1 //===-- Disassembler.cpp ----------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/Core/Disassembler.h" 11 12 #include "lldb/Core/AddressRange.h" 13 #include "lldb/Core/Debugger.h" 14 #include "lldb/Core/EmulateInstruction.h" 15 #include "lldb/Core/Mangled.h" 16 #include "lldb/Core/Module.h" 17 #include "lldb/Core/ModuleList.h" 18 #include "lldb/Core/PluginManager.h" 19 #include "lldb/Core/SourceManager.h" 20 #include "lldb/Host/FileSystem.h" 21 #include "lldb/Interpreter/OptionValue.h" 22 #include "lldb/Interpreter/OptionValueArray.h" 23 #include "lldb/Interpreter/OptionValueDictionary.h" 24 #include "lldb/Interpreter/OptionValueRegex.h" 25 #include "lldb/Interpreter/OptionValueString.h" 26 #include "lldb/Interpreter/OptionValueUInt64.h" 27 #include "lldb/Symbol/Function.h" 28 #include "lldb/Symbol/Symbol.h" 29 #include "lldb/Symbol/SymbolContext.h" 30 #include "lldb/Target/ExecutionContext.h" 31 #include "lldb/Target/SectionLoadList.h" 32 #include "lldb/Target/StackFrame.h" 33 #include "lldb/Target/Target.h" 34 #include "lldb/Target/Thread.h" 35 #include "lldb/Utility/DataBufferHeap.h" 36 #include "lldb/Utility/DataExtractor.h" 37 #include "lldb/Utility/RegularExpression.h" 38 #include "lldb/Utility/Status.h" 39 #include "lldb/Utility/Stream.h" 40 #include "lldb/Utility/StreamString.h" 41 #include "lldb/Utility/Timer.h" 42 #include "lldb/lldb-private-enumerations.h" 43 #include "lldb/lldb-private-interfaces.h" 44 #include "lldb/lldb-private-types.h" 45 #include "llvm/ADT/Triple.h" 46 #include "llvm/Support/Compiler.h" 47 48 #include <cstdint> 49 #include <cstring> 50 #include <utility> 51 52 #include <assert.h> 53 54 #define DEFAULT_DISASM_BYTE_SIZE 32 55 56 using namespace lldb; 57 using namespace lldb_private; 58 59 DisassemblerSP Disassembler::FindPlugin(const ArchSpec &arch, 60 const char *flavor, 61 const char *plugin_name) { 62 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); 63 Timer scoped_timer(func_cat, 64 "Disassembler::FindPlugin (arch = %s, plugin_name = %s)", 65 arch.GetArchitectureName(), plugin_name); 66 67 DisassemblerCreateInstance create_callback = nullptr; 68 69 if (plugin_name) { 70 ConstString const_plugin_name(plugin_name); 71 create_callback = PluginManager::GetDisassemblerCreateCallbackForPluginName( 72 const_plugin_name); 73 if (create_callback) { 74 DisassemblerSP disassembler_sp(create_callback(arch, flavor)); 75 76 if (disassembler_sp) 77 return disassembler_sp; 78 } 79 } else { 80 for (uint32_t idx = 0; 81 (create_callback = PluginManager::GetDisassemblerCreateCallbackAtIndex( 82 idx)) != nullptr; 83 ++idx) { 84 DisassemblerSP disassembler_sp(create_callback(arch, flavor)); 85 86 if (disassembler_sp) 87 return disassembler_sp; 88 } 89 } 90 return DisassemblerSP(); 91 } 92 93 DisassemblerSP Disassembler::FindPluginForTarget(const TargetSP target_sp, 94 const ArchSpec &arch, 95 const char *flavor, 96 const char *plugin_name) { 97 if (target_sp && flavor == nullptr) { 98 // FIXME - we don't have the mechanism in place to do per-architecture 99 // settings. But since we know that for now we only support flavors on x86 100 // & x86_64, 101 if (arch.GetTriple().getArch() == llvm::Triple::x86 || 102 arch.GetTriple().getArch() == llvm::Triple::x86_64) 103 flavor = target_sp->GetDisassemblyFlavor(); 104 } 105 return FindPlugin(arch, flavor, plugin_name); 106 } 107 108 static void ResolveAddress(const ExecutionContext &exe_ctx, const Address &addr, 109 Address &resolved_addr) { 110 if (!addr.IsSectionOffset()) { 111 // If we weren't passed in a section offset address range, try and resolve 112 // it to something 113 Target *target = exe_ctx.GetTargetPtr(); 114 if (target) { 115 bool is_resolved = 116 target->GetSectionLoadList().IsEmpty() ? 