1 //===-- ValueObject.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Core/ValueObject.h" 10 11 #include "lldb/Core/Address.h" 12 #include "lldb/Core/Module.h" 13 #include "lldb/Core/ValueObjectCast.h" 14 #include "lldb/Core/ValueObjectChild.h" 15 #include "lldb/Core/ValueObjectConstResult.h" 16 #include "lldb/Core/ValueObjectDynamicValue.h" 17 #include "lldb/Core/ValueObjectMemory.h" 18 #include "lldb/Core/ValueObjectSyntheticFilter.h" 19 #include "lldb/DataFormatters/DataVisualization.h" 20 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 21 #include "lldb/DataFormatters/FormatManager.h" 22 #include "lldb/DataFormatters/StringPrinter.h" 23 #include "lldb/DataFormatters/TypeFormat.h" 24 #include "lldb/DataFormatters/TypeSummary.h" 25 #include "lldb/DataFormatters/ValueObjectPrinter.h" 26 #include "lldb/Expression/ExpressionVariable.h" 27 #include "lldb/Host/Config.h" 28 #include "lldb/Symbol/CompileUnit.h" 29 #include "lldb/Symbol/CompilerType.h" 30 #include "lldb/Symbol/Declaration.h" 31 #include "lldb/Symbol/SymbolContext.h" 32 #include "lldb/Symbol/Type.h" 33 #include "lldb/Symbol/Variable.h" 34 #include "lldb/Target/ExecutionContext.h" 35 #include "lldb/Target/Language.h" 36 #include "lldb/Target/LanguageRuntime.h" 37 #include "lldb/Target/Process.h" 38 #include "lldb/Target/StackFrame.h" 39 #include "lldb/Target/Target.h" 40 #include "lldb/Target/Thread.h" 41 #include "lldb/Target/ThreadList.h" 42 #include "lldb/Utility/DataBuffer.h" 43 #include "lldb/Utility/DataBufferHeap.h" 44 #include "lldb/Utility/Flags.h" 45 #include "lldb/Utility/Log.h" 46 #include "lldb/Utility/Logging.h" 47 #include "lldb/Utility/Scalar.h" 48 #include "lldb/Utility/Stream.h" 49 #include "lldb/Utility/StreamString.h" 50 #include "lldb/lldb-private-types.h" 51 52 #include "llvm/Support/Compiler.h" 53 54 #include <algorithm> 55 #include <cstdint> 56 #include <cstdlib> 57 #include <memory> 58 #include <tuple> 59 60 #include <assert.h> 61 #include <inttypes.h> 62 #include <stdio.h> 63 #include <string.h> 64 65 namespace lldb_private { 66 class ExecutionContextScope; 67 } 68 namespace lldb_private { 69 class SymbolContextScope; 70 } 71 72 using namespace lldb; 73 using namespace lldb_private; 74 75 static user_id_t g_value_obj_uid = 0; 76 77 // ValueObject constructor 78 ValueObject::ValueObject(ValueObject &parent) 79 : UserID(++g_value_obj_uid), // Unique identifier for every value object 80 m_parent(&parent), m_root(nullptr), 81 m_update_point(parent.GetUpdatePoint()), m_name(), m_data(), m_value(), 82 m_error(), m_value_str(), m_old_value_str(), m_location_str(), 83 m_summary_str(), m_object_desc_str(), m_manager(parent.GetManager()), 84 m_children(), m_synthetic_children(), m_dynamic_value(nullptr), 85 m_synthetic_value(nullptr), m_deref_valobj(nullptr), 86 m_format(eFormatDefault), m_last_format(eFormatDefault), 87 m_last_format_mgr_revision(0), m_type_summary_sp(), m_type_format_sp(), 88 m_synthetic_children_sp(), m_user_id_of_forced_summary(), 89 m_address_type_of_ptr_or_ref_children(eAddressTypeInvalid), 90 m_value_checksum(), 91 m_preferred_display_language(lldb::eLanguageTypeUnknown), 92 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 93 m_children_count_valid(false), m_old_value_valid(false), 94 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 95 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 96 m_is_getting_summary(false), 97 m_did_calculate_complete_objc_class_type(false), 98 m_is_synthetic_children_generated( 99 parent.m_is_synthetic_children_generated) { 100 m_data.SetByteOrder(parent.GetDataExtractor().GetByteOrder()); 101 m_data.SetAddressByteSize(parent.GetDataExtractor().GetAddressByteSize()); 102 m_manager->ManageObject(this); 103 } 104 105 // ValueObject constructor 106 ValueObject::ValueObject(ExecutionContextScope *exe_scope, 107 ValueObjectManager &manager, 108 AddressType child_ptr_or_ref_addr_type) 109 : UserID(++g_value_obj_uid), // Unique identifier for every value object 110 m_parent(nullptr), m_root(nullptr), m_update_point(exe_scope), m_name(), 111 m_data(), m_value(), m_error(), m_value_str(), m_old_value_str(), 112 m_location_str(), m_summary_str(), m_object_desc_str(), 113 m_manager(&manager), m_children(), m_synthetic_children(), 114 m_dynamic_value(nullptr), m_synthetic_value(nullptr), 115 m_deref_valobj(nullptr), m_format(eFormatDefault), 116 m_last_format(eFormatDefault), m_last_format_mgr_revision(0), 117 m_type_summary_sp(), m_type_format_sp(), m_synthetic_children_sp(), 118 m_user_id_of_forced_summary(), 119 m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type), 120 m_value_checksum(), 121 m_preferred_display_language(lldb::eLanguageTypeUnknown), 122 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 123 m_children_count_valid(false), m_old_value_valid(false), 124 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 125 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 126 m_is_getting_summary(false), 127 m_did_calculate_complete_objc_class_type(false), 128 m_is_synthetic_children_generated(false) { 129 if (exe_scope) { 130 TargetSP target_sp(exe_scope->CalculateTarget()); 131 if (target_sp) { 132 const ArchSpec &arch = target_sp->GetArchitecture(); 133 m_data.SetByteOrder(arch.GetByteOrder()); 134 m_data.SetAddressByteSize(arch.GetAddressByteSize()); 135 } 136 } 137 m_manager->ManageObject(this); 138 } 139 140 // Destructor 141 ValueObject::~ValueObject() {} 142 143 bool ValueObject::UpdateValueIfNeeded(bool update_format) { 144 145 bool did_change_formats = false; 146 147 if (update_format) 148 did_change_formats = UpdateFormatsIfNeeded(); 149 150 // If this is a constant value, then our success is predicated on whether we 151 // have an error or not 152 if (GetIsConstant()) { 153 // if you are constant, things might still have changed behind your back 154 // (e.g. you are a frozen object and things have changed deeper than you 155 // cared to freeze-dry yourself) in this case, your value has not changed, 156 // but "computed" entries might have, so you might now have a different 157 // summary, or a different object description. clear these so we will 158 // recompute them 159 if (update_format && !did_change_formats) 160 ClearUserVisibleData(eClearUserVisibleDataItemsSummary | 161 eClearUserVisibleDataItemsDescription); 162 return m_error.Success(); 163 } 164 165 bool first_update = IsChecksumEmpty(); 166 167 if (NeedsUpdating()) { 168 m_update_point.SetUpdated(); 169 170 // Save the old value using swap to avoid a string copy which also will 171 // clear our m_value_str 172 if (m_value_str.empty()) { 173 m_old_value_valid = false; 174 } else { 175 m_old_value_valid = true; 176 m_old_value_str.swap(m_value_str); 177 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 178 } 179 180 ClearUserVisibleData(); 181 182 if (IsInScope()) { 183 const bool value_was_valid = GetValueIsValid(); 184 SetValueDidChange(false); 185 186 m_error.Clear(); 187 188 // Call the pure virtual function to update the value 189 190 bool need_compare_checksums = false; 191 llvm::SmallVector<uint8_t, 16> old_checksum; 192 193 if (!first_update && CanProvideValue()) { 194 need_compare_checksums = true; 195 old_checksum.resize(m_value_checksum.size()); 196 std::copy(m_value_checksum.begin(), m_value_checksum.end(), 197 old_checksum.begin()); 198 } 199 200 bool success = UpdateValue(); 201 202 SetValueIsValid(success); 203 204 if (success) { 205 UpdateChildrenAddressType(); 206 const uint64_t max_checksum_size = 128; 207 m_data.Checksum(m_value_checksum, max_checksum_size); 208 } else { 209 need_compare_checksums = false; 210 m_value_checksum.clear(); 211 } 212 213 assert(!need_compare_checksums || 214 (!old_checksum.empty() && !m_value_checksum.empty())); 215 216 if (first_update) 217 SetValueDidChange(false); 218 else if (!m_value_did_change && !success) { 219 // The value wasn't gotten successfully, so we mark this as changed if 220 // the value used to be valid and now isn't 221 SetValueDidChange(value_was_valid); 222 } else if (need_compare_checksums) { 223 SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0], 224 m_value_checksum.size())); 225 } 226 227 } else { 228 m_error.SetErrorString("out of scope"); 229 } 230 } 231 return m_error.Success(); 232 } 233 234 bool ValueObject::UpdateFormatsIfNeeded() { 235 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_DATAFORMATTERS)); 236 LLDB_LOGF(log, 237 "[%s %p] checking for FormatManager revisions. ValueObject " 238 "rev: %d - Global rev: %d", 239 GetName().GetCString(), static_cast<void *>(this), 240 m_last_format_mgr_revision, 241 DataVisualization::GetCurrentRevision()); 242 243 bool any_change = false; 244 245 if ((m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) { 246 m_last_format_mgr_revision = DataVisualization::GetCurrentRevision(); 247 any_change = true; 248 249 SetValueFormat(DataVisualization::GetFormat(*this, eNoDynamicValues)); 250 SetSummaryFormat( 251 DataVisualization::GetSummaryFormat(*this, GetDynamicValueType())); 252 #if LLDB_ENABLE_PYTHON 253 SetSyntheticChildren( 254 DataVisualization::GetSyntheticChildren(*this, GetDynamicValueType())); 255 #endif 256 } 257 258 return any_change; 259 } 260 261 void ValueObject::SetNeedsUpdate() { 262 m_update_point.SetNeedsUpdate(); 263 // We have to clear the value string here so ConstResult children will notice 264 // if their values are changed by hand (i.e. with SetValueAsCString). 265 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 266 } 267 268 void ValueObject::ClearDynamicTypeInformation() { 269 m_children_count_valid = false; 270 m_did_calculate_complete_objc_class_type = false; 271 m_last_format_mgr_revision = 0; 272 m_override_type = CompilerType(); 273 SetValueFormat(lldb::TypeFormatImplSP()); 274 SetSummaryFormat(lldb::TypeSummaryImplSP()); 275 SetSyntheticChildren(lldb::SyntheticChildrenSP()); 276 } 277 278 CompilerType ValueObject::MaybeCalculateCompleteType() { 279 CompilerType compiler_type(GetCompilerTypeImpl()); 280 281 if (m_did_calculate_complete_objc_class_type) { 282 if (m_override_type.IsValid()) 283 return m_override_type; 284 else 285 return compiler_type; 286 } 287 288 m_did_calculate_complete_objc_class_type = true; 289 290 ProcessSP process_sp( 291 GetUpdatePoint().GetExecutionContextRef().GetProcessSP()); 292 293 if (!process_sp) 294 return compiler_type; 295 296 if (auto *runtime = 297 process_sp->GetLanguageRuntime(GetObjectRuntimeLanguage())) { 298 if (llvm::Optional<CompilerType> complete_type = 299 runtime->GetRuntimeType(compiler_type)) { 300 m_override_type = complete_type.getValue(); 301 if (m_override_type.IsValid()) 302 return m_override_type; 303 } 304 } 305 return compiler_type; 306 } 307 308 CompilerType ValueObject::GetCompilerType() { 309 return MaybeCalculateCompleteType(); 310 } 311 312 TypeImpl ValueObject::GetTypeImpl() { return TypeImpl(GetCompilerType()); } 313 314 DataExtractor &ValueObject::GetDataExtractor() { 315 UpdateValueIfNeeded(false); 316 return m_data; 317 } 318 319 const Status &ValueObject::GetError() { 320 UpdateValueIfNeeded(false); 321 return m_error; 322 } 323 324 ConstString ValueObject::GetName() const { return m_name; } 325 326 const char *ValueObject::GetLocationAsCString() { 327 return GetLocationAsCStringImpl(m_value, m_data); 328 } 329 330 const char *ValueObject::GetLocationAsCStringImpl(const Value &value, 331 const DataExtractor &data) { 332 if (UpdateValueIfNeeded(false)) { 333 if (m_location_str.empty()) { 334 StreamString sstr; 335 336 Value::ValueType value_type = value.GetValueType(); 337 338 switch (value_type) { 339 case Value::ValueType::Invalid: 340 m_location_str = "invalid"; 341 break; 342 case Value::ValueType::Scalar: 343 if (value.GetContextType() == Value::ContextType::RegisterInfo) { 344 RegisterInfo *reg_info = value.GetRegisterInfo(); 345 if (reg_info) { 346 if (reg_info->name) 347 m_location_str = reg_info->name; 348 else if (reg_info->alt_name) 349 m_location_str = reg_info->alt_name; 350 if (m_location_str.empty()) 351 m_location_str = (reg_info->encoding == lldb::eEncodingVector) 352 ? "vector" 353 : "scalar"; 354 } 355 } 356 if (m_location_str.empty()) 357 m_location_str = "scalar"; 358 break; 359 360 case Value::ValueType::LoadAddress: 361 case Value::ValueType::FileAddress: 362 case Value::ValueType::HostAddress: { 363 uint32_t addr_nibble_size = data.GetAddressByteSize() * 2; 364 sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, 365 value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS)); 366 m_location_str = std::string(sstr.GetString()); 367 } break; 368 } 369 } 370 } 371 return m_location_str.c_str(); 372 } 373 374 Value &ValueObject::GetValue() { return m_value; } 375 376 const Value &ValueObject::GetValue() const { return m_value; } 377 378 bool ValueObject::ResolveValue(Scalar &scalar) { 379 if (UpdateValueIfNeeded( 380 false)) // make sure that you are up to date before returning anything 381 { 382 ExecutionContext exe_ctx(GetExecutionContextRef()); 383 Value tmp_value(m_value); 384 scalar = tmp_value.ResolveValue(&exe_ctx); 385 if (scalar.IsValid()) { 386 const uint32_t bitfield_bit_size = GetBitfieldBitSize(); 387 if (bitfield_bit_size) 388 return scalar.ExtractBitfield(bitfield_bit_size, 389 GetBitfieldBitOffset()); 390 return true; 391 } 392 } 393 return false; 394 } 395 396 bool ValueObject::IsLogicalTrue(Status &error) { 397 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 398 LazyBool is_logical_true = language->IsLogicalTrue(*this, error); 399 switch (is_logical_true) { 400 case eLazyBoolYes: 401 case eLazyBoolNo: 402 return (is_logical_true == true); 403 case eLazyBoolCalculate: 404 break; 405 } 406 } 407 408 Scalar scalar_value; 409 410 if (!ResolveValue(scalar_value)) { 411 error.SetErrorString("failed to get a scalar result"); 412 return false; 413 } 414 415 bool ret; 416 ret = scalar_value.ULongLong(1) != 0; 417 error.Clear(); 418 return ret; 419 } 420 421 bool ValueObject::GetValueIsValid() const { return m_value_is_valid; } 422 423 void ValueObject::SetValueIsValid(bool b) { m_value_is_valid = b; } 424 425 bool ValueObject::GetValueDidChange() { return m_value_did_change; } 426 427 void ValueObject::SetValueDidChange(bool value_changed) { 428 m_value_did_change = value_changed; 429 } 430 431 ValueObjectSP ValueObject::GetChildAtIndex(size_t idx, bool can_create) { 432 ValueObjectSP child_sp; 433 // We may need to update our value if we are dynamic 434 if (IsPossibleDynamicType()) 435 UpdateValueIfNeeded(false); 436 if (idx < GetNumChildren()) { 437 // Check if we have already made the child value object? 