1 //===-- ValueObject.cpp -----------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Core/ValueObject.h" 10 11 #include "lldb/Core/Address.h" 12 #include "lldb/Core/Module.h" 13 #include "lldb/Core/ValueObjectCast.h" 14 #include "lldb/Core/ValueObjectChild.h" 15 #include "lldb/Core/ValueObjectConstResult.h" 16 #include "lldb/Core/ValueObjectDynamicValue.h" 17 #include "lldb/Core/ValueObjectMemory.h" 18 #include "lldb/Core/ValueObjectSyntheticFilter.h" 19 #include "lldb/DataFormatters/DataVisualization.h" 20 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 21 #include "lldb/DataFormatters/FormatManager.h" 22 #include "lldb/DataFormatters/StringPrinter.h" 23 #include "lldb/DataFormatters/TypeFormat.h" 24 #include "lldb/DataFormatters/TypeSummary.h" 25 #include "lldb/DataFormatters/TypeValidator.h" 26 #include "lldb/DataFormatters/ValueObjectPrinter.h" 27 #include "lldb/Expression/ExpressionVariable.h" 28 #include "lldb/Symbol/ClangASTContext.h" 29 #include "lldb/Symbol/CompileUnit.h" 30 #include "lldb/Symbol/CompilerType.h" 31 #include "lldb/Symbol/Declaration.h" 32 #include "lldb/Symbol/SymbolContext.h" 33 #include "lldb/Symbol/Type.h" 34 #include "lldb/Symbol/Variable.h" 35 #include "lldb/Target/ExecutionContext.h" 36 #include "lldb/Target/Language.h" 37 #include "lldb/Target/LanguageRuntime.h" 38 #include "lldb/Target/ObjCLanguageRuntime.h" 39 #include "lldb/Target/Process.h" 40 #include "lldb/Target/StackFrame.h" 41 #include "lldb/Target/Target.h" 42 #include "lldb/Target/Thread.h" 43 #include "lldb/Target/ThreadList.h" 44 #include "lldb/Utility/DataBuffer.h" 45 #include "lldb/Utility/DataBufferHeap.h" 46 #include "lldb/Utility/Flags.h" 47 #include "lldb/Utility/Log.h" 48 #include "lldb/Utility/Logging.h" 49 #include "lldb/Utility/Scalar.h" 50 #include "lldb/Utility/SharingPtr.h" 51 #include "lldb/Utility/Stream.h" 52 #include "lldb/Utility/StreamString.h" 53 #include "lldb/lldb-private-types.h" 54 55 #include "llvm/Support/Compiler.h" 56 57 #include <algorithm> 58 #include <cstdint> 59 #include <cstdlib> 60 #include <memory> 61 #include <tuple> 62 63 #include <assert.h> 64 #include <inttypes.h> 65 #include <stdio.h> 66 #include <string.h> 67 68 namespace lldb_private { 69 class ExecutionContextScope; 70 } 71 namespace lldb_private { 72 class SymbolContextScope; 73 } 74 75 using namespace lldb; 76 using namespace lldb_private; 77 using namespace lldb_utility; 78 79 static user_id_t g_value_obj_uid = 0; 80 81 // ValueObject constructor 82 ValueObject::ValueObject(ValueObject &parent) 83 : UserID(++g_value_obj_uid), // Unique identifier for every value object 84 m_parent(&parent), m_root(NULL), m_update_point(parent.GetUpdatePoint()), 85 m_name(), m_data(), m_value(), m_error(), m_value_str(), 86 m_old_value_str(), m_location_str(), m_summary_str(), m_object_desc_str(), 87 m_validation_result(), m_manager(parent.GetManager()), m_children(), 88 m_synthetic_children(), m_dynamic_value(NULL), m_synthetic_value(NULL), 89 m_deref_valobj(NULL), m_format(eFormatDefault), 90 m_last_format(eFormatDefault), m_last_format_mgr_revision(0), 91 m_type_summary_sp(), m_type_format_sp(), m_synthetic_children_sp(), 92 m_type_validator_sp(), m_user_id_of_forced_summary(), 93 m_address_type_of_ptr_or_ref_children(eAddressTypeInvalid), 94 m_value_checksum(), 95 m_preferred_display_language(lldb::eLanguageTypeUnknown), 96 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 97 m_children_count_valid(false), m_old_value_valid(false), 98 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 99 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 100 m_is_getting_summary(false), 101 m_did_calculate_complete_objc_class_type(false), 102 m_is_synthetic_children_generated( 103 parent.m_is_synthetic_children_generated) { 104 m_manager->ManageObject(this); 105 } 106 107 // ValueObject constructor 108 ValueObject::ValueObject(ExecutionContextScope *exe_scope, 109 AddressType child_ptr_or_ref_addr_type) 110 : UserID(++g_value_obj_uid), // Unique identifier for every value object 111 m_parent(NULL), m_root(NULL), m_update_point(exe_scope), m_name(), 112 m_data(), m_value(), m_error(), m_value_str(), m_old_value_str(), 113 m_location_str(), m_summary_str(), m_object_desc_str(), 114 m_validation_result(), m_manager(), m_children(), m_synthetic_children(), 115 m_dynamic_value(NULL), m_synthetic_value(NULL), m_deref_valobj(NULL), 116 m_format(eFormatDefault), m_last_format(eFormatDefault), 117 m_last_format_mgr_revision(0), m_type_summary_sp(), m_type_format_sp(), 118 m_synthetic_children_sp(), m_type_validator_sp(), 119 m_user_id_of_forced_summary(), 120 m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type), 121 m_value_checksum(), 122 m_preferred_display_language(lldb::eLanguageTypeUnknown), 123 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 124 m_children_count_valid(false), m_old_value_valid(false), 125 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 126 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 127 m_is_getting_summary(false), 128 m_did_calculate_complete_objc_class_type(false), 129 m_is_synthetic_children_generated(false) { 130 m_manager = new ValueObjectManager(); 131 m_manager->ManageObject(this); 132 } 133 134 // Destructor 135 ValueObject::~ValueObject() {} 136 137 bool ValueObject::UpdateValueIfNeeded(bool update_format) { 138 139 bool did_change_formats = false; 140 141 if (update_format) 142 did_change_formats = UpdateFormatsIfNeeded(); 143 144 // If this is a constant value, then our success is predicated on whether we 145 // have an error or not 146 if (GetIsConstant()) { 147 // if you are constant, things might still have changed behind your back 148 // (e.g. you are a frozen object and things have changed deeper than you 149 // cared to freeze-dry yourself) in this case, your value has not changed, 150 // but "computed" entries might have, so you might now have a different 151 // summary, or a different object description. clear these so we will 152 // recompute them 153 if (update_format && !did_change_formats) 154 ClearUserVisibleData(eClearUserVisibleDataItemsSummary | 155 eClearUserVisibleDataItemsDescription); 156 return m_error.Success(); 157 } 158 159 bool first_update = IsChecksumEmpty(); 160 161 if (NeedsUpdating()) { 162 m_update_point.SetUpdated(); 163 164 // Save the old value using swap to avoid a string copy which also will 165 // clear our m_value_str 166 if (m_value_str.empty()) { 167 m_old_value_valid = false; 168 } else { 169 m_old_value_valid = true; 170 m_old_value_str.swap(m_value_str); 171 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 172 } 173 174 ClearUserVisibleData(); 175 176 if (IsInScope()) { 177 const bool value_was_valid = GetValueIsValid(); 178 SetValueDidChange(false); 179 180 m_error.Clear(); 181 182 // Call the pure virtual function to update the value 183 184 bool need_compare_checksums = false; 185 llvm::SmallVector<uint8_t, 16> old_checksum; 186 187 if (!first_update && CanProvideValue()) { 188 need_compare_checksums = true; 189 old_checksum.resize(m_value_checksum.size()); 190 std::copy(m_value_checksum.begin(), m_value_checksum.end(), 191 old_checksum.begin()); 192 } 193 194 bool success = UpdateValue(); 195 196 SetValueIsValid(success); 197 198 if (success) { 199 const uint64_t max_checksum_size = 128; 200 m_data.Checksum(m_value_checksum, max_checksum_size); 201 } else { 202 need_compare_checksums = false; 203 m_value_checksum.clear(); 204 } 205 206 assert(!need_compare_checksums || 207 (!old_checksum.empty() && !m_value_checksum.empty())); 208 209 if (first_update) 210 SetValueDidChange(false); 211 else if (!m_value_did_change && !success) { 212 // The value wasn't gotten successfully, so we mark this as changed if 213 // the value used to be valid and now isn't 214 SetValueDidChange(value_was_valid); 215 } else if (need_compare_checksums) { 216 SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0], 217 m_value_checksum.size())); 218 } 219 220 } else { 221 m_error.SetErrorString("out of scope"); 222 } 223 } 224 return m_error.Success(); 225 } 226 227 bool ValueObject::UpdateFormatsIfNeeded() { 228 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_DATAFORMATTERS)); 229 if (log) 230 log->Printf("[%s %p] checking for FormatManager revisions. ValueObject " 231 "rev: %d - Global rev: %d", 232 GetName().GetCString(), static_cast<void *>(this), 233 m_last_format_mgr_revision, 234 DataVisualization::GetCurrentRevision()); 235 236 bool any_change = false; 237 238 if ((m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) { 239 m_last_format_mgr_revision = DataVisualization::GetCurrentRevision(); 240 any_change = true; 241 242 SetValueFormat(DataVisualization::GetFormat(*this, eNoDynamicValues)); 243 SetSummaryFormat( 244 DataVisualization::GetSummaryFormat(*this, GetDynamicValueType())); 245 #ifndef LLDB_DISABLE_PYTHON 246 SetSyntheticChildren( 247 DataVisualization::GetSyntheticChildren(*this, GetDynamicValueType())); 248 #endif 249 SetValidator(DataVisualization::GetValidator(*this, GetDynamicValueType())); 250 } 251 252 return any_change; 253 } 254 255 void ValueObject::SetNeedsUpdate() { 256 m_update_point.SetNeedsUpdate(); 257 // We have to clear the value string here so ConstResult children will notice 258 // if their values are changed by hand (i.e. with SetValueAsCString). 259 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 260 } 261 262 void ValueObject::ClearDynamicTypeInformation() { 263 m_children_count_valid = false; 264 m_did_calculate_complete_objc_class_type = false; 265 m_last_format_mgr_revision = 0; 266 m_override_type = CompilerType(); 267 SetValueFormat(lldb::TypeFormatImplSP()); 268 SetSummaryFormat(lldb::TypeSummaryImplSP()); 269 SetSyntheticChildren(lldb::SyntheticChildrenSP()); 270 } 271 272 CompilerType ValueObject::MaybeCalculateCompleteType() { 273 CompilerType compiler_type(GetCompilerTypeImpl()); 274 275 if (m_did_calculate_complete_objc_class_type) { 276 if (m_override_type.IsValid()) 277 return m_override_type; 278 else 279 return compiler_type; 280 } 281 282 CompilerType class_type; 283 bool is_pointer_type = false; 284 285 if (ClangASTContext::IsObjCObjectPointerType(compiler_type, &class_type)) { 286 is_pointer_type = true; 287 } else if (ClangASTContext::IsObjCObjectOrInterfaceType(compiler_type)) { 288 class_type = compiler_type; 289 } else { 290 return compiler_type; 291 } 292 293 m_did_calculate_complete_objc_class_type = true; 294 295 if (class_type) { 296 ConstString class_name(class_type.GetConstTypeName()); 297 298 if (class_name) { 299 ProcessSP process_sp( 300 GetUpdatePoint().GetExecutionContextRef().GetProcessSP()); 301 302 if (process_sp) { 303 ObjCLanguageRuntime *objc_language_runtime( 304 process_sp->GetObjCLanguageRuntime()); 305 306 if (objc_language_runtime) { 307 TypeSP complete_objc_class_type_sp = 308 objc_language_runtime->LookupInCompleteClassCache(class_name); 309 310 if (complete_objc_class_type_sp) { 311 CompilerType complete_class( 312 complete_objc_class_type_sp->GetFullCompilerType()); 313 314 if (complete_class.GetCompleteType()) { 315 if (is_pointer_type) { 316 m_override_type = complete_class.GetPointerType(); 317 } else { 318 m_override_type = complete_class; 319 } 320 321 if (m_override_type.IsValid()) 322 return m_override_type; 323 } 324 } 325 } 326 } 327 } 328 } 329 return compiler_type; 330 } 331 332 CompilerType ValueObject::GetCompilerType() { 333 return MaybeCalculateCompleteType(); 334 } 335 336 TypeImpl ValueObject::GetTypeImpl() { return TypeImpl(GetCompilerType()); } 337 338 DataExtractor &ValueObject::GetDataExtractor() { 339 UpdateValueIfNeeded(false); 340 return m_data; 341 } 342 343 const Status &ValueObject::GetError() { 344 UpdateValueIfNeeded(false); 345 return m_error; 346 } 347 348 ConstString ValueObject::GetName() const { return m_name; } 349 350 const char *ValueObject::GetLocationAsCString() { 351 return GetLocationAsCStringImpl(m_value, m_data); 352 } 353 354 const char *ValueObject::GetLocationAsCStringImpl(const Value &value, 355 const DataExtractor &data) { 356 if (UpdateValueIfNeeded(false)) { 357 if (m_location_str.empty()) { 358 StreamString sstr; 359 360 Value::ValueType value_type = value.GetValueType(); 361 362 switch (value_type) { 363 case Value::eValueTypeScalar: 364 case Value::eValueTypeVector: 365 if (value.GetContextType() == Value::eContextTypeRegisterInfo) { 366 RegisterInfo *reg_info = value.GetRegisterInfo(); 367 if (reg_info) { 368 if (reg_info->name) 369 m_location_str = reg_info->name; 370 else if (reg_info->alt_name) 371 m_location_str = reg_info->alt_name; 372 if (m_location_str.empty()) 373 m_location_str = (reg_info->encoding == lldb::eEncodingVector) 374 ? "vector" 375 : "scalar"; 376 } 377 } 378 if (m_location_str.empty()) 379 m_location_str = 380 (value_type == Value::eValueTypeVector) ? "vector" : "scalar"; 381 break; 382 383 case Value::eValueTypeLoadAddress: 384 case Value::eValueTypeFileAddress: 385 case Value::eValueTypeHostAddress: { 386 uint32_t addr_nibble_size = data.GetAddressByteSize() * 2; 387 sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, 388 value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS)); 389 m_location_str = sstr.GetString(); 390 } break; 391 } 392 } 393 } 394 return m_location_str.c_str(); 395 } 396 397 Value &ValueObject::GetValue() { return m_value; } 398 399 const Value &ValueObject::GetValue() const { return m_value; } 400 401 bool ValueObject::ResolveValue(Scalar &scalar) { 402 if (UpdateValueIfNeeded( 403 false)) // make sure that you are up to date before returning anything 404 { 405 ExecutionContext exe_ctx(GetExecutionContextRef()); 406 Value tmp_value(m_value); 407 scalar = tmp_value.ResolveValue(&exe_ctx); 408 if (scalar.IsValid()) { 409 const uint32_t bitfield_bit_size = GetBitfieldBitSize(); 410 if (bitfield_bit_size) 411 return scalar.ExtractBitfield(bitfield_bit_size, 412 GetBitfieldBitOffset()); 413 return true; 414 } 415 } 416 return false; 417 } 418 419 bool ValueObject::IsLogicalTrue(Status &error) { 420 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 421 LazyBool is_logical_true = language->IsLogicalTrue(*this, error); 422 switch (is_logical_true) { 423 case eLazyBoolYes: 424 case eLazyBoolNo: 425 return (is_logical_true == true); 426 case eLazyBoolCalculate: 427 break; 428 } 429 } 430 431 Scalar scalar_value; 432 433 if (!ResolveValue(scalar_value)) { 434 error.SetErrorString("failed to get a scalar result"); 435 return false; 436 } 437 438 bool ret; 439 ret = scalar_value.ULongLong(1) != 0; 440 error.Clear(); 441 return ret; 442 } 443 444 bool ValueObject::GetValueIsValid() const { return m_value_is_valid; } 445 446 void ValueObject::SetValueIsValid(bool b) { m_value_is_valid = b; } 447 448 bool ValueObject::GetValueDidChange() { return m_value_did_change; } 449 450 void ValueObject::SetValueDidChange(bool value_changed) { 451 m_value_did_change = value_changed; 452 } 453 454 ValueObjectSP ValueObject::GetChildAtIndex(size_t idx, bool can_create) { 455 ValueObjectSP child_sp; 456 // We may need to update our value if we are dynamic 457 if (IsPossibleDynamicType()) 458 UpdateValueIfNeeded(false); 459 if (idx < GetNumChildren()) { 460 // Check if we have already made the child value object? 