117 target->GetImages().ResolveFileAddress(addr.GetOffset(), 118 resolved_addr) : 119 target->GetSectionLoadList().ResolveLoadAddress(addr.GetOffset(), 120 resolved_addr); 121 122 // We weren't able to resolve the address, just treat it as a raw address 123 if (is_resolved && resolved_addr.IsValid()) 124 return; 125 } 126 } 127 resolved_addr = addr; 128 } 129 130 size_t Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 131 const char *plugin_name, const char *flavor, 132 const ExecutionContext &exe_ctx, 133 SymbolContextList &sc_list, 134 uint32_t num_instructions, 135 bool mixed_source_and_assembly, 136 uint32_t num_mixed_context_lines, 137 uint32_t options, Stream &strm) { 138 size_t success_count = 0; 139 const size_t count = sc_list.GetSize(); 140 SymbolContext sc; 141 AddressRange range; 142 const uint32_t scope = 143 eSymbolContextBlock | eSymbolContextFunction | eSymbolContextSymbol; 144 const bool use_inline_block_range = true; 145 for (size_t i = 0; i < count; ++i) { 146 if (!sc_list.GetContextAtIndex(i, sc)) 147 break; 148 for (uint32_t range_idx = 0; 149 sc.GetAddressRange(scope, range_idx, use_inline_block_range, range); 150 ++range_idx) { 151 if (Disassemble(debugger, arch, plugin_name, flavor, exe_ctx, range, 152 num_instructions, mixed_source_and_assembly, 153 num_mixed_context_lines, options, strm)) { 154 ++success_count; 155 strm.EOL(); 156 } 157 } 158 } 159 return success_count; 160 } 161 162 bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 163 const char *plugin_name, const char *flavor, 164 const ExecutionContext &exe_ctx, 165 const ConstString &name, Module *module, 166 uint32_t num_instructions, 167 bool mixed_source_and_assembly, 168 uint32_t num_mixed_context_lines, 169 uint32_t options, Stream &strm) { 170 SymbolContextList sc_list; 171 if (name) { 172 const bool include_symbols = true; 173 const bool include_inlines = true; 174 if (module) { 175 module->FindFunctions(name, nullptr, eFunctionNameTypeAuto, 176 include_symbols, include_inlines, true, sc_list); 177 } else if (exe_ctx.GetTargetPtr()) { 178 exe_ctx.GetTargetPtr()->GetImages().FindFunctions( 179 name, eFunctionNameTypeAuto, include_symbols, include_inlines, false, 180 sc_list); 181 } 182 } 183 184 if (sc_list.GetSize()) { 185 return Disassemble(debugger, arch, plugin_name, flavor, exe_ctx, sc_list, 186 num_instructions, mixed_source_and_assembly, 187 num_mixed_context_lines, options, strm); 188 } 189 return false; 190 } 191 192 lldb::DisassemblerSP Disassembler::DisassembleRange( 193 const ArchSpec &arch, const char *plugin_name, const char *flavor, 194 const ExecutionContext &exe_ctx, const AddressRange &range, 195 bool prefer_file_cache) { 196 lldb::DisassemblerSP disasm_sp; 197 if (range.GetByteSize() > 0 && range.GetBaseAddress().IsValid()) { 198 disasm_sp = Disassembler::FindPluginForTarget(exe_ctx.GetTargetSP(), arch, 199 flavor, plugin_name); 200 201 if (disasm_sp) { 202 size_t bytes_disassembled = disasm_sp->ParseInstructions( 203 &exe_ctx, range, nullptr, prefer_file_cache); 204 if (bytes_disassembled == 0) 205 disasm_sp.reset(); 206 } 207 } 208 return disasm_sp; 209 } 210 211 lldb::DisassemblerSP 212 Disassembler::DisassembleBytes(const ArchSpec &arch, const char *plugin_name, 213 const char *flavor, const Address &start, 214 const void *src, size_t src_len, 215 uint32_t num_instructions, bool data_from_file) { 216 lldb::DisassemblerSP disasm_sp; 217 218 if (src) { 219 disasm_sp = Disassembler::FindPlugin(arch, flavor, plugin_name); 220 221 if (disasm_sp) { 222 DataExtractor