1 //===-- Disassembler.cpp --------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Core/Disassembler.h" 10 11 #include "lldb/Core/AddressRange.h" 12 #include "lldb/Core/Debugger.h" 13 #include "lldb/Core/EmulateInstruction.h" 14 #include "lldb/Core/Mangled.h" 15 #include "lldb/Core/Module.h" 16 #include "lldb/Core/ModuleList.h" 17 #include "lldb/Core/PluginManager.h" 18 #include "lldb/Core/SourceManager.h" 19 #include "lldb/Host/FileSystem.h" 20 #include "lldb/Interpreter/OptionValue.h" 21 #include "lldb/Interpreter/OptionValueArray.h" 22 #include "lldb/Interpreter/OptionValueDictionary.h" 23 #include "lldb/Interpreter/OptionValueRegex.h" 24 #include "lldb/Interpreter/OptionValueString.h" 25 #include "lldb/Interpreter/OptionValueUInt64.h" 26 #include "lldb/Symbol/Function.h" 27 #include "lldb/Symbol/Symbol.h" 28 #include "lldb/Symbol/SymbolContext.h" 29 #include "lldb/Target/ExecutionContext.h" 30 #include "lldb/Target/SectionLoadList.h" 31 #include "lldb/Target/StackFrame.h" 32 #include "lldb/Target/Target.h" 33 #include "lldb/Target/Thread.h" 34 #include "lldb/Utility/DataBufferHeap.h" 35 #include "lldb/Utility/DataExtractor.h" 36 #include "lldb/Utility/RegularExpression.h" 37 #include "lldb/Utility/Status.h" 38 #include "lldb/Utility/Stream.h" 39 #include "lldb/Utility/StreamString.h" 40 #include "lldb/Utility/Timer.h" 41 #include "lldb/lldb-private-enumerations.h" 42 #include "lldb/lldb-private-interfaces.h" 43 #include "lldb/lldb-private-types.h" 44 #include "llvm/ADT/Triple.h" 45 #include "llvm/Support/Compiler.h" 46 47 #include <cstdint> 48 #include <cstring> 49 #include <utility> 50 51 #include <assert.h> 52 53 #define DEFAULT_DISASM_BYTE_SIZE 32 54 55 using namespace lldb; 56 using namespace lldb_private; 57 58 DisassemblerSP Disassembler::FindPlugin(const ArchSpec &arch, 59 const char *flavor, 60 const char *plugin_name) { 61 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); 62 Timer scoped_timer(func_cat, 63 "Disassembler::FindPlugin (arch = %s, plugin_name = %s)", 64 arch.GetArchitectureName(), plugin_name); 65 66 DisassemblerCreateInstance create_callback = nullptr; 67 68 if (plugin_name) { 69 ConstString const_plugin_name(plugin_name); 70 create_callback = PluginManager::GetDisassemblerCreateCallbackForPluginName( 71 const_plugin_name); 72 if (create_callback) { 73 DisassemblerSP disassembler_sp(create_callback(arch, flavor)); 74 75 if (disassembler_sp) 76 return disassembler_sp; 77 } 78 } else { 79 for (uint32_t idx = 0; 80 (create_callback = PluginManager::GetDisassemblerCreateCallbackAtIndex( 81 idx)) != nullptr; 82 ++idx) { 83 DisassemblerSP disassembler_sp(create_callback(arch, flavor)); 84 85 if (disassembler_sp) 86 return disassembler_sp; 87 } 88 } 89 return DisassemblerSP(); 90 } 91 92 DisassemblerSP Disassembler::FindPluginForTarget(const TargetSP target_sp, 93 const ArchSpec &arch, 94 const char *flavor, 95 const char *plugin_name) { 96 if (target_sp && flavor == nullptr) { 97 // FIXME - we don't have the mechanism in place to do per-architecture 98 // settings. But since we know that for now we only support flavors on x86 99 // & x86_64, 100 if (arch.GetTriple().getArch() == llvm::Triple::x86 || 101 arch.GetTriple().getArch() == llvm::Triple::x86_64) 102 flavor = target_sp->GetDisassemblyFlavor(); 103 } 104 return FindPlugin(arch, flavor, plugin_name); 105 } 106 107 static void ResolveAddress(const ExecutionContext &exe_ctx, const Address &addr, 108 Address &resolved_addr) { 109 if (!addr.IsSectionOffset()) { 110 // If we weren't passed in a section offset address range, try and resolve 111 // it to something 112 Target *target = exe_ctx.GetTargetPtr(); 113 if (target) { 114 bool is_resolved = 115 target->GetSectionLoadList().IsEmpty() ? 116 target->GetImages().ResolveFileAddress(addr.GetOffset(), 117 resolved_addr) : 118 target->GetSectionLoadList().ResolveLoadAddress(addr.GetOffset(), 119 resolved_addr); 120 121 // We weren't able to resolve the address, just treat it as a raw address 122 if (is_resolved && resolved_addr.IsValid()) 123 return; 124 } 125 } 126 resolved_addr = addr; 127 } 128 129 lldb::DisassemblerSP Disassembler::DisassembleRange( 130 const ArchSpec &arch, const char *plugin_name, const char *flavor, 131 const ExecutionContext &exe_ctx, const AddressRange &range, 132 bool prefer_file_cache) { 133 if (range.GetByteSize() <= 0 || !exe_ctx.GetTargetPtr()) 134 return {}; 135 136 if (!range.GetBaseAddress().IsValid()) 137 return {}; 138 139 lldb::DisassemblerSP disasm_sp = Disassembler::FindPluginForTarget( 140 exe_ctx.GetTargetSP(), arch, flavor, plugin_name); 141 142 if (!disasm_sp) 143 return {}; 144 145 const size_t bytes_disassembled = disasm_sp->ParseInstructions( 146 exe_ctx.GetTargetRef(), range, nullptr, prefer_file_cache); 147 if (bytes_disassembled == 0) 148 return {}; 149 150 return disasm_sp; 151 } 152 153 lldb::DisassemblerSP 154 Disassembler::DisassembleBytes(const ArchSpec &arch, const char *plugin_name, 155 const char *flavor, const Address &start, 156 const void *src, size_t src_len, 157 uint32_t num_instructions, bool data_from_file) { 158 if (!src) 159 return {}; 160 161 lldb::DisassemblerSP disasm_sp = 162 Disassembler::FindPlugin(arch, flavor, plugin_name); 163 164 if (!disasm_sp) 165 return {}; 166 167 DataExtractor data(src, src_len, arch.GetByteOrder(), 168 arch.GetAddressByteSize()); 169 170 (void)disasm_sp->DecodeInstructions(start, data, 0, num_instructions, false, 171 data_from_file); 172 return disasm_sp; 173 } 174 175 bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 176 const char *plugin_name, const char *flavor, 177 const ExecutionContext &exe_ctx, 178 const AddressRange &disasm_range, 179 uint32_t num_instructions, 180 bool mixed_source_and_assembly, 