438 if (can_create && !m_children.HasChildAtIndex(idx)) { 439 // No we haven't created the child at this index, so lets have our 440 // subclass do it and cache the result for quick future access. 441 m_children.SetChildAtIndex(idx, CreateChildAtIndex(idx, false, 0)); 442 } 443 444 ValueObject *child = m_children.GetChildAtIndex(idx); 445 if (child != nullptr) 446 return child->GetSP(); 447 } 448 return child_sp; 449 } 450 451 lldb::ValueObjectSP 452 ValueObject::GetChildAtIndexPath(llvm::ArrayRef<size_t> idxs, 453 size_t *index_of_error) { 454 if (idxs.size() == 0) 455 return GetSP(); 456 ValueObjectSP root(GetSP()); 457 for (size_t idx : idxs) { 458 root = root->GetChildAtIndex(idx, true); 459 if (!root) { 460 if (index_of_error) 461 *index_of_error = idx; 462 return root; 463 } 464 } 465 return root; 466 } 467 468 lldb::ValueObjectSP ValueObject::GetChildAtIndexPath( 469 llvm::ArrayRef<std::pair<size_t, bool>> idxs, size_t *index_of_error) { 470 if (idxs.size() == 0) 471 return GetSP(); 472 ValueObjectSP root(GetSP()); 473 for (std::pair<size_t, bool> idx : idxs) { 474 root = root->GetChildAtIndex(idx.first, idx.second); 475 if (!root) { 476 if (index_of_error) 477 *index_of_error = idx.first; 478 return root; 479 } 480 } 481 return root; 482 } 483 484 lldb::ValueObjectSP 485 ValueObject::GetChildAtNamePath(llvm::ArrayRef<ConstString> names, 486 ConstString *name_of_error) { 487 if (names.size() == 0) 488 return GetSP(); 489 ValueObjectSP root(GetSP()); 490 for (ConstString name : names) { 491 root = root->GetChildMemberWithName(name, true); 492 if (!root) { 493 if (name_of_error) 494 *name_of_error = name; 495 return root; 496 } 497 } 498 return root; 499 } 500 501 lldb::ValueObjectSP ValueObject::GetChildAtNamePath( 502 llvm::ArrayRef<std::pair<ConstString, bool>> names, 503 ConstString *name_of_error) { 504 if (names.size() == 0) 505 return GetSP(); 506 ValueObjectSP root(GetSP()); 507 for (std::pair<ConstString, bool> name : names) { 508 root = root->GetChildMemberWithName(name.first, name.second); 509 if (!root) { 510 if (name_of_error) 511 *name_of_error = name.first; 512 return root; 513 } 514 } 515 return root; 516 } 517 518 size_t ValueObject::GetIndexOfChildWithName(ConstString name) { 519 bool omit_empty_base_classes = true; 520 return GetCompilerType().GetIndexOfChildWithName(name.GetCString(), 521 omit_empty_base_classes); 522 } 523 524 ValueObjectSP ValueObject::GetChildMemberWithName(ConstString name, 525 bool can_create) { 526 // We may need to update our value if we are dynamic. 527 if (IsPossibleDynamicType()) 528 UpdateValueIfNeeded(false); 529 530 // When getting a child by name, it could be buried inside some base classes 531 // (which really aren't part of the expression path), so we need a vector of 532 // indexes that can get us down to the correct child. 533 std::vector<uint32_t> child_indexes; 534 bool omit_empty_base_classes = true; 535 536 if (!GetCompilerType().IsValid()) 537 return ValueObjectSP(); 538 539 const size_t num_child_indexes = 540 GetCompilerType().GetIndexOfChildMemberWithName( 541 name.GetCString(), omit_empty_base_classes, child_indexes); 542 if (num_child_indexes == 0) 543 return nullptr; 544 545 ValueObjectSP child_sp = GetSP(); 546 for (uint32_t idx : child_indexes) 547 if (child_sp) 548 child_sp = child_sp->GetChildAtIndex(idx, can_create); 549 return child_sp; 550 } 551 552 size_t ValueObject::GetNumChildren(uint32_t max) { 553 UpdateValueIfNeeded(); 554 555 if (max < UINT32_MAX) { 556 if (m_children_count_valid) { 557 size_t children_count = m_children.GetChildrenCount(); 558 return children_count <= max ? children_count : max; 559 } else 560 return CalculateNumChildren(max); 561 } 562 563 if (!m_children_count_valid) { 564 SetNumChildren(CalculateNumChildren()); 565 } 566 return m_children.GetChildrenCount(); 567 } 568 569 bool ValueObject::MightHaveChildren() { 570 bool has_children = false; 571 const uint32_t type_info = GetTypeInfo(); 572 if (type_info) { 573 if (type_info & (eTypeHasChildren | eTypeIsPointer | eTypeIsReference)) 574 has_children = true; 575 } else { 576 has_children = GetNumChildren() > 0; 577 } 578 return has_children; 579 } 580 581 // Should only be called by ValueObject::GetNumChildren() 582 void ValueObject::SetNumChildren(size_t num_children) { 583 m_children_count_valid = true; 584 m_children.SetChildrenCount(num_children); 585 } 586 587 void ValueObject::SetName(ConstString name) { m_name = name; } 588 589 ValueObject *ValueObject::CreateChildAtIndex(size_t idx, 590 bool synthetic_array_member, 591 int32_t synthetic_index) { 592 ValueObject *valobj = nullptr; 593 594 bool omit_empty_base_classes = true; 595 bool ignore_array_bounds = synthetic_array_member; 596 std::string child_name_str; 597 uint32_t child_byte_size = 0; 598 int32_t child_byte_offset = 0; 599 uint32_t child_bitfield_bit_size = 0; 600 uint32_t child_bitfield_bit_offset = 0; 601 bool child_is_base_class = false; 602 bool child_is_deref_of_parent = false; 603 uint64_t language_flags = 0; 604 605 const bool transparent_pointers = !synthetic_array_member; 606 CompilerType child_compiler_type; 607 608 ExecutionContext exe_ctx(GetExecutionContextRef()); 609 610 child_compiler_type = GetCompilerType().GetChildCompilerTypeAtIndex( 611 &exe_ctx, idx, transparent_pointers, omit_empty_base_classes, 612 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 613 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 614 child_is_deref_of_parent, this, language_flags); 615 if (child_compiler_type) { 616 if (synthetic_index) 617 child_byte_offset += child_byte_size * synthetic_index; 618 619 ConstString child_name; 620 if (!child_name_str.empty()) 621 child_name.SetCString(child_name_str.c_str()); 622 623 valobj = new ValueObjectChild( 624 *this, child_compiler_type, child_name, child_byte_size, 625 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 626 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 627 language_flags); 628 } 629 630 // In case of an incomplete type, try to use the ValueObject's 631 // synthetic value to create the child ValueObject. 632 if (!valobj && synthetic_array_member) { 633 if (ValueObjectSP synth_valobj_sp = GetSyntheticValue()) { 634 valobj = synth_valobj_sp 635 ->GetChildAtIndex(synthetic_index, synthetic_array_member) 636 .get(); 637 } 638 } 639 640 return valobj; 641 } 642 643 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 644 std::string &destination, 645 lldb::LanguageType lang) { 646 return GetSummaryAsCString(summary_ptr, destination, 647 TypeSummaryOptions().SetLanguage(lang)); 648 } 649 650 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 651 std::string &destination, 652 const TypeSummaryOptions &options) { 653 destination.clear(); 654 655 // ideally we would like to bail out if passing NULL, but if we do so we end 656 // up not providing the summary for function pointers anymore 657 if (/*summary_ptr == NULL ||*/ m_is_getting_summary) 658 return false; 659 660 m_is_getting_summary = true; 661 662 TypeSummaryOptions actual_options(options); 663 664 if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown) 665 actual_options.SetLanguage(GetPreferredDisplayLanguage()); 666 667 // this is a hot path in code and we prefer to avoid setting this string all 668 // too often also clearing out other information that we might care to see in 669 // a crash log. might be useful in very specific situations though. 670 /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. 671 Summary provider's description is %s", 672 GetTypeName().GetCString(), 673 GetName().GetCString(), 674 summary_ptr->GetDescription().c_str());*/ 675 676 if (UpdateValueIfNeeded(false) && summary_ptr) { 677 if (HasSyntheticValue()) 678 m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on 679 // the synthetic children being 680 // up-to-date (e.g. ${svar%#}) 681 summary_ptr->FormatObject(this, destination, actual_options); 682 } 683 m_is_getting_summary = false; 684 return !destination.empty(); 685 } 686 687 const char *ValueObject::GetSummaryAsCString(lldb::LanguageType lang) { 688 if (UpdateValueIfNeeded(true) && m_summary_str.empty()) { 689 TypeSummaryOptions summary_options; 690 summary_options.SetLanguage(lang); 691 GetSummaryAsCString(GetSummaryFormat().get(), m_summary_str, 692 summary_options); 693 } 694 if (m_summary_str.empty()) 695 return nullptr; 696 return m_summary_str.c_str(); 697 } 698 699 bool ValueObject::GetSummaryAsCString(std::string &destination, 700 const TypeSummaryOptions &options) { 701 return GetSummaryAsCString(GetSummaryFormat().get(), destination, options); 702 } 703 704 bool ValueObject::IsCStringContainer(bool check_pointer) { 705 CompilerType pointee_or_element_compiler_type; 706 const Flags type_flags(GetTypeInfo(&pointee_or_element_compiler_type)); 707 bool is_char_arr_ptr(type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 708 pointee_or_element_compiler_type.IsCharType()); 709 if (!is_char_arr_ptr) 710 return false; 711 if (!check_pointer) 712 return true; 713 if (type_flags.Test(eTypeIsArray)) 714 return true; 715 addr_t cstr_address = LLDB_INVALID_ADDRESS; 716 AddressType cstr_address_type = eAddressTypeInvalid; 717 cstr_address = GetPointerValue(&cstr_address_type); 718 return (cstr_address != LLDB_INVALID_ADDRESS); 719 } 720 721 size_t ValueObject::GetPointeeData(DataExtractor &data, uint32_t item_idx, 722 uint32_t item_count) { 723 CompilerType pointee_or_element_compiler_type; 724 const uint32_t type_info = GetTypeInfo(&pointee_or_element_compiler_type); 725 const bool is_pointer_type = type_info & eTypeIsPointer; 726 const bool is_array_type = type_info & eTypeIsArray; 727 if (!(is_pointer_type || is_array_type)) 728 return 0; 729 730 if (item_count == 0) 731 return 0; 732 733 ExecutionContext exe_ctx(GetExecutionContextRef()); 734 735 llvm::Optional<uint64_t> item_type_size = 736 pointee_or_element_compiler_type.GetByteSize( 737 exe_ctx.GetBestExecutionContextScope()); 738 if (!item_type_size) 739 return 0; 740 const uint64_t bytes = item_count * *item_type_size; 741 const uint64_t offset = item_idx * *item_type_size; 742 743 if (item_idx == 0 && item_count == 1) // simply a deref 744 { 745 if (is_pointer_type) { 746 Status error; 747 ValueObjectSP pointee_sp = Dereference(error); 748 if (error.Fail() || pointee_sp.get() == nullptr) 749 return 0; 750 return pointee_sp->GetData(data, error); 751 } else { 752 ValueObjectSP child_sp = GetChildAtIndex(0, true); 753 if (child_sp.get() == nullptr) 754 return 0; 755 Status error; 756 return child_sp->GetData(data, error); 757 } 758 return true; 759 } else /* (items > 1) */ 760 { 761 Status error; 762 lldb_private::DataBufferHeap *heap_buf_ptr = nullptr; 763 lldb::DataBufferSP data_sp(heap_buf_ptr = 764 new lldb_private::DataBufferHeap()); 765 766 AddressType addr_type; 767 lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type) 768 : GetAddressOf(true, &addr_type); 769 770 switch (addr_type) { 771 case eAddressTypeFile: { 772 ModuleSP module_sp(GetModule()); 773 if (module_sp) { 774 addr = addr + offset; 775 Address so_addr; 776 module_sp->ResolveFileAddress(addr, so_addr); 777 ExecutionContext exe_ctx(GetExecutionContextRef()); 778 Target *target = exe_ctx.GetTargetPtr(); 779 if (target) { 780 heap_buf_ptr->SetByteSize(bytes); 781 size_t bytes_read = target->ReadMemory( 782 so_addr, false, heap_buf_ptr->GetBytes(), bytes, error); 783 if (error.Success()) { 784 data.SetData(data_sp); 785 return bytes_read; 786 } 787 } 788 } 789 } break; 790 case eAddressTypeLoad: { 791 ExecutionContext exe_ctx(GetExecutionContextRef()); 792 Process *process = exe_ctx.GetProcessPtr(); 793 if (process) { 794 heap_buf_ptr->SetByteSize(bytes); 795 size_t bytes_read = process->ReadMemory( 796 addr + offset, heap_buf_ptr->GetBytes(), bytes, error); 797 if (error.Success() || bytes_read > 0) { 798 data.SetData(data_sp); 799 return bytes_read; 800 } 801 } 802 } break; 803 case eAddressTypeHost: { 804 auto max_bytes = 805 GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope()); 806 if (max_bytes && *max_bytes > offset) { 807 size_t bytes_read = std::min<uint64_t>(*max_bytes - offset, bytes); 808 addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 809 if (addr == 0 || addr == LLDB_INVALID_ADDRESS) 810 break; 811 heap_buf_ptr->CopyData((uint8_t *)(addr + offset), bytes_read); 812 data.SetData(data_sp); 813 return bytes_read; 814 } 815 } break; 816 case eAddressTypeInvalid: 817 break; 818 } 819 } 820 return 0; 821 } 822 823 uint64_t ValueObject::GetData(DataExtractor &data, Status &error) { 824 UpdateValueIfNeeded(false); 825 ExecutionContext exe_ctx(GetExecutionContextRef()); 826 error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get()); 827 if (error.Fail()) { 828 if (m_data.GetByteSize()) { 829 data = m_data; 830 error.Clear(); 831 return data.GetByteSize(); 832 } else { 833 return 0; 834 } 835 } 836 data.SetAddressByteSize(m_data.GetAddressByteSize()); 837 data.SetByteOrder(m_data.GetByteOrder()); 838 return data.GetByteSize(); 839 } 840 841 bool ValueObject::SetData(DataExtractor &data, Status &error) { 842 error.Clear(); 843 // Make sure our value is up to date first so that our location and location 844 // type is valid. 