data(src, src_len, arch.GetByteOrder(), 223 arch.GetAddressByteSize()); 224 225 (void)disasm_sp->DecodeInstructions(start, data, 0, num_instructions, 226 false, data_from_file); 227 } 228 } 229 230 return disasm_sp; 231 } 232 233 bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 234 const char *plugin_name, const char *flavor, 235 const ExecutionContext &exe_ctx, 236 const AddressRange &disasm_range, 237 uint32_t num_instructions, 238 bool mixed_source_and_assembly, 239 uint32_t num_mixed_context_lines, 240 uint32_t options, Stream &strm) { 241 if (disasm_range.GetByteSize()) { 242 lldb::DisassemblerSP disasm_sp(Disassembler::FindPluginForTarget( 243 exe_ctx.GetTargetSP(), arch, flavor, plugin_name)); 244 245 if (disasm_sp) { 246 AddressRange range; 247 ResolveAddress(exe_ctx, disasm_range.GetBaseAddress(), 248 range.GetBaseAddress()); 249 range.SetByteSize(disasm_range.GetByteSize()); 250 const bool prefer_file_cache = false; 251 size_t bytes_disassembled = disasm_sp->ParseInstructions( 252 &exe_ctx, range, &strm, prefer_file_cache); 253 if (bytes_disassembled == 0) 254 return false; 255 256 return PrintInstructions(disasm_sp.get(), debugger, arch, exe_ctx, 257 num_instructions, mixed_source_and_assembly, 258 num_mixed_context_lines, options, strm); 259 } 260 } 261 return false; 262 } 263 264 bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 265 const char *plugin_name, const char *flavor, 266 const ExecutionContext &exe_ctx, 267 const Address &start_address, 268 uint32_t num_instructions, 269 bool mixed_source_and_assembly, 270 uint32_t num_mixed_context_lines, 271 uint32_t options, Stream &strm) { 272 if (num_instructions > 0) { 273 lldb::DisassemblerSP disasm_sp(Disassembler::FindPluginForTarget( 274 exe_ctx.GetTargetSP(), arch, flavor, plugin_name)); 275 if (disasm_sp) { 276 Address addr; 277 ResolveAddress(exe_ctx, start_address, addr); 278 const bool prefer_file_cache = false; 279 size_t bytes_disassembled = disasm_sp->ParseInstructions( 280 &exe_ctx, addr, num_instructions, prefer_file_cache); 281 if (bytes_disassembled == 0) 282 return false; 283 return PrintInstructions(disasm_sp.get(), debugger, arch, exe_ctx, 284 num_instructions, mixed_source_and_assembly, 285 num_mixed_context_lines, options, strm); 286 } 287 } 288 return false; 289 } 290 291 Disassembler::SourceLine 292 Disassembler::GetFunctionDeclLineEntry(const SymbolContext &sc) { 293 SourceLine decl_line; 294 if (sc.function && sc.line_entry.IsValid()) { 295 LineEntry prologue_end_line = sc.line_entry; 296 FileSpec func_decl_file; 297 uint32_t func_decl_line; 298 sc.function->GetStartLineSourceInfo(func_decl_file, func_decl_line); 299 if (func_decl_file == prologue_end_line.file || 300 func_decl_file == prologue_end_line.original_file) { 301 decl_line.file = func_decl_file; 302 decl_line.line = func_decl_line; 303 // TODO do we care about column on these entries? If so, we need to 304 // plumb that through GetStartLineSourceInfo. 305 decl_line.column = 0; 306 } 307 } 308 return decl_line; 309 } 310 311 void Disassembler::AddLineToSourceLineTables( 312 SourceLine &line, 313 std::map<FileSpec, std::set<uint32_t>> &source_lines_seen) { 314 if (line.IsValid()) { 315 auto source_lines_seen_pos = source_lines_seen.find(line.file); 316 if (source_lines_seen_pos == source_lines_seen.end()) { 317 std::set<uint32_t> lines; 318 lines.insert(line.line); 319 source_lines_seen.emplace(line.file, lines); 320 } else { 321 source_lines_seen_pos->second.insert(line.line); 322 } 323 } 324 } 325 326 bool Disassembler::ElideMixedSourceAndDisassemblyLine( 327 const ExecutionContext &exe_ctx, const SymbolContext &sc, 328 SourceLine &line) { 329 330 // TODO: should we also check target.process.thread.step-avoid-libraries ? 