181 uint32_t num_mixed_context_lines, 182 uint32_t options, Stream &strm) { 183 if (!disasm_range.GetByteSize() || !exe_ctx.GetTargetPtr()) 184 return false; 185 186 lldb::DisassemblerSP disasm_sp(Disassembler::FindPluginForTarget( 187 exe_ctx.GetTargetSP(), arch, flavor, plugin_name)); 188 189 if (!disasm_sp) 190 return false; 191 192 AddressRange range; 193 ResolveAddress(exe_ctx, disasm_range.GetBaseAddress(), 194 range.GetBaseAddress()); 195 range.SetByteSize(disasm_range.GetByteSize()); 196 const bool prefer_file_cache = false; 197 size_t bytes_disassembled = disasm_sp->ParseInstructions( 198 exe_ctx.GetTargetRef(), range, &strm, prefer_file_cache); 199 if (bytes_disassembled == 0) 200 return false; 201 202 disasm_sp->PrintInstructions(debugger, arch, exe_ctx, num_instructions, 203 mixed_source_and_assembly, 204 num_mixed_context_lines, options, strm); 205 return true; 206 } 207 208 bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 209 const char *plugin_name, const char *flavor, 210 const ExecutionContext &exe_ctx, 211 const Address &start_address, 212 uint32_t num_instructions, 213 bool mixed_source_and_assembly, 214 uint32_t num_mixed_context_lines, 215 uint32_t options, Stream &strm) { 216 if (num_instructions == 0 || !exe_ctx.GetTargetPtr()) 217 return false; 218 219 lldb::DisassemblerSP disasm_sp(Disassembler::FindPluginForTarget( 220 exe_ctx.GetTargetSP(), arch, flavor, plugin_name)); 221 if (!disasm_sp) 222 return false; 223 224 Address addr; 225 ResolveAddress(exe_ctx, start_address, addr); 226 227 const bool prefer_file_cache = false; 228 size_t bytes_disassembled = disasm_sp->ParseInstructions( 229 exe_ctx.GetTargetRef(), addr, num_instructions, prefer_file_cache); 230 if (bytes_disassembled == 0) 231 return false; 232 233 disasm_sp->PrintInstructions(debugger, arch, exe_ctx, num_instructions, 234 mixed_source_and_assembly, 235 num_mixed_context_lines, options, strm); 236 return true; 237 } 238 239 Disassembler::SourceLine 240 Disassembler::GetFunctionDeclLineEntry(const SymbolContext &sc) { 241 if (!sc.function) 242 return {}; 243 244 if (!sc.line_entry.IsValid()) 245 return {}; 246 247 LineEntry prologue_end_line = sc.line_entry; 248 FileSpec func_decl_file; 249 uint32_t func_decl_line; 250 sc.function->GetStartLineSourceInfo(func_decl_file, func_decl_line); 251 252 if (func_decl_file != prologue_end_line.file && 253 func_decl_file != prologue_end_line.original_file) 254 return {}; 255 256 SourceLine decl_line; 257 decl_line.file = func_decl_file; 258 decl_line.line = func_decl_line; 259 // TODO: Do we care about column on these entries? If so, we need to plumb 260 // that through GetStartLineSourceInfo. 261 decl_line.column = 0; 262 return decl_line; 263 } 264 265 void Disassembler::AddLineToSourceLineTables( 266 SourceLine &line, 267 std::map<FileSpec, std::set<uint32_t>> &source_lines_seen) { 268 if (line.IsValid()) { 269 auto source_lines_seen_pos = source_lines_seen.find(line.file); 270 if (source_lines_seen_pos == source_lines_seen.end()) { 271 std::set<uint32_t> lines; 272 lines.insert(line.line); 273 source_lines_seen.emplace(line.file, lines); 274 } else { 275 source_lines_seen_pos->second.insert(line.line); 276 } 277 } 278 } 279 280 bool Disassembler::ElideMixedSourceAndDisassemblyLine( 281 const ExecutionContext &exe_ctx, const SymbolContext &sc, 282 SourceLine &line) { 283 284 // TODO: should we also check target.process.thread.step-avoid-libraries ? 285 286 const RegularExpression *avoid_regex = nullptr; 287 288 // Skip any line #0 entries - they are implementation details 289 if (line.line == 0) 290 return false; 291 292 ThreadSP thread_sp = exe_ctx.GetThreadSP(); 293 if (thread_sp) { 294 avoid_regex = thread_sp->GetSymbolsToAvoidRegexp(); 295 } else { 296 TargetSP target_sp = exe_ctx.GetTargetSP(); 297 if (target_sp) { 298 Status error; 299 OptionValueSP value_sp = target_sp->GetDebugger().GetPropertyValue( 300 &exe_ctx, "target.process.thread.step-avoid-regexp", false, error); 301 if (value_sp && value_sp->GetType() == OptionValue::eTypeRegex) { 302 OptionValueRegex *re = value_sp->GetAsRegex(); 303 if (re) { 304 avoid_regex = re->GetCurrentValue(); 305 } 306 } 307 } 308 } 309 if (avoid_regex && sc.symbol != nullptr) { 310 const char *function_name = 311 sc.GetFunctionName(Mangled::ePreferDemangledWithoutArguments) 312 .GetCString(); 313 if (function_name && avoid_regex->Execute(function_name)) { 314 // skip this source line 315 return true; 316 } 317 } 318 // don't skip this source line 319 return false; 320 } 321 322 void Disassembler::PrintInstructions(Debugger &debugger, const ArchSpec &arch, 323 const ExecutionContext &exe_ctx, 324 uint32_t num_instructions, 325 bool mixed_source_and_assembly, 326 uint32_t num_mixed_context_lines, 327 uint32_t options, Stream &strm) { 328 // We got some things disassembled... 329 size_t num_instructions_found = GetInstructionList().GetSize(); 330 331 if (num_instructions > 0 && num_instructions < num_instructions_found) 332 num_instructions_found = num_instructions; 333 334 const uint32_t max_opcode_byte_size = 335 GetInstructionList().GetMaxOpcocdeByteSize(); 336 SymbolContext sc; 337 SymbolContext prev_sc; 338 AddressRange current_source_line_range; 339 const Address *pc_addr_ptr = nullptr; 340 StackFrame *frame = exe_ctx.GetFramePtr(); 341 342 TargetSP target_sp(exe_ctx.GetTargetSP()); 343 SourceManager &source_manager = 344 target_sp ? target_sp->GetSourceManager() : debugger.GetSourceManager(); 345 346 if (frame) { 347 pc_addr_ptr = &frame->GetFrameCodeAddress(); 348 } 349 const uint32_t scope = 350 eSymbolContextLineEntry | eSymbolContextFunction | eSymbolContextSymbol; 351 const bool use_inline_block_range = false; 352 353 const FormatEntity::Entry *disassembly_format = nullptr; 354 FormatEntity::Entry format; 355 if (exe_ctx.HasTargetScope()) { 356 disassembly_format = 357 exe_ctx.GetTargetRef().GetDebugger().GetDisassemblyFormat(); 358 } else { 359 FormatEntity::Parse("${addr}: ", format); 360 disassembly_format = &format; 361 } 362 363 // First pass: step through the list of instructions, find how long the 364 // initial addresses strings are, insert padding in the second pass so the 365 // opcodes all line up nicely. 