461 if (can_create && !m_children.HasChildAtIndex(idx)) { 462 // No we haven't created the child at this index, so lets have our 463 // subclass do it and cache the result for quick future access. 464 m_children.SetChildAtIndex(idx, CreateChildAtIndex(idx, false, 0)); 465 } 466 467 ValueObject *child = m_children.GetChildAtIndex(idx); 468 if (child != NULL) 469 return child->GetSP(); 470 } 471 return child_sp; 472 } 473 474 lldb::ValueObjectSP 475 ValueObject::GetChildAtIndexPath(llvm::ArrayRef<size_t> idxs, 476 size_t *index_of_error) { 477 if (idxs.size() == 0) 478 return GetSP(); 479 ValueObjectSP root(GetSP()); 480 for (size_t idx : idxs) { 481 root = root->GetChildAtIndex(idx, true); 482 if (!root) { 483 if (index_of_error) 484 *index_of_error = idx; 485 return root; 486 } 487 } 488 return root; 489 } 490 491 lldb::ValueObjectSP ValueObject::GetChildAtIndexPath( 492 llvm::ArrayRef<std::pair<size_t, bool>> idxs, size_t *index_of_error) { 493 if (idxs.size() == 0) 494 return GetSP(); 495 ValueObjectSP root(GetSP()); 496 for (std::pair<size_t, bool> idx : idxs) { 497 root = root->GetChildAtIndex(idx.first, idx.second); 498 if (!root) { 499 if (index_of_error) 500 *index_of_error = idx.first; 501 return root; 502 } 503 } 504 return root; 505 } 506 507 lldb::ValueObjectSP 508 ValueObject::GetChildAtNamePath(llvm::ArrayRef<ConstString> names, 509 ConstString *name_of_error) { 510 if (names.size() == 0) 511 return GetSP(); 512 ValueObjectSP root(GetSP()); 513 for (ConstString name : names) { 514 root = root->GetChildMemberWithName(name, true); 515 if (!root) { 516 if (name_of_error) 517 *name_of_error = name; 518 return root; 519 } 520 } 521 return root; 522 } 523 524 lldb::ValueObjectSP ValueObject::GetChildAtNamePath( 525 llvm::ArrayRef<std::pair<ConstString, bool>> names, 526 ConstString *name_of_error) { 527 if (names.size() == 0) 528 return GetSP(); 529 ValueObjectSP root(GetSP()); 530 for (std::pair<ConstString, bool> name : names) { 531 root = root->GetChildMemberWithName(name.first, name.second); 532 if (!root) { 533 if (name_of_error) 534 *name_of_error = name.first; 535 return root; 536 } 537 } 538 return root; 539 } 540 541 size_t ValueObject::GetIndexOfChildWithName(ConstString name) { 542 bool omit_empty_base_classes = true; 543 return GetCompilerType().GetIndexOfChildWithName(name.GetCString(), 544 omit_empty_base_classes); 545 } 546 547 ValueObjectSP ValueObject::GetChildMemberWithName(ConstString name, 548 bool can_create) { 549 // when getting a child by name, it could be buried inside some base classes 550 // (which really aren't part of the expression path), so we need a vector of 551 // indexes that can get us down to the correct child 552 ValueObjectSP child_sp; 553 554 // We may need to update our value if we are dynamic 555 if (IsPossibleDynamicType()) 556 UpdateValueIfNeeded(false); 557 558 std::vector<uint32_t> child_indexes; 559 bool omit_empty_base_classes = true; 560 const size_t num_child_indexes = 561 GetCompilerType().GetIndexOfChildMemberWithName( 562 name.GetCString(), omit_empty_base_classes, child_indexes); 563 if (num_child_indexes > 0) { 564 std::vector<uint32_t>::const_iterator pos = child_indexes.begin(); 565 std::vector<uint32_t>::const_iterator end = child_indexes.end(); 566 567 child_sp = GetChildAtIndex(*pos, can_create); 568 for (++pos; pos != end; ++pos) { 569 if (child_sp) { 570 ValueObjectSP new_child_sp(child_sp->GetChildAtIndex(*pos, can_create)); 571 child_sp = new_child_sp; 572 } else { 573 child_sp.reset(); 574 } 575 } 576 } 577 return child_sp; 578 } 579 580 size_t ValueObject::GetNumChildren(uint32_t max) { 581 UpdateValueIfNeeded(); 582 583 if (max < UINT32_MAX) { 584 if (m_children_count_valid) { 585 size_t children_count = m_children.GetChildrenCount(); 586 return children_count <= max ? children_count : max; 587 } else 588 return CalculateNumChildren(max); 589 } 590 591 if (!m_children_count_valid) { 592 SetNumChildren(CalculateNumChildren()); 593 } 594 return m_children.GetChildrenCount(); 595 } 596 597 bool ValueObject::MightHaveChildren() { 598 bool has_children = false; 599 const uint32_t type_info = GetTypeInfo(); 600 if (type_info) { 601 if (type_info & (eTypeHasChildren | eTypeIsPointer | eTypeIsReference)) 602 has_children = true; 603 } else { 604 has_children = GetNumChildren() > 0; 605 } 606 return has_children; 607 } 608 609 // Should only be called by ValueObject::GetNumChildren() 610 void ValueObject::SetNumChildren(size_t num_children) { 611 m_children_count_valid = true; 612 m_children.SetChildrenCount(num_children); 613 } 614 615 void ValueObject::SetName(ConstString name) { m_name = name; } 616 617 ValueObject *ValueObject::CreateChildAtIndex(size_t idx, 618 bool synthetic_array_member, 619 int32_t synthetic_index) { 620 ValueObject *valobj = NULL; 621 622 bool omit_empty_base_classes = true; 623 bool ignore_array_bounds = synthetic_array_member; 624 std::string child_name_str; 625 uint32_t child_byte_size = 0; 626 int32_t child_byte_offset = 0; 627 uint32_t child_bitfield_bit_size = 0; 628 uint32_t child_bitfield_bit_offset = 0; 629 bool child_is_base_class = false; 630 bool child_is_deref_of_parent = false; 631 uint64_t language_flags = 0; 632 633 const bool transparent_pointers = !synthetic_array_member; 634 CompilerType child_compiler_type; 635 636 ExecutionContext exe_ctx(GetExecutionContextRef()); 637 638 child_compiler_type = GetCompilerType().GetChildCompilerTypeAtIndex( 639 &exe_ctx, idx, transparent_pointers, omit_empty_base_classes, 640 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 641 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 642 child_is_deref_of_parent, this, language_flags); 643 if (child_compiler_type) { 644 if (synthetic_index) 645 child_byte_offset += child_byte_size * synthetic_index; 646 647 ConstString child_name; 648 if (!child_name_str.empty()) 649 child_name.SetCString(child_name_str.c_str()); 650 651 valobj = new ValueObjectChild( 652 *this, child_compiler_type, child_name, child_byte_size, 653 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 654 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 655 language_flags); 656 } 657 658 return valobj; 659 } 660 661 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 662 std::string &destination, 663 lldb::LanguageType lang) { 664 return GetSummaryAsCString(summary_ptr, destination, 665 TypeSummaryOptions().SetLanguage(lang)); 666 } 667 668 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 669 std::string &destination, 670 const TypeSummaryOptions &options) { 671 destination.clear(); 672 673 // ideally we would like to bail out if passing NULL, but if we do so we end 674 // up not providing the summary for function pointers anymore 675 if (/*summary_ptr == NULL ||*/ m_is_getting_summary) 676 return false; 677 678 m_is_getting_summary = true; 679 680 TypeSummaryOptions actual_options(options); 681 682 if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown) 683 actual_options.SetLanguage(GetPreferredDisplayLanguage()); 684 685 // this is a hot path in code and we prefer to avoid setting this string all 686 // too often also clearing out other information that we might care to see in 687 // a crash log. might be useful in very specific situations though. 688 /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. 689 Summary provider's description is %s", 690 GetTypeName().GetCString(), 691 GetName().GetCString(), 692 summary_ptr->GetDescription().c_str());*/ 693 694 if (UpdateValueIfNeeded(false) && summary_ptr) { 695 if (HasSyntheticValue()) 696 m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on 697 // the synthetic children being 698 // up-to-date (e.g. ${svar%#}) 699 summary_ptr->FormatObject(this, destination, actual_options); 700 } 701 m_is_getting_summary = false; 702 return !destination.empty(); 703 } 704 705 const char *ValueObject::GetSummaryAsCString(lldb::LanguageType lang) { 706 if (UpdateValueIfNeeded(true) && m_summary_str.empty()) { 707 TypeSummaryOptions summary_options; 708 summary_options.SetLanguage(lang); 709 GetSummaryAsCString(GetSummaryFormat().get(), m_summary_str, 710 summary_options); 711 } 712 if (m_summary_str.empty()) 713 return NULL; 714 return m_summary_str.c_str(); 715 } 716 717 bool ValueObject::GetSummaryAsCString(std::string &destination, 718 const TypeSummaryOptions &options) { 719 return GetSummaryAsCString(GetSummaryFormat().get(), destination, options); 720 } 721 722 bool ValueObject::IsCStringContainer(bool check_pointer) { 723 CompilerType pointee_or_element_compiler_type; 724 const Flags type_flags(GetTypeInfo(&pointee_or_element_compiler_type)); 725 bool is_char_arr_ptr(type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 726 pointee_or_element_compiler_type.IsCharType()); 727 if (!is_char_arr_ptr) 728 return false; 729 if (!check_pointer) 730 return true; 731 if (type_flags.Test(eTypeIsArray)) 732 return true; 733 addr_t cstr_address = LLDB_INVALID_ADDRESS; 734 AddressType cstr_address_type = eAddressTypeInvalid; 735 cstr_address = GetAddressOf(true, &cstr_address_type); 736 return (cstr_address != LLDB_INVALID_ADDRESS); 737 } 738 739 size_t ValueObject::GetPointeeData(DataExtractor &data, uint32_t item_idx, 740 uint32_t item_count) { 741 CompilerType pointee_or_element_compiler_type; 742 const uint32_t type_info = GetTypeInfo(&pointee_or_element_compiler_type); 743 const bool is_pointer_type = type_info & eTypeIsPointer; 744 const bool is_array_type = type_info & eTypeIsArray; 745 if (!(is_pointer_type || is_array_type)) 746 return 0; 747 748 if (item_count == 0) 749 return 0; 750 751 ExecutionContext exe_ctx(GetExecutionContextRef()); 752 753 llvm::Optional<uint64_t> item_type_size = 754 pointee_or_element_compiler_type.GetByteSize( 755 exe_ctx.GetBestExecutionContextScope()); 756 if (!item_type_size) 757 return 0; 758 const uint64_t bytes = item_count * *item_type_size; 759 const uint64_t offset = item_idx * *item_type_size; 760 761 if (item_idx == 0 && item_count == 1) // simply a deref 762 { 763 if (is_pointer_type) { 764 Status error; 765 ValueObjectSP pointee_sp = Dereference(error); 766 if (error.Fail() || pointee_sp.get() == NULL) 767 return 0; 768 return pointee_sp->GetData(data, error); 769 } else { 770 ValueObjectSP child_sp = GetChildAtIndex(0, true); 771 if (child_sp.get() == NULL) 772 return 0; 773 Status error; 774 return child_sp->GetData(data, error); 775 } 776 return true; 777 } else /* (items > 1) */ 778 { 779 Status error; 780 lldb_private::DataBufferHeap *heap_buf_ptr = NULL; 781 lldb::DataBufferSP data_sp(heap_buf_ptr = 782 new lldb_private::DataBufferHeap()); 783 784 AddressType addr_type; 785 lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type) 786 : GetAddressOf(true, &addr_type); 787 788 switch (addr_type) { 789 case eAddressTypeFile: { 790 ModuleSP module_sp(GetModule()); 791 if (module_sp) { 792 addr = addr + offset; 793 Address so_addr; 794 module_sp->ResolveFileAddress(addr, so_addr); 795 ExecutionContext exe_ctx(GetExecutionContextRef()); 796 Target *target = exe_ctx.GetTargetPtr(); 797 if (target) { 798 heap_buf_ptr->SetByteSize(bytes); 799 size_t bytes_read = target->ReadMemory( 800 so_addr, false, heap_buf_ptr->GetBytes(), bytes, error); 801 if (error.Success()) { 802 data.SetData(data_sp); 803 return bytes_read; 804 } 805 } 806 } 807 } break; 808 case eAddressTypeLoad: { 809 ExecutionContext exe_ctx(GetExecutionContextRef()); 810 Process *process = exe_ctx.GetProcessPtr(); 811 if (process) { 812 heap_buf_ptr->SetByteSize(bytes); 813 size_t bytes_read = process->ReadMemory( 814 addr + offset, heap_buf_ptr->GetBytes(), bytes, error); 815 if (error.Success() || bytes_read > 0) { 816 data.SetData(data_sp); 817 return bytes_read; 818 } 819 } 820 } break; 821 case eAddressTypeHost: { 822 auto max_bytes = 823 GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope()); 824 if (max_bytes && *max_bytes > offset) { 825 size_t bytes_read = std::min<uint64_t>(*max_bytes - offset, bytes); 826 addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 827 if (addr == 0 || addr == LLDB_INVALID_ADDRESS) 828 break; 829 heap_buf_ptr->CopyData((uint8_t *)(addr + offset), bytes_read); 830 data.SetData(data_sp); 831 return bytes_read; 832 } 833 } break; 834 case eAddressTypeInvalid: 835 break; 836 } 837 } 838 return 0; 839 } 840 841 uint64_t ValueObject::GetData(DataExtractor &data, Status &error) { 842 UpdateValueIfNeeded(false); 843 ExecutionContext exe_ctx(GetExecutionContextRef()); 844 error = m_value.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 845 if (error.Fail()) { 846 if (m_data.GetByteSize()) { 847 data = m_data; 848 error.Clear(); 849 return data.GetByteSize(); 850 } else { 851 return 0; 852 } 853 } 854 data.SetAddressByteSize(m_data.GetAddressByteSize()); 855 data.SetByteOrder(m_data.GetByteOrder()); 856 return data.GetByteSize(); 857 } 858 859 bool ValueObject::SetData(DataExtractor &data, Status &error) { 860 error.Clear(); 861 // Make sure our value is up to date first so that our location and location 862 // type is valid. 