331 332 const RegularExpression *avoid_regex = nullptr; 333 334 // Skip any line #0 entries - they are implementation details 335 if (line.line == 0) 336 return false; 337 338 ThreadSP thread_sp = exe_ctx.GetThreadSP(); 339 if (thread_sp) { 340 avoid_regex = thread_sp->GetSymbolsToAvoidRegexp(); 341 } else { 342 TargetSP target_sp = exe_ctx.GetTargetSP(); 343 if (target_sp) { 344 Status error; 345 OptionValueSP value_sp = target_sp->GetDebugger().GetPropertyValue( 346 &exe_ctx, "target.process.thread.step-avoid-regexp", false, error); 347 if (value_sp && value_sp->GetType() == OptionValue::eTypeRegex) { 348 OptionValueRegex *re = value_sp->GetAsRegex(); 349 if (re) { 350 avoid_regex = re->GetCurrentValue(); 351 } 352 } 353 } 354 } 355 if (avoid_regex && sc.symbol != nullptr) { 356 const char *function_name = 357 sc.GetFunctionName(Mangled::ePreferDemangledWithoutArguments) 358 .GetCString(); 359 if (function_name) { 360 RegularExpression::Match regex_match(1); 361 if (avoid_regex->Execute(function_name, ®ex_match)) { 362 // skip this source line 363 return true; 364 } 365 } 366 } 367 // don't skip this source line 368 return false; 369 } 370 371 bool Disassembler::PrintInstructions(Disassembler *disasm_ptr, 372 Debugger &debugger, const ArchSpec &arch, 373 const ExecutionContext &exe_ctx, 374 uint32_t num_instructions, 375 bool mixed_source_and_assembly, 376 uint32_t num_mixed_context_lines, 377 uint32_t options, Stream &strm) { 378 // We got some things disassembled... 379 size_t num_instructions_found = disasm_ptr->GetInstructionList().GetSize(); 380 381 if (num_instructions > 0 && num_instructions < num_instructions_found) 382 num_instructions_found = num_instructions; 383 384 const uint32_t max_opcode_byte_size = 385 disasm_ptr->GetInstructionList().GetMaxOpcocdeByteSize(); 386 SymbolContext sc; 387 SymbolContext prev_sc; 388 AddressRange current_source_line_range; 389 const Address *pc_addr_ptr = nullptr; 390 StackFrame *frame = exe_ctx.GetFramePtr(); 391 392 TargetSP target_sp(exe_ctx.GetTargetSP()); 393 SourceManager &source_manager = 394 target_sp ? target_sp->GetSourceManager() : debugger.GetSourceManager(); 395 396 if (frame) { 397 pc_addr_ptr = &frame->GetFrameCodeAddress(); 398 } 399 const uint32_t scope = 400 eSymbolContextLineEntry | eSymbolContextFunction | eSymbolContextSymbol; 401 const bool use_inline_block_range = false; 402 403 const FormatEntity::Entry *disassembly_format = nullptr; 404 FormatEntity::Entry format; 405 if (exe_ctx.HasTargetScope()) { 406 disassembly_format = 407 exe_ctx.GetTargetRef().GetDebugger().GetDisassemblyFormat(); 408 } else { 409 FormatEntity::Parse("${addr}: ", format); 410 disassembly_format = &format; 411 } 412 413 // First pass: step through the list of instructions, find how long the 414 // initial addresses strings are, insert padding in the second pass so the 415 // opcodes all line up nicely. 416 417 // Also build up the source line mapping if this is mixed source & assembly 418 // mode. Calculate the source line for each assembly instruction (eliding 419 // inlined functions which the user wants to skip). 