366 367 // Also build up the source line mapping if this is mixed source & assembly 368 // mode. Calculate the source line for each assembly instruction (eliding 369 // inlined functions which the user wants to skip). 370 371 std::map<FileSpec, std::set<uint32_t>> source_lines_seen; 372 Symbol *previous_symbol = nullptr; 373 374 size_t address_text_size = 0; 375 for (size_t i = 0; i < num_instructions_found; ++i) { 376 Instruction *inst = GetInstructionList().GetInstructionAtIndex(i).get(); 377 if (inst) { 378 const Address &addr = inst->GetAddress(); 379 ModuleSP module_sp(addr.GetModule()); 380 if (module_sp) { 381 const SymbolContextItem resolve_mask = eSymbolContextFunction | 382 eSymbolContextSymbol | 383 eSymbolContextLineEntry; 384 uint32_t resolved_mask = 385 module_sp->ResolveSymbolContextForAddress(addr, resolve_mask, sc); 386 if (resolved_mask) { 387 StreamString strmstr; 388 Debugger::FormatDisassemblerAddress(disassembly_format, &sc, nullptr, 389 &exe_ctx, &addr, strmstr); 390 size_t cur_line = strmstr.GetSizeOfLastLine(); 391 if (cur_line > address_text_size) 392 address_text_size = cur_line; 393 394 // Add entries to our "source_lines_seen" map+set which list which 395 // sources lines occur in this disassembly session. We will print 396 // lines of context around a source line, but we don't want to print 397 // a source line that has a line table entry of its own - we'll leave 398 // that source line to be printed when it actually occurs in the 399 // disassembly. 400 401 if (mixed_source_and_assembly && sc.line_entry.IsValid()) { 402 if (sc.symbol != previous_symbol) { 403 SourceLine decl_line = GetFunctionDeclLineEntry(sc); 404 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, decl_line)) 405 AddLineToSourceLineTables(decl_line, source_lines_seen); 406 } 407 if (sc.line_entry.IsValid()) { 408 SourceLine this_line; 409 this_line.file = sc.line_entry.file; 410 this_line.line = sc.line_entry.line; 411 this_line.column = sc.line_entry.column; 412 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, this_line)) 413 AddLineToSourceLineTables(this_line, source_lines_seen); 414 } 415 } 416 } 417 sc.Clear(false); 418 } 419 } 420 } 421 422 previous_symbol = nullptr; 423 SourceLine previous_line; 424 for (size_t i = 0; i < num_instructions_found; ++i) { 425 Instruction *inst = GetInstructionList().GetInstructionAtIndex(i).get(); 426 427 if (inst) { 428 const Address &addr = inst->GetAddress(); 429 const bool inst_is_at_pc = pc_addr_ptr && addr == *pc_addr_ptr; 430 SourceLinesToDisplay source_lines_to_display; 431 432 prev_sc = sc; 433 434 ModuleSP module_sp(addr.GetModule()); 435 if (module_sp) { 436 uint32_t resolved_mask = module_sp->ResolveSymbolContextForAddress( 437 addr, eSymbolContextEverything, sc); 438 if (resolved_mask) { 439 if (mixed_source_and_assembly) { 440 441 // If we've started a new function (non-inlined), print all of the 442 // source lines from the function declaration until the first line 443 // table entry - typically the opening curly brace of the function. 444 if (previous_symbol != sc.symbol) { 445 // The default disassembly format puts an extra blank line 446 // between functions - so when we're displaying the source 447 // context for a function, we don't want to add a blank line 448 // after the source context or we'll end up with two of them. 449 if (previous_symbol != nullptr) 450 source_lines_to_display.print_source_context_end_eol = false; 451 452 previous_symbol = sc.symbol; 453 if (sc.function && sc.line_entry.IsValid()) { 454 LineEntry prologue_end_line = sc.line_entry; 455 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, 456 prologue_end_line)) { 457 FileSpec func_decl_file; 458 uint32_t func_decl_line; 459 sc.function->GetStartLineSourceInfo(func_decl_file, 460 func_decl_line); 461 if (func_decl_file == prologue_end_line.file || 462 func_decl_file == prologue_end_line.original_file) { 463 // Add all the lines between the function declaration and 464 // the first non-prologue source line to the list of lines 465 // to print. 466 for (uint32_t lineno = func_decl_line; 467 lineno <= prologue_end_line.line; lineno++) { 468 SourceLine this_line; 469 this_line.file = func_decl_file; 470 this_line.line = lineno; 471 source_lines_to_display.lines.push_back(this_line); 472 } 473 // Mark the last line as the "current" one. Usually this 474 // is the open curly brace. 475 if (source_lines_to_display.lines.size() > 0) 476 source_lines_to_display.current_source_line = 477 source_lines_to_display.lines.size() - 1; 478 } 479 } 480 } 481 sc.GetAddressRange(scope, 0, use_inline_block_range, 482 current_source_line_range); 483 } 484 485 // If we've left a previous source line's address range, print a 486 // new source line 487 if (!current_source_line_range.ContainsFileAddress(addr)) { 488 sc.GetAddressRange(scope, 0, use_inline_block_range, 489 current_source_line_range); 490 491 if (sc != prev_sc && sc.comp_unit && sc.line_entry.IsValid()) { 492 SourceLine this_line; 493 this_line.file = sc.line_entry.file; 494 this_line.line = sc.line_entry.line; 495 496 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, 497 this_line)) { 498 // Only print this source line if it is different from the 499 // last source line we printed. There may have been inlined 500 // functions between these lines that we elided, resulting in 501 // the same line being printed twice in a row for a 502 // contiguous block of assembly instructions. 