845 if (!UpdateValueIfNeeded(false)) { 846 error.SetErrorString("unable to read value"); 847 return false; 848 } 849 850 uint64_t count = 0; 851 const Encoding encoding = GetCompilerType().GetEncoding(count); 852 853 const size_t byte_size = GetByteSize().getValueOr(0); 854 855 Value::ValueType value_type = m_value.GetValueType(); 856 857 switch (value_type) { 858 case Value::ValueType::Invalid: 859 error.SetErrorString("invalid location"); 860 return false; 861 case Value::ValueType::Scalar: { 862 Status set_error = 863 m_value.GetScalar().SetValueFromData(data, encoding, byte_size); 864 865 if (!set_error.Success()) { 866 error.SetErrorStringWithFormat("unable to set scalar value: %s", 867 set_error.AsCString()); 868 return false; 869 } 870 } break; 871 case Value::ValueType::LoadAddress: { 872 // If it is a load address, then the scalar value is the storage location 873 // of the data, and we have to shove this value down to that load location. 874 ExecutionContext exe_ctx(GetExecutionContextRef()); 875 Process *process = exe_ctx.GetProcessPtr(); 876 if (process) { 877 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 878 size_t bytes_written = process->WriteMemory( 879 target_addr, data.GetDataStart(), byte_size, error); 880 if (!error.Success()) 881 return false; 882 if (bytes_written != byte_size) { 883 error.SetErrorString("unable to write value to memory"); 884 return false; 885 } 886 } 887 } break; 888 case Value::ValueType::HostAddress: { 889 // If it is a host address, then we stuff the scalar as a DataBuffer into 890 // the Value's data. 891 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 892 m_data.SetData(buffer_sp, 0); 893 data.CopyByteOrderedData(0, byte_size, 894 const_cast<uint8_t *>(m_data.GetDataStart()), 895 byte_size, m_data.GetByteOrder()); 896 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 897 } break; 898 case Value::ValueType::FileAddress: 899 break; 900 } 901 902 // If we have reached this point, then we have successfully changed the 903 // value. 904 SetNeedsUpdate(); 905 return true; 906 } 907 908 static bool CopyStringDataToBufferSP(const StreamString &source, 909 lldb::DataBufferSP &destination) { 910 destination = std::make_shared<DataBufferHeap>(source.GetSize() + 1, 0); 911 memcpy(destination->GetBytes(), source.GetString().data(), source.GetSize()); 912 return true; 913 } 914 915 std::pair<size_t, bool> 916 ValueObject::ReadPointedString(lldb::DataBufferSP &buffer_sp, Status &error, 917 uint32_t max_length, bool honor_array, 918 Format item_format) { 919 bool was_capped = false; 920 StreamString s; 921 ExecutionContext exe_ctx(GetExecutionContextRef()); 922 Target *target = exe_ctx.GetTargetPtr(); 923 924 if (!target) { 925 s << "<no target to read from>"; 926 error.SetErrorString("no target to read from"); 927 CopyStringDataToBufferSP(s, buffer_sp); 928 return {0, was_capped}; 929 } 930 931 if (max_length == 0) 932 max_length = target->GetMaximumSizeOfStringSummary(); 933 934 size_t bytes_read = 0; 935 size_t total_bytes_read = 0; 936 937 CompilerType compiler_type = GetCompilerType(); 938 CompilerType elem_or_pointee_compiler_type; 939 const Flags type_flags(GetTypeInfo(&elem_or_pointee_compiler_type)); 940 if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 941 elem_or_pointee_compiler_type.IsCharType()) { 942 addr_t cstr_address = LLDB_INVALID_ADDRESS; 943 AddressType cstr_address_type = eAddressTypeInvalid; 944 945 size_t cstr_len = 0; 946 bool capped_data = false; 947 const bool is_array = type_flags.Test(eTypeIsArray); 948 if (is_array) { 949 // We have an array 950 uint64_t array_size = 0; 951 if (compiler_type.IsArrayType(nullptr, &array_size, nullptr)) { 952 cstr_len = array_size; 953 if (cstr_len > max_length) { 954 capped_data = true; 955 cstr_len = max_length; 956 } 957 } 958 cstr_address = GetAddressOf(true, &cstr_address_type); 959 } else { 960 // We have a pointer 961 cstr_address = GetPointerValue(&cstr_address_type); 962 } 963 964 if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) { 965 if (cstr_address_type == eAddressTypeHost && is_array) { 966 const char *cstr = GetDataExtractor().PeekCStr(0); 967 if (cstr == nullptr) { 968 s << "<invalid address>"; 969 error.SetErrorString("invalid address"); 970 CopyStringDataToBufferSP(s, buffer_sp); 971 return {0, was_capped}; 972 } 973 buffer_sp = std::make_shared<DataBufferHeap>(cstr_len, 0); 974 memcpy(buffer_sp->GetBytes(), cstr, cstr_len); 975 return {cstr_len, was_capped}; 976 } else { 977 s << "<invalid address>"; 978 error.SetErrorString("invalid address"); 979 CopyStringDataToBufferSP(s, buffer_sp); 980 return {0, was_capped}; 981 } 982 } 983 984 Address cstr_so_addr(cstr_address); 985 DataExtractor data; 986 if (cstr_len > 0 && honor_array) { 987 // I am using GetPointeeData() here to abstract the fact that some 988 // ValueObjects are actually frozen pointers in the host but the pointed- 989 // to data lives in the debuggee, and GetPointeeData() automatically 990 // takes care of this 991 GetPointeeData(data, 0, cstr_len); 992 993 if ((bytes_read = data.GetByteSize()) > 0) { 994 total_bytes_read = bytes_read; 995 for (size_t offset = 0; offset < bytes_read; offset++) 996 s.Printf("%c", *data.PeekData(offset, 1)); 997 if (capped_data) 998 was_capped = true; 999 } 1000 } else { 1001 cstr_len = max_length; 1002 const size_t k_max_buf_size = 64; 1003 1004 size_t offset = 0; 1005 1006 int cstr_len_displayed = -1; 1007 bool capped_cstr = false; 1008 // I am using GetPointeeData() here to abstract the fact that some 1009 // ValueObjects are actually frozen pointers in the host but the pointed- 1010 // to data lives in the debuggee, and GetPointeeData() automatically 1011 // takes care of this 1012 while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) { 1013 total_bytes_read += bytes_read; 1014 const char *cstr = data.PeekCStr(0); 1015 size_t len = strnlen(cstr, k_max_buf_size); 1016 if (cstr_len_displayed < 0) 1017 cstr_len_displayed = len; 1018 1019 if (len == 0) 1020 break; 1021 cstr_len_displayed += len; 1022 if (len > bytes_read) 1023 len = bytes_read; 1024 if (len > cstr_len) 1025 len = cstr_len; 1026 1027 for (size_t offset = 0; offset < bytes_read; offset++) 1028 s.Printf("%c", *data.PeekData(offset, 1)); 1029 1030 if (len < k_max_buf_size) 1031 break; 1032 1033 if (len >= cstr_len) { 1034 capped_cstr = true; 1035 break; 1036 } 1037 1038 cstr_len -= len; 1039 offset += len; 1040 } 1041 1042 if (cstr_len_displayed >= 0) { 1043 if (capped_cstr) 1044 was_capped = true; 1045 } 1046 } 1047 } else { 1048 error.SetErrorString("not a string object"); 1049 s << "<not a string object>"; 1050 } 1051 CopyStringDataToBufferSP(s, buffer_sp); 1052 return {total_bytes_read, was_capped}; 1053 } 1054 1055 const char *ValueObject::GetObjectDescription() { 1056 if (!UpdateValueIfNeeded(true)) 1057 return nullptr; 1058 1059 // Return cached value. 1060 if (!m_object_desc_str.empty()) 1061 return m_object_desc_str.c_str(); 1062 1063 ExecutionContext exe_ctx(GetExecutionContextRef()); 1064 Process *process = exe_ctx.GetProcessPtr(); 1065 if (!process) 1066 return nullptr; 1067 1068 // Returns the object description produced by one language runtime. 1069 auto get_object_description = [&](LanguageType language) -> const char * { 1070 if (LanguageRuntime *runtime = process->GetLanguageRuntime(language)) { 1071 StreamString s; 1072 if (runtime->GetObjectDescription(s, *this)) { 1073 m_object_desc_str.append(std::string(s.GetString())); 1074 return m_object_desc_str.c_str(); 1075 } 1076 } 1077 return nullptr; 1078 }; 1079 1080 // Try the native language runtime first. 1081 LanguageType native_language = GetObjectRuntimeLanguage(); 1082 if (const char *desc = get_object_description(native_language)) 1083 return desc; 1084 1085 // Try the Objective-C language runtime. This fallback is necessary 1086 // for Objective-C++ and mixed Objective-C / C++ programs. 1087 if (Language::LanguageIsCFamily(native_language)) 1088 return get_object_description(eLanguageTypeObjC); 1089 return nullptr; 1090 } 1091 1092 bool ValueObject::GetValueAsCString(const lldb_private::TypeFormatImpl &format, 1093 std::string &destination) { 1094 if (UpdateValueIfNeeded(false)) 1095 return format.FormatObject(this, destination); 1096 else 1097 return false; 1098 } 1099 1100 bool ValueObject::GetValueAsCString(lldb::Format format, 1101 std::string &destination) { 1102 return GetValueAsCString(TypeFormatImpl_Format(format), destination); 1103 } 1104 1105 const char *ValueObject::GetValueAsCString() { 1106 if (UpdateValueIfNeeded(true)) { 1107 lldb::TypeFormatImplSP format_sp; 1108 lldb::Format my_format = GetFormat(); 1109 if (my_format == lldb::eFormatDefault) { 1110 if (m_type_format_sp) 1111 format_sp = m_type_format_sp; 1112 else { 1113 if (m_is_bitfield_for_scalar) 1114 my_format = eFormatUnsigned; 1115 else { 1116 if (m_value.GetContextType() == Value::ContextType::RegisterInfo) { 1117 const RegisterInfo *reg_info = m_value.GetRegisterInfo(); 1118 if (reg_info) 1119 my_format = reg_info->format; 1120 } else { 1121 my_format = GetValue().GetCompilerType().GetFormat(); 1122 } 1123 } 1124 } 1125 } 1126 if (my_format != m_last_format || m_value_str.empty()) { 1127 m_last_format = my_format; 1128 if (!format_sp) 1129 format_sp = std::make_shared<TypeFormatImpl_Format>(my_format); 1130 if (GetValueAsCString(*format_sp.get(), m_value_str)) { 1131 if (!m_value_did_change && m_old_value_valid) { 1132 // The value was gotten successfully, so we consider the value as 1133 // changed if the value string differs 1134 SetValueDidChange(m_old_value_str != m_value_str); 1135 } 1136 } 1137 } 1138 } 1139 if (m_value_str.empty()) 1140 return nullptr; 1141 return m_value_str.c_str(); 1142 } 1143 1144 // if > 8bytes, 0 is returned. this method should mostly be used to read 1145 // address values out of pointers 1146 uint64_t ValueObject::GetValueAsUnsigned(uint64_t fail_value, bool *success) { 1147 // If our byte size is zero this is an aggregate type that has children 1148 if (CanProvideValue()) { 1149 Scalar scalar; 1150 if (ResolveValue(scalar)) { 1151 if (success) 1152 *success = true; 1153 scalar.MakeUnsigned(); 1154 return scalar.ULongLong(fail_value); 1155 } 1156 // fallthrough, otherwise... 1157 } 1158 1159 if (success) 1160 *success = false; 1161 return fail_value; 1162 } 1163 1164 int64_t ValueObject::GetValueAsSigned(int64_t fail_value, bool *success) { 1165 // If our byte size is zero this is an aggregate type that has children 1166 if (CanProvideValue()) { 1167 Scalar scalar; 1168 if (ResolveValue(scalar)) { 1169 if (success) 1170 *success = true; 1171 scalar.MakeSigned(); 1172 return scalar.SLongLong(fail_value); 1173 } 1174 // fallthrough, otherwise... 1175 } 1176 1177 if (success) 1178 *success = false; 1179 return fail_value; 1180 } 1181 1182 // if any more "special cases" are added to 1183 // ValueObject::DumpPrintableRepresentation() please keep this call up to date 1184 // by returning true for your new special cases. We will eventually move to 1185 // checking this call result before trying to display special cases 1186 bool ValueObject::HasSpecialPrintableRepresentation( 1187 ValueObjectRepresentationStyle val_obj_display, Format custom_format) { 1188 Flags flags(GetTypeInfo()); 1189 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1190 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1191 if (IsCStringContainer(true) && 1192 (custom_format == eFormatCString || custom_format == eFormatCharArray || 1193 custom_format == eFormatChar || custom_format == eFormatVectorOfChar)) 1194 return true; 1195 1196 if (flags.Test(eTypeIsArray)) { 1197 if ((custom_format == eFormatBytes) || 1198 (custom_format == eFormatBytesWithASCII)) 1199 return true; 1200 1201 if ((custom_format == eFormatVectorOfChar) || 1202 (custom_format == eFormatVectorOfFloat32) || 1203 (custom_format == eFormatVectorOfFloat64) || 1204 (custom_format == eFormatVectorOfSInt16) || 1205 (custom_format == eFormatVectorOfSInt32) || 1206 (custom_format == eFormatVectorOfSInt64) || 1207 (custom_format == eFormatVectorOfSInt8) || 1208 (custom_format == eFormatVectorOfUInt128) || 1209 (custom_format == eFormatVectorOfUInt16) || 1210 (custom_format == eFormatVectorOfUInt32) || 1211 (custom_format == eFormatVectorOfUInt64) || 1212 (custom_format == eFormatVectorOfUInt8)) 1213 return true; 1214 } 1215 } 1216 return false; 1217 } 1218 1219 bool ValueObject::DumpPrintableRepresentation( 1220 Stream &s, ValueObjectRepresentationStyle val_obj_display, 1221 Format custom_format, PrintableRepresentationSpecialCases special, 1222 bool do_dump_error) { 1223 1224 Flags flags(GetTypeInfo()); 1225 1226 bool allow_special = 1227 (special == ValueObject::PrintableRepresentationSpecialCases::eAllow); 1228 const bool only_special = false; 1229 1230 if (allow_special) { 1231 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1232 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1233 // when being asked to get a printable display an array or pointer type 1234 // directly, try to "do the right thing" 1235 1236 if (IsCStringContainer(true) && 1237 (custom_format == eFormatCString || 1238 custom_format == eFormatCharArray || custom_format == eFormatChar || 1239 custom_format == 1240 eFormatVectorOfChar)) // print char[] & char* directly 1241 { 1242 Status error; 1243 lldb::DataBufferSP buffer_sp; 1244 std::pair<size_t, bool> read_string = ReadPointedString( 1245 buffer_sp, error, 0, (custom_format == eFormatVectorOfChar) || 1246 (custom_format == eFormatCharArray)); 1247 lldb_private::formatters::StringPrinter:: 1248 ReadBufferAndDumpToStreamOptions options(*this); 1249 options.SetData(DataExtractor( 1250 buffer_sp, lldb::eByteOrderInvalid, 1251 8)); // none of this matters for a string - pass some defaults 1252 options.SetStream(&s); 1253 options.SetPrefixToken(nullptr); 1254 options.SetQuote('"'); 1255 options.SetSourceSize(buffer_sp->GetByteSize()); 1256 options.SetIsTruncated(read_string.second); 1257 formatters::StringPrinter::ReadBufferAndDumpToStream< 1258 lldb_private::formatters::StringPrinter::StringElementType::ASCII>( 1259 options); 1260 return !error.Fail(); 1261 } 1262 1263 if (custom_format == eFormatEnum) 1264 return false; 1265 1266 // this only works for arrays, because I have no way to know when the 1267 // pointed memory ends, and no special \0 end of data marker 1268 if (flags.Test(eTypeIsArray)) { 