb::TargetSP ValueObjectManager::GetTargetSP() const { 3363 if (!m_root_valobj_sp) 3364 return m_root_valobj_sp->GetTargetSP(); 3365 return lldb::TargetSP(); 3366 } 3367 3368 lldb::ProcessSP ValueObjectManager::GetProcessSP() const { 3369 if (m_root_valobj_sp) 3370 return m_root_valobj_sp->GetProcessSP(); 3371 return lldb::ProcessSP(); 3372 } 3373 3374 lldb::ThreadSP ValueObjectManager::GetThreadSP() const { 3375 if (m_root_valobj_sp) 3376 return m_root_valobj_sp->GetThreadSP(); 3377 return lldb::ThreadSP(); 3378 } 3379 3380 lldb::StackFrameSP ValueObjectManager::GetFrameSP() const { 3381 if (m_root_valobj_sp) 3382 return m_root_valobj_sp->GetFrameSP(); 3383 return lldb::StackFrameSP(); 3384 } 3385