503 if (this_line != previous_line) { 504 505 std::vector<uint32_t> previous_lines; 506 for (uint32_t i = 0; 507 i < num_mixed_context_lines && 508 (this_line.line - num_mixed_context_lines) > 0; 509 i++) { 510 uint32_t line = 511 this_line.line - num_mixed_context_lines + i; 512 auto pos = source_lines_seen.find(this_line.file); 513 if (pos != source_lines_seen.end()) { 514 if (pos->second.count(line) == 1) { 515 previous_lines.clear(); 516 } else { 517 previous_lines.push_back(line); 518 } 519 } 520 } 521 for (size_t i = 0; i < previous_lines.size(); i++) { 522 SourceLine previous_line; 523 previous_line.file = this_line.file; 524 previous_line.line = previous_lines[i]; 525 auto pos = source_lines_seen.find(previous_line.file); 526 if (pos != source_lines_seen.end()) { 527 pos->second.insert(previous_line.line); 528 } 529 source_lines_to_display.lines.push_back(previous_line); 530 } 531 532 source_lines_to_display.lines.push_back(this_line); 533 source_lines_to_display.current_source_line = 534 source_lines_to_display.lines.size() - 1; 535 536 for (uint32_t i = 0; i < num_mixed_context_lines; i++) { 537 SourceLine next_line; 538 next_line.file = this_line.file; 539 next_line.line = this_line.line + i + 1; 540 auto pos = source_lines_seen.find(next_line.file); 541 if (pos != source_lines_seen.end()) { 542 if (pos->second.count(next_line.line) == 1) 543 break; 544 pos->second.insert(next_line.line); 545 } 546 source_lines_to_display.lines.push_back(next_line); 547 } 548 } 549 previous_line = this_line; 550 } 551 } 552 } 553 } 554 } else { 555 sc.Clear(true); 556 } 557 } 558 559 if (source_lines_to_display.lines.size() > 0) { 560 strm.EOL(); 561 for (size_t idx = 0; idx < source_lines_to_display.lines.size(); 562 idx++) { 563 SourceLine ln = source_lines_to_display.lines[idx]; 564 const char *line_highlight = ""; 565 if (inst_is_at_pc && (options & eOptionMarkPCSourceLine)) { 566 line_highlight = "->"; 567 } else if (idx == source_lines_to_display.current_source_line) { 568 line_highlight = "**"; 569 } 570 source_manager.DisplaySourceLinesWithLineNumbers( 571 ln.file, ln.line, ln.column, 0, 0, line_highlight, &strm); 572 } 573 if (source_lines_to_display.print_source_context_end_eol) 574 strm.EOL(); 575 } 576 577 const bool show_bytes = (options & eOptionShowBytes) != 0; 578 inst->Dump(&strm, max_opcode_byte_size, true, show_bytes, &exe_ctx, &sc, 579 &prev_sc, nullptr, address_text_size); 580 strm.EOL(); 581 } else { 582 break; 583 } 584 } 585 } 586 587 bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 588 const char *plugin_name, const char *flavor, 589 const ExecutionContext &exe_ctx, 590 uint32_t num_instructions, 591 bool mixed_source_and_assembly, 592 uint32_t num_mixed_context_lines, 593 uint32_t options, Stream &strm) { 594 AddressRange range; 595 StackFrame *frame = exe_ctx.GetFramePtr(); 596 if (frame) { 597 SymbolContext sc( 598 frame->GetSymbolContext(eSymbolContextFunction | eSymbolContextSymbol)); 599 if (sc.function) { 600 range = sc.function->GetAddressRange(); 601 } else if (sc.symbol && sc.symbol->ValueIsAddress()) { 602 range.GetBaseAddress() = sc.symbol->GetAddressRef(); 603 range.SetByteSize(sc.symbol->GetByteSize()); 604 } else { 605 range.GetBaseAddress() = frame->GetFrameCodeAddress(); 606 } 607 608 if (range.GetBaseAddress().IsValid() && range.GetByteSize() == 0) 609 range.SetByteSize(DEFAULT_DISASM_BYTE_SIZE); 610 } 611 612 return Disassemble(debugger, arch, plugin_name, flavor, exe_ctx, range, 613 num_instructions, mixed_source_and_assembly, 614 num_mixed_context_lines, options, strm); 615 } 616 617 Instruction::Instruction(const Address &address, AddressClass addr_class) 618 : m_address(address), m_address_class(addr_class), m_opcode(), 619 m_calculated_strings(false) {} 620 621 Instruction::~Instruction() = default; 622 623 AddressClass Instruction::GetAddressClass() { 624 if (m_address_class == AddressClass::eInvalid) 625 m_address_class = m_address.GetAddressClass(); 626 return m_address_class; 627 } 628 629 void Instruction::Dump(lldb_private::Stream *s, uint32_t max_opcode_byte_size, 630 bool show_address, bool show_bytes, 631 const ExecutionContext *exe_ctx, 632 const SymbolContext *sym_ctx, 633 const SymbolContext *prev_sym_ctx, 634 const FormatEntity::Entry *disassembly_addr_format, 635 size_t max_address_text_size) { 636 size_t opcode_column_width = 7; 637 const size_t operand_column_width = 25; 638 639 CalculateMnemonicOperandsAndCommentIfNeeded(exe_ctx); 640 641 StreamString ss; 642 643 if (show_address) { 644 Debugger::FormatDisassemblerAddress(disassembly_addr_format, sym_ctx, 645 prev_sym_ctx, exe_ctx, &m_address, ss); 646 ss.FillLastLineToColumn(max_address_text_size, ' '); 647 } 648 649 if (show_bytes) { 650 if (m_opcode.GetType() == Opcode::eTypeBytes) { 651 // x86_64 and i386 are the only ones that use bytes right now so pad out 652 // the byte dump to be able to always show 15 bytes (3 chars each) plus a 653 // space 654 if (max_opcode_byte_size > 0) 655 m_opcode.Dump(&ss, max_opcode_byte_size * 3 + 1); 656 else 657 m_opcode.Dump(&ss, 15 * 3 + 1); 658 } else { 659 // Else, we have ARM or MIPS which can show up to a uint32_t 0x00000000 660 // (10 spaces) plus two for padding... 661 if (max_opcode_byte_size > 0) 662 m_opcode.Dump(&ss, max_opcode_byte_size * 3 + 1); 663 else 664 m_opcode.Dump(&ss, 12); 665 } 666 } 667 668 const size_t opcode_pos = ss.GetSizeOfLastLine(); 669 670 // The default opcode size of 7 characters is plenty for most architectures 671 // but some like arm can pull out the occasional vqrshrun.s16. We won't get 672 // consistent column spacing in these cases, unfortunately. 