1269 if ((custom_format == eFormatBytes) || 1270 (custom_format == eFormatBytesWithASCII)) { 1271 const size_t count = GetNumChildren(); 1272 1273 s << '['; 1274 for (size_t low = 0; low < count; low++) { 1275 1276 if (low) 1277 s << ','; 1278 1279 ValueObjectSP child = GetChildAtIndex(low, true); 1280 if (!child.get()) { 1281 s << "<invalid child>"; 1282 continue; 1283 } 1284 child->DumpPrintableRepresentation( 1285 s, ValueObject::eValueObjectRepresentationStyleValue, 1286 custom_format); 1287 } 1288 1289 s << ']'; 1290 1291 return true; 1292 } 1293 1294 if ((custom_format == eFormatVectorOfChar) || 1295 (custom_format == eFormatVectorOfFloat32) || 1296 (custom_format == eFormatVectorOfFloat64) || 1297 (custom_format == eFormatVectorOfSInt16) || 1298 (custom_format == eFormatVectorOfSInt32) || 1299 (custom_format == eFormatVectorOfSInt64) || 1300 (custom_format == eFormatVectorOfSInt8) || 1301 (custom_format == eFormatVectorOfUInt128) || 1302 (custom_format == eFormatVectorOfUInt16) || 1303 (custom_format == eFormatVectorOfUInt32) || 1304 (custom_format == eFormatVectorOfUInt64) || 1305 (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes 1306 // with ASCII or any vector 1307 // format should be printed 1308 // directly 1309 { 1310 const size_t count = GetNumChildren(); 1311 1312 Format format = FormatManager::GetSingleItemFormat(custom_format); 1313 1314 s << '['; 1315 for (size_t low = 0; low < count; low++) { 1316 1317 if (low) 1318 s << ','; 1319 1320 ValueObjectSP child = GetChildAtIndex(low, true); 1321 if (!child.get()) { 1322 s << "<invalid child>"; 1323 continue; 1324 } 1325 child->DumpPrintableRepresentation( 1326 s, ValueObject::eValueObjectRepresentationStyleValue, format); 1327 } 1328 1329 s << ']'; 1330 1331 return true; 1332 } 1333 } 1334 1335 if ((custom_format == eFormatBoolean) || 1336 (custom_format == eFormatBinary) || (custom_format == eFormatChar) || 1337 (custom_format == eFormatCharPrintable) || 1338 (custom_format == eFormatComplexFloat) || 1339 (custom_format == eFormatDecimal) || (custom_format == eFormatHex) || 1340 (custom_format == eFormatHexUppercase) || 1341 (custom_format == eFormatFloat) || (custom_format == eFormatOctal) || 1342 (custom_format == eFormatOSType) || 1343 (custom_format == eFormatUnicode16) || 1344 (custom_format == eFormatUnicode32) || 1345 (custom_format == eFormatUnsigned) || 1346 (custom_format == eFormatPointer) || 1347 (custom_format == eFormatComplexInteger) || 1348 (custom_format == eFormatComplex) || 1349 (custom_format == eFormatDefault)) // use the [] operator 1350 return false; 1351 } 1352 } 1353 1354 if (only_special) 1355 return false; 1356 1357 bool var_success = false; 1358 1359 { 1360 llvm::StringRef str; 1361 1362 // this is a local stream that we are using to ensure that the data pointed 1363 // to by cstr survives long enough for us to copy it to its destination - 1364 // it is necessary to have this temporary storage area for cases where our 1365 // desired output is not backed by some other longer-term storage 1366 StreamString strm; 1367 1368 if (custom_format != eFormatInvalid) 1369 SetFormat(custom_format); 1370 1371 switch (val_obj_display) { 1372 case eValueObjectRepresentationStyleValue: 1373 str = GetValueAsCString(); 1374 break; 1375 1376 case eValueObjectRepresentationStyleSummary: 1377 str = GetSummaryAsCString(); 1378 break; 1379 1380 case eValueObjectRepresentationStyleLanguageSpecific: 1381 str = GetObjectDescription(); 1382 break; 1383 1384 case eValueObjectRepresentationStyleLocation: 1385 str = GetLocationAsCString(); 1386 break; 1387 1388 case eValueObjectRepresentationStyleChildrenCount: 1389 strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren()); 1390 str = strm.GetString(); 1391 break; 1392 1393 case eValueObjectRepresentationStyleType: 1394 str = GetTypeName().GetStringRef(); 1395 break; 1396 1397 case eValueObjectRepresentationStyleName: 1398 str = GetName().GetStringRef(); 1399 break; 1400 1401 case eValueObjectRepresentationStyleExpressionPath: 1402 GetExpressionPath(strm); 1403 str = strm.GetString(); 1404 break; 1405 } 1406 1407 if (str.empty()) { 1408 if (val_obj_display == eValueObjectRepresentationStyleValue) 1409 str = GetSummaryAsCString(); 1410 else if (val_obj_display == eValueObjectRepresentationStyleSummary) { 1411 if (!CanProvideValue()) { 1412 strm.Printf("%s @ %s", GetTypeName().AsCString(), 1413 GetLocationAsCString()); 1414 str = strm.GetString(); 1415 } else 1416 str = GetValueAsCString(); 1417 } 1418 } 1419 1420 if (!str.empty()) 1421 s << str; 1422 else { 1423 if (m_error.Fail()) { 1424 if (do_dump_error) 1425 s.Printf("<%s>", m_error.AsCString()); 1426 else 1427 return false; 1428 } else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1429 s.PutCString("<no summary available>"); 1430 else if (val_obj_display == eValueObjectRepresentationStyleValue) 1431 s.PutCString("<no value available>"); 1432 else if (val_obj_display == 1433 eValueObjectRepresentationStyleLanguageSpecific) 1434 s.PutCString("<not a valid Objective-C object>"); // edit this if we 1435 // have other runtimes 1436 // that support a 1437 // description 1438 else 1439 s.PutCString("<no printable representation>"); 1440 } 1441 1442 // we should only return false here if we could not do *anything* even if 1443 // we have an error message as output, that's a success from our callers' 1444 // perspective, so return true 1445 var_success = true; 1446 1447 if (custom_format != eFormatInvalid) 1448 SetFormat(eFormatDefault); 1449 } 1450 1451 return var_success; 1452 } 1453 1454 addr_t ValueObject::GetAddressOf(bool scalar_is_load_address, 1455 AddressType *address_type) { 1456 // Can't take address of a bitfield 1457 if (IsBitfield()) 1458 return LLDB_INVALID_ADDRESS; 1459 1460 if (!UpdateValueIfNeeded(false)) 1461 return LLDB_INVALID_ADDRESS; 1462 1463 switch (m_value.GetValueType()) { 1464 case Value::ValueType::Invalid: 1465 return LLDB_INVALID_ADDRESS; 1466 case Value::ValueType::Scalar: 1467 if (scalar_is_load_address) { 1468 if (address_type) 1469 *address_type = eAddressTypeLoad; 1470 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1471 } 1472 break; 1473 1474 case Value::ValueType::LoadAddress: 1475 case Value::ValueType::FileAddress: { 1476 if (address_type) 1477 *address_type = m_value.GetValueAddressType(); 1478 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1479 } break; 1480 case Value::ValueType::HostAddress: { 1481 if (address_type) 1482 *address_type = m_value.GetValueAddressType(); 1483 return LLDB_INVALID_ADDRESS; 1484 } break; 1485 } 1486 if (address_type) 1487 *address_type = eAddressTypeInvalid; 1488 return LLDB_INVALID_ADDRESS; 1489 } 1490 1491 addr_t ValueObject::GetPointerValue(AddressType *address_type) { 1492 addr_t address = LLDB_INVALID_ADDRESS; 1493 if (address_type) 1494 *address_type = eAddressTypeInvalid; 1495 1496 if (!UpdateValueIfNeeded(false)) 1497 return address; 1498 1499 switch (m_value.GetValueType()) { 1500 case Value::ValueType::Invalid: 1501 return LLDB_INVALID_ADDRESS; 1502 case Value::ValueType::Scalar: 1503 address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1504 break; 1505 1506 case Value::ValueType::HostAddress: 1507 case Value::ValueType::LoadAddress: 1508 case Value::ValueType::FileAddress: { 1509 lldb::offset_t data_offset = 0; 1510 address = m_data.GetAddress(&data_offset); 1511 } break; 1512 } 1513 1514 if (address_type) 1515 *address_type = GetAddressTypeOfChildren(); 1516 1517 return address; 1518 } 1519 1520 bool ValueObject::SetValueFromCString(const char *value_str, Status &error) { 1521 error.Clear(); 1522 // Make sure our value is up to date first so that our location and location 1523 // type is valid. 1524 if (!UpdateValueIfNeeded(false)) { 1525 error.SetErrorString("unable to read value"); 1526 return false; 1527 } 1528 1529 uint64_t count = 0; 1530 const Encoding encoding = GetCompilerType().GetEncoding(count); 1531 1532 const size_t byte_size = GetByteSize().getValueOr(0); 1533 1534 Value::ValueType value_type = m_value.GetValueType(); 1535 1536 if (value_type == Value::ValueType::Scalar) { 1537 // If the value is already a scalar, then let the scalar change itself: 1538 m_value.GetScalar().SetValueFromCString(value_str, encoding, byte_size); 1539 } else if (byte_size <= 16) { 1540 // If the value fits in a scalar, then make a new scalar and again let the 1541 // scalar code do the conversion, then figure out where to put the new 1542 // value. 1543 Scalar new_scalar; 1544 error = new_scalar.SetValueFromCString(value_str, encoding, byte_size); 1545 if (error.Success()) { 1546 switch (value_type) { 1547 case Value::ValueType::LoadAddress: { 1548 // If it is a load address, then the scalar value is the storage 1549 // location of the data, and we have to shove this value down to that 1550 // load location. 1551 ExecutionContext exe_ctx(GetExecutionContextRef()); 1552 Process *process = exe_ctx.GetProcessPtr(); 1553 if (process) { 1554 addr_t target_addr = 1555 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1556 size_t bytes_written = process->WriteScalarToMemory( 1557 target_addr, new_scalar, byte_size, error); 1558 if (!error.Success()) 1559 return false; 1560 if (bytes_written != byte_size) { 1561 error.SetErrorString("unable to write value to memory"); 1562 return false; 1563 } 1564 } 1565 } break; 1566 case Value::ValueType::HostAddress: { 1567 // If it is a host address, then we stuff the scalar as a DataBuffer 1568 // into the Value's data. 1569 DataExtractor new_data; 1570 new_data.SetByteOrder(m_data.GetByteOrder()); 1571 1572 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 1573 m_data.SetData(buffer_sp, 0); 1574 bool success = new_scalar.GetData(new_data); 1575 if (success) { 1576 new_data.CopyByteOrderedData( 1577 0, byte_size, const_cast<uint8_t *>(m_data.GetDataStart()), 1578 byte_size, m_data.GetByteOrder()); 1579 } 1580 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1581 1582 } break; 1583 case Value::ValueType::Invalid: 1584 error.SetErrorString("invalid location"); 1585 return false; 1586 case Value::ValueType::FileAddress: 1587 case Value::ValueType::Scalar: 1588 break; 1589 } 1590 } else { 1591 return false; 1592 } 1593 } else { 1594 // We don't support setting things bigger than a scalar at present. 1595 error.SetErrorString("unable to write aggregate data type"); 1596 return false; 1597 } 1598 1599 // If we have reached this point, then we have successfully changed the 1600 // value. 1601 SetNeedsUpdate(); 1602 return true; 1603 } 1604 1605 bool ValueObject::GetDeclaration(Declaration &decl) { 1606 decl.Clear(); 1607 return false; 1608 } 1609 1610 ConstString ValueObject::GetTypeName() { 1611 return GetCompilerType().GetTypeName(); 1612 } 1613 1614 ConstString ValueObject::GetDisplayTypeName() { return GetTypeName(); } 1615 1616 ConstString ValueObject::GetQualifiedTypeName() { 1617 return GetCompilerType().GetTypeName(); 1618 } 1619 1620 LanguageType ValueObject::GetObjectRuntimeLanguage() { 1621 return GetCompilerType().GetMinimumLanguage(); 1622 } 1623 1624 void ValueObject::AddSyntheticChild(ConstString key, 1625 ValueObject *valobj) { 1626 m_synthetic_children[key] = valobj; 1627 } 1628 1629 ValueObjectSP ValueObject::GetSyntheticChild(ConstString key) const { 1630 ValueObjectSP synthetic_child_sp; 1631 std::map<ConstString, ValueObject *>::const_iterator pos = 1632 m_synthetic_children.find(key); 1633 if (pos != m_synthetic_children.end()) 1634 synthetic_child_sp = pos->second->GetSP(); 1635 return synthetic_child_sp; 1636 } 1637 1638 uint32_t 1639 ValueObject::GetTypeInfo(CompilerType *pointee_or_element_compiler_type) { 1640 return GetCompilerType().GetTypeInfo(pointee_or_element_compiler_type); 1641 } 1642 1643 bool ValueObject::IsPointerType() { return GetCompilerType().IsPointerType(); } 1644 1645 bool ValueObject::IsArrayType() { 1646 return GetCompilerType().IsArrayType(nullptr, nullptr, nullptr); 1647 } 1648 1649 bool ValueObject::IsScalarType() { return GetCompilerType().IsScalarType(); } 1650 1651 bool ValueObject::IsIntegerType(bool &is_signed) { 1652 return GetCompilerType().IsIntegerType(is_signed); 1653 } 1654 1655 bool ValueObject::IsPointerOrReferenceType() { 1656 return GetCompilerType().IsPointerOrReferenceType(); 1657 } 1658 1659 bool ValueObject::IsPossibleDynamicType() { 1660 ExecutionContext exe_ctx(GetExecutionContextRef()); 1661 Process *process = exe_ctx.GetProcessPtr(); 1662 if (process) 1663 return process->IsPossibleDynamicValue(*this); 1664 else 1665 return GetCompilerType().IsPossibleDynamicType(nullptr, true, true); 1666 } 1667 1668 bool ValueObject::IsRuntimeSupportValue() { 1669 Process *process(GetProcessSP().get()); 1670 if (!process) 1671 return false; 1672 1673 // We trust the the compiler did the right thing and marked runtime support 1674 // values as artificial. 1675 if (!GetVariable() || !GetVariable()->IsArtificial()) 1676 return false; 1677 1678 if (auto *runtime = process->GetLanguageRuntime(GetVariable()->GetLanguage())) 1679 if (runtime->IsAllowedRuntimeValue(GetName())) 1680 return false; 1681 1682 return true; 1683 } 1684 1685 bool ValueObject::IsNilReference() { 1686 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1687 return language->IsNilReference(*this); 1688 } 1689 return false; 1690 } 1691 1692 bool ValueObject::IsUninitializedReference() { 1693 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1694 return language->IsUninitializedReference(*this); 1695 } 1696 return false; 1697 } 1698 1699 // This allows you to create an array member using and index that doesn't not 1700 // fall in the normal bounds of the array. Many times structure can be defined 1701 // as: struct Collection { 1702 // uint32_t item_count; 1703 // Item item_array[0]; 1704 // }; 1705 // The size of the "item_array" is 1, but many times in practice there are more 1706 // items in "item_array". 