863 if (!UpdateValueIfNeeded(false)) { 864 error.SetErrorString("unable to read value"); 865 return false; 866 } 867 868 uint64_t count = 0; 869 const Encoding encoding = GetCompilerType().GetEncoding(count); 870 871 const size_t byte_size = GetByteSize(); 872 873 Value::ValueType value_type = m_value.GetValueType(); 874 875 switch (value_type) { 876 case Value::eValueTypeScalar: { 877 Status set_error = 878 m_value.GetScalar().SetValueFromData(data, encoding, byte_size); 879 880 if (!set_error.Success()) { 881 error.SetErrorStringWithFormat("unable to set scalar value: %s", 882 set_error.AsCString()); 883 return false; 884 } 885 } break; 886 case Value::eValueTypeLoadAddress: { 887 // If it is a load address, then the scalar value is the storage location 888 // of the data, and we have to shove this value down to that load location. 889 ExecutionContext exe_ctx(GetExecutionContextRef()); 890 Process *process = exe_ctx.GetProcessPtr(); 891 if (process) { 892 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 893 size_t bytes_written = process->WriteMemory( 894 target_addr, data.GetDataStart(), byte_size, error); 895 if (!error.Success()) 896 return false; 897 if (bytes_written != byte_size) { 898 error.SetErrorString("unable to write value to memory"); 899 return false; 900 } 901 } 902 } break; 903 case Value::eValueTypeHostAddress: { 904 // If it is a host address, then we stuff the scalar as a DataBuffer into 905 // the Value's data. 906 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 907 m_data.SetData(buffer_sp, 0); 908 data.CopyByteOrderedData(0, byte_size, 909 const_cast<uint8_t *>(m_data.GetDataStart()), 910 byte_size, m_data.GetByteOrder()); 911 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 912 } break; 913 case Value::eValueTypeFileAddress: 914 case Value::eValueTypeVector: 915 break; 916 } 917 918 // If we have reached this point, then we have successfully changed the 919 // value. 920 SetNeedsUpdate(); 921 return true; 922 } 923 924 static bool CopyStringDataToBufferSP(const StreamString &source, 925 lldb::DataBufferSP &destination) { 926 destination = std::make_shared<DataBufferHeap>(source.GetSize() + 1, 0); 927 memcpy(destination->GetBytes(), source.GetString().data(), source.GetSize()); 928 return true; 929 } 930 931 std::pair<size_t, bool> 932 ValueObject::ReadPointedString(lldb::DataBufferSP &buffer_sp, Status &error, 933 uint32_t max_length, bool honor_array, 934 Format item_format) { 935 bool was_capped = false; 936 StreamString s; 937 ExecutionContext exe_ctx(GetExecutionContextRef()); 938 Target *target = exe_ctx.GetTargetPtr(); 939 940 if (!target) { 941 s << "<no target to read from>"; 942 error.SetErrorString("no target to read from"); 943 CopyStringDataToBufferSP(s, buffer_sp); 944 return {0, was_capped}; 945 } 946 947 if (max_length == 0) 948 max_length = target->GetMaximumSizeOfStringSummary(); 949 950 size_t bytes_read = 0; 951 size_t total_bytes_read = 0; 952 953 CompilerType compiler_type = GetCompilerType(); 954 CompilerType elem_or_pointee_compiler_type; 955 const Flags type_flags(GetTypeInfo(&elem_or_pointee_compiler_type)); 956 if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 957 elem_or_pointee_compiler_type.IsCharType()) { 958 addr_t cstr_address = LLDB_INVALID_ADDRESS; 959 AddressType cstr_address_type = eAddressTypeInvalid; 960 961 size_t cstr_len = 0; 962 bool capped_data = false; 963 const bool is_array = type_flags.Test(eTypeIsArray); 964 if (is_array) { 965 // We have an array 966 uint64_t array_size = 0; 967 if (compiler_type.IsArrayType(NULL, &array_size, NULL)) { 968 cstr_len = array_size; 969 if (cstr_len > max_length) { 970 capped_data = true; 971 cstr_len = max_length; 972 } 973 } 974 cstr_address = GetAddressOf(true, &cstr_address_type); 975 } else { 976 // We have a pointer 977 cstr_address = GetPointerValue(&cstr_address_type); 978 } 979 980 if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) { 981 if (cstr_address_type == eAddressTypeHost && is_array) { 982 const char *cstr = GetDataExtractor().PeekCStr(0); 983 if (cstr == nullptr) { 984 s << "<invalid address>"; 985 error.SetErrorString("invalid address"); 986 CopyStringDataToBufferSP(s, buffer_sp); 987 return {0, was_capped}; 988 } 989 buffer_sp = std::make_shared<DataBufferHeap>(cstr_len, 0); 990 memcpy(buffer_sp->GetBytes(), cstr, cstr_len); 991 return {cstr_len, was_capped}; 992 } else { 993 s << "<invalid address>"; 994 error.SetErrorString("invalid address"); 995 CopyStringDataToBufferSP(s, buffer_sp); 996 return {0, was_capped}; 997 } 998 } 999 1000 Address cstr_so_addr(cstr_address); 1001 DataExtractor data; 1002 if (cstr_len > 0 && honor_array) { 1003 // I am using GetPointeeData() here to abstract the fact that some 1004 // ValueObjects are actually frozen pointers in the host but the pointed- 1005 // to data lives in the debuggee, and GetPointeeData() automatically 1006 // takes care of this 1007 GetPointeeData(data, 0, cstr_len); 1008 1009 if ((bytes_read = data.GetByteSize()) > 0) { 1010 total_bytes_read = bytes_read; 1011 for (size_t offset = 0; offset < bytes_read; offset++) 1012 s.Printf("%c", *data.PeekData(offset, 1)); 1013 if (capped_data) 1014 was_capped = true; 1015 } 1016 } else { 1017 cstr_len = max_length; 1018 const size_t k_max_buf_size = 64; 1019 1020 size_t offset = 0; 1021 1022 int cstr_len_displayed = -1; 1023 bool capped_cstr = false; 1024 // I am using GetPointeeData() here to abstract the fact that some 1025 // ValueObjects are actually frozen pointers in the host but the pointed- 1026 // to data lives in the debuggee, and GetPointeeData() automatically 1027 // takes care of this 1028 while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) { 1029 total_bytes_read += bytes_read; 1030 const char *cstr = data.PeekCStr(0); 1031 size_t len = strnlen(cstr, k_max_buf_size); 1032 if (cstr_len_displayed < 0) 1033 cstr_len_displayed = len; 1034 1035 if (len == 0) 1036 break; 1037 cstr_len_displayed += len; 1038 if (len > bytes_read) 1039 len = bytes_read; 1040 if (len > cstr_len) 1041 len = cstr_len; 1042 1043 for (size_t offset = 0; offset < bytes_read; offset++) 1044 s.Printf("%c", *data.PeekData(offset, 1)); 1045 1046 if (len < k_max_buf_size) 1047 break; 1048 1049 if (len >= cstr_len) { 1050 capped_cstr = true; 1051 break; 1052 } 1053 1054 cstr_len -= len; 1055 offset += len; 1056 } 1057 1058 if (cstr_len_displayed >= 0) { 1059 if (capped_cstr) 1060 was_capped = true; 1061 } 1062 } 1063 } else { 1064 error.SetErrorString("not a string object"); 1065 s << "<not a string object>"; 1066 } 1067 CopyStringDataToBufferSP(s, buffer_sp); 1068 return {total_bytes_read, was_capped}; 1069 } 1070 1071 std::pair<TypeValidatorResult, std::string> ValueObject::GetValidationStatus() { 1072 if (!UpdateValueIfNeeded(true)) 1073 return {TypeValidatorResult::Success, 1074 ""}; // not the validator's job to discuss update problems 1075 1076 if (m_validation_result.hasValue()) 1077 return m_validation_result.getValue(); 1078 1079 if (!m_type_validator_sp) 1080 return {TypeValidatorResult::Success, ""}; // no validator no failure 1081 1082 auto outcome = m_type_validator_sp->FormatObject(this); 1083 1084 return (m_validation_result = {outcome.m_result, outcome.m_message}) 1085 .getValue(); 1086 } 1087 1088 const char *ValueObject::GetObjectDescription() { 1089 1090 if (!UpdateValueIfNeeded(true)) 1091 return NULL; 1092 1093 if (!m_object_desc_str.empty()) 1094 return m_object_desc_str.c_str(); 1095 1096 ExecutionContext exe_ctx(GetExecutionContextRef()); 1097 Process *process = exe_ctx.GetProcessPtr(); 1098 if (process == NULL) 1099 return NULL; 1100 1101 StreamString s; 1102 1103 LanguageType language = GetObjectRuntimeLanguage(); 1104 LanguageRuntime *runtime = process->GetLanguageRuntime(language); 1105 1106 if (runtime == NULL) { 1107 // Aw, hell, if the things a pointer, or even just an integer, let's try 1108 // ObjC anyway... 1109 CompilerType compiler_type = GetCompilerType(); 1110 if (compiler_type) { 1111 bool is_signed; 1112 if (compiler_type.IsIntegerType(is_signed) || 1113 compiler_type.IsPointerType()) { 1114 runtime = process->GetLanguageRuntime(eLanguageTypeObjC); 1115 } 1116 } 1117 } 1118 1119 if (runtime && runtime->GetObjectDescription(s, *this)) { 1120 m_object_desc_str.append(s.GetString()); 1121 } 1122 1123 if (m_object_desc_str.empty()) 1124 return NULL; 1125 else 1126 return m_object_desc_str.c_str(); 1127 } 1128 1129 bool ValueObject::GetValueAsCString(const lldb_private::TypeFormatImpl &format, 1130 std::string &destination) { 1131 if (UpdateValueIfNeeded(false)) 1132 return format.FormatObject(this, destination); 1133 else 1134 return false; 1135 } 1136 1137 bool ValueObject::GetValueAsCString(lldb::Format format, 1138 std::string &destination) { 1139 return GetValueAsCString(TypeFormatImpl_Format(format), destination); 1140 } 1141 1142 const char *ValueObject::GetValueAsCString() { 1143 if (UpdateValueIfNeeded(true)) { 1144 lldb::TypeFormatImplSP format_sp; 1145 lldb::Format my_format = GetFormat(); 1146 if (my_format == lldb::eFormatDefault) { 1147 if (m_type_format_sp) 1148 format_sp = m_type_format_sp; 1149 else { 1150 if (m_is_bitfield_for_scalar) 1151 my_format = eFormatUnsigned; 1152 else { 1153 if (m_value.GetContextType() == Value::eContextTypeRegisterInfo) { 1154 const RegisterInfo *reg_info = m_value.GetRegisterInfo(); 1155 if (reg_info) 1156 my_format = reg_info->format; 1157 } else { 1158 my_format = GetValue().GetCompilerType().GetFormat(); 1159 } 1160 } 1161 } 1162 } 1163 if (my_format != m_last_format || m_value_str.empty()) { 1164 m_last_format = my_format; 1165 if (!format_sp) 1166 format_sp = std::make_shared<TypeFormatImpl_Format>(my_format); 1167 if (GetValueAsCString(*format_sp.get(), m_value_str)) { 1168 if (!m_value_did_change && m_old_value_valid) { 1169 // The value was gotten successfully, so we consider the value as 1170 // changed if the value string differs 1171 SetValueDidChange(m_old_value_str != m_value_str); 1172 } 1173 } 1174 } 1175 } 1176 if (m_value_str.empty()) 1177 return NULL; 1178 return m_value_str.c_str(); 1179 } 1180 1181 // if > 8bytes, 0 is returned. this method should mostly be used to read 1182 // address values out of pointers 1183 uint64_t ValueObject::GetValueAsUnsigned(uint64_t fail_value, bool *success) { 1184 // If our byte size is zero this is an aggregate type that has children 1185 if (CanProvideValue()) { 1186 Scalar scalar; 1187 if (ResolveValue(scalar)) { 1188 if (success) 1189 *success = true; 1190 return scalar.ULongLong(fail_value); 1191 } 1192 // fallthrough, otherwise... 1193 } 1194 1195 if (success) 1196 *success = false; 1197 return fail_value; 1198 } 1199 1200 int64_t ValueObject::GetValueAsSigned(int64_t fail_value, bool *success) { 1201 // If our byte size is zero this is an aggregate type that has children 1202 if (CanProvideValue()) { 1203 Scalar scalar; 1204 if (ResolveValue(scalar)) { 1205 if (success) 1206 *success = true; 1207 return scalar.SLongLong(fail_value); 1208 } 1209 // fallthrough, otherwise... 1210 } 1211 1212 if (success) 1213 *success = false; 1214 return fail_value; 1215 } 1216 1217 // if any more "special cases" are added to 1218 // ValueObject::DumpPrintableRepresentation() please keep this call up to date 1219 // by returning true for your new special cases. We will eventually move to 1220 // checking this call result before trying to display special cases 1221 bool ValueObject::HasSpecialPrintableRepresentation( 1222 ValueObjectRepresentationStyle val_obj_display, Format custom_format) { 1223 Flags flags(GetTypeInfo()); 1224 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1225 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1226 if (IsCStringContainer(true) && 1227 (custom_format == eFormatCString || custom_format == eFormatCharArray || 1228 custom_format == eFormatChar || custom_format == eFormatVectorOfChar)) 1229 return true; 1230 1231 if (flags.Test(eTypeIsArray)) { 1232 if ((custom_format == eFormatBytes) || 1233 (custom_format == eFormatBytesWithASCII)) 1234 return true; 1235 1236 if ((custom_format == eFormatVectorOfChar) || 1237 (custom_format == eFormatVectorOfFloat32) || 1238 (custom_format == eFormatVectorOfFloat64) || 1239 (custom_format == eFormatVectorOfSInt16) || 1240 (custom_format == eFormatVectorOfSInt32) || 1241 (custom_format == eFormatVectorOfSInt64) || 1242 (custom_format == eFormatVectorOfSInt8) || 1243 (custom_format == eFormatVectorOfUInt128) || 1244 (custom_format == eFormatVectorOfUInt16) || 1245 (custom_format == eFormatVectorOfUInt32) || 1246 (custom_format == eFormatVectorOfUInt64) || 1247 (custom_format == eFormatVectorOfUInt8)) 1248 return true; 1249 } 1250 } 1251 return false; 1252 } 1253 1254 bool ValueObject::DumpPrintableRepresentation( 1255 Stream &s, ValueObjectRepresentationStyle val_obj_display, 1256 Format custom_format, PrintableRepresentationSpecialCases special, 1257 bool do_dump_error) { 1258 1259 Flags flags(GetTypeInfo()); 1260 1261 bool allow_special = 1262 (special == ValueObject::PrintableRepresentationSpecialCases::eAllow); 1263 const bool only_special = false; 1264 1265 if (allow_special) { 1266 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1267 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1268 // when being asked to get a printable display an array or pointer type 1269 // directly, try to "do the right thing" 1270 1271 if (IsCStringContainer(true) && 1272 (custom_format == eFormatCString || 1273 custom_format == eFormatCharArray || custom_format == eFormatChar || 1274 custom_format == 1275 eFormatVectorOfChar)) // print char[] & char* directly 1276 { 1277 Status error; 1278 lldb::DataBufferSP buffer_sp; 1279 std::pair<size_t, bool> read_string = ReadPointedString( 1280 buffer_sp, error, 0, (custom_format == eFormatVectorOfChar) || 1281 (custom_format == eFormatCharArray)); 1282 lldb_private::formatters::StringPrinter:: 1283 ReadBufferAndDumpToStreamOptions options(*this); 1284 options.SetData(DataExtractor( 1285 buffer_sp, lldb::eByteOrderInvalid, 1286 8)); // none of this matters for a string - pass some defaults 1287 options.SetStream(&s); 1288 options.SetPrefixToken(0); 1289 options.SetQuote('"'); 1290 options.SetSourceSize(buffer_sp->GetByteSize()); 1291 options.SetIsTruncated(read_string.second); 1292 