673 if (m_opcode_name.length() >= opcode_column_width) { 674 opcode_column_width = m_opcode_name.length() + 1; 675 } 676 677 ss.PutCString(m_opcode_name); 678 ss.FillLastLineToColumn(opcode_pos + opcode_column_width, ' '); 679 ss.PutCString(m_mnemonics); 680 681 if (!m_comment.empty()) { 682 ss.FillLastLineToColumn( 683 opcode_pos + opcode_column_width + operand_column_width, ' '); 684 ss.PutCString(" ; "); 685 ss.PutCString(m_comment); 686 } 687 s->PutCString(ss.GetString()); 688 } 689 690 bool Instruction::DumpEmulation(const ArchSpec &arch) { 691 std::unique_ptr<EmulateInstruction> insn_emulator_up( 692 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr)); 693 if (insn_emulator_up) { 694 insn_emulator_up->SetInstruction(GetOpcode(), GetAddress(), nullptr); 695 return insn_emulator_up->EvaluateInstruction(0); 696 } 697 698 return false; 699 } 700 701 bool Instruction::CanSetBreakpoint () { 702 return !HasDelaySlot(); 703 } 704 705 bool Instruction::HasDelaySlot() { 706 // Default is false. 707 return false; 708 } 709 710 OptionValueSP Instruction::ReadArray(FILE *in_file, Stream *out_stream, 711 OptionValue::Type data_type) { 712 bool done = false; 713 char buffer[1024]; 714 715 auto option_value_sp = std::make_shared<OptionValueArray>(1u << data_type); 716 717 int idx = 0; 718 while (!done) { 719 if (!fgets(buffer, 1023, in_file)) { 720 out_stream->Printf( 721 "Instruction::ReadArray: Error reading file (fgets).\n"); 722 option_value_sp.reset(); 723 return option_value_sp; 724 } 725 726 std::string line(buffer); 727 728 size_t len = line.size(); 729 if (line[len - 1] == '\n') { 730 line[len - 1] = '\0'; 731 line.resize(len - 1); 732 } 733 734 if ((line.size() == 1) && line[0] == ']') { 735 done = true; 736 line.clear(); 737 } 738 739 if (!line.empty()) { 740 std::string value; 741 static RegularExpression g_reg_exp( 742 llvm::StringRef("^[ \t]*([^ \t]+)[ \t]*$")); 743 llvm::SmallVector<llvm::StringRef, 2> matches; 744 if (g_reg_exp.Execute(line, &matches)) 745 value = matches[1].str(); 746 else 747 value = line; 748 749 OptionValueSP data_value_sp; 750 switch (data_type) { 751 case OptionValue::eTypeUInt64: 752 data_value_sp = std::make_shared<OptionValueUInt64>(0, 0); 753 data_value_sp->SetValueFromString(value); 754 break; 755 // Other types can be added later as needed. 756 default: 757 data_value_sp = std::make_shared<OptionValueString>(value.c_str(), ""); 758 break; 759 } 760 761 option_value_sp->GetAsArray()->InsertValue(idx, data_value_sp); 762 ++idx; 763 } 764 } 765 766 return option_value_sp; 767 } 768 769 OptionValueSP Instruction::ReadDictionary(FILE *in_file, Stream *out_stream) { 770 bool done = false; 771 char buffer[1024]; 772 773 auto option_value_sp = std::make_shared<OptionValueDictionary>(); 774 static ConstString encoding_key("data_encoding"); 775 OptionValue::Type data_type = OptionValue::eTypeInvalid; 776 777 while (!done) { 778 // Read the next line in the file 779 if (!fgets(buffer, 1023, in_file)) { 780 out_stream->Printf( 781 "Instruction::ReadDictionary: Error reading file (fgets).\n"); 782 option_value_sp.reset(); 783 return option_value_sp; 784 } 785 786 // Check to see if the line contains the end-of-dictionary marker ("}") 787 std::string line(buffer); 788 789 size_t len = line.size(); 790 if (line[len - 1] == '\n') { 791 line[len - 1] = '\0'; 792 line.resize(len - 1); 793 } 794 795 if ((line.size() == 1) && (line[0] == '}')) { 796 done = true; 797 line.clear(); 798 } 799 800 // Try to find a key-value pair in the current line and add it to the 801 // dictionary. 802 if (!line.empty()) { 803 static RegularExpression g_reg_exp(llvm::StringRef( 804 "^[ \t]*([a-zA-Z_][a-zA-Z0-9_]*)[ \t]*=[ \t]*(.*)[ \t]*$")); 805 806 llvm::SmallVector<llvm::StringRef, 3> matches; 807 808 bool reg_exp_success = g_reg_exp.Execute(line, &matches); 809 std::string key; 810 std::string value; 811 if (reg_exp_success) { 812 key = matches[1].str(); 813 value = matches[2].str(); 814 } else { 815 out_stream->Printf("Instruction::ReadDictionary: Failure executing " 816 "regular expression.\n"); 817 option_value_sp.reset(); 818 return option_value_sp; 819 } 820 821 ConstString const_key(key.c_str()); 822 // Check value to see if it's the start of an array or dictionary. 823 824 lldb::OptionValueSP value_sp; 825 assert(value.empty() == false); 826 assert(key.empty() == false); 827 828 if (value[0] == '{') { 829 assert(value.size() == 1); 830 // value is a dictionary 831 value_sp = ReadDictionary(in_file, out_stream); 832 if (!value_sp) { 833 option_value_sp.reset(); 834 return option_value_sp; 835 } 836 } else if (value[0] == '[') { 837 assert(value.size() == 1); 838 // value is an array 839 value_sp = ReadArray(in_file, out_stream, data_type); 840 if (!value_sp) { 841 option_value_sp.reset(); 842 return option_value_sp; 843 } 844 // We've used the data_type to read an array; re-set the type to 845 // Invalid 846 data_type = OptionValue::eTypeInvalid; 847 } else if ((value[0] == '0') && (value[1] == 'x')) { 848 value_sp = std::make_shared<OptionValueUInt64>(0, 0); 849 value_sp->SetValueFromString(value); 850 } else { 851 size_t len = value.size(); 852 if ((value[0] == '"') && (value[len - 1] == '"')) 853 value = value.substr(1, len - 2); 854 value_sp = std::make_shared<OptionValueString>(value.c_str(), ""); 855 } 856 857 if (const_key == encoding_key) { 858 // A 'data_encoding=..." is NOT a normal key-value pair; it is meta-data 859 // indicating the 860 // data type of an upcoming array (usually the next bit of data to be 861 // read in). 