1707 1708 ValueObjectSP ValueObject::GetSyntheticArrayMember(size_t index, 1709 bool can_create) { 1710 ValueObjectSP synthetic_child_sp; 1711 if (IsPointerType() || IsArrayType()) { 1712 std::string index_str = llvm::formatv("[{0}]", index); 1713 ConstString index_const_str(index_str); 1714 // Check if we have already created a synthetic array member in this valid 1715 // object. If we have we will re-use it. 1716 synthetic_child_sp = GetSyntheticChild(index_const_str); 1717 if (!synthetic_child_sp) { 1718 ValueObject *synthetic_child; 1719 // We haven't made a synthetic array member for INDEX yet, so lets make 1720 // one and cache it for any future reference. 1721 synthetic_child = CreateChildAtIndex(0, true, index); 1722 1723 // Cache the value if we got one back... 1724 if (synthetic_child) { 1725 AddSyntheticChild(index_const_str, synthetic_child); 1726 synthetic_child_sp = synthetic_child->GetSP(); 1727 synthetic_child_sp->SetName(ConstString(index_str)); 1728 synthetic_child_sp->m_is_array_item_for_pointer = true; 1729 } 1730 } 1731 } 1732 return synthetic_child_sp; 1733 } 1734 1735 ValueObjectSP ValueObject::GetSyntheticBitFieldChild(uint32_t from, uint32_t to, 1736 bool can_create) { 1737 ValueObjectSP synthetic_child_sp; 1738 if (IsScalarType()) { 1739 std::string index_str = llvm::formatv("[{0}-{1}]", from, to); 1740 ConstString index_const_str(index_str); 1741 // Check if we have already created a synthetic array member in this valid 1742 // object. If we have we will re-use it. 1743 synthetic_child_sp = GetSyntheticChild(index_const_str); 1744 if (!synthetic_child_sp) { 1745 uint32_t bit_field_size = to - from + 1; 1746 uint32_t bit_field_offset = from; 1747 if (GetDataExtractor().GetByteOrder() == eByteOrderBig) 1748 bit_field_offset = 1749 GetByteSize().getValueOr(0) * 8 - bit_field_size - bit_field_offset; 1750 // We haven't made a synthetic array member for INDEX yet, so lets make 1751 // one and cache it for any future reference. 1752 ValueObjectChild *synthetic_child = new ValueObjectChild( 1753 *this, GetCompilerType(), index_const_str, 1754 GetByteSize().getValueOr(0), 0, bit_field_size, bit_field_offset, 1755 false, false, eAddressTypeInvalid, 0); 1756 1757 // Cache the value if we got one back... 1758 if (synthetic_child) { 1759 AddSyntheticChild(index_const_str, synthetic_child); 1760 synthetic_child_sp = synthetic_child->GetSP(); 1761 synthetic_child_sp->SetName(ConstString(index_str)); 1762 synthetic_child_sp->m_is_bitfield_for_scalar = true; 1763 } 1764 } 1765 } 1766 return synthetic_child_sp; 1767 } 1768 1769 ValueObjectSP ValueObject::GetSyntheticChildAtOffset( 1770 uint32_t offset, const CompilerType &type, bool can_create, 1771 ConstString name_const_str) { 1772 1773 ValueObjectSP synthetic_child_sp; 1774 1775 if (name_const_str.IsEmpty()) { 1776 name_const_str.SetString("@" + std::to_string(offset)); 1777 } 1778 1779 // Check if we have already created a synthetic array member in this valid 1780 // object. If we have we will re-use it. 1781 synthetic_child_sp = GetSyntheticChild(name_const_str); 1782 1783 if (synthetic_child_sp.get()) 1784 return synthetic_child_sp; 1785 1786 if (!can_create) 1787 return {}; 1788 1789 ExecutionContext exe_ctx(GetExecutionContextRef()); 1790 llvm::Optional<uint64_t> size = 1791 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1792 if (!size) 1793 return {}; 1794 ValueObjectChild *synthetic_child = 1795 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1796 false, false, eAddressTypeInvalid, 0); 1797 if (synthetic_child) { 1798 AddSyntheticChild(name_const_str, synthetic_child); 1799 synthetic_child_sp = synthetic_child->GetSP(); 1800 synthetic_child_sp->SetName(name_const_str); 1801 synthetic_child_sp->m_is_child_at_offset = true; 1802 } 1803 return synthetic_child_sp; 1804 } 1805 1806 ValueObjectSP ValueObject::GetSyntheticBase(uint32_t offset, 1807 const CompilerType &type, 1808 bool can_create, 1809 ConstString name_const_str) { 1810 ValueObjectSP synthetic_child_sp; 1811 1812 if (name_const_str.IsEmpty()) { 1813 char name_str[128]; 1814 snprintf(name_str, sizeof(name_str), "base%s@%i", 1815 type.GetTypeName().AsCString("<unknown>"), offset); 1816 name_const_str.SetCString(name_str); 1817 } 1818 1819 // Check if we have already created a synthetic array member in this valid 1820 // object. If we have we will re-use it. 1821 synthetic_child_sp = GetSyntheticChild(name_const_str); 1822 1823 if (synthetic_child_sp.get()) 1824 return synthetic_child_sp; 1825 1826 if (!can_create) 1827 return {}; 1828 1829 const bool is_base_class = true; 1830 1831 ExecutionContext exe_ctx(GetExecutionContextRef()); 1832 llvm::Optional<uint64_t> size = 1833 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1834 if (!size) 1835 return {}; 1836 ValueObjectChild *synthetic_child = 1837 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1838 is_base_class, false, eAddressTypeInvalid, 0); 1839 if (synthetic_child) { 1840 AddSyntheticChild(name_const_str, synthetic_child); 1841 synthetic_child_sp = synthetic_child->GetSP(); 1842 synthetic_child_sp->SetName(name_const_str); 1843 } 1844 return synthetic_child_sp; 1845 } 1846 1847 // your expression path needs to have a leading . or -> (unless it somehow 1848 // "looks like" an array, in which case it has a leading [ symbol). while the [ 1849 // is meaningful and should be shown to the user, . and -> are just parser 1850 // design, but by no means added information for the user.. strip them off 1851 static const char *SkipLeadingExpressionPathSeparators(const char *expression) { 1852 if (!expression || !expression[0]) 1853 return expression; 1854 if (expression[0] == '.') 1855 return expression + 1; 1856 if (expression[0] == '-' && expression[1] == '>') 1857 return expression + 2; 1858 return expression; 1859 } 1860 1861 ValueObjectSP 1862 ValueObject::GetSyntheticExpressionPathChild(const char *expression, 1863 bool can_create) { 1864 ValueObjectSP synthetic_child_sp; 1865 ConstString name_const_string(expression); 1866 // Check if we have already created a synthetic array member in this valid 1867 // object. If we have we will re-use it. 1868 synthetic_child_sp = GetSyntheticChild(name_const_string); 1869 if (!synthetic_child_sp) { 1870 // We haven't made a synthetic array member for expression yet, so lets 1871 // make one and cache it for any future reference. 1872 synthetic_child_sp = GetValueForExpressionPath( 1873 expression, nullptr, nullptr, 1874 GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal( 1875 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 1876 None)); 1877 1878 // Cache the value if we got one back... 1879 if (synthetic_child_sp.get()) { 1880 // FIXME: this causes a "real" child to end up with its name changed to 1881 // the contents of expression 1882 AddSyntheticChild(name_const_string, synthetic_child_sp.get()); 1883 synthetic_child_sp->SetName( 1884 ConstString(SkipLeadingExpressionPathSeparators(expression))); 1885 } 1886 } 1887 return synthetic_child_sp; 1888 } 1889 1890 void ValueObject::CalculateSyntheticValue() { 1891 TargetSP target_sp(GetTargetSP()); 1892 if (target_sp && !target_sp->GetEnableSyntheticValue()) { 1893 m_synthetic_value = nullptr; 1894 return; 1895 } 1896 1897 lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp); 1898 1899 if (!UpdateFormatsIfNeeded() && m_synthetic_value) 1900 return; 1901 1902 if (m_synthetic_children_sp.get() == nullptr) 1903 return; 1904 1905 if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value) 1906 return; 1907 1908 m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp); 1909 } 1910 1911 void ValueObject::CalculateDynamicValue(DynamicValueType use_dynamic) { 1912 if (use_dynamic == eNoDynamicValues) 1913 return; 1914 1915 if (!m_dynamic_value && !IsDynamic()) { 1916 ExecutionContext exe_ctx(GetExecutionContextRef()); 1917 Process *process = exe_ctx.GetProcessPtr(); 1918 if (process && process->IsPossibleDynamicValue(*this)) { 1919 ClearDynamicTypeInformation(); 1920 m_dynamic_value = new ValueObjectDynamicValue(*this, use_dynamic); 1921 } 1922 } 1923 } 1924 1925 ValueObjectSP ValueObject::GetDynamicValue(DynamicValueType use_dynamic) { 1926 if (use_dynamic == eNoDynamicValues) 1927 return ValueObjectSP(); 1928 1929 if (!IsDynamic() && m_dynamic_value == nullptr) { 1930 CalculateDynamicValue(use_dynamic); 1931 } 1932 if (m_dynamic_value) 1933 return m_dynamic_value->GetSP(); 1934 else 1935 return ValueObjectSP(); 1936 } 1937 1938 ValueObjectSP ValueObject::GetStaticValue() { return GetSP(); } 1939 1940 lldb::ValueObjectSP ValueObject::GetNonSyntheticValue() { return GetSP(); } 1941 1942 ValueObjectSP ValueObject::GetSyntheticValue() { 1943 CalculateSyntheticValue(); 1944 1945 if (m_synthetic_value) 1946 return m_synthetic_value->GetSP(); 1947 else 1948 return ValueObjectSP(); 1949 } 1950 1951 bool ValueObject::HasSyntheticValue() { 1952 UpdateFormatsIfNeeded(); 1953 1954 if (m_synthetic_children_sp.get() == nullptr) 1955 return false; 1956 1957 CalculateSyntheticValue(); 1958 1959 return m_synthetic_value != nullptr; 1960 } 1961 1962 ValueObject *ValueObject::GetNonBaseClassParent() { 1963 if (GetParent()) { 1964 if (GetParent()->IsBaseClass()) 1965 return GetParent()->GetNonBaseClassParent(); 1966 else 1967 return GetParent(); 1968 } 1969 return nullptr; 1970 } 1971 1972 bool ValueObject::IsBaseClass(uint32_t &depth) { 1973 if (!IsBaseClass()) { 1974 depth = 0; 1975 return false; 1976 } 1977 if (GetParent()) { 1978 GetParent()->IsBaseClass(depth); 1979 depth = depth + 1; 1980 return true; 1981 } 1982 // TODO: a base of no parent? weird.. 1983 depth = 1; 1984 return true; 1985 } 1986 1987 void ValueObject::GetExpressionPath(Stream &s, 1988 GetExpressionPathFormat epformat) { 1989 // synthetic children do not actually "exist" as part of the hierarchy, and 1990 // sometimes they are consed up in ways that don't make sense from an 1991 // underlying language/API standpoint. So, use a special code path here to 1992 // return something that can hopefully be used in expression 1993 if (m_is_synthetic_children_generated) { 1994 UpdateValueIfNeeded(); 1995 1996 if (m_value.GetValueType() == Value::ValueType::LoadAddress) { 1997 if (IsPointerOrReferenceType()) { 1998 s.Printf("((%s)0x%" PRIx64 ")", GetTypeName().AsCString("void"), 1999 GetValueAsUnsigned(0)); 2000 return; 2001 } else { 2002 uint64_t load_addr = 2003 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2004 if (load_addr != LLDB_INVALID_ADDRESS) { 2005 s.Printf("(*( (%s *)0x%" PRIx64 "))", GetTypeName().AsCString("void"), 2006 load_addr); 2007 return; 2008 } 2009 } 2010 } 2011 2012 if (CanProvideValue()) { 2013 s.Printf("((%s)%s)", GetTypeName().AsCString("void"), 2014 GetValueAsCString()); 2015 return; 2016 } 2017 2018 return; 2019 } 2020 2021 const bool is_deref_of_parent = IsDereferenceOfParent(); 2022 2023 if (is_deref_of_parent && 2024 epformat == eGetExpressionPathFormatDereferencePointers) { 2025 // this is the original format of GetExpressionPath() producing code like 2026 // *(a_ptr).memberName, which is entirely fine, until you put this into 2027 // StackFrame::GetValueForVariableExpressionPath() which prefers to see 2028 // a_ptr->memberName. the eHonorPointers mode is meant to produce strings 2029 // in this latter format 2030 s.PutCString("*("); 2031 } 2032 2033 ValueObject *parent = GetParent(); 2034 2035 if (parent) 2036 parent->GetExpressionPath(s, epformat); 2037 2038 // if we are a deref_of_parent just because we are synthetic array members 2039 // made up to allow ptr[%d] syntax to work in variable printing, then add our 2040 // name ([%d]) to the expression path 2041 if (m_is_array_item_for_pointer && 2042 epformat == eGetExpressionPathFormatHonorPointers) 2043 s.PutCString(m_name.GetStringRef()); 2044 2045 if (!IsBaseClass()) { 2046 if (!is_deref_of_parent) { 2047 ValueObject *non_base_class_parent = GetNonBaseClassParent(); 2048 if (non_base_class_parent && 2049 !non_base_class_parent->GetName().IsEmpty()) { 2050 CompilerType non_base_class_parent_compiler_type = 2051 non_base_class_parent->GetCompilerType(); 2052 if (non_base_class_parent_compiler_type) { 2053 if (parent && parent->IsDereferenceOfParent() && 2054 epformat == eGetExpressionPathFormatHonorPointers) { 2055 s.PutCString("->"); 2056 } else { 2057 const uint32_t non_base_class_parent_type_info = 2058 non_base_class_parent_compiler_type.GetTypeInfo(); 2059 2060 if (non_base_class_parent_type_info & eTypeIsPointer) { 2061 s.PutCString("->"); 2062 } else if ((non_base_class_parent_type_info & eTypeHasChildren) && 2063 !