formatters::StringPrinter::ReadBufferAndDumpToStream< 1293 lldb_private::formatters::StringPrinter::StringElementType::ASCII>( 1294 options); 1295 return !error.Fail(); 1296 } 1297 1298 if (custom_format == eFormatEnum) 1299 return false; 1300 1301 // this only works for arrays, because I have no way to know when the 1302 // pointed memory ends, and no special \0 end of data marker 1303 if (flags.Test(eTypeIsArray)) { 1304 if ((custom_format == eFormatBytes) || 1305 (custom_format == eFormatBytesWithASCII)) { 1306 const size_t count = GetNumChildren(); 1307 1308 s << '['; 1309 for (size_t low = 0; low < count; low++) { 1310 1311 if (low) 1312 s << ','; 1313 1314 ValueObjectSP child = GetChildAtIndex(low, true); 1315 if (!child.get()) { 1316 s << "<invalid child>"; 1317 continue; 1318 } 1319 child->DumpPrintableRepresentation( 1320 s, ValueObject::eValueObjectRepresentationStyleValue, 1321 custom_format); 1322 } 1323 1324 s << ']'; 1325 1326 return true; 1327 } 1328 1329 if ((custom_format == eFormatVectorOfChar) || 1330 (custom_format == eFormatVectorOfFloat32) || 1331 (custom_format == eFormatVectorOfFloat64) || 1332 (custom_format == eFormatVectorOfSInt16) || 1333 (custom_format == eFormatVectorOfSInt32) || 1334 (custom_format == eFormatVectorOfSInt64) || 1335 (custom_format == eFormatVectorOfSInt8) || 1336 (custom_format == eFormatVectorOfUInt128) || 1337 (custom_format == eFormatVectorOfUInt16) || 1338 (custom_format == eFormatVectorOfUInt32) || 1339 (custom_format == eFormatVectorOfUInt64) || 1340 (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes 1341 // with ASCII or any vector 1342 // format should be printed 1343 // directly 1344 { 1345 const size_t count = GetNumChildren(); 1346 1347 Format format = FormatManager::GetSingleItemFormat(custom_format); 1348 1349 s << '['; 1350 for (size_t low = 0; low < count; low++) { 1351 1352 if (low) 1353 s << ','; 1354 1355 ValueObjectSP child = GetChildAtIndex(low, true); 1356 if (!child.get()) { 1357 s << "<invalid child>"; 1358 continue; 1359 } 1360 child->DumpPrintableRepresentation( 1361 s, ValueObject::eValueObjectRepresentationStyleValue, format); 1362 } 1363 1364 s << ']'; 1365 1366 return true; 1367 } 1368 } 1369 1370 if ((custom_format == eFormatBoolean) || 1371 (custom_format == eFormatBinary) || (custom_format == eFormatChar) || 1372 (custom_format == eFormatCharPrintable) || 1373 (custom_format == eFormatComplexFloat) || 1374 (custom_format == eFormatDecimal) || (custom_format == eFormatHex) || 1375 (custom_format == eFormatHexUppercase) || 1376 (custom_format == eFormatFloat) || (custom_format == eFormatOctal) || 1377 (custom_format == eFormatOSType) || 1378 (custom_format == eFormatUnicode16) || 1379 (custom_format == eFormatUnicode32) || 1380 (custom_format == eFormatUnsigned) || 1381 (custom_format == eFormatPointer) || 1382 (custom_format == eFormatComplexInteger) || 1383 (custom_format == eFormatComplex) || 1384 (custom_format == eFormatDefault)) // use the [] operator 1385 return false; 1386 } 1387 } 1388 1389 if (only_special) 1390 return false; 1391 1392 bool var_success = false; 1393 1394 { 1395 llvm::StringRef str; 1396 1397 // this is a local stream that we are using to ensure that the data pointed 1398 // to by cstr survives long enough for us to copy it to its destination - 1399 // it is necessary to have this temporary storage area for cases where our 1400 // desired output is not backed by some other longer-term storage 1401 StreamString strm; 1402 1403 if (custom_format != eFormatInvalid) 1404 SetFormat(custom_format); 1405 1406 switch (val_obj_display) { 1407 case eValueObjectRepresentationStyleValue: 1408 str = GetValueAsCString(); 1409 break; 1410 1411 case eValueObjectRepresentationStyleSummary: 1412 str = GetSummaryAsCString(); 1413 break; 1414 1415 case eValueObjectRepresentationStyleLanguageSpecific: 1416 str = GetObjectDescription(); 1417 break; 1418 1419 case eValueObjectRepresentationStyleLocation: 1420 str = GetLocationAsCString(); 1421 break; 1422 1423 case eValueObjectRepresentationStyleChildrenCount: 1424 strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren()); 1425 str = strm.GetString(); 1426 break; 1427 1428 case eValueObjectRepresentationStyleType: 1429 str = GetTypeName().GetStringRef(); 1430 break; 1431 1432 case eValueObjectRepresentationStyleName: 1433 str = GetName().GetStringRef(); 1434 break; 1435 1436 case eValueObjectRepresentationStyleExpressionPath: 1437 GetExpressionPath(strm, false); 1438 str = strm.GetString(); 1439 break; 1440 } 1441 1442 if (str.empty()) { 1443 if (val_obj_display == eValueObjectRepresentationStyleValue) 1444 str = GetSummaryAsCString(); 1445 else if (val_obj_display == eValueObjectRepresentationStyleSummary) { 1446 if (!CanProvideValue()) { 1447 strm.Printf("%s @ %s", GetTypeName().AsCString(), 1448 GetLocationAsCString()); 1449 str = strm.GetString(); 1450 } else 1451 str = GetValueAsCString(); 1452 } 1453 } 1454 1455 if (!str.empty()) 1456 s << str; 1457 else { 1458 if (m_error.Fail()) { 1459 if (do_dump_error) 1460 s.Printf("<%s>", m_error.AsCString()); 1461 else 1462 return false; 1463 } else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1464 s.PutCString("<no summary available>"); 1465 else if (val_obj_display == eValueObjectRepresentationStyleValue) 1466 s.PutCString("<no value available>"); 1467 else if (val_obj_display == 1468 eValueObjectRepresentationStyleLanguageSpecific) 1469 s.PutCString("<not a valid Objective-C object>"); // edit this if we 1470 // have other runtimes 1471 // that support a 1472 // description 1473 else 1474 s.PutCString("<no printable representation>"); 1475 } 1476 1477 // we should only return false here if we could not do *anything* even if 1478 // we have an error message as output, that's a success from our callers' 1479 // perspective, so return true 1480 var_success = true; 1481 1482 if (custom_format != eFormatInvalid) 1483 SetFormat(eFormatDefault); 1484 } 1485 1486 return var_success; 1487 } 1488 1489 addr_t ValueObject::GetAddressOf(bool scalar_is_load_address, 1490 AddressType *address_type) { 1491 // Can't take address of a bitfield 1492 if (IsBitfield()) 1493 return LLDB_INVALID_ADDRESS; 1494 1495 if (!UpdateValueIfNeeded(false)) 1496 return LLDB_INVALID_ADDRESS; 1497 1498 switch (m_value.GetValueType()) { 1499 case Value::eValueTypeScalar: 1500 case Value::eValueTypeVector: 1501 if (scalar_is_load_address) { 1502 if (address_type) 1503 *address_type = eAddressTypeLoad; 1504 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1505 } 1506 break; 1507 1508 case Value::eValueTypeLoadAddress: 1509 case Value::eValueTypeFileAddress: { 1510 if (address_type) 1511 *address_type = m_value.GetValueAddressType(); 1512 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1513 } break; 1514 case Value::eValueTypeHostAddress: { 1515 if (address_type) 1516 *address_type = m_value.GetValueAddressType(); 1517 return LLDB_INVALID_ADDRESS; 1518 } break; 1519 } 1520 if (address_type) 1521 *address_type = eAddressTypeInvalid; 1522 return LLDB_INVALID_ADDRESS; 1523 } 1524 1525 addr_t ValueObject::GetPointerValue(AddressType *address_type) { 1526 addr_t address = LLDB_INVALID_ADDRESS; 1527 if (address_type) 1528 *address_type = eAddressTypeInvalid; 1529 1530 if (!UpdateValueIfNeeded(false)) 1531 return address; 1532 1533 switch (m_value.GetValueType()) { 1534 case Value::eValueTypeScalar: 1535 case Value::eValueTypeVector: 1536 address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1537 break; 1538 1539 case Value::eValueTypeHostAddress: 1540 case Value::eValueTypeLoadAddress: 1541 case Value::eValueTypeFileAddress: { 1542 lldb::offset_t data_offset = 0; 1543 address = m_data.GetPointer(&data_offset); 1544 } break; 1545 } 1546 1547 if (address_type) 1548 *address_type = GetAddressTypeOfChildren(); 1549 1550 return address; 1551 } 1552 1553 bool ValueObject::SetValueFromCString(const char *value_str, Status &error) { 1554 error.Clear(); 1555 // Make sure our value is up to date first so that our location and location 1556 // type is valid. 1557 if (!UpdateValueIfNeeded(false)) { 1558 error.SetErrorString("unable to read value"); 1559 return false; 1560 } 1561 1562 uint64_t count = 0; 1563 const Encoding encoding = GetCompilerType().GetEncoding(count); 1564 1565 const size_t byte_size = GetByteSize(); 1566 1567 Value::ValueType value_type = m_value.GetValueType(); 1568 1569 if (value_type == Value::eValueTypeScalar) { 1570 // If the value is already a scalar, then let the scalar change itself: 1571 m_value.GetScalar().SetValueFromCString(value_str, encoding, byte_size); 1572 } else if (byte_size <= 16) { 1573 // If the value fits in a scalar, then make a new scalar and again let the 1574 // scalar code do the conversion, then figure out where to put the new 1575 // value. 1576 Scalar new_scalar; 1577 error = new_scalar.SetValueFromCString(value_str, encoding, byte_size); 1578 if (error.Success()) { 1579 switch (value_type) { 1580 case Value::eValueTypeLoadAddress: { 1581 // If it is a load address, then the scalar value is the storage 1582 // location of the data, and we have to shove this value down to that 1583 // load location. 1584 ExecutionContext exe_ctx(GetExecutionContextRef()); 1585 Process *process = exe_ctx.GetProcessPtr(); 1586 if (process) { 1587 addr_t target_addr = 1588 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1589 size_t bytes_written = process->WriteScalarToMemory( 1590 target_addr, new_scalar, byte_size, error); 1591 if (!error.Success()) 1592 return false; 1593 if (bytes_written != byte_size) { 1594 error.SetErrorString("unable to write value to memory"); 1595 return false; 1596 } 1597 } 1598 } break; 1599 case Value::eValueTypeHostAddress: { 1600 // If it is a host address, then we stuff the scalar as a DataBuffer 1601 // into the Value's data. 1602 DataExtractor new_data; 1603 new_data.SetByteOrder(m_data.GetByteOrder()); 1604 1605 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 1606 m_data.SetData(buffer_sp, 0); 1607 bool success = new_scalar.GetData(new_data); 1608 if (success) { 1609 new_data.CopyByteOrderedData( 1610 0, byte_size, const_cast<uint8_t *>(m_data.GetDataStart()), 1611 byte_size, m_data.GetByteOrder()); 1612 } 1613 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1614 1615 } break; 1616 case Value::eValueTypeFileAddress: 1617 case Value::eValueTypeScalar: 1618 case Value::eValueTypeVector: 1619 break; 1620 } 1621 } else { 1622 return false; 1623 } 1624 } else { 1625 // We don't support setting things bigger than a scalar at present. 1626 error.SetErrorString("unable to write aggregate data type"); 1627 return false; 1628 } 1629 1630 // If we have reached this point, then we have successfully changed the 1631 // value. 1632 SetNeedsUpdate(); 1633 return true; 1634 } 1635 1636 bool ValueObject::GetDeclaration(Declaration &decl) { 1637 decl.Clear(); 1638 return false; 1639 } 1640 1641 ConstString ValueObject::GetTypeName() { 1642 return GetCompilerType().GetConstTypeName(); 1643 } 1644 1645 ConstString ValueObject::GetDisplayTypeName() { return GetTypeName(); } 1646 1647 ConstString ValueObject::GetQualifiedTypeName() { 1648 return GetCompilerType().GetConstQualifiedTypeName(); 1649 } 1650 1651 LanguageType ValueObject::GetObjectRuntimeLanguage() { 1652 return GetCompilerType().GetMinimumLanguage(); 1653 } 1654 1655 void ValueObject::AddSyntheticChild(ConstString key, 1656 ValueObject *valobj) { 1657 m_synthetic_children[key] = valobj; 1658 } 1659 1660 ValueObjectSP ValueObject::GetSyntheticChild(ConstString key) const { 1661 ValueObjectSP synthetic_child_sp; 1662 std::map<ConstString, ValueObject *>::const_iterator pos = 1663 m_synthetic_children.find(key); 1664 if (pos != m_synthetic_children.end()) 1665 synthetic_child_sp = pos->second->GetSP(); 1666 return synthetic_child_sp; 1667 } 1668 1669 uint32_t 1670 ValueObject::GetTypeInfo(CompilerType *pointee_or_element_compiler_type) { 1671 return GetCompilerType().GetTypeInfo(pointee_or_element_compiler_type); 1672 } 1673 1674 bool ValueObject::IsPointerType() { return GetCompilerType().IsPointerType(); } 1675 1676 bool ValueObject::IsArrayType() { 1677 return GetCompilerType().IsArrayType(NULL, NULL, NULL); 1678 } 1679 1680 bool ValueObject::IsScalarType() { return GetCompilerType().IsScalarType(); } 1681 1682 bool ValueObject::IsIntegerType(bool &is_signed) { 1683 return GetCompilerType().IsIntegerType(is_signed); 1684 } 1685 1686 bool ValueObject::IsPointerOrReferenceType() { 1687 return GetCompilerType().IsPointerOrReferenceType(); 1688 } 1689 1690 bool ValueObject::IsPossibleDynamicType() { 1691 ExecutionContext exe_ctx(GetExecutionContextRef()); 1692 Process *process = exe_ctx.GetProcessPtr(); 1693 if (process) 1694 return process->IsPossibleDynamicValue(*this); 1695 else 1696 return GetCompilerType().IsPossibleDynamicType(NULL, true, true); 1697 } 1698 1699 bool ValueObject::IsRuntimeSupportValue() { 1700 Process *process(GetProcessSP().get()); 1701 if (process) { 1702 LanguageRuntime *runtime = 1703 process->GetLanguageRuntime(GetObjectRuntimeLanguage()); 1704 if (!runtime) 1705 runtime = process->GetObjCLanguageRuntime(); 1706 if (runtime) 1707 return runtime->IsRuntimeSupportValue(*this); 1708 // If there is no language runtime, trust the compiler to mark all 1709 // runtime support variables as artificial. 1710 return GetVariable() && GetVariable()->IsArtificial(); 1711 } 1712 return false; 1713 } 1714 1715 bool ValueObject::IsNilReference() { 1716 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1717 return language->IsNilReference(*this); 1718 } 1719 return false; 1720 } 1721 1722 bool ValueObject::IsUninitializedReference() { 1723 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1724 return language->IsUninitializedReference(*this); 1725 } 1726 return false; 1727 } 1728 1729 // This allows you to create an array member using and index that doesn't not 1730 // fall in the normal bounds of the array. Many times structure can be defined 1731 // as: struct Collection { 1732 // uint32_t item_count; 1733 // Item item_array[0]; 1734 // }; 1735 // The size of the "item_array" is 1, but many times in practice there are more 1736 // items in "item_array". 