862 if (strcmp(value.c_str(), "uint32_t") == 0) 863 data_type = OptionValue::eTypeUInt64; 864 } else 865 option_value_sp->GetAsDictionary()->SetValueForKey(const_key, value_sp, 866 false); 867 } 868 } 869 870 return option_value_sp; 871 } 872 873 bool Instruction::TestEmulation(Stream *out_stream, const char *file_name) { 874 if (!out_stream) 875 return false; 876 877 if (!file_name) { 878 out_stream->Printf("Instruction::TestEmulation: Missing file_name."); 879 return false; 880 } 881 FILE *test_file = FileSystem::Instance().Fopen(file_name, "r"); 882 if (!test_file) { 883 out_stream->Printf( 884 "Instruction::TestEmulation: Attempt to open test file failed."); 885 return false; 886 } 887 888 char buffer[256]; 889 if (!fgets(buffer, 255, test_file)) { 890 out_stream->Printf( 891 "Instruction::TestEmulation: Error reading first line of test file.\n"); 892 fclose(test_file); 893 return false; 894 } 895 896 if (strncmp(buffer, "InstructionEmulationState={", 27) != 0) { 897 out_stream->Printf("Instructin::TestEmulation: Test file does not contain " 898 "emulation state dictionary\n"); 899 fclose(test_file); 900 return false; 901 } 902 903 // Read all the test information from the test file into an 904 // OptionValueDictionary. 905 906 OptionValueSP data_dictionary_sp(ReadDictionary(test_file, out_stream)); 907 if (!data_dictionary_sp) { 908 out_stream->Printf( 909 "Instruction::TestEmulation: Error reading Dictionary Object.\n"); 910 fclose(test_file); 911 return false; 912 } 913 914 fclose(test_file); 915 916 OptionValueDictionary *data_dictionary = 917 data_dictionary_sp->GetAsDictionary(); 918 static ConstString description_key("assembly_string"); 919 static ConstString triple_key("triple"); 920 921 OptionValueSP value_sp = data_dictionary->GetValueForKey(description_key); 922 923 if (!value_sp) { 924 out_stream->Printf("Instruction::TestEmulation: Test file does not " 925 "contain description string.\n"); 926 return false; 927 } 928 929 SetDescription(value_sp->GetStringValue()); 930 931 value_sp = data_dictionary->GetValueForKey(triple_key); 932 if (!value_sp) { 933 out_stream->Printf( 934 "Instruction::TestEmulation: Test file does not contain triple.\n"); 935 return false; 936 } 937 938 ArchSpec arch; 939 arch.SetTriple(llvm::Triple(value_sp->GetStringValue())); 940 941 bool success = false; 942 std::unique_ptr<EmulateInstruction> insn_emulator_up( 943 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr)); 944 if (insn_emulator_up) 945 success = 946 insn_emulator_up->TestEmulation(out_stream, arch, data_dictionary); 947 948 if (success) 949 out_stream->Printf("Emulation test succeeded."); 950 else 951 out_stream->Printf("Emulation test failed."); 952 953 return success; 954 } 955 956 bool Instruction::Emulate( 957 const ArchSpec &arch, uint32_t evaluate_options, void *baton, 958 EmulateInstruction::ReadMemoryCallback read_mem_callback, 959 EmulateInstruction::WriteMemoryCallback write_mem_callback, 960 EmulateInstruction::ReadRegisterCallback read_reg_callback, 961 EmulateInstruction::WriteRegisterCallback write_reg_callback) { 962 std::unique_ptr<EmulateInstruction> insn_emulator_up( 963 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr)); 964 if (insn_emulator_up) { 965 insn_emulator_up->SetBaton(baton); 966 insn_emulator_up->SetCallbacks(read_mem_callback, write_mem_callback, 967 read_reg_callback, write_reg_callback); 968 insn_emulator_up->SetInstruction(GetOpcode(), GetAddress(), nullptr); 969 return insn_emulator_up->EvaluateInstruction(evaluate_options); 970 } 971 972 return false; 973 } 974 975 uint32_t Instruction::GetData(DataExtractor &data) { 976 return m_opcode.GetData(data); 977 } 978 979 InstructionList::InstructionList() : m_instructions() {} 980 981 InstructionList::~InstructionList() = default; 982 983 size_t InstructionList::GetSize() const { return m_instructions.size(); } 984 985 uint32_t InstructionList::GetMaxOpcocdeByteSize() const { 986 uint32_t max_inst_size = 0; 987 collection::const_iterator pos, end; 988 for (pos = m_instructions.begin(), end = m_instructions.end(); pos != end; 989 ++pos) { 990 uint32_t inst_size = (*pos)->GetOpcode().GetByteSize(); 991 if (max_inst_size < inst_size) 992 max_inst_size = inst_size; 993 } 994 return max_inst_size; 995 } 996 997 InstructionSP InstructionList::GetInstructionAtIndex(size_t idx) const { 998 InstructionSP inst_sp; 999 if (idx < m_instructions.size()) 1000 inst_sp = m_instructions[idx]; 1001 return inst_sp; 1002 } 1003 1004 void InstructionList::Dump(Stream *s, bool show_address, bool show_bytes, 1005 const ExecutionContext *exe_ctx) { 1006 const uint32_t max_opcode_byte_size = GetMaxOpcocdeByteSize(); 1007 collection::const_iterator pos, begin, end; 1008 1009 const FormatEntity::Entry *disassembly_format = nullptr; 1010 FormatEntity::Entry format; 1011 if (exe_ctx && exe_ctx->HasTargetScope()) { 1012 disassembly_format = 1013 exe_ctx->GetTargetRef().GetDebugger().GetDisassemblyFormat(); 1014 } else { 1015 FormatEntity::Parse("${addr}: ", format); 1016 disassembly_format = &format; 1017 } 1018 1019 for (begin = m_instructions.begin(), end = m_instructions.end(), pos = begin; 1020 pos != end; ++pos) { 1021 if (pos != begin) 1022 s->EOL(); 1023 (*pos)->Dump(s, max_opcode_byte_size, show_address, show_bytes, exe_ctx, 1024 nullptr, nullptr, disassembly_format, 0); 1025 } 1026 } 1027 1028 void InstructionList::Clear() { m_instructions.clear(); } 1029 1030 void InstructionList::Append(lldb::InstructionSP &inst_sp) { 1031 if (inst_sp) 1032 m_instructions.push_back(inst_sp); 1033 } 1034 1035 uint32_t 1036 InstructionList::GetIndexOfNextBranchInstruction(uint32_t start, 1037 Target &target, 1038 bool ignore_calls, 1039 bool *found_calls) const { 1040 size_t num_instructions = m_instructions.size(); 1041 1042 uint32_t next_branch = UINT32_MAX; 1043 size_t i; 1044 1045 if (found_calls) 1046 *found_calls = false; 1047 for (i = start; i < num_instructions; i++) { 1048 if (m_instructions[i]->DoesBranch()) { 1049 if (ignore_calls && m_instructions[i]->IsCall()) { 1050 if (found_calls) 1051 *found_calls = true; 1052 continue; 1053 } 1054 next_branch = i; 1055 break; 1056 } 1057 } 1058 1059 // Hexagon needs the first instruction of the packet with the branch. Go 1060 // backwards until we find an instruction marked end-of-packet, or until we 1061 // hit start. 