(non_base_class_parent_type_info & eTypeIsArray)) { 2064 s.PutChar('.'); 2065 } 2066 } 2067 } 2068 } 2069 2070 const char *name = GetName().GetCString(); 2071 if (name) 2072 s.PutCString(name); 2073 } 2074 } 2075 2076 if (is_deref_of_parent && 2077 epformat == eGetExpressionPathFormatDereferencePointers) { 2078 s.PutChar(')'); 2079 } 2080 } 2081 2082 ValueObjectSP ValueObject::GetValueForExpressionPath( 2083 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2084 ExpressionPathEndResultType *final_value_type, 2085 const GetValueForExpressionPathOptions &options, 2086 ExpressionPathAftermath *final_task_on_target) { 2087 2088 ExpressionPathScanEndReason dummy_reason_to_stop = 2089 ValueObject::eExpressionPathScanEndReasonUnknown; 2090 ExpressionPathEndResultType dummy_final_value_type = 2091 ValueObject::eExpressionPathEndResultTypeInvalid; 2092 ExpressionPathAftermath dummy_final_task_on_target = 2093 ValueObject::eExpressionPathAftermathNothing; 2094 2095 ValueObjectSP ret_val = GetValueForExpressionPath_Impl( 2096 expression, reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2097 final_value_type ? final_value_type : &dummy_final_value_type, options, 2098 final_task_on_target ? final_task_on_target 2099 : &dummy_final_task_on_target); 2100 2101 if (!final_task_on_target || 2102 *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2103 return ret_val; 2104 2105 if (ret_val.get() && 2106 ((final_value_type ? *final_value_type : dummy_final_value_type) == 2107 eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress 2108 // of plain objects 2109 { 2110 if ((final_task_on_target ? *final_task_on_target 2111 : dummy_final_task_on_target) == 2112 ValueObject::eExpressionPathAftermathDereference) { 2113 Status error; 2114 ValueObjectSP final_value = ret_val->Dereference(error); 2115 if (error.Fail() || !final_value.get()) { 2116 if (reason_to_stop) 2117 *reason_to_stop = 2118 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2119 if (final_value_type) 2120 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2121 return ValueObjectSP(); 2122 } else { 2123 if (final_task_on_target) 2124 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2125 return final_value; 2126 } 2127 } 2128 if (*final_task_on_target == 2129 ValueObject::eExpressionPathAftermathTakeAddress) { 2130 Status error; 2131 ValueObjectSP final_value = ret_val->AddressOf(error); 2132 if (error.Fail() || !final_value.get()) { 2133 if (reason_to_stop) 2134 *reason_to_stop = 2135 ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2136 if (final_value_type) 2137 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2138 return ValueObjectSP(); 2139 } else { 2140 if (final_task_on_target) 2141 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2142 return final_value; 2143 } 2144 } 2145 } 2146 return ret_val; // final_task_on_target will still have its original value, so 2147 // you know I did not do it 2148 } 2149 2150 ValueObjectSP ValueObject::GetValueForExpressionPath_Impl( 2151 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2152 ExpressionPathEndResultType *final_result, 2153 const GetValueForExpressionPathOptions &options, 2154 ExpressionPathAftermath *what_next) { 2155 ValueObjectSP root = GetSP(); 2156 2157 if (!root) 2158 return nullptr; 2159 2160 llvm::StringRef remainder = expression; 2161 2162 while (true) { 2163 llvm::StringRef temp_expression = remainder; 2164 2165 CompilerType root_compiler_type = root->GetCompilerType(); 2166 CompilerType pointee_compiler_type; 2167 Flags pointee_compiler_type_info; 2168 2169 Flags root_compiler_type_info( 2170 root_compiler_type.GetTypeInfo(&pointee_compiler_type)); 2171 if (pointee_compiler_type) 2172 pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo()); 2173 2174 if (temp_expression.empty()) { 2175 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2176 return root; 2177 } 2178 2179 switch (temp_expression.front()) { 2180 case '-': { 2181 temp_expression = temp_expression.drop_front(); 2182 if (options.m_check_dot_vs_arrow_syntax && 2183 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2184 // use -> on a 2185 // non-pointer and I 2186 // must catch the error 2187 { 2188 *reason_to_stop = 2189 ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot; 2190 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2191 return ValueObjectSP(); 2192 } 2193 if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to 2194 // extract an ObjC IVar 2195 // when this is forbidden 2196 root_compiler_type_info.Test(eTypeIsPointer) && 2197 options.m_no_fragile_ivar) { 2198 *reason_to_stop = 2199 ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed; 2200 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2201 return ValueObjectSP(); 2202 } 2203 if (!temp_expression.startswith(">")) { 2204 *reason_to_stop = 2205 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2206 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2207 return ValueObjectSP(); 2208 } 2209 } 2210 LLVM_FALLTHROUGH; 2211 case '.': // or fallthrough from -> 2212 { 2213 if (options.m_check_dot_vs_arrow_syntax && 2214 temp_expression.front() == '.' && 2215 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2216 // use . on a pointer 2217 // and I must catch the 2218 // error 2219 { 2220 *reason_to_stop = 2221 ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow; 2222 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2223 return nullptr; 2224 } 2225 temp_expression = temp_expression.drop_front(); // skip . or > 2226 2227 size_t next_sep_pos = temp_expression.find_first_of("-.[", 1); 2228 ConstString child_name; 2229 if (next_sep_pos == llvm::StringRef::npos) // if no other separator just 2230 // expand this last layer 2231 { 2232 child_name.SetString(temp_expression); 2233 ValueObjectSP child_valobj_sp = 2234 root->GetChildMemberWithName(child_name, true); 2235 2236 if (child_valobj_sp.get()) // we know we are done, so just return 2237 { 2238 *reason_to_stop = 2239 ValueObject::eExpressionPathScanEndReasonEndOfString; 2240 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2241 return child_valobj_sp; 2242 } else { 2243 switch (options.m_synthetic_children_traversal) { 2244 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2245 None: 2246 break; 2247 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2248 FromSynthetic: 2249 if (root->IsSynthetic()) { 2250 child_valobj_sp = root->GetNonSyntheticValue(); 2251 if (child_valobj_sp.get()) 2252 child_valobj_sp = 2253 child_valobj_sp->GetChildMemberWithName(child_name, true); 2254 } 2255 break; 2256 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2257 ToSynthetic: 2258 if (!root->IsSynthetic()) { 2259 child_valobj_sp = root->GetSyntheticValue(); 2260 if (child_valobj_sp.get()) 2261 child_valobj_sp = 2262 child_valobj_sp->GetChildMemberWithName(child_name, true); 2263 } 2264 break; 2265 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2266 Both: 2267 if (root->IsSynthetic()) { 2268 child_valobj_sp = root->GetNonSyntheticValue(); 2269 if (child_valobj_sp.get()) 2270 child_valobj_sp = 2271 child_valobj_sp->GetChildMemberWithName(child_name, true); 2272 } else { 2273 child_valobj_sp = root->GetSyntheticValue(); 2274 if (child_valobj_sp.get()) 2275 child_valobj_sp = 2276 child_valobj_sp->GetChildMemberWithName(child_name, true); 2277 } 2278 break; 2279 } 2280 } 2281 2282 // if we are here and options.m_no_synthetic_children is true, 2283 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2284 // branch, and return an error 2285 if (child_valobj_sp.get()) // if it worked, just return 2286 { 2287 *reason_to_stop = 2288 ValueObject::eExpressionPathScanEndReasonEndOfString; 2289 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2290 return child_valobj_sp; 2291 } else { 2292 *reason_to_stop = 2293 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2294 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2295 return nullptr; 2296 } 2297 } else // other layers do expand 2298 { 2299 llvm::StringRef next_separator = temp_expression.substr(next_sep_pos); 2300 2301 child_name.SetString(temp_expression.slice(0, next_sep_pos)); 2302 2303 ValueObjectSP child_valobj_sp = 2304 root->GetChildMemberWithName(child_name, true); 2305 if (child_valobj_sp.get()) // store the new root and move on 2306 { 2307 root = child_valobj_sp; 2308 remainder = next_separator; 2309 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2310 continue; 2311 } else { 2312 switch (options.m_synthetic_children_traversal) { 2313 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2314 None: 2315 break; 2316 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2317 FromSynthetic: 2318 if (root->IsSynthetic()) { 2319 child_valobj_sp = root->GetNonSyntheticValue(); 2320 if (child_valobj_sp.get()) 2321 child_valobj_sp = 2322 child_valobj_sp->GetChildMemberWithName(child_name, true); 2323 } 2324 break; 2325 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2326 ToSynthetic: 2327 if (!root->IsSynthetic()) { 2328 child_valobj_sp = root->GetSyntheticValue(); 2329 if (child_valobj_sp.get()) 2330 child_valobj_sp = 2331 child_valobj_sp->GetChildMemberWithName(child_name, true); 2332 } 2333 break; 2334 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2335 Both: 2336 if (root->IsSynthetic()) { 2337 child_valobj_sp = root->GetNonSyntheticValue(); 2338 if (child_valobj_sp.get()) 2339 child_valobj_sp = 2340 child_valobj_sp->GetChildMemberWithName(child_name, true); 2341 } else { 2342 child_valobj_sp = root->GetSyntheticValue(); 2343 if (child_valobj_sp.get()) 2344 child_valobj_sp = 2345 child_valobj_sp->GetChildMemberWithName(child_name, true); 2346 } 2347 break; 2348 } 2349 } 2350 2351 // if we are here and options.m_no_synthetic_children is true, 2352 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2353 // branch, and return an error 2354 if (child_valobj_sp.get()) // if it worked, move on 2355 { 2356 root = child_valobj_sp; 2357 remainder = next_separator; 2358 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2359 continue; 2360 } else { 2361 *reason_to_stop = 2362 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2363 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2364 return nullptr; 2365 } 2366 } 2367 break; 2368 } 2369 case '[': { 2370 if (!root_compiler_type_info.Test(eTypeIsArray) && 2371 !root_compiler_type_info.Test(eTypeIsPointer) && 2372 !root_compiler_type_info.Test( 2373 eTypeIsVector)) // if this is not a T[] nor a T* 2374 { 2375 if (!root_compiler_type_info.Test( 2376 eTypeIsScalar)) // if this is not even a scalar... 2377 { 2378 if (options.m_synthetic_children_traversal == 2379 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2380 None) // ...only chance left is synthetic 2381 { 2382 *reason_to_stop = 2383 ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 2384 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2385 return ValueObjectSP(); 2386 } 2387 } else if (!options.m_allow_bitfields_syntax) // if this is a scalar, 2388 // check that we can 2389 // expand bitfields 2390 { 2391 *reason_to_stop = 2392 ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 2393 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2394 return ValueObjectSP(); 2395 } 2396 } 2397 if (temp_expression[1] == 2398 ']') // if this is an unbounded range it only works for arrays 2399 { 2400 if (!root_compiler_type_info.Test(eTypeIsArray)) { 2401 *reason_to_stop = 2402 ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 2403 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2404 return nullptr; 2405 } else // even if something follows, we cannot expand unbounded ranges, 2406 // just let the caller do it 2407 { 2408 *reason_to_stop = 2409 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2410 *final_result = 2411 ValueObject::eExpressionPathEndResultTypeUnboundedRange; 2412 return root; 2413 } 2414 } 2415 2416 size_t close_bracket_position = temp_expression.find(']', 1); 2417 if (close_bracket_position == 2418 llvm::StringRef::npos) // if there is no ], this is a syntax error 2419 { 2420 *reason_to_stop = 2421 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2422 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2423 return nullptr; 2424 } 2425 2426 llvm::StringRef bracket_expr = 2427 temp_expression.slice(1, close_bracket_position); 2428 2429 // If this was an empty expression it would have been caught by the if 2430 // above. 2431 assert(!bracket_expr.empty()); 2432 2433 if (!bracket_expr.contains('-')) { 2434 // if no separator, this is of the form [N]. Note that this cannot be 2435 // an unbounded range of the form [], because that case was handled 2436 // above with an unconditional return. 2437 unsigned long index = 0; 2438 if (bracket_expr.getAsInteger(0, index)) { 2439 *reason_to_stop = 2440 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2441 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2442 return nullptr; 2443 } 2444 2445 // from here on we do have a valid index 2446 if (root_compiler_type_info.Test(eTypeIsArray)) { 2447 ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true); 2448 if (!child_valobj_sp) 2449 child_valobj_sp = root->GetSyntheticArrayMember(index, true); 2450 if (!child_valobj_sp) 2451 if (root->HasSyntheticValue() && 2452 root->GetSyntheticValue()->GetNumChildren() > index) 2453 child_valobj_sp = 2454 root->GetSyntheticValue()->GetChildAtIndex(index, true); 2455 if (child_valobj_sp) { 2456 root = child_valobj_sp; 2457 remainder = 2458 temp_expression.substr(close_bracket_position + 1); // skip ] 2459 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2460 continue; 2461 } else { 2462 *reason_to_stop = 2463 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2464 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2465 return nullptr; 2466 } 2467 } else if (root_compiler_type_info.Test(eTypeIsPointer)) { 2468 if (*what_next == 2469 ValueObject:: 2470 eExpressionPathAftermathDereference && // if this is a 2471 // ptr-to-scalar, I 2472 // am accessing it 2473 // by index and I 2474 // would have 2475 // deref'ed anyway, 2476 // then do it now 2477 // and use this as 2478 // a bitfield 2479 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2480 Status error; 2481 root = root->Dereference(error); 2482 if (error.Fail() || !root) { 2483 *reason_to_stop = 2484 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2485 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2486 return nullptr; 2487 } else { 2488 *what_next = eExpressionPathAftermathNothing; 2489 continue; 2490 } 2491 } else { 2492 if (root->GetCompilerType().GetMinimumLanguage() == 2493 eLanguageTypeObjC && 2494 pointee_compiler_type_info.AllClear(eTypeIsPointer) && 2495 root->HasSyntheticValue() && 2496 (options.m_synthetic_children_traversal == 2497 GetValueForExpressionPathOptions:: 2498 SyntheticChildrenTraversal::ToSynthetic || 2499 options.m_synthetic_children_traversal == 2500 GetValueForExpressionPathOptions:: 2501 SyntheticChildrenTraversal::Both)) { 2502 root = root->GetSyntheticValue()->GetChildAtIndex(index, true); 2503 } else 2504 root = root->GetSyntheticArrayMember(index, true); 2505 if (!root) { 2506 *reason_to_stop = 2507 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2508 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2509 return nullptr; 2510 } else { 2511 remainder = 2512 temp_expression.substr(close_bracket_position + 1); // skip ] 2513 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2514 continue; 2515 } 2516 } 2517 } else if (root_compiler_type_info.Test(eTypeIsScalar)) { 2518 root = root->GetSyntheticBitFieldChild(index, index, true); 2519 if (!root) { 2520 *reason_to_stop = 2521 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2522 