1737 1738 ValueObjectSP ValueObject::GetSyntheticArrayMember(size_t index, 1739 bool can_create) { 1740 ValueObjectSP synthetic_child_sp; 1741 if (IsPointerType() || IsArrayType()) { 1742 char index_str[64]; 1743 snprintf(index_str, sizeof(index_str), "[%" PRIu64 "]", (uint64_t)index); 1744 ConstString index_const_str(index_str); 1745 // Check if we have already created a synthetic array member in this valid 1746 // object. If we have we will re-use it. 1747 synthetic_child_sp = GetSyntheticChild(index_const_str); 1748 if (!synthetic_child_sp) { 1749 ValueObject *synthetic_child; 1750 // We haven't made a synthetic array member for INDEX yet, so lets make 1751 // one and cache it for any future reference. 1752 synthetic_child = CreateChildAtIndex(0, true, index); 1753 1754 // Cache the value if we got one back... 1755 if (synthetic_child) { 1756 AddSyntheticChild(index_const_str, synthetic_child); 1757 synthetic_child_sp = synthetic_child->GetSP(); 1758 synthetic_child_sp->SetName(ConstString(index_str)); 1759 synthetic_child_sp->m_is_array_item_for_pointer = true; 1760 } 1761 } 1762 } 1763 return synthetic_child_sp; 1764 } 1765 1766 ValueObjectSP ValueObject::GetSyntheticBitFieldChild(uint32_t from, uint32_t to, 1767 bool can_create) { 1768 ValueObjectSP synthetic_child_sp; 1769 if (IsScalarType()) { 1770 char index_str[64]; 1771 snprintf(index_str, sizeof(index_str), "[%i-%i]", from, to); 1772 ConstString index_const_str(index_str); 1773 // Check if we have already created a synthetic array member in this valid 1774 // object. If we have we will re-use it. 1775 synthetic_child_sp = GetSyntheticChild(index_const_str); 1776 if (!synthetic_child_sp) { 1777 uint32_t bit_field_size = to - from + 1; 1778 uint32_t bit_field_offset = from; 1779 if (GetDataExtractor().GetByteOrder() == eByteOrderBig) 1780 bit_field_offset = 1781 GetByteSize() * 8 - bit_field_size - bit_field_offset; 1782 // We haven't made a synthetic array member for INDEX yet, so lets make 1783 // one and cache it for any future reference. 1784 ValueObjectChild *synthetic_child = new ValueObjectChild( 1785 *this, GetCompilerType(), index_const_str, GetByteSize(), 0, 1786 bit_field_size, bit_field_offset, false, false, eAddressTypeInvalid, 1787 0); 1788 1789 // Cache the value if we got one back... 1790 if (synthetic_child) { 1791 AddSyntheticChild(index_const_str, synthetic_child); 1792 synthetic_child_sp = synthetic_child->GetSP(); 1793 synthetic_child_sp->SetName(ConstString(index_str)); 1794 synthetic_child_sp->m_is_bitfield_for_scalar = true; 1795 } 1796 } 1797 } 1798 return synthetic_child_sp; 1799 } 1800 1801 ValueObjectSP ValueObject::GetSyntheticChildAtOffset( 1802 uint32_t offset, const CompilerType &type, bool can_create, 1803 ConstString name_const_str) { 1804 1805 ValueObjectSP synthetic_child_sp; 1806 1807 if (name_const_str.IsEmpty()) { 1808 char name_str[64]; 1809 snprintf(name_str, sizeof(name_str), "@%i", offset); 1810 name_const_str.SetCString(name_str); 1811 } 1812 1813 // Check if we have already created a synthetic array member in this valid 1814 // object. If we have we will re-use it. 1815 synthetic_child_sp = GetSyntheticChild(name_const_str); 1816 1817 if (synthetic_child_sp.get()) 1818 return synthetic_child_sp; 1819 1820 if (!can_create) 1821 return {}; 1822 1823 ExecutionContext exe_ctx(GetExecutionContextRef()); 1824 llvm::Optional<uint64_t> size = 1825 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1826 if (!size) 1827 return {}; 1828 ValueObjectChild *synthetic_child = 1829 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1830 false, false, eAddressTypeInvalid, 0); 1831 if (synthetic_child) { 1832 AddSyntheticChild(name_const_str, synthetic_child); 1833 synthetic_child_sp = synthetic_child->GetSP(); 1834 synthetic_child_sp->SetName(name_const_str); 1835 synthetic_child_sp->m_is_child_at_offset = true; 1836 } 1837 return synthetic_child_sp; 1838 } 1839 1840 ValueObjectSP ValueObject::GetSyntheticBase(uint32_t offset, 1841 const CompilerType &type, 1842 bool can_create, 1843 ConstString name_const_str) { 1844 ValueObjectSP synthetic_child_sp; 1845 1846 if (name_const_str.IsEmpty()) { 1847 char name_str[128]; 1848 snprintf(name_str, sizeof(name_str), "base%s@%i", 1849 type.GetTypeName().AsCString("<unknown>"), offset); 1850 name_const_str.SetCString(name_str); 1851 } 1852 1853 // Check if we have already created a synthetic array member in this valid 1854 // object. If we have we will re-use it. 1855 synthetic_child_sp = GetSyntheticChild(name_const_str); 1856 1857 if (synthetic_child_sp.get()) 1858 return synthetic_child_sp; 1859 1860 if (!can_create) 1861 return {}; 1862 1863 const bool is_base_class = true; 1864 1865 ExecutionContext exe_ctx(GetExecutionContextRef()); 1866 llvm::Optional<uint64_t> size = 1867 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1868 if (!size) 1869 return {}; 1870 ValueObjectChild *synthetic_child = 1871 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1872 is_base_class, false, eAddressTypeInvalid, 0); 1873 if (synthetic_child) { 1874 AddSyntheticChild(name_const_str, synthetic_child); 1875 synthetic_child_sp = synthetic_child->GetSP(); 1876 synthetic_child_sp->SetName(name_const_str); 1877 } 1878 return synthetic_child_sp; 1879 } 1880 1881 // your expression path needs to have a leading . or -> (unless it somehow 1882 // "looks like" an array, in which case it has a leading [ symbol). while the [ 1883 // is meaningful and should be shown to the user, . and -> are just parser 1884 // design, but by no means added information for the user.. strip them off 1885 static const char *SkipLeadingExpressionPathSeparators(const char *expression) { 1886 if (!expression || !expression[0]) 1887 return expression; 1888 if (expression[0] == '.') 1889 return expression + 1; 1890 if (expression[0] == '-' && expression[1] == '>') 1891 return expression + 2; 1892 return expression; 1893 } 1894 1895 ValueObjectSP 1896 ValueObject::GetSyntheticExpressionPathChild(const char *expression, 1897 bool can_create) { 1898 ValueObjectSP synthetic_child_sp; 1899 ConstString name_const_string(expression); 1900 // Check if we have already created a synthetic array member in this valid 1901 // object. If we have we will re-use it. 1902 synthetic_child_sp = GetSyntheticChild(name_const_string); 1903 if (!synthetic_child_sp) { 1904 // We haven't made a synthetic array member for expression yet, so lets 1905 // make one and cache it for any future reference. 1906 synthetic_child_sp = GetValueForExpressionPath( 1907 expression, NULL, NULL, 1908 GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal( 1909 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 1910 None)); 1911 1912 // Cache the value if we got one back... 1913 if (synthetic_child_sp.get()) { 1914 // FIXME: this causes a "real" child to end up with its name changed to 1915 // the contents of expression 1916 AddSyntheticChild(name_const_string, synthetic_child_sp.get()); 1917 synthetic_child_sp->SetName( 1918 ConstString(SkipLeadingExpressionPathSeparators(expression))); 1919 } 1920 } 1921 return synthetic_child_sp; 1922 } 1923 1924 void ValueObject::CalculateSyntheticValue(bool use_synthetic) { 1925 if (!use_synthetic) 1926 return; 1927 1928 TargetSP target_sp(GetTargetSP()); 1929 if (target_sp && !target_sp->GetEnableSyntheticValue()) { 1930 m_synthetic_value = NULL; 1931 return; 1932 } 1933 1934 lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp); 1935 1936 if (!UpdateFormatsIfNeeded() && m_synthetic_value) 1937 return; 1938 1939 if (m_synthetic_children_sp.get() == NULL) 1940 return; 1941 1942 if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value) 1943 return; 1944 1945 m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp); 1946 } 1947 1948 void ValueObject::CalculateDynamicValue(DynamicValueType use_dynamic) { 1949 if (use_dynamic == eNoDynamicValues) 1950 return; 1951 1952 if (!m_dynamic_value && !IsDynamic()) { 1953 ExecutionContext exe_ctx(GetExecutionContextRef()); 1954 Process *process = exe_ctx.GetProcessPtr(); 1955 if (process && process->IsPossibleDynamicValue(*this)) { 1956 ClearDynamicTypeInformation(); 1957 m_dynamic_value = new ValueObjectDynamicValue(*this, use_dynamic); 1958 } 1959 } 1960 } 1961 1962 ValueObjectSP ValueObject::GetDynamicValue(DynamicValueType use_dynamic) { 1963 if (use_dynamic == eNoDynamicValues) 1964 return ValueObjectSP(); 1965 1966 if (!IsDynamic() && m_dynamic_value == NULL) { 1967 CalculateDynamicValue(use_dynamic); 1968 } 1969 if (m_dynamic_value) 1970 return m_dynamic_value->GetSP(); 1971 else 1972 return ValueObjectSP(); 1973 } 1974 1975 ValueObjectSP ValueObject::GetStaticValue() { return GetSP(); } 1976 1977 lldb::ValueObjectSP ValueObject::GetNonSyntheticValue() { return GetSP(); } 1978 1979 ValueObjectSP ValueObject::GetSyntheticValue(bool use_synthetic) { 1980 if (!use_synthetic) 1981 return ValueObjectSP(); 1982 1983 CalculateSyntheticValue(use_synthetic); 1984 1985 if (m_synthetic_value) 1986 return m_synthetic_value->GetSP(); 1987 else 1988 return ValueObjectSP(); 1989 } 1990 1991 bool ValueObject::HasSyntheticValue() { 1992 UpdateFormatsIfNeeded(); 1993 1994 if (m_synthetic_children_sp.get() == NULL) 1995 return false; 1996 1997 CalculateSyntheticValue(true); 1998 1999 return m_synthetic_value != nullptr; 2000 } 2001 2002 bool ValueObject::GetBaseClassPath(Stream &s) { 2003 if (IsBaseClass()) { 2004 bool parent_had_base_class = 2005 GetParent() && GetParent()->GetBaseClassPath(s); 2006 CompilerType compiler_type = GetCompilerType(); 2007 std::string cxx_class_name; 2008 bool this_had_base_class = 2009 ClangASTContext::GetCXXClassName(compiler_type, cxx_class_name); 2010 if (this_had_base_class) { 2011 if (parent_had_base_class) 2012 s.PutCString("::"); 2013 s.PutCString(cxx_class_name); 2014 } 2015 return parent_had_base_class || this_had_base_class; 2016 } 2017 return false; 2018 } 2019 2020 ValueObject *ValueObject::GetNonBaseClassParent() { 2021 if (GetParent()) { 2022 if (GetParent()->IsBaseClass()) 2023 return GetParent()->GetNonBaseClassParent(); 2024 else 2025 return GetParent(); 2026 } 2027 return NULL; 2028 } 2029 2030 bool ValueObject::IsBaseClass(uint32_t &depth) { 2031 if (!IsBaseClass()) { 2032 depth = 0; 2033 return false; 2034 } 2035 if (GetParent()) { 2036 GetParent()->IsBaseClass(depth); 2037 depth = depth + 1; 2038 return true; 2039 } 2040 // TODO: a base of no parent? weird.. 2041 depth = 1; 2042 return true; 2043 } 2044 2045 void ValueObject::GetExpressionPath(Stream &s, bool qualify_cxx_base_classes, 2046 GetExpressionPathFormat epformat) { 2047 // synthetic children do not actually "exist" as part of the hierarchy, and 2048 // sometimes they are consed up in ways that don't make sense from an 2049 // underlying language/API standpoint. So, use a special code path here to 2050 // return something that can hopefully be used in expression 2051 if (m_is_synthetic_children_generated) { 2052 UpdateValueIfNeeded(); 2053 2054 if (m_value.GetValueType() == Value::eValueTypeLoadAddress) { 2055 if (IsPointerOrReferenceType()) { 2056 s.Printf("((%s)0x%" PRIx64 ")", GetTypeName().AsCString("void"), 2057 GetValueAsUnsigned(0)); 2058 return; 2059 } else { 2060 uint64_t load_addr = 2061 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2062 if (load_addr != LLDB_INVALID_ADDRESS) { 2063 s.Printf("(*( (%s *)0x%" PRIx64 "))", GetTypeName().AsCString("void"), 2064 load_addr); 2065 return; 2066 } 2067 } 2068 } 2069 2070 if (CanProvideValue()) { 2071 s.Printf("((%s)%s)", GetTypeName().AsCString("void"), 2072 GetValueAsCString()); 2073 return; 2074 } 2075 2076 return; 2077 } 2078 2079 const bool is_deref_of_parent = IsDereferenceOfParent(); 2080 2081 if (is_deref_of_parent && 2082 epformat == eGetExpressionPathFormatDereferencePointers) { 2083 // this is the original format of GetExpressionPath() producing code like 2084 // *(a_ptr).memberName, which is entirely fine, until you put this into 2085 // StackFrame::GetValueForVariableExpressionPath() which prefers to see 2086 // a_ptr->memberName. the eHonorPointers mode is meant to produce strings 2087 // in this latter format 2088 s.PutCString("*("); 2089 } 2090 2091 ValueObject *parent = GetParent(); 2092 2093 if (parent) 2094 parent->GetExpressionPath(s, qualify_cxx_base_classes, epformat); 2095 2096 // if we are a deref_of_parent just because we are synthetic array members 2097 // made up to allow ptr[%d] syntax to work in variable printing, then add our 2098 // name ([%d]) to the expression path 2099 if (m_is_array_item_for_pointer && 2100 epformat == eGetExpressionPathFormatHonorPointers) 2101 s.PutCString(m_name.AsCString()); 2102 2103 if (!IsBaseClass()) { 2104 if (!is_deref_of_parent) { 2105 ValueObject *non_base_class_parent = GetNonBaseClassParent(); 2106 if (non_base_class_parent && 2107 !non_base_class_parent->GetName().IsEmpty()) { 2108 CompilerType non_base_class_parent_compiler_type = 2109 non_base_class_parent->GetCompilerType(); 2110 if (non_base_class_parent_compiler_type) { 2111 if (parent && parent->IsDereferenceOfParent() && 2112 epformat == eGetExpressionPathFormatHonorPointers) { 2113 s.PutCString("->"); 2114 } else { 2115 const uint32_t non_base_class_parent_type_info = 2116 non_base_class_parent_compiler_type.GetTypeInfo(); 2117 2118 if (non_base_class_parent_type_info & eTypeIsPointer) { 2119 s.PutCString("->"); 2120 } else if ((non_base_class_parent_type_info & eTypeHasChildren) && 2121 !