1062 if (target.GetArchitecture().GetTriple().getArch() == llvm::Triple::hexagon) { 1063 // If we didn't find a branch, find the last packet start. 1064 if (next_branch == UINT32_MAX) { 1065 i = num_instructions - 1; 1066 } 1067 1068 while (i > start) { 1069 --i; 1070 1071 Status error; 1072 uint32_t inst_bytes; 1073 bool prefer_file_cache = false; // Read from process if process is running 1074 lldb::addr_t load_addr = LLDB_INVALID_ADDRESS; 1075 target.ReadMemory(m_instructions[i]->GetAddress(), prefer_file_cache, 1076 &inst_bytes, sizeof(inst_bytes), error, &load_addr); 1077 // If we have an error reading memory, return start 1078 if (!error.Success()) 1079 return start; 1080 // check if this is the last instruction in a packet bits 15:14 will be 1081 // 11b or 00b for a duplex 1082 if (((inst_bytes & 0xC000) == 0xC000) || 1083 ((inst_bytes & 0xC000) == 0x0000)) { 1084 // instruction after this should be the start of next packet 1085 next_branch = i + 1; 1086 break; 1087 } 1088 } 1089 1090 if (next_branch == UINT32_MAX) { 1091 // We couldn't find the previous packet, so return start 1092 next_branch = start; 1093 } 1094 } 1095 return next_branch; 1096 } 1097 1098 uint32_t 1099 InstructionList::GetIndexOfInstructionAtAddress(const Address &address) { 1100 size_t num_instructions = m_instructions.size(); 1101 uint32_t index = UINT32_MAX; 1102 for (size_t i = 0; i < num_instructions; i++) { 1103 if (m_instructions[i]->GetAddress() == address) { 1104 index = i; 1105 break; 1106 } 1107 } 1108 return index; 1109 } 1110 1111 uint32_t 1112 InstructionList::GetIndexOfInstructionAtLoadAddress(lldb::addr_t load_addr, 1113 Target &target) { 1114 Address address; 1115 address.SetLoadAddress(load_addr, &target); 1116 return GetIndexOfInstructionAtAddress(address); 1117 } 1118 1119 size_t Disassembler::ParseInstructions(Target &target, 1120 const AddressRange &range, 1121 Stream *error_strm_ptr, 1122 bool prefer_file_cache) { 1123 const addr_t byte_size = range.GetByteSize(); 1124 if (byte_size == 0 || !range.GetBaseAddress().IsValid()) 1125 return 0; 1126 1127 auto data_sp = std::make_shared<DataBufferHeap>(byte_size, '\0'); 1128 1129 Status error; 1130 lldb::addr_t load_addr = LLDB_INVALID_ADDRESS; 1131 const size_t bytes_read = target.ReadMemory( 1132 range.GetBaseAddress(), prefer_file_cache, data_sp->GetBytes(), 1133 data_sp->GetByteSize(), error, &load_addr); 1134 1135 if (bytes_read > 0) { 1136 if (bytes_read != data_sp->GetByteSize()) 1137 data_sp->SetByteSize(bytes_read); 1138 DataExtractor data(data_sp, m_arch.GetByteOrder(), 1139 m_arch.GetAddressByteSize()); 1140 const bool data_from_file = load_addr == LLDB_INVALID_ADDRESS; 1141 return DecodeInstructions(range.GetBaseAddress(), data, 0, UINT32_MAX, 1142 false, data_from_file); 1143 } else if (error_strm_ptr) { 1144 const char *error_cstr = error.AsCString(); 1145 if (error_cstr) { 1146 error_strm_ptr->Printf("error: %s\n", error_cstr); 1147 } 1148 } 1149 return 0; 1150 } 1151 1152 size_t Disassembler::ParseInstructions(Target &target, const Address &start, 1153 uint32_t num_instructions, 1154 bool prefer_file_cache) { 1155 m_instruction_list.Clear(); 1156 1157 if (num_instructions == 0 || !start.IsValid()) 1158 return 0; 1159 1160 // Calculate the max buffer size we will need in order to disassemble 1161 const addr_t byte_size = num_instructions * m_arch.GetMaximumOpcodeByteSize(); 1162 1163 if (byte_size == 0) 1164 return 0; 1165 1166 DataBufferHeap *heap_buffer = new DataBufferHeap(byte_size, '\0'); 1167 DataBufferSP data_sp(heap_buffer); 1168 1169 Status error; 1170 lldb::addr_t load_addr = LLDB_INVALID_ADDRESS; 1171 const size_t bytes_read = 1172 target.ReadMemory(start, prefer_file_cache, heap_buffer->GetBytes(), 1173 byte_size, error, &load_addr); 1174 1175 const bool data_from_file = load_addr == LLDB_INVALID_ADDRESS; 1176 1177 if (bytes_read == 0) 1178 return 0; 1179 DataExtractor data(data_sp, m_arch.GetByteOrder(), 1180 m_arch.GetAddressByteSize()); 1181 1182 const bool append_instructions = true; 1183 DecodeInstructions(start, data, 0, num_instructions, append_instructions, 1184 data_from_file); 1185 1186 return m_instruction_list.GetSize(); 1187 } 1188 1189 // Disassembler copy constructor 1190 Disassembler::Disassembler(const ArchSpec &arch, const char *flavor) 1191 : m_arch(arch), m_instruction_list(), m_base_addr(LLDB_INVALID_ADDRESS), 1192 m_flavor() { 1193 if (flavor == nullptr) 1194 m_flavor.assign("default"); 1195 else 1196 m_flavor.assign(flavor); 1197 1198 // If this is an arm variant that can only include thumb (T16, T32) 1199 // instructions, force the arch triple to be "thumbv.." instead of "armv..." 1200 if (arch.IsAlwaysThumbInstructions()) { 1201 std::string thumb_arch_name(arch.GetTriple().getArchName().str()); 1202 // Replace "arm" with "thumb" so we get all thumb variants correct 1203 if (thumb_arch_name.size() > 3) { 1204 thumb_arch_name.erase(0, 3); 1205 thumb_arch_name.insert(0, "thumb"); 1206 } 1207 m_arch.SetTriple(thumb_arch_name.c_str()); 1208 } 1209 } 1210 1211 Disassembler::~Disassembler() = default; 1212 1213 InstructionList &Disassembler::GetInstructionList() { 1214 return m_instruction_list; 1215 } 1216 1217 const InstructionList &Disassembler::GetInstructionList() const { 1218 return m_instruction_list; 1219 } 1220 1221 // Class PseudoInstruction 1222 1223 PseudoInstruction::PseudoInstruction() 1224 : Instruction(Address(), AddressClass::eUnknown), m_description() {} 1225 1226 PseudoInstruction::~PseudoInstruction() = default; 1227 1228 bool PseudoInstruction::DoesBranch() { 1229 // This is NOT a valid question for a pseudo instruction. 