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2523 return nullptr; 2524 } else // we do not know how to expand members of bitfields, so we 2525 // just return and let the caller do any further processing 2526 { 2527 *reason_to_stop = ValueObject:: 2528 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2529 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2530 return root; 2531 } 2532 } else if (root_compiler_type_info.Test(eTypeIsVector)) { 2533 root = root->GetChildAtIndex(index, true); 2534 if (!root) { 2535 *reason_to_stop = 2536 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2537 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2538 return ValueObjectSP(); 2539 } else { 2540 remainder = 2541 temp_expression.substr(close_bracket_position + 1); // skip ] 2542 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2543 continue; 2544 } 2545 } else if (options.m_synthetic_children_traversal == 2546 GetValueForExpressionPathOptions:: 2547 SyntheticChildrenTraversal::ToSynthetic || 2548 options.m_synthetic_children_traversal == 2549 GetValueForExpressionPathOptions:: 2550 SyntheticChildrenTraversal::Both) { 2551 if (root->HasSyntheticValue()) 2552 root = root->GetSyntheticValue(); 2553 else if (!root->IsSynthetic()) { 2554 *reason_to_stop = 2555 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2556 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2557 return nullptr; 2558 } 2559 // if we are here, then root itself is a synthetic VO.. should be 2560 // good to go 2561 2562 if (!root) { 2563 *reason_to_stop = 2564 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2565 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2566 return nullptr; 2567 } 2568 root = root->GetChildAtIndex(index, true); 2569 if (!root) { 2570 *reason_to_stop = 2571 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2572 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2573 return nullptr; 2574 } else { 2575 remainder = 2576 temp_expression.substr(close_bracket_position + 1); // skip ] 2577 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2578 continue; 2579 } 2580 } else { 2581 *reason_to_stop = 2582 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2583 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2584 return nullptr; 2585 } 2586 } else { 2587 // we have a low and a high index 2588 llvm::StringRef sleft, sright; 2589 unsigned long low_index, high_index; 2590 std::tie(sleft, sright) = bracket_expr.split('-'); 2591 if (sleft.getAsInteger(0, low_index) || 2592 sright.getAsInteger(0, high_index)) { 2593 *reason_to_stop = 2594 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2595 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2596 return nullptr; 2597 } 2598 2599 if (low_index > high_index) // swap indices if required 2600 std::swap(low_index, high_index); 2601 2602 if (root_compiler_type_info.Test( 2603 eTypeIsScalar)) // expansion only works for scalars 2604 { 2605 root = root->GetSyntheticBitFieldChild(low_index, high_index, true); 2606 if (!root) { 2607 *reason_to_stop = 2608 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2609 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2610 return nullptr; 2611 } else { 2612 *reason_to_stop = ValueObject:: 2613 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2614 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2615 return root; 2616 } 2617 } else if (root_compiler_type_info.Test( 2618 eTypeIsPointer) && // if this is a ptr-to-scalar, I am 2619 // accessing it by index and I would 2620 // have deref'ed anyway, then do it 2621 // now and use this as a bitfield 2622 *what_next == 2623 ValueObject::eExpressionPathAftermathDereference && 2624 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2625 Status error; 2626 root = root->Dereference(error); 2627 if (error.Fail() || !root) { 2628 *reason_to_stop = 2629 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2630 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2631 return nullptr; 2632 } else { 2633 *what_next = ValueObject::eExpressionPathAftermathNothing; 2634 continue; 2635 } 2636 } else { 2637 *reason_to_stop = 2638 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2639 *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange; 2640 return root; 2641 } 2642 } 2643 break; 2644 } 2645 default: // some non-separator is in the way 2646 { 2647 *reason_to_stop = 2648 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2649 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2650 return nullptr; 2651 } 2652 } 2653 } 2654 } 2655 2656 void ValueObject::LogValueObject(Log *log) { 2657 if (log) 2658 return LogValueObject(log, DumpValueObjectOptions(*this)); 2659 } 2660 2661 void ValueObject::LogValueObject(Log *log, 2662 const DumpValueObjectOptions &options) { 2663 if (log) { 2664 StreamString s; 2665 Dump(s, options); 2666 if (s.GetSize()) 2667 log->PutCString(s.GetData()); 2668 } 2669 } 2670 2671 void ValueObject::Dump(Stream &s) { Dump(s, DumpValueObjectOptions(*this)); } 2672 2673 void ValueObject::Dump(Stream &s, const DumpValueObjectOptions &options) { 2674 ValueObjectPrinter printer(this, &s, options); 2675 printer.PrintValueObject(); 2676 } 2677 2678 ValueObjectSP ValueObject::CreateConstantValue(ConstString name) { 2679 ValueObjectSP valobj_sp; 2680 2681 if (UpdateValueIfNeeded(false) && m_error.Success()) { 2682 ExecutionContext exe_ctx(GetExecutionContextRef()); 2683 2684 DataExtractor data; 2685 data.SetByteOrder(m_data.GetByteOrder()); 2686 data.SetAddressByteSize(m_data.GetAddressByteSize()); 2687 2688 if (IsBitfield()) { 2689 Value v(Scalar(GetValueAsUnsigned(UINT64_MAX))); 2690 m_error = v.GetValueAsData(&exe_ctx, data, GetModule().get()); 2691 } else 2692 m_error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get()); 2693 2694 valobj_sp = ValueObjectConstResult::Create( 2695 exe_ctx.GetBestExecutionContextScope(), GetCompilerType(), name, data, 2696 GetAddressOf()); 2697 } 2698 2699 if (!valobj_sp) { 2700 ExecutionContext exe_ctx(GetExecutionContextRef()); 2701 valobj_sp = ValueObjectConstResult::Create( 2702 exe_ctx.GetBestExecutionContextScope(), m_error); 2703 } 2704 return valobj_sp; 2705 } 2706 2707 ValueObjectSP ValueObject::GetQualifiedRepresentationIfAvailable( 2708 lldb::DynamicValueType dynValue, bool synthValue) { 2709 ValueObjectSP result_sp(GetSP()); 2710 2711 switch (dynValue) { 2712 case lldb::eDynamicCanRunTarget: 2713 case lldb::eDynamicDontRunTarget: { 2714 if (!result_sp->IsDynamic()) { 2715 if (result_sp->GetDynamicValue(dynValue)) 2716 result_sp = result_sp->GetDynamicValue(dynValue); 2717 } 2718 } break; 2719 case lldb::eNoDynamicValues: { 2720 if (result_sp->IsDynamic()) { 2721 if (result_sp->GetStaticValue()) 2722 result_sp = result_sp->GetStaticValue(); 2723 } 2724 } break; 2725 } 2726 2727 if (synthValue) { 2728 if (!result_sp->IsSynthetic()) { 2729 if (result_sp->GetSyntheticValue()) 2730 result_sp = result_sp->GetSyntheticValue(); 2731 } 2732 } else { 2733 if (result_sp->IsSynthetic()) { 2734 if (result_sp->GetNonSyntheticValue()) 2735 result_sp = result_sp->GetNonSyntheticValue(); 2736 } 2737 } 2738 2739 return result_sp; 2740 } 2741 2742 ValueObjectSP ValueObject::Dereference(Status &error) { 2743 if (m_deref_valobj) 2744 return m_deref_valobj->GetSP(); 2745 2746 const bool is_pointer_or_reference_type = IsPointerOrReferenceType(); 2747 if (is_pointer_or_reference_type) { 2748 bool omit_empty_base_classes = true; 2749 bool ignore_array_bounds = false; 2750 2751 std::string child_name_str; 2752 uint32_t child_byte_size = 0; 2753 int32_t child_byte_offset = 0; 2754 uint32_t child_bitfield_bit_size = 0; 2755 uint32_t child_bitfield_bit_offset = 0; 2756 bool child_is_base_class = false; 2757 bool child_is_deref_of_parent = false; 2758 const bool transparent_pointers = false; 2759 CompilerType compiler_type = GetCompilerType(); 2760 CompilerType child_compiler_type; 2761 uint64_t language_flags = 0; 2762 2763 ExecutionContext exe_ctx(GetExecutionContextRef()); 2764 2765 child_compiler_type = compiler_type.GetChildCompilerTypeAtIndex( 2766 &exe_ctx, 0, transparent_pointers, omit_empty_base_classes, 2767 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 2768 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 2769 child_is_deref_of_parent, this, language_flags); 2770 if (child_compiler_type && child_byte_size) { 2771 ConstString child_name; 2772 if (!child_name_str.empty()) 2773 child_name.SetCString(child_name_str.c_str()); 2774 2775 m_deref_valobj = new ValueObjectChild( 2776 *this, child_compiler_type, child_name, child_byte_size, 2777 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 2778 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 2779 language_flags); 2780 } 2781 2782 // In case of incomplete child compiler type, use the pointee type and try 2783 // to recreate a new ValueObjectChild using it. 2784 if (!m_deref_valobj) { 2785 if (HasSyntheticValue()) { 2786 child_compiler_type = compiler_type.GetPointeeType(); 2787 2788 if (child_compiler_type) { 2789 ConstString child_name; 2790 if (!child_name_str.empty()) 2791 child_name.SetCString(child_name_str.c_str()); 2792 2793 m_deref_valobj = new ValueObjectChild( 2794 *this, child_compiler_type, child_name, child_byte_size, 2795 child_byte_offset, child_bitfield_bit_size, 2796 child_bitfield_bit_offset, child_is_base_class, 2797 child_is_deref_of_parent, eAddressTypeInvalid, language_flags); 2798 } 2799 } 2800 } 2801 2802 } else if (HasSyntheticValue()) { 2803 m_deref_valobj = 2804 GetSyntheticValue() 2805 ->GetChildMemberWithName(ConstString("$$dereference$$"), true) 2806 .get(); 2807 } else if (IsSynthetic()) { 2808 m_deref_valobj = 2809 GetChildMemberWithName(ConstString("$$dereference$$"), true).get(); 2810 } 2811 2812 if (m_deref_valobj) { 2813 error.Clear(); 2814 return m_deref_valobj->GetSP(); 2815 } else { 2816 StreamString strm; 2817 GetExpressionPath(strm); 2818 2819 if (is_pointer_or_reference_type) 2820 error.SetErrorStringWithFormat("dereference failed: (%s) %s", 2821 GetTypeName().AsCString("<invalid type>"), 2822 strm.GetData()); 2823 else 2824 error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s", 2825 GetTypeName().AsCString("<invalid type>"), 2826 strm.GetData()); 2827 return ValueObjectSP(); 2828 } 2829 } 2830 2831 ValueObjectSP ValueObject::AddressOf(Status &error) { 2832 if (m_addr_of_valobj_sp) 2833 return m_addr_of_valobj_sp; 2834 2835 AddressType address_type = eAddressTypeInvalid; 2836 const bool scalar_is_load_address = false; 2837 addr_t addr = GetAddressOf(scalar_is_load_address, &address_type); 2838 error.Clear(); 2839 if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) { 2840 switch (address_type) { 2841 case eAddressTypeInvalid: { 2842 StreamString expr_path_strm; 2843 GetExpressionPath(expr_path_strm); 2844 error.SetErrorStringWithFormat("'%s' is not in memory", 2845 expr_path_strm.GetData()); 2846 } break; 2847 2848 case eAddressTypeFile: 2849 case eAddressTypeLoad: { 2850 CompilerType compiler_type = GetCompilerType(); 2851 if (compiler_type) { 2852 std::string name(1, '&'); 2853 name.append(m_name.AsCString("")); 2854 ExecutionContext exe_ctx(GetExecutionContextRef()); 2855 m_addr_of_valobj_sp = ValueObjectConstResult::Create( 2856 exe_ctx.GetBestExecutionContextScope(), 2857 compiler_type.GetPointerType(), ConstString(name.c_str()), addr, 2858 eAddressTypeInvalid, m_data.GetAddressByteSize()); 2859 } 2860 } break; 2861 default: 2862 break; 2863 } 2864 } else { 2865 StreamString expr_path_strm; 2866 GetExpressionPath(expr_path_strm); 2867 error.SetErrorStringWithFormat("'%s' doesn't have a valid address", 2868 expr_path_strm.GetData()); 2869 } 2870 2871 return m_addr_of_valobj_sp; 2872 } 2873 2874 ValueObjectSP ValueObject::Cast(const CompilerType &compiler_type) { 2875 return ValueObjectCast::Create(*this, GetName(), compiler_type); 2876 } 2877 2878 lldb::ValueObjectSP ValueObject::Clone(ConstString new_name) { 2879 return ValueObjectCast::Create(*this, new_name, GetCompilerType()); 2880 } 2881 2882 ValueObjectSP ValueObject::CastPointerType(const char *name, 2883 CompilerType &compiler_type) { 2884 ValueObjectSP valobj_sp; 2885 AddressType address_type; 2886 addr_t ptr_value = GetPointerValue(&address_type); 2887 2888 if (ptr_value != LLDB_INVALID_ADDRESS) { 2889 Address ptr_addr(ptr_value); 2890 ExecutionContext exe_ctx(GetExecutionContextRef()); 2891 valobj_sp = ValueObjectMemory::Create( 2892 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, compiler_type); 2893 } 2894 return valobj_sp; 2895 } 2896 2897 ValueObjectSP ValueObject::CastPointerType(const char *name, TypeSP &type_sp) { 2898 ValueObjectSP valobj_sp; 2899 AddressType address_type; 2900 addr_t ptr_value = GetPointerValue(&address_type); 2901 2902 if (ptr_value != LLDB_INVALID_ADDRESS) { 2903 Address ptr_addr(ptr_value); 2904 ExecutionContext exe_ctx(GetExecutionContextRef()); 2905 valobj_sp = ValueObjectMemory::Create( 2906 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, type_sp); 2907 } 2908 return valobj_sp; 2909 } 2910 2911 ValueObject::EvaluationPoint::EvaluationPoint() 2912 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) {} 2913 2914 ValueObject::EvaluationPoint::EvaluationPoint(ExecutionContextScope *exe_scope, 2915 bool use_selected) 2916 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) { 2917 ExecutionContext exe_ctx(exe_scope); 2918 TargetSP target_sp(exe_ctx.GetTargetSP()); 2919 if (target_sp) { 2920 m_exe_ctx_ref.SetTargetSP(target_sp); 2921 ProcessSP process_sp(exe_ctx.GetProcessSP()); 2922 if (!process_sp) 2923 process_sp = target_sp->GetProcessSP(); 2924 2925 if (process_sp) { 2926 m_mod_id = process_sp->GetModID(); 2927 m_exe_ctx_ref.SetProcessSP(process_sp); 2928 2929 ThreadSP thread_sp(exe_ctx.GetThreadSP()); 2930 2931 if (!thread_sp) { 2932 if (use_selected) 2933 thread_sp = process_sp->GetThreadList().GetSelectedThread(); 2934 } 2935 2936 if (thread_sp) { 2937 m_exe_ctx_ref.SetThreadSP(thread_sp); 2938 2939 StackFrameSP frame_sp(exe_ctx.GetFrameSP()); 2940 if (!frame_sp) { 2941 if (use_selected) 2942 frame_sp = thread_sp->GetSelectedFrame(); 2943 } 2944 if (frame_sp) 2945 m_exe_ctx_ref.SetFrameSP(frame_sp); 2946 } 2947 } 2948 } 2949 } 2950 2951 ValueObject::EvaluationPoint::EvaluationPoint( 2952 const ValueObject::EvaluationPoint &rhs) 2953 : m_mod_id(), m_exe_ctx_ref(rhs.m_exe_ctx_ref), m_needs_update(true) {} 2954 2955 ValueObject::EvaluationPoint::~EvaluationPoint() {} 2956 2957 // This function checks the EvaluationPoint against the current process state. 