(non_base_class_parent_type_info & eTypeIsArray)) { 2122 s.PutChar('.'); 2123 } 2124 } 2125 } 2126 } 2127 2128 const char *name = GetName().GetCString(); 2129 if (name) { 2130 if (qualify_cxx_base_classes) { 2131 if (GetBaseClassPath(s)) 2132 s.PutCString("::"); 2133 } 2134 s.PutCString(name); 2135 } 2136 } 2137 } 2138 2139 if (is_deref_of_parent && 2140 epformat == eGetExpressionPathFormatDereferencePointers) { 2141 s.PutChar(')'); 2142 } 2143 } 2144 2145 ValueObjectSP ValueObject::GetValueForExpressionPath( 2146 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2147 ExpressionPathEndResultType *final_value_type, 2148 const GetValueForExpressionPathOptions &options, 2149 ExpressionPathAftermath *final_task_on_target) { 2150 2151 ExpressionPathScanEndReason dummy_reason_to_stop = 2152 ValueObject::eExpressionPathScanEndReasonUnknown; 2153 ExpressionPathEndResultType dummy_final_value_type = 2154 ValueObject::eExpressionPathEndResultTypeInvalid; 2155 ExpressionPathAftermath dummy_final_task_on_target = 2156 ValueObject::eExpressionPathAftermathNothing; 2157 2158 ValueObjectSP ret_val = GetValueForExpressionPath_Impl( 2159 expression, reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2160 final_value_type ? final_value_type : &dummy_final_value_type, options, 2161 final_task_on_target ? final_task_on_target 2162 : &dummy_final_task_on_target); 2163 2164 if (!final_task_on_target || 2165 *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2166 return ret_val; 2167 2168 if (ret_val.get() && 2169 ((final_value_type ? *final_value_type : dummy_final_value_type) == 2170 eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress 2171 // of plain objects 2172 { 2173 if ((final_task_on_target ? *final_task_on_target 2174 : dummy_final_task_on_target) == 2175 ValueObject::eExpressionPathAftermathDereference) { 2176 Status error; 2177 ValueObjectSP final_value = ret_val->Dereference(error); 2178 if (error.Fail() || !final_value.get()) { 2179 if (reason_to_stop) 2180 *reason_to_stop = 2181 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2182 if (final_value_type) 2183 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2184 return ValueObjectSP(); 2185 } else { 2186 if (final_task_on_target) 2187 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2188 return final_value; 2189 } 2190 } 2191 if (*final_task_on_target == 2192 ValueObject::eExpressionPathAftermathTakeAddress) { 2193 Status error; 2194 ValueObjectSP final_value = ret_val->AddressOf(error); 2195 if (error.Fail() || !final_value.get()) { 2196 if (reason_to_stop) 2197 *reason_to_stop = 2198 ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2199 if (final_value_type) 2200 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2201 return ValueObjectSP(); 2202 } else { 2203 if (final_task_on_target) 2204 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2205 return final_value; 2206 } 2207 } 2208 } 2209 return ret_val; // final_task_on_target will still have its original value, so 2210 // you know I did not do it 2211 } 2212 2213 ValueObjectSP ValueObject::GetValueForExpressionPath_Impl( 2214 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2215 ExpressionPathEndResultType *final_result, 2216 const GetValueForExpressionPathOptions &options, 2217 ExpressionPathAftermath *what_next) { 2218 ValueObjectSP root = GetSP(); 2219 2220 if (!root) 2221 return nullptr; 2222 2223 llvm::StringRef remainder = expression; 2224 2225 while (true) { 2226 llvm::StringRef temp_expression = remainder; 2227 2228 CompilerType root_compiler_type = root->GetCompilerType(); 2229 CompilerType pointee_compiler_type; 2230 Flags pointee_compiler_type_info; 2231 2232 Flags root_compiler_type_info( 2233 root_compiler_type.GetTypeInfo(&pointee_compiler_type)); 2234 if (pointee_compiler_type) 2235 pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo()); 2236 2237 if (temp_expression.empty()) { 2238 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2239 return root; 2240 } 2241 2242 switch (temp_expression.front()) { 2243 case '-': { 2244 temp_expression = temp_expression.drop_front(); 2245 if (options.m_check_dot_vs_arrow_syntax && 2246 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2247 // use -> on a 2248 // non-pointer and I 2249 // must catch the error 2250 { 2251 *reason_to_stop = 2252 ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot; 2253 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2254 return ValueObjectSP(); 2255 } 2256 if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to 2257 // extract an ObjC IVar 2258 // when this is forbidden 2259 root_compiler_type_info.Test(eTypeIsPointer) && 2260 options.m_no_fragile_ivar) { 2261 *reason_to_stop = 2262 ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed; 2263 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2264 return ValueObjectSP(); 2265 } 2266 if (!temp_expression.startswith(">")) { 2267 *reason_to_stop = 2268 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2269 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2270 return ValueObjectSP(); 2271 } 2272 } 2273 LLVM_FALLTHROUGH; 2274 case '.': // or fallthrough from -> 2275 { 2276 if (options.m_check_dot_vs_arrow_syntax && 2277 temp_expression.front() == '.' && 2278 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2279 // use . on a pointer 2280 // and I must catch the 2281 // error 2282 { 2283 *reason_to_stop = 2284 ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow; 2285 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2286 return nullptr; 2287 } 2288 temp_expression = temp_expression.drop_front(); // skip . or > 2289 2290 size_t next_sep_pos = temp_expression.find_first_of("-.[", 1); 2291 ConstString child_name; 2292 if (next_sep_pos == llvm::StringRef::npos) // if no other separator just 2293 // expand this last layer 2294 { 2295 child_name.SetString(temp_expression); 2296 ValueObjectSP child_valobj_sp = 2297 root->GetChildMemberWithName(child_name, true); 2298 2299 if (child_valobj_sp.get()) // we know we are done, so just return 2300 { 2301 *reason_to_stop = 2302 ValueObject::eExpressionPathScanEndReasonEndOfString; 2303 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2304 return child_valobj_sp; 2305 } else { 2306 switch (options.m_synthetic_children_traversal) { 2307 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2308 None: 2309 break; 2310 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2311 FromSynthetic: 2312 if (root->IsSynthetic()) { 2313 child_valobj_sp = root->GetNonSyntheticValue(); 2314 if (child_valobj_sp.get()) 2315 child_valobj_sp = 2316 child_valobj_sp->GetChildMemberWithName(child_name, true); 2317 } 2318 break; 2319 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2320 ToSynthetic: 2321 if (!root->IsSynthetic()) { 2322 child_valobj_sp = root->GetSyntheticValue(); 2323 if (child_valobj_sp.get()) 2324 child_valobj_sp = 2325 child_valobj_sp->GetChildMemberWithName(child_name, true); 2326 } 2327 break; 2328 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2329 Both: 2330 if (root->IsSynthetic()) { 2331 child_valobj_sp = root->GetNonSyntheticValue(); 2332 if (child_valobj_sp.get()) 2333 child_valobj_sp = 2334 child_valobj_sp->GetChildMemberWithName(child_name, true); 2335 } else { 2336 child_valobj_sp = root->GetSyntheticValue(); 2337 if (child_valobj_sp.get()) 2338 child_valobj_sp = 2339 child_valobj_sp->GetChildMemberWithName(child_name, true); 2340 } 2341 break; 2342 } 2343 } 2344 2345 // if we are here and options.m_no_synthetic_children is true, 2346 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2347 // branch, and return an error 2348 if (child_valobj_sp.get()) // if it worked, just return 2349 { 2350 *reason_to_stop = 2351 ValueObject::eExpressionPathScanEndReasonEndOfString; 2352 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2353 return child_valobj_sp; 2354 } else { 2355 *reason_to_stop = 2356 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2357 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2358 return nullptr; 2359 } 2360 } else // other layers do expand 2361 { 2362 llvm::StringRef next_separator = temp_expression.substr(next_sep_pos); 2363 2364 child_name.SetString(temp_expression.slice(0, next_sep_pos)); 2365 2366 ValueObjectSP child_valobj_sp = 2367 root->GetChildMemberWithName(child_name, true); 2368 if (child_valobj_sp.get()) // store the new root and move on 2369 { 2370 root = child_valobj_sp; 2371 remainder = next_separator; 2372 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2373 continue; 2374 } else { 2375 switch (options.m_synthetic_children_traversal) { 2376 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2377 None: 2378 break; 2379 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2380 FromSynthetic: 2381 if (root->IsSynthetic()) { 2382 child_valobj_sp = root->GetNonSyntheticValue(); 2383 if (child_valobj_sp.get()) 2384 child_valobj_sp = 2385 child_valobj_sp->GetChildMemberWithName(child_name, true); 2386 } 2387 break; 2388 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2389 ToSynthetic: 2390 if (!root->IsSynthetic()) { 2391 child_valobj_sp = root->GetSyntheticValue(); 2392 if (child_valobj_sp.get()) 2393 child_valobj_sp = 2394 child_valobj_sp->GetChildMemberWithName(child_name, true); 2395 } 2396 break; 2397 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2398 Both: 2399 if (root->IsSynthetic()) { 2400 child_valobj_sp = root->GetNonSyntheticValue(); 2401 if (child_valobj_sp.get()) 2402 child_valobj_sp = 2403 child_valobj_sp->GetChildMemberWithName(child_name, true); 2404 } else { 2405 child_valobj_sp = root->GetSyntheticValue(); 2406 if (child_valobj_sp.get()) 2407 child_valobj_sp = 2408 child_valobj_sp->GetChildMemberWithName(child_name, true); 2409 } 2410 break; 2411 } 2412 } 2413 2414 // if we are here and options.m_no_synthetic_children is true, 2415 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2416 // branch, and return an error 2417 if (child_valobj_sp.get()) // if it worked, move on 2418 { 2419 root = child_valobj_sp; 2420 remainder = next_separator; 2421 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2422 continue; 2423 } else { 2424 *reason_to_stop = 2425 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2426 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2427 return nullptr; 2428 } 2429 } 2430 break; 2431 } 2432 case '[': { 2433 if (!root_compiler_type_info.Test(eTypeIsArray) && 2434 !root_compiler_type_info.Test(eTypeIsPointer) && 2435 !root_compiler_type_info.Test( 2436 eTypeIsVector)) // if this is not a T[] nor a T* 2437 { 2438 if (!root_compiler_type_info.Test( 2439 eTypeIsScalar)) // if this is not even a scalar... 2440 { 2441 if (options.m_synthetic_children_traversal == 2442 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2443 None) // ...only chance left is synthetic 2444 { 2445 *reason_to_stop = 2446 ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 2447 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2448 return ValueObjectSP(); 2449 } 2450 } else if (!options.m_allow_bitfields_syntax) // if this is a scalar, 2451 // check that we can 2452 // expand bitfields 2453 { 2454 *reason_to_stop = 2455 ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 2456 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2457 return ValueObjectSP(); 2458 } 2459 } 2460 if (temp_expression[1] == 2461 ']') // if this is an unbounded range it only works for arrays 2462 { 2463 if (!root_compiler_type_info.Test(eTypeIsArray)) { 2464 *reason_to_stop = 2465 ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 2466 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2467 return nullptr; 2468 } else // even if something follows, we cannot expand unbounded ranges, 2469 // just let the caller do it 2470 { 2471 *reason_to_stop = 2472 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2473 *final_result = 2474 ValueObject::eExpressionPathEndResultTypeUnboundedRange; 2475 return root; 2476 } 2477 } 2478 2479 size_t close_bracket_position = temp_expression.find(']', 1); 2480 if (close_bracket_position == 2481 llvm::StringRef::npos) // if there is no ], this is a syntax error 2482 { 2483 *reason_to_stop = 2484 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2485 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2486 return nullptr; 2487 } 2488 2489 llvm::StringRef bracket_expr = 2490 temp_expression.slice(1, close_bracket_position); 2491 2492 // If this was an empty expression it would have been caught by the if 2493 // above. 2494 assert(!bracket_expr.empty()); 2495 2496 if (!bracket_expr.contains('-')) { 2497 // if no separator, this is of the form [N]. Note that this cannot be 2498 // an unbounded range of the form [], because that case was handled 2499 // above with an unconditional return. 2500 unsigned long index = 0; 2501 if (bracket_expr.getAsInteger(0, index)) { 2502 *reason_to_stop = 2503 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2504 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2505 return nullptr; 2506 } 2507 2508 // from here on we do have a valid index 2509 if (root_compiler_type_info.Test(eTypeIsArray)) { 2510 ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true); 2511 if (!child_valobj_sp) 2512 child_valobj_sp = root->GetSyntheticArrayMember(index, true); 2513 if (!child_valobj_sp) 2514 if (root->HasSyntheticValue() && 2515 root->GetSyntheticValue()->GetNumChildren() > index) 2516 child_valobj_sp = 2517 root->GetSyntheticValue()->GetChildAtIndex(index, true); 2518 if (child_valobj_sp) { 2519 root = child_valobj_sp; 2520 remainder = 2521 temp_expression.substr(close_bracket_position + 1); // skip ] 2522 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2523 continue; 2524 } else { 2525 *reason_to_stop = 2526 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2527 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2528 return nullptr; 2529 } 2530 } else if (root_compiler_type_info.Test(eTypeIsPointer)) { 2531 if (*what_next == 2532 ValueObject:: 2533 eExpressionPathAftermathDereference && // if this is a 2534 // ptr-to-scalar, I 2535 // am accessing it 2536 // by index and I 2537 // would have 2538 // deref'ed anyway, 2539 // then do it now 2540 // and use this as 2541 // a bitfield 2542 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2543 Status error; 2544 root = root->Dereference(error); 2545 if (error.Fail() || !root) { 2546 *reason_to_stop = 2547 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2548 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2549 return nullptr; 2550 } else { 2551 *what_next = eExpressionPathAftermathNothing; 2552 continue; 2553 } 2554 } else { 2555 if (root->GetCompilerType().GetMinimumLanguage() == 2556 eLanguageTypeObjC && 2557 pointee_compiler_type_info.AllClear(eTypeIsPointer) && 2558 root->HasSyntheticValue() && 2559 (options.m_synthetic_children_traversal == 2560 GetValueForExpressionPathOptions:: 2561 SyntheticChildrenTraversal::ToSynthetic || 2562 options.m_synthetic_children_traversal == 2563 GetValueForExpressionPathOptions:: 2564 SyntheticChildrenTraversal::Both)) { 2565 root = root->GetSyntheticValue()->GetChildAtIndex(index, true); 2566 } else 2567 root = root->GetSyntheticArrayMember(index, true); 2568 if (!root) { 2569 *reason_to_stop = 2570 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2571 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2572 return nullptr; 2573 } else { 2574 remainder = 2575 temp_expression.substr(close_bracket_position + 1); // skip ] 2576 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2577 continue; 2578 } 2579 } 2580 } else if (root_compiler_type_info.Test(eTypeIsScalar)) { 2581 root = root->GetSyntheticBitFieldChild(index, index, true); 2582 if (!root) { 2583 *reason_to_stop = 2584 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2585 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2586 return nullptr; 2587 } else // we do not know how to expand members of bitfields, so we 2588 // just return and let the caller do any further processing 2589 { 2590 *reason_to_stop = ValueObject:: 2591 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2592 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2593 return root; 2594 } 2595 } else if (root_compiler_type_info.Test(eTypeIsVector)) { 2596 root = root->GetChildAtIndex(index, true); 2597 if (!root) { 2598 *reason_to_stop = 2599 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2600 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2601 return ValueObjectSP(); 2602 } else { 2603 remainder = 2604 temp_expression.substr(close_bracket_position + 1); // skip ] 2605 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2606 continue; 2607 } 2608 } else if (options.m_synthetic_children_traversal == 2609 GetValueForExpressionPathOptions:: 2610 SyntheticChildrenTraversal::ToSynthetic || 2611 options.m_synthetic_children_traversal == 2612 GetValueForExpressionPathOptions:: 2613 SyntheticChildrenTraversal::Both) { 2614 if (root->HasSyntheticValue()) 2615 root = root->GetSyntheticValue(); 2616 else if (!root->IsSynthetic()) { 2617 *reason_to_stop = 2618 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2619 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2620 return nullptr; 2621 } 2622 // if we are here, then root itself is a synthetic VO.. should be 2623 // good to go 2624 2625 if (!root) { 2626 *reason_to_stop = 2627 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2628 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2629 return nullptr; 2630 } 2631 root = root->GetChildAtIndex(index, true); 2632 if (!root) { 2633 *reason_to_stop = 2634 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2635 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2636 return nullptr; 2637 } else { 2638 remainder = 2639 temp_expression.substr(close_bracket_position + 1); // skip ] 2640 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2641 continue; 2642 } 2643 } else { 2644 *reason_to_stop = 2645 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2646 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2647 return nullptr; 2648 } 2649 } else { 2650 // we have a low and a high index 2651 llvm::StringRef sleft, sright; 2652 unsigned long low_index, high_index; 2653 std::tie(sleft, sright) = bracket_expr.split('-'); 2654 if (sleft.getAsInteger(0, low_index) || 2655 sright.getAsInteger(0, high_index)) { 2656 *reason_to_stop = 2657 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2658 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2659 return nullptr; 2660 } 2661 2662 if (low_index > high_index) // swap indices if required 2663 std::swap(low_index, high_index); 2664 2665 if (root_compiler_type_info.Test( 2666 eTypeIsScalar)) // expansion only works for scalars 2667 { 2668 root = root->GetSyntheticBitFieldChild(low_index, high_index, true); 2669 if (!root) { 2670 *reason_to_stop = 2671 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2672 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2673 return nullptr; 2674 } else { 2675 *reason_to_stop = ValueObject:: 2676 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2677 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2678 return root; 2679 } 2680 } else if (root_compiler_type_info.Test( 2681 eTypeIsPointer) && // if this is a ptr-to-scalar, I am 2682 // accessing it by index and I would 2683 // have deref'ed anyway, then do it 2684 // now and use this as a bitfield 2685 *what_next == 2686 ValueObject::eExpressionPathAftermathDereference && 2687 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2688 Status error; 2689 root = root->Dereference(error); 2690 if (error.Fail() || !root) { 2691 *reason_to_stop = 2692 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2693 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2694 return nullptr; 2695 } else { 2696 *what_next = ValueObject::eExpressionPathAftermathNothing; 2697 continue; 2698 } 2699 } else { 2700 *reason_to_stop = 2701 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2702 *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange; 2703 return root; 2704 } 2705 } 2706 break; 2707 } 2708 default: // some non-separator is in the way 2709 { 2710 *reason_to_stop = 2711 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2712 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2713 return nullptr; 2714 } 2715 } 2716 } 2717 } 2718 2719 void ValueObject::LogValueObject(Log *log) { 2720 if (log) 2721 return LogValueObject(log, DumpValueObjectOptions(*this)); 2722 } 2723 2724 void ValueObject::LogValueObject(Log *log, 2725 const DumpValueObjectOptions &options) { 2726 if (log) { 2727 StreamString s; 2728 Dump(s, options); 2729 if (s.GetSize()) 2730 log->PutCString(s.GetData()); 2731 } 2732 } 2733 2734 void ValueObject::Dump(Stream &s) { Dump(s, DumpValueObjectOptions(*this)); } 2735 2736 void ValueObject::Dump(Stream &s, const DumpValueObjectOptions &options) { 2737 ValueObjectPrinter printer(this, &s, options); 2738 printer.PrintValueObject(); 2739 } 2740 2741 ValueObjectSP ValueObject::CreateConstantValue(ConstString name) { 2742 ValueObjectSP valobj_sp; 2743 2744 if (UpdateValueIfNeeded(false) && m_error.Success()) { 2745 ExecutionContext exe_ctx(GetExecutionContextRef()); 2746 2747 DataExtractor data; 2748 data.SetByteOrder(m_data.GetByteOrder()); 2749 data.SetAddressByteSize(m_data.GetAddressByteSize()); 2750 2751 if (IsBitfield()) { 2752 Value v(Scalar(GetValueAsUnsigned(UINT64_MAX))); 2753 m_error = v.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 2754 } else 2755 m_error = m_value.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 2756 2757 valobj_sp = ValueObjectConstResult::Create( 2758 exe_ctx.GetBestExecutionContextScope(), GetCompilerType(), name, data, 2759 GetAddressOf()); 2760 } 2761 2762 if (!valobj_sp) { 2763 ExecutionContext exe_ctx(GetExecutionContextRef()); 2764 valobj_sp = ValueObjectConstResult::Create( 2765 exe_ctx.GetBestExecutionContextScope(), m_error); 2766 } 2767 return valobj_sp; 2768 } 2769 2770 ValueObjectSP ValueObject::GetQualifiedRepresentationIfAvailable( 2771 lldb::DynamicValueType dynValue, bool synthValue) { 2772 ValueObjectSP result_sp(GetSP()); 2773 2774 switch (dynValue) { 2775 case lldb::eDynamicCanRunTarget: 2776 case lldb::eDynamicDontRunTarget: { 2777 if (!result_sp->IsDynamic()) { 2778 if (result_sp->GetDynamicValue(dynValue)) 2779 result_sp = result_sp->GetDynamicValue(dynValue); 2780 } 2781 } break; 2782 case lldb::eNoDynamicValues: { 2783 if (result_sp->IsDynamic()) { 2784 if (result_sp->GetStaticValue()) 2785 result_sp = result_sp->GetStaticValue(); 2786 } 2787 } break; 2788 } 2789 2790 if (synthValue) { 2791 if (!result_sp->IsSynthetic()) { 2792 if (result_sp->GetSyntheticValue()) 2793 result_sp = result_sp->GetSyntheticValue(); 2794 } 2795 } else { 2796 if (result_sp->IsSynthetic()) { 2797 if (result_sp->GetNonSyntheticValue()) 2798 result_sp = result_sp->GetNonSyntheticValue(); 2799 } 2800 } 2801 2802 return result_sp; 2803 } 2804 2805 ValueObjectSP ValueObject::Dereference(Status &error) { 2806 if (m_deref_valobj) 2807 return m_deref_valobj->GetSP(); 2808 2809 const bool is_pointer_or_reference_type = IsPointerOrReferenceType(); 2810 if (is_pointer_or_reference_type) { 2811 bool omit_empty_base_classes = true; 2812 bool ignore_array_bounds = false; 2813 2814 std::string child_name_str; 2815 uint32_t child_byte_size = 0; 2816 int32_t child_byte_offset = 0; 2817 uint32_t child_bitfield_bit_size = 0; 2818 uint32_t child_bitfield_bit_offset = 0; 2819 bool child_is_base_class = false; 2820 bool child_is_deref_of_parent = false; 2821 const bool transparent_pointers = false; 2822 CompilerType compiler_type = GetCompilerType(); 2823 CompilerType child_compiler_type; 2824 uint64_t language_flags; 2825 2826 ExecutionContext exe_ctx(GetExecutionContextRef()); 2827 2828 child_compiler_type = compiler_type.GetChildCompilerTypeAtIndex( 2829 &exe_ctx, 0, transparent_pointers, omit_empty_base_classes, 2830 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 2831 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 2832 child_is_deref_of_parent, this, language_flags); 2833 if (child_compiler_type && child_byte_size) { 2834 ConstString child_name; 2835 if (!child_name_str.empty()) 2836 child_name.SetCString(child_name_str.c_str()); 2837 2838 m_deref_valobj = new ValueObjectChild( 2839 *this, child_compiler_type, child_name, child_byte_size, 2840 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 2841 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 2842 language_flags); 2843 } 2844 } else if (HasSyntheticValue()) { 2845 m_deref_valobj = 2846 GetSyntheticValue() 2847 ->GetChildMemberWithName(ConstString("$$dereference$$"), true) 2848 .get(); 2849 } 2850 2851 if (m_deref_valobj) { 2852 error.Clear(); 2853 return m_deref_valobj->GetSP(); 2854 } else { 2855 StreamString strm; 2856 GetExpressionPath(strm, true); 2857 2858 if (is_pointer_or_reference_type) 2859 error.SetErrorStringWithFormat("dereference failed: (%s) %s", 2860 GetTypeName().AsCString("<invalid type>"), 2861 strm.GetData()); 2862 else 2863 error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s", 2864 GetTypeName().AsCString("<invalid type>"), 2865 strm.GetData()); 2866 return ValueObjectSP(); 2867 } 2868 } 2869 2870 ValueObjectSP ValueObject::AddressOf(Status &error) { 2871 if (m_addr_of_valobj_sp) 2872 return m_addr_of_valobj_sp; 2873 2874 AddressType address_type = eAddressTypeInvalid; 2875 const bool scalar_is_load_address = false; 2876 addr_t addr = GetAddressOf(scalar_is_load_address, &address_type); 2877 error.Clear(); 2878 if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) { 2879 switch (address_type) { 2880 case eAddressTypeInvalid: { 2881 StreamString expr_path_strm; 2882 GetExpressionPath(expr_path_strm, true); 2883 error.SetErrorStringWithFormat("'%s' is not in memory", 2884 expr_path_strm.GetData()); 2885 } break; 2886 2887 case eAddressTypeFile: 2888 case eAddressTypeLoad: { 2889 CompilerType compiler_type = GetCompilerType(); 2890 if (compiler_type) { 2891 std::string name(1, '&'); 2892 name.append(m_name.AsCString("")); 2893 ExecutionContext exe_ctx(GetExecutionContextRef()); 2894 m_addr_of_valobj_sp = ValueObjectConstResult::Create( 2895 exe_ctx.GetBestExecutionContextScope(), 2896 compiler_type.GetPointerType(), ConstString(name.c_str()), addr, 2897 eAddressTypeInvalid, m_data.GetAddressByteSize()); 2898 } 2899 } break; 2900 default: 2901 break; 2902 } 2903 } else { 2904 StreamString expr_path_strm; 2905 GetExpressionPath(expr_path_strm, true); 2906 error.SetErrorStringWithFormat("'%s' doesn't have a valid address", 2907 expr_path_strm.GetData()); 2908 } 2909 2910 return m_addr_of_valobj_sp; 2911 } 2912 2913 ValueObjectSP ValueObject::Cast(const CompilerType &compiler_type) { 2914 return ValueObjectCast::Create(*this, GetName(), compiler_type); 2915 } 2916 2917 lldb::ValueObjectSP ValueObject::Clone(ConstString new_name) { 2918 return ValueObjectCast::Create(*this, new_name, GetCompilerType()); 2919 } 2920 2921 ValueObjectSP ValueObject::CastPointerType(const char *name, 2922 CompilerType &compiler_type) { 2923 ValueObjectSP valobj_sp; 2924 AddressType address_type; 2925 addr_t ptr_value = GetPointerValue(&address_type); 2926 2927 if (ptr_value != LLDB_INVALID_ADDRESS) { 2928 Address ptr_addr(ptr_value); 2929 ExecutionContext exe_ctx(GetExecutionContextRef()); 2930 valobj_sp = ValueObjectMemory::Create( 2931 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, compiler_type); 2932 } 2933 return valobj_sp; 2934 } 2935 2936 ValueObjectSP ValueObject::CastPointerType(const char *name, TypeSP &type_sp) { 2937 ValueObjectSP valobj_sp; 2938 AddressType address_type; 2939 addr_t ptr_value = GetPointerValue(&address_type); 2940 2941 if (ptr_value != LLDB_INVALID_ADDRESS) { 2942 Address ptr_addr(ptr_value); 2943 ExecutionContext exe_ctx(GetExecutionContextRef()); 2944 valobj_sp = ValueObjectMemory::Create( 2945 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, type_sp); 2946 } 2947 return valobj_sp; 2948 } 2949 2950 ValueObject::EvaluationPoint::EvaluationPoint() 2951 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) {} 2952 2953 ValueObject::EvaluationPoint::EvaluationPoint(ExecutionContextScope *exe_scope, 2954 bool use_selected) 2955 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) { 2956 ExecutionContext exe_ctx(exe_scope); 2957 TargetSP target_sp(exe_ctx.GetTargetSP()); 2958 if (target_sp) { 2959 m_exe_ctx_ref.SetTargetSP(target_sp); 2960 ProcessSP process_sp(exe_ctx.GetProcessSP()); 2961 if (!process_sp) 2962 process_sp = target_sp->GetProcessSP(); 2963 2964 if (process_sp) { 2965 m_mod_id = process_sp->GetModID(); 2966 m_exe_ctx_ref.SetProcessSP(process_sp); 2967 2968 ThreadSP thread_sp(exe_ctx.GetThreadSP()); 2969 2970 if (!thread_sp) { 2971 if (use_selected) 2972 thread_sp = process_sp->GetThreadList().GetSelectedThread(); 2973 } 2974 2975 if (thread_sp) { 2976 m_exe_ctx_ref.SetThreadSP(thread_sp); 2977 2978 StackFrameSP frame_sp(exe_ctx.GetFrameSP()); 2979 if (!frame_sp) { 2980 if (use_selected) 2981 frame_sp = thread_sp->GetSelectedFrame(); 2982 } 2983 if (frame_sp) 2984 m_exe_ctx_ref.SetFrameSP(frame_sp); 2985 } 2986 } 2987 } 2988 } 2989 2990 ValueObject::EvaluationPoint::EvaluationPoint( 2991 const ValueObject::EvaluationPoint &rhs) 2992 : m_mod_id(), m_exe_ctx_ref(rhs.m_exe_ctx_ref), m_needs_update(true) {} 2993 2994 ValueObject::EvaluationPoint::~EvaluationPoint() {} 2995 2996 // This function checks the EvaluationPoint against the current process state. 