1230 return false; 1231 } 1232 1233 bool PseudoInstruction::HasDelaySlot() { 1234 // This is NOT a valid question for a pseudo instruction. 1235 return false; 1236 } 1237 1238 size_t PseudoInstruction::Decode(const lldb_private::Disassembler &disassembler, 1239 const lldb_private::DataExtractor &data, 1240 lldb::offset_t data_offset) { 1241 return m_opcode.GetByteSize(); 1242 } 1243 1244 void PseudoInstruction::SetOpcode(size_t opcode_size, void *opcode_data) { 1245 if (!opcode_data) 1246 return; 1247 1248 switch (opcode_size) { 1249 case 8: { 1250 uint8_t value8 = *((uint8_t *)opcode_data); 1251 m_opcode.SetOpcode8(value8, eByteOrderInvalid); 1252 break; 1253 } 1254 case 16: { 1255 uint16_t value16 = *((uint16_t *)opcode_data); 1256 m_opcode.SetOpcode16(value16, eByteOrderInvalid); 1257 break; 1258 } 1259 case 32: { 1260 uint32_t value32 = *((uint32_t *)opcode_data); 1261 m_opcode.SetOpcode32(value32, eByteOrderInvalid); 1262 break; 1263 } 1264 case 64: { 1265 uint64_t value64 = *((uint64_t *)opcode_data); 1266 m_opcode.SetOpcode64(value64, eByteOrderInvalid); 1267 break; 1268 } 1269 default: 1270 break; 1271 } 1272 } 1273 1274 void PseudoInstruction::SetDescription(llvm::StringRef description) { 1275 m_description = std::string(description); 1276 } 1277 1278 Instruction::Operand Instruction::Operand::BuildRegister(ConstString &r) { 1279 Operand ret; 1280 ret.m_type = Type::Register; 1281 ret.m_register = r; 1282 return ret; 1283 } 1284 1285 Instruction::Operand Instruction::Operand::BuildImmediate(lldb::addr_t imm, 1286 bool neg) { 1287 Operand ret; 1288 ret.m_type = Type::Immediate; 1289 ret.m_immediate = imm; 1290 ret.m_negative = neg; 1291 return ret; 1292 } 1293 1294 Instruction::Operand Instruction::Operand::BuildImmediate(int64_t imm) { 1295 Operand ret; 1296 ret.m_type = Type::Immediate; 1297 if (imm < 0) { 1298 ret.m_immediate = -imm; 1299 ret.m_negative = true; 1300 } else { 1301 ret.m_immediate = imm; 1302 ret.m_negative = false; 1303 } 1304 return ret; 1305 } 1306 1307 Instruction::Operand 1308 Instruction::Operand::BuildDereference(const Operand &ref) { 1309 Operand ret; 1310 ret.m_type = Type::Dereference; 1311 ret.m_children = {ref}; 1312 return ret; 1313 } 1314 1315 Instruction::Operand Instruction::Operand::BuildSum(const Operand &lhs, 1316 const Operand &rhs) { 1317 Operand ret; 1318 ret.m_type = Type::Sum; 1319 ret.m_children = {lhs, rhs}; 1320 return ret; 1321 } 1322 1323 Instruction::Operand Instruction::Operand::BuildProduct(const Operand &lhs, 1324 const Operand &rhs) { 1325 Operand ret; 1326 ret.m_type = Type::Product; 1327 ret.m_children = {lhs, rhs}; 1328 return ret; 1329 } 1330 1331 std::function<bool(const Instruction::Operand &)> 1332 lldb_private::OperandMatchers::MatchBinaryOp( 1333 std::function<bool(const Instruction::Operand &)> base, 1334 std::function<bool(const Instruction::Operand &)> left, 1335 std::function<bool(const Instruction::Operand &)> right) { 1336 return [base, left, right](const Instruction::Operand &op) -> bool { 1337 return (base(op) && op.m_children.size() == 2 && 1338 ((left(op.m_children[0]) && right(op.m_children[1])) || 1339 (left(op.m_children[1]) && right(op.m_children[0])))); 1340 }; 1341 } 1342 1343 std::function<bool(const Instruction::Operand &)> 1344 lldb_private::OperandMatchers::MatchUnaryOp( 1345 std::function<bool(const Instruction::Operand &)> base, 1346 std::function<bool(const Instruction::Operand &)> child) { 1347 return [base, child](const Instruction::Operand &op) -> bool { 1348 return (base(op) && op.m_children.size() == 1 && child(op.m_children[0])); 1349 }; 1350 } 1351 1352 std::function<bool(const Instruction::Operand &)> 1353 lldb_private::OperandMatchers::MatchRegOp(const RegisterInfo &info) { 1354 return [&info](const Instruction::Operand &op) { 1355 return (op.m_type == Instruction::Operand::Type::Register && 1356 (op.m_register == ConstString(info.name) || 1357 op.m_register == ConstString(info.alt_name))); 1358 }; 1359 } 1360 1361 std::function<bool(const Instruction::Operand &)> 1362 lldb_private::OperandMatchers::FetchRegOp(ConstString ®) { 1363 return [®](const Instruction::Operand &op) { 1364 if (op.m_type != Instruction::Operand::Type::Register) { 1365 return false; 1366 } 1367 reg = op.m_register; 1368 return true; 1369 }; 1370 } 1371 1372 std::function<bool(const Instruction::Operand &)> 1373 lldb_private::OperandMatchers::MatchImmOp(int64_t imm) { 1374 return [imm](const Instruction::Operand &op) { 1375 return (op.m_type == Instruction::Operand::Type::Immediate && 1376 ((op.m_negative && op.m_immediate == (uint64_t)-imm) || 1377 (!op.m_negative && op.m_immediate == (uint64_t)imm))); 1378 }; 1379 } 1380 1381 std::function<bool(const Instruction::Operand &)> 1382 lldb_private::OperandMatchers::FetchImmOp(int64_t &imm) { 1383 return [&imm](const Instruction::Operand &op) { 1384 if (op.m_type != Instruction::Operand::Type::Immediate) { 1385 return false; 1386 } 1387 if (op.m_negative) { 1388 imm = -((int64_t)op.m_immediate); 1389 } else { 1390 imm = ((int64_t)op.m_immediate); 1391 } 1392 return true; 1393 }; 1394 } 1395 1396 std::function<bool(const Instruction::Operand &)> 1397 lldb_private::OperandMatchers::MatchOpType(Instruction::Operand::Type type) { 1398 return [type](const Instruction::Operand &op) { return op.m_type == type; }; 1399 } 1400