2958 // If the current state matches the evaluation point, or the evaluation point 2959 // is already invalid, then we return false, meaning "no change". If the 2960 // current state is different, we update our state, and return true meaning 2961 // "yes, change". If we did see a change, we also set m_needs_update to true, 2962 // so future calls to NeedsUpdate will return true. exe_scope will be set to 2963 // the current execution context scope. 2964 2965 bool ValueObject::EvaluationPoint::SyncWithProcessState( 2966 bool accept_invalid_exe_ctx) { 2967 // Start with the target, if it is NULL, then we're obviously not going to 2968 // get any further: 2969 const bool thread_and_frame_only_if_stopped = true; 2970 ExecutionContext exe_ctx( 2971 m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped)); 2972 2973 if (exe_ctx.GetTargetPtr() == nullptr) 2974 return false; 2975 2976 // If we don't have a process nothing can change. 2977 Process *process = exe_ctx.GetProcessPtr(); 2978 if (process == nullptr) 2979 return false; 2980 2981 // If our stop id is the current stop ID, nothing has changed: 2982 ProcessModID current_mod_id = process->GetModID(); 2983 2984 // If the current stop id is 0, either we haven't run yet, or the process 2985 // state has been cleared. In either case, we aren't going to be able to sync 2986 // with the process state. 2987 if (current_mod_id.GetStopID() == 0) 2988 return false; 2989 2990 bool changed = false; 2991 const bool was_valid = m_mod_id.IsValid(); 2992 if (was_valid) { 2993 if (m_mod_id == current_mod_id) { 2994 // Everything is already up to date in this object, no need to update the 2995 // execution context scope. 2996 changed = false; 2997 } else { 2998 m_mod_id = current_mod_id; 2999 m_needs_update = true; 3000 changed = true; 3001 } 3002 } 3003 3004 // Now re-look up the thread and frame in case the underlying objects have 3005 // gone away & been recreated. That way we'll be sure to return a valid 3006 // exe_scope. If we used to have a thread or a frame but can't find it 3007 // anymore, then mark ourselves as invalid. 3008 3009 if (!accept_invalid_exe_ctx) { 3010 if (m_exe_ctx_ref.HasThreadRef()) { 3011 ThreadSP thread_sp(m_exe_ctx_ref.GetThreadSP()); 3012 if (thread_sp) { 3013 if (m_exe_ctx_ref.HasFrameRef()) { 3014 StackFrameSP frame_sp(m_exe_ctx_ref.GetFrameSP()); 3015 if (!frame_sp) { 3016 // We used to have a frame, but now it is gone 3017 SetInvalid(); 3018 changed = was_valid; 3019 } 3020 } 3021 } else { 3022 // We used to have a thread, but now it is gone 3023 SetInvalid(); 3024 changed = was_valid; 3025 } 3026 } 3027 } 3028 3029 return changed; 3030 } 3031 3032 void ValueObject::EvaluationPoint::SetUpdated() { 3033 ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP()); 3034 if (process_sp) 3035 m_mod_id = process_sp->GetModID(); 3036 m_needs_update = false; 3037 } 3038 3039 void ValueObject::ClearUserVisibleData(uint32_t clear_mask) { 3040 if ((clear_mask & eClearUserVisibleDataItemsValue) == 3041 eClearUserVisibleDataItemsValue) 3042 m_value_str.clear(); 3043 3044 if ((clear_mask & eClearUserVisibleDataItemsLocation) == 3045 eClearUserVisibleDataItemsLocation) 3046 m_location_str.clear(); 3047 3048 if ((clear_mask & eClearUserVisibleDataItemsSummary) == 3049 eClearUserVisibleDataItemsSummary) 3050 m_summary_str.clear(); 3051 3052 if ((clear_mask & eClearUserVisibleDataItemsDescription) == 3053 eClearUserVisibleDataItemsDescription) 3054 m_object_desc_str.clear(); 3055 3056 if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == 3057 eClearUserVisibleDataItemsSyntheticChildren) { 3058 if (m_synthetic_value) 3059 m_synthetic_value = nullptr; 3060 } 3061 } 3062 3063 SymbolContextScope *ValueObject::GetSymbolContextScope() { 3064 if (m_parent) { 3065 if (!m_parent->IsPointerOrReferenceType()) 3066 return m_parent->GetSymbolContextScope(); 3067 } 3068 return nullptr; 3069 } 3070 3071 lldb::ValueObjectSP 3072 ValueObject::CreateValueObjectFromExpression(llvm::StringRef name, 3073 llvm::StringRef expression, 3074 const ExecutionContext &exe_ctx) { 3075 return CreateValueObjectFromExpression(name, expression, exe_ctx, 3076 EvaluateExpressionOptions()); 3077 } 3078 3079 lldb::ValueObjectSP ValueObject::CreateValueObjectFromExpression( 3080 llvm::StringRef name, llvm::StringRef expression, 3081 const ExecutionContext &exe_ctx, const EvaluateExpressionOptions &options) { 3082 lldb::ValueObjectSP retval_sp; 3083 lldb::TargetSP target_sp(exe_ctx.GetTargetSP()); 3084 if (!target_sp) 3085 return retval_sp; 3086 if (expression.empty()) 3087 return retval_sp; 3088 target_sp->EvaluateExpression(expression, exe_ctx.GetFrameSP().get(), 3089 retval_sp, options); 3090 if (retval_sp && !name.empty()) 3091 retval_sp->SetName(ConstString(name)); 3092 return retval_sp; 3093 } 3094 3095 lldb::ValueObjectSP ValueObject::CreateValueObjectFromAddress( 3096 llvm::StringRef name, uint64_t address, const ExecutionContext &exe_ctx, 3097 CompilerType type) { 3098 if (type) { 3099 CompilerType pointer_type(type.GetPointerType()); 3100 if (pointer_type) { 3101 lldb::DataBufferSP buffer( 3102 new lldb_private::DataBufferHeap(&address, sizeof(lldb::addr_t))); 3103 lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create( 3104 exe_ctx.GetBestExecutionContextScope(), pointer_type, 3105 ConstString(name), buffer, exe_ctx.GetByteOrder(), 3106 exe_ctx.GetAddressByteSize())); 3107 if (ptr_result_valobj_sp) { 3108 ptr_result_valobj_sp->GetValue().SetValueType( 3109 Value::ValueType::LoadAddress); 3110 Status err; 3111 ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err); 3112 if (ptr_result_valobj_sp && !name.empty()) 3113 ptr_result_valobj_sp->SetName(ConstString(name)); 3114 } 3115 return ptr_result_valobj_sp; 3116 } 3117 } 3118 return lldb::ValueObjectSP(); 3119 } 3120 3121 lldb::ValueObjectSP ValueObject::CreateValueObjectFromData( 3122 llvm::StringRef name, const DataExtractor &data, 3123 const ExecutionContext &exe_ctx, CompilerType type) { 3124 lldb::ValueObjectSP new_value_sp; 3125 new_value_sp = ValueObjectConstResult::Create( 3126 exe_ctx.GetBestExecutionContextScope(), type, ConstString(name), data, 3127 LLDB_INVALID_ADDRESS); 3128 new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad); 3129 if (new_value_sp && !name.empty()) 3130 new_value_sp->SetName(ConstString(name)); 3131 return new_value_sp; 3132 } 3133 3134 ModuleSP ValueObject::GetModule() { 3135 ValueObject *root(GetRoot()); 3136 if (root != this) 3137 return root->GetModule(); 3138 return lldb::ModuleSP(); 3139 } 3140 3141 ValueObject *ValueObject::GetRoot() { 3142 if (m_root) 3143 return m_root; 3144 return (m_root = FollowParentChain([](ValueObject *vo) -> bool { 3145 return (vo->m_parent != nullptr); 3146 })); 3147 } 3148 3149 ValueObject * 3150 ValueObject::FollowParentChain(std::function<bool(ValueObject *)> f) { 3151 ValueObject *vo = this; 3152 while (vo) { 3153 if (!f(vo)) 3154 break; 3155 vo = vo->m_parent; 3156 } 3157 return vo; 3158 } 3159 3160 AddressType ValueObject::GetAddressTypeOfChildren() { 3161 if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) { 3162 ValueObject *root(GetRoot()); 3163 if (root != this) 3164 return root->GetAddressTypeOfChildren(); 3165 } 3166 return m_address_type_of_ptr_or_ref_children; 3167 } 3168 3169 lldb::DynamicValueType ValueObject::GetDynamicValueType() { 3170 ValueObject *with_dv_info = this; 3171 while (with_dv_info) { 3172 if (with_dv_info->HasDynamicValueTypeInfo()) 3173 return with_dv_info->GetDynamicValueTypeImpl(); 3174 with_dv_info = with_dv_info->m_parent; 3175 } 3176 return lldb::eNoDynamicValues; 3177 } 3178 3179 lldb::Format ValueObject::GetFormat() const { 3180 const ValueObject *with_fmt_info = this; 3181 while (with_fmt_info) { 3182 if (with_fmt_info->m_format != lldb::eFormatDefault) 3183 return with_fmt_info->m_format; 3184 with_fmt_info = with_fmt_info->m_parent; 3185 } 3186 return m_format; 3187 } 3188 3189 lldb::LanguageType ValueObject::GetPreferredDisplayLanguage() { 3190 lldb::LanguageType type = m_preferred_display_language; 3191 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) { 3192 if (GetRoot()) { 3193 if (GetRoot() == this) { 3194 if (StackFrameSP frame_sp = GetFrameSP()) { 3195 const SymbolContext &sc( 3196 frame_sp->GetSymbolContext(eSymbolContextCompUnit)); 3197 if (CompileUnit *cu = sc.comp_unit) 3198 type = cu->GetLanguage(); 3199 } 3200 } else { 3201 type = GetRoot()->GetPreferredDisplayLanguage(); 3202 } 3203 } 3204 } 3205 return (m_preferred_display_language = type); // only compute it once 3206 } 3207 3208 void ValueObject::SetPreferredDisplayLanguage(lldb::LanguageType lt) { 3209 m_preferred_display_language = lt; 3210 } 3211 3212 void ValueObject::SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType lt) { 3213 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 3214 SetPreferredDisplayLanguage(lt); 3215 } 3216 3217 bool ValueObject::CanProvideValue() { 3218 // we need to support invalid types as providers of values because some bare- 3219 // board debugging scenarios have no notion of types, but still manage to 3220 // have raw numeric values for things like registers. sigh. 3221 CompilerType type = GetCompilerType(); 3222 return (!type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue)); 3223 } 3224 3225 bool ValueObject::IsChecksumEmpty() { return m_value_checksum.empty(); } 3226 3227 ValueObjectSP ValueObject::Persist() { 3228 if (!UpdateValueIfNeeded()) 3229 return nullptr; 3230 3231 TargetSP target_sp(GetTargetSP()); 3232 if (!target_sp) 3233 return nullptr; 3234 3235 PersistentExpressionState *persistent_state = 3236 target_sp->GetPersistentExpressionStateForLanguage( 3237 GetPreferredDisplayLanguage()); 3238 3239 if (!persistent_state) 3240 return nullptr; 3241 3242 ConstString name = persistent_state->GetNextPersistentVariableName(); 3243 3244 ValueObjectSP const_result_sp = 3245 ValueObjectConstResult::Create(target_sp.get(), GetValue(), name); 3246 3247 ExpressionVariableSP persistent_var_sp = 3248 persistent_state->CreatePersistentVariable(const_result_sp); 3249 persistent_var_sp->m_live_sp = persistent_var_sp->m_frozen_sp; 3250 persistent_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference; 3251 3252 return persistent_var_sp->GetValueObject(); 3253 } 3254 3255 bool ValueObject::IsSyntheticChildrenGenerated() { 3256 return m_is_synthetic_children_generated; 3257 } 3258 3259 void ValueObject::SetSyntheticChildrenGenerated(bool b) { 3260 m_is_synthetic_children_generated = b; 3261 } 3262 3263 uint64_t ValueObject::GetLanguageFlags() { return m_language_flags; } 3264 3265 void ValueObject::SetLanguageFlags(uint64_t flags) { m_language_flags = flags; } 3266 3267 ValueObjectManager::ValueObjectManager(lldb::ValueObjectSP in_valobj_sp, 3268 lldb::DynamicValueType use_dynamic, 3269 bool use_synthetic) : m_root_valobj_sp(), 3270 m_user_valobj_sp(), m_use_dynamic(use_dynamic), m_stop_id(UINT32_MAX), 3271 m_use_synthetic(use_synthetic) { 3272 if (!in_valobj_sp) 3273 return; 3274 // If the user passes in a value object that is dynamic or synthetic, then 3275 // water it down to the static type. 3276 m_root_valobj_sp = in_valobj_sp->GetQualifiedRepresentationIfAvailable(lldb::eNoDynamicValues, false); 3277 } 3278 3279 bool ValueObjectManager::IsValid() const { 3280 if (!m_root_valobj_sp) 3281 return false; 3282 lldb::TargetSP target_sp = GetTargetSP(); 3283 if (target_sp) 3284 return target_sp->IsValid(); 3285 return false; 3286 } 3287 3288 lldb::ValueObjectSP ValueObjectManager::GetSP() { 3289 lldb::ProcessSP process_sp = GetProcessSP(); 3290 if (!process_sp) 3291 return lldb::ValueObjectSP(); 3292 3293 const uint32_t current_stop_id = process_sp->GetLastNaturalStopID(); 3294 if (current_stop_id == m_stop_id) 3295 return m_user_valobj_sp; 3296 3297 m_stop_id = current_stop_id; 3298 3299 if (!m_root_valobj_sp) { 3300 m_user_valobj_sp.reset(); 3301 return m_root_valobj_sp; 3302 } 3303 3304 m_user_valobj_sp = m_root_valobj_sp; 3305 3306 if (m_use_dynamic != lldb::eNoDynamicValues) { 3307 lldb::ValueObjectSP dynamic_sp = m_user_valobj_sp->GetDynamicValue(m_use_dynamic); 3308 if (dynamic_sp) 3309 m_user_valobj_sp = dynamic_sp; 3310 } 3311 3312 if (m_use_synthetic) { 3313 lldb::ValueObjectSP synthetic_sp = m_user_valobj_sp->GetSyntheticValue(); 3314 if (synthetic_sp) 3315 m_user_valobj_sp = synthetic_sp; 3316 } 3317 3318 return m_user_valobj_sp; 3319 } 3320 3321 void ValueObjectManager::SetUseDynamic(lldb::DynamicValueType use_dynamic) { 3322 if (use_dynamic != m_use_dynamic) { 3323 m_use_dynamic = use_dynamic; 3324 m_user_valobj_sp.reset(); 3325 m_stop_id = UINT32_MAX; 3326 } 3327 } 3328 3329 void ValueObjectManager::SetUseSynthetic(bool use_synthetic) { 3330 if (m_use_synthetic != use_synthetic) { 3331 m_use_synthetic = use_synthetic; 3332 m_user_valobj_sp.reset(); 3333 m_stop_id = UINT32_MAX; 3334 } 3335 } 3336 3337 lldb::TargetSP ValueObjectManager::GetTargetSP() const { 3338 if (!m_root_valobj_sp) 3339 return m_root_valobj_sp->GetTargetSP(); 3340 return lldb::TargetSP(); 3341 } 3342 3343 lldb::ProcessSP ValueObjectManager::GetProcessSP() const { 3344 if (m_root_valobj_sp) 3345 return m_root_valobj_sp->GetProcessSP(); 3346 return lldb::ProcessSP(); 3347 } 3348 3349 lldb::ThreadSP ValueObjectManager::GetThreadSP() const { 3350 if (m_root_valobj_sp) 3351 return m_root_valobj_sp->GetThreadSP(); 3352 return lldb::ThreadSP(); 3353 } 3354 3355 lldb::StackFrameSP ValueObjectManager::GetFrameSP() const { 3356 if (m_root_valobj_sp) 3357 return m_root_valobj_sp->GetFrameSP(); 3358 return lldb::StackFrameSP(); 3359 } 3360