2997 // If the current state matches the evaluation point, or the evaluation point 2998 // is already invalid, then we return false, meaning "no change". If the 2999 // current state is different, we update our state, and return true meaning 3000 // "yes, change". If we did see a change, we also set m_needs_update to true, 3001 // so future calls to NeedsUpdate will return true. exe_scope will be set to 3002 // the current execution context scope. 3003 3004 bool ValueObject::EvaluationPoint::SyncWithProcessState( 3005 bool accept_invalid_exe_ctx) { 3006 // Start with the target, if it is NULL, then we're obviously not going to 3007 // get any further: 3008 const bool thread_and_frame_only_if_stopped = true; 3009 ExecutionContext exe_ctx( 3010 m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped)); 3011 3012 if (exe_ctx.GetTargetPtr() == NULL) 3013 return false; 3014 3015 // If we don't have a process nothing can change. 3016 Process *process = exe_ctx.GetProcessPtr(); 3017 if (process == NULL) 3018 return false; 3019 3020 // If our stop id is the current stop ID, nothing has changed: 3021 ProcessModID current_mod_id = process->GetModID(); 3022 3023 // If the current stop id is 0, either we haven't run yet, or the process 3024 // state has been cleared. In either case, we aren't going to be able to sync 3025 // with the process state. 3026 if (current_mod_id.GetStopID() == 0) 3027 return false; 3028 3029 bool changed = false; 3030 const bool was_valid = m_mod_id.IsValid(); 3031 if (was_valid) { 3032 if (m_mod_id == current_mod_id) { 3033 // Everything is already up to date in this object, no need to update the 3034 // execution context scope. 3035 changed = false; 3036 } else { 3037 m_mod_id = current_mod_id; 3038 m_needs_update = true; 3039 changed = true; 3040 } 3041 } 3042 3043 // Now re-look up the thread and frame in case the underlying objects have 3044 // gone away & been recreated. That way we'll be sure to return a valid 3045 // exe_scope. If we used to have a thread or a frame but can't find it 3046 // anymore, then mark ourselves as invalid. 3047 3048 if (!accept_invalid_exe_ctx) { 3049 if (m_exe_ctx_ref.HasThreadRef()) { 3050 ThreadSP thread_sp(m_exe_ctx_ref.GetThreadSP()); 3051 if (thread_sp) { 3052 if (m_exe_ctx_ref.HasFrameRef()) { 3053 StackFrameSP frame_sp(m_exe_ctx_ref.GetFrameSP()); 3054 if (!frame_sp) { 3055 // We used to have a frame, but now it is gone 3056 SetInvalid(); 3057 changed = was_valid; 3058 } 3059 } 3060 } else { 3061 // We used to have a thread, but now it is gone 3062 SetInvalid(); 3063 changed = was_valid; 3064 } 3065 } 3066 } 3067 3068 return changed; 3069 } 3070 3071 void ValueObject::EvaluationPoint::SetUpdated() { 3072 ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP()); 3073 if (process_sp) 3074 m_mod_id = process_sp->GetModID(); 3075 m_needs_update = false; 3076 } 3077 3078 void ValueObject::ClearUserVisibleData(uint32_t clear_mask) { 3079 if ((clear_mask & eClearUserVisibleDataItemsValue) == 3080 eClearUserVisibleDataItemsValue) 3081 m_value_str.clear(); 3082 3083 if ((clear_mask & eClearUserVisibleDataItemsLocation) == 3084 eClearUserVisibleDataItemsLocation) 3085 m_location_str.clear(); 3086 3087 if ((clear_mask & eClearUserVisibleDataItemsSummary) == 3088 eClearUserVisibleDataItemsSummary) 3089 m_summary_str.clear(); 3090 3091 if ((clear_mask & eClearUserVisibleDataItemsDescription) == 3092 eClearUserVisibleDataItemsDescription) 3093 m_object_desc_str.clear(); 3094 3095 if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == 3096 eClearUserVisibleDataItemsSyntheticChildren) { 3097 if (m_synthetic_value) 3098 m_synthetic_value = NULL; 3099 } 3100 3101 if ((clear_mask & eClearUserVisibleDataItemsValidator) == 3102 eClearUserVisibleDataItemsValidator) 3103 m_validation_result.reset(); 3104 } 3105 3106 SymbolContextScope *ValueObject::GetSymbolContextScope() { 3107 if (m_parent) { 3108 if (!m_parent->IsPointerOrReferenceType()) 3109 return m_parent->GetSymbolContextScope(); 3110 } 3111 return NULL; 3112 } 3113 3114 lldb::ValueObjectSP 3115 ValueObject::CreateValueObjectFromExpression(llvm::StringRef name, 3116 llvm::StringRef expression, 3117 const ExecutionContext &exe_ctx) { 3118 return CreateValueObjectFromExpression(name, expression, exe_ctx, 3119 EvaluateExpressionOptions()); 3120 } 3121 3122 lldb::ValueObjectSP ValueObject::CreateValueObjectFromExpression( 3123 llvm::StringRef name, llvm::StringRef expression, 3124 const ExecutionContext &exe_ctx, const EvaluateExpressionOptions &options) { 3125 lldb::ValueObjectSP retval_sp; 3126 lldb::TargetSP target_sp(exe_ctx.GetTargetSP()); 3127 if (!target_sp) 3128 return retval_sp; 3129 if (expression.empty()) 3130 return retval_sp; 3131 target_sp->EvaluateExpression(expression, exe_ctx.GetFrameSP().get(), 3132 retval_sp, options); 3133 if (retval_sp && !name.empty()) 3134 retval_sp->SetName(ConstString(name)); 3135 return retval_sp; 3136 } 3137 3138 lldb::ValueObjectSP ValueObject::CreateValueObjectFromAddress( 3139 llvm::StringRef name, uint64_t address, const ExecutionContext &exe_ctx, 3140 CompilerType type) { 3141 if (type) { 3142 CompilerType pointer_type(type.GetPointerType()); 3143 if (pointer_type) { 3144 lldb::DataBufferSP buffer( 3145 new lldb_private::DataBufferHeap(&address, sizeof(lldb::addr_t))); 3146 lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create( 3147 exe_ctx.GetBestExecutionContextScope(), pointer_type, 3148 ConstString(name), buffer, exe_ctx.GetByteOrder(), 3149 exe_ctx.GetAddressByteSize())); 3150 if (ptr_result_valobj_sp) { 3151 ptr_result_valobj_sp->GetValue().SetValueType( 3152 Value::eValueTypeLoadAddress); 3153 Status err; 3154 ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err); 3155 if (ptr_result_valobj_sp && !name.empty()) 3156 ptr_result_valobj_sp->SetName(ConstString(name)); 3157 } 3158 return ptr_result_valobj_sp; 3159 } 3160 } 3161 return lldb::ValueObjectSP(); 3162 } 3163 3164 lldb::ValueObjectSP ValueObject::CreateValueObjectFromData( 3165 llvm::StringRef name, const DataExtractor &data, 3166 const ExecutionContext &exe_ctx, CompilerType type) { 3167 lldb::ValueObjectSP new_value_sp; 3168 new_value_sp = ValueObjectConstResult::Create( 3169 exe_ctx.GetBestExecutionContextScope(), type, ConstString(name), data, 3170 LLDB_INVALID_ADDRESS); 3171 new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad); 3172 if (new_value_sp && !name.empty()) 3173 new_value_sp->SetName(ConstString(name)); 3174 return new_value_sp; 3175 } 3176 3177 ModuleSP ValueObject::GetModule() { 3178 ValueObject *root(GetRoot()); 3179 if (root != this) 3180 return root->GetModule(); 3181 return lldb::ModuleSP(); 3182 } 3183 3184 ValueObject *ValueObject::GetRoot() { 3185 if (m_root) 3186 return m_root; 3187 return (m_root = FollowParentChain([](ValueObject *vo) -> bool { 3188 return (vo->m_parent != nullptr); 3189 })); 3190 } 3191 3192 ValueObject * 3193 ValueObject::FollowParentChain(std::function<bool(ValueObject *)> f) { 3194 ValueObject *vo = this; 3195 while (vo) { 3196 if (!f(vo)) 3197 break; 3198 vo = vo->m_parent; 3199 } 3200 return vo; 3201 } 3202 3203 AddressType ValueObject::GetAddressTypeOfChildren() { 3204 if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) { 3205 ValueObject *root(GetRoot()); 3206 if (root != this) 3207 return root->GetAddressTypeOfChildren(); 3208 } 3209 return m_address_type_of_ptr_or_ref_children; 3210 } 3211 3212 lldb::DynamicValueType ValueObject::GetDynamicValueType() { 3213 ValueObject *with_dv_info = this; 3214 while (with_dv_info) { 3215 if (with_dv_info->HasDynamicValueTypeInfo()) 3216 return with_dv_info->GetDynamicValueTypeImpl(); 3217 with_dv_info = with_dv_info->m_parent; 3218 } 3219 return lldb::eNoDynamicValues; 3220 } 3221 3222 lldb::Format ValueObject::GetFormat() const { 3223 const ValueObject *with_fmt_info = this; 3224 while (with_fmt_info) { 3225 if (with_fmt_info->m_format != lldb::eFormatDefault) 3226 return with_fmt_info->m_format; 3227 with_fmt_info = with_fmt_info->m_parent; 3228 } 3229 return m_format; 3230 } 3231 3232 lldb::LanguageType ValueObject::GetPreferredDisplayLanguage() { 3233 lldb::LanguageType type = m_preferred_display_language; 3234 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) { 3235 if (GetRoot()) { 3236 if (GetRoot() == this) { 3237 if (StackFrameSP frame_sp = GetFrameSP()) { 3238 const SymbolContext &sc( 3239 frame_sp->GetSymbolContext(eSymbolContextCompUnit)); 3240 if (CompileUnit *cu = sc.comp_unit) 3241 type = cu->GetLanguage(); 3242 } 3243 } else { 3244 type = GetRoot()->GetPreferredDisplayLanguage(); 3245 } 3246 } 3247 } 3248 return (m_preferred_display_language = type); // only compute it once 3249 } 3250 3251 void ValueObject::SetPreferredDisplayLanguage(lldb::LanguageType lt) { 3252 m_preferred_display_language = lt; 3253 } 3254 3255 void ValueObject::SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType lt) { 3256 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 3257 SetPreferredDisplayLanguage(lt); 3258 } 3259 3260 bool ValueObject::CanProvideValue() { 3261 // we need to support invalid types as providers of values because some bare- 3262 // board debugging scenarios have no notion of types, but still manage to 3263 // have raw numeric values for things like registers. sigh. 3264 const CompilerType &type(GetCompilerType()); 3265 return (!type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue)); 3266 } 3267 3268 bool ValueObject::IsChecksumEmpty() { return m_value_checksum.empty(); } 3269 3270 ValueObjectSP ValueObject::Persist() { 3271 if (!UpdateValueIfNeeded()) 3272 return nullptr; 3273 3274 TargetSP target_sp(GetTargetSP()); 3275 if (!target_sp) 3276 return nullptr; 3277 3278 PersistentExpressionState *persistent_state = 3279 target_sp->GetPersistentExpressionStateForLanguage( 3280 GetPreferredDisplayLanguage()); 3281 3282 if (!persistent_state) 3283 return nullptr; 3284 3285 auto prefix = persistent_state->GetPersistentVariablePrefix(); 3286 ConstString name = 3287 persistent_state->GetNextPersistentVariableName(*target_sp, prefix); 3288 3289 ValueObjectSP const_result_sp = 3290 ValueObjectConstResult::Create(target_sp.get(), GetValue(), name); 3291 3292 ExpressionVariableSP clang_var_sp = 3293 persistent_state->CreatePersistentVariable(const_result_sp); 3294 clang_var_sp->m_live_sp = clang_var_sp->m_frozen_sp; 3295 clang_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference; 3296 3297 return clang_var_sp->GetValueObject(); 3298 } 3299 3300 bool ValueObject::IsSyntheticChildrenGenerated() { 3301 return m_is_synthetic_children_generated; 3302 } 3303 3304 void ValueObject::SetSyntheticChildrenGenerated(bool b) { 3305 m_is_synthetic_children_generated = b; 3306 } 3307 3308 uint64_t ValueObject::GetLanguageFlags() { return m_language_flags; } 3309 3310 void ValueObject::SetLanguageFlags(uint64_t flags) { m_language_flags = flags; } 3311 3312 ValueObjectManager::ValueObjectManager(lldb::ValueObjectSP in_valobj_sp, 3313 lldb::DynamicValueType use_dynamic, 3314 bool use_synthetic) : m_root_valobj_sp(), 3315 m_user_valobj_sp(), m_use_dynamic(use_dynamic), m_stop_id(UINT32_MAX), 3316 m_use_synthetic(use_synthetic) { 3317 if (!in_valobj_sp) 3318 return; 3319 // If the user passes in a value object that is dynamic or synthetic, then 3320 // water it down to the static type. 3321 m_root_valobj_sp = in_valobj_sp->GetQualifiedRepresentationIfAvailable(lldb::eNoDynamicValues, false); 3322 } 3323 3324 bool ValueObjectManager::IsValid() const { 3325 if (!m_root_valobj_sp) 3326 return false; 3327 lldb::TargetSP target_sp = GetTargetSP(); 3328 if (target_sp) 3329 return target_sp->IsValid(); 3330 return false; 3331 } 3332 3333 lldb::ValueObjectSP ValueObjectManager::GetSP() { 3334 lldb::ProcessSP process_sp = GetProcessSP(); 3335 if (!process_sp) 3336 return lldb::ValueObjectSP(); 3337 3338 const uint32_t current_stop_id = process_sp->GetLastNaturalStopID(); 3339 if (current_stop_id == m_stop_id) 3340 return m_user_valobj_sp; 3341 3342 m_stop_id = current_stop_id; 3343 3344 if (!m_root_valobj_sp) { 3345 m_user_valobj_sp.reset(); 3346 return m_root_valobj_sp; 3347 } 3348 3349 m_user_valobj_sp = m_root_valobj_sp; 3350 3351 if (m_use_dynamic != lldb::eNoDynamicValues) { 3352 lldb::ValueObjectSP dynamic_sp = m_user_valobj_sp->GetDynamicValue(m_use_dynamic); 3353 if (dynamic_sp) 3354 m_user_valobj_sp = dynamic_sp; 3355 } 3356 3357 if (m_use_synthetic) { 3358 lldb::ValueObjectSP synthetic_sp = m_user_valobj_sp->GetSyntheticValue(m_use_synthetic); 3359 if (synthetic_sp) 3360 m_user_valobj_sp = synthetic_sp; 3361 } 3362 3363 return m_user_valobj_sp; 3364 } 3365 3366 void ValueObjectManager::SetUseDynamic(lldb::DynamicValueType use_dynamic) { 3367 if (use_dynamic != m_use_dynamic) { 3368 m_use_dynamic = use_dynamic; 3369 m_user_valobj_sp.reset(); 3370 m_stop_id = UINT32_MAX; 3371 } 3372 } 3373 3374 void ValueObjectManager::SetUseSynthetic(bool use_synthetic) { 3375 if (m_use_synthetic != use_synthetic) { 3376 m_use_synthetic = use_synthetic; 3377 m_user_valobj_sp.reset(); 3378 m_stop_id = UINT32_MAX; 3379 } 3380 } 3381 3382 lldb::TargetSP ValueObjectManager::GetTargetSP() const { 3383 if (!m_root_valobj_sp) 3384 return m_root_valobj_sp->GetTargetSP(); 3385 return lldb::TargetSP(); 3386 } 3387 3388 lldb::ProcessSP ValueObjectManager::GetProcessSP() const { 3389 if (m_root_valobj_sp) 3390 return m_root_valobj_sp->GetProcessSP(); 3391 return lldb::ProcessSP(); 3392 } 3393 3394 lldb::ThreadSP ValueObjectManager::GetThreadSP() const { 3395 if (m_root_valobj_sp) 3396 return m_root_valobj_sp->GetThreadSP(); 3397 return lldb::ThreadSP(); 3398 } 3399 3400 lldb::StackFrameSP ValueObjectManager::GetFrameSP() const { 3401 if (m_root_valobj_sp) 3402 return m_root_valobj_sp->GetFrameSP(); 3403 return lldb::StackFrameSP(); 3404 } 3405 3406