420 421 std::map<FileSpec, std::set<uint32_t>> source_lines_seen; 422 Symbol *previous_symbol = nullptr; 423 424 size_t address_text_size = 0; 425 for (size_t i = 0; i < num_instructions_found; ++i) { 426 Instruction *inst = 427 disasm_ptr->GetInstructionList().GetInstructionAtIndex(i).get(); 428 if (inst) { 429 const Address &addr = inst->GetAddress(); 430 ModuleSP module_sp(addr.GetModule()); 431 if (module_sp) { 432 const SymbolContextItem resolve_mask = eSymbolContextFunction | 433 eSymbolContextSymbol | 434 eSymbolContextLineEntry; 435 uint32_t resolved_mask = 436 module_sp->ResolveSymbolContextForAddress(addr, resolve_mask, sc); 437 if (resolved_mask) { 438 StreamString strmstr; 439 Debugger::FormatDisassemblerAddress(disassembly_format, &sc, nullptr, 440 &exe_ctx, &addr, strmstr); 441 size_t cur_line = strmstr.GetSizeOfLastLine(); 442 if (cur_line > address_text_size) 443 address_text_size = cur_line; 444 445 // Add entries to our "source_lines_seen" map+set which list which 446 // sources lines occur in this disassembly session. We will print 447 // lines of context around a source line, but we don't want to print 448 // a source line that has a line table entry of its own - we'll leave 449 // that source line to be printed when it actually occurs in the 450 // disassembly. 451 452 if (mixed_source_and_assembly && sc.line_entry.IsValid()) { 453 if (sc.symbol != previous_symbol) { 454 SourceLine decl_line = GetFunctionDeclLineEntry(sc); 455 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, decl_line)) 456 AddLineToSourceLineTables(decl_line, source_lines_seen); 457 } 458 if (sc.line_entry.IsValid()) { 459 SourceLine this_line; 460 this_line.file = sc.line_entry.file; 461 this_line.line = sc.line_entry.line; 462 this_line.column = sc.line_entry.column; 463 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, this_line)) 464 AddLineToSourceLineTables(this_line, source_lines_seen); 465 } 466 } 467 } 468 sc.Clear(false); 469 } 470 } 471 } 472 473 previous_symbol = nullptr; 474 SourceLine previous_line; 475 for (size_t i = 0; i < num_instructions_found; ++i) { 476 Instruction *inst = 477 disasm_ptr->GetInstructionList().GetInstructionAtIndex(i).get(); 478 479 if (inst) { 480 const Address &addr = inst->GetAddress(); 481 const bool inst_is_at_pc = pc_addr_ptr && addr == *pc_addr_ptr; 482 SourceLinesToDisplay source_lines_to_display; 483 484 prev_sc = sc; 485 486 ModuleSP module_sp(addr.GetModule()); 487 if (module_sp) { 488 uint32_t resolved_mask = module_sp->ResolveSymbolContextForAddress( 489 addr, eSymbolContextEverything, sc); 490 if (resolved_mask) { 491 if (mixed_source_and_assembly) { 492 493 // If we've started a new function (non-inlined), print all of the 494 // source lines from the function declaration until the first line 495 // table entry - typically the opening curly brace of the function. 496 if (previous_symbol != sc.symbol) { 497 // The default disassembly format puts an extra blank line 498 // between functions - so when we're displaying the source 499 // context for a function, we don't want to add a blank line 500 // after the source context or we'll end up with two of them. 501 if (previous_symbol != nullptr) 502 source_lines_to_display.print_source_context_end_eol = false; 503 504 previous_symbol = sc.symbol; 505 if (sc.function && sc.line_entry.IsValid()) { 506 LineEntry prologue_end_line = sc.line_entry; 507 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, 508 prologue_end_line)) { 509 FileSpec func_decl_file; 510 uint32_t func_decl_line; 511 sc.function->GetStartLineSourceInfo(func_decl_file, 512 func_decl_line); 513 if (func_decl_file == prologue_end_line.file || 514 func_decl_file == prologue_end_line.original_file) { 515 // Add all the lines between the function declaration and 516 // the first non-prologue source line to the list of lines 517 // to print. 518 for (uint32_t lineno = func_decl_line; 519 lineno <= prologue_end_line.line; lineno++) { 520 SourceLine this_line; 521 this_line.file = func_decl_file; 522 this_line.line = lineno; 523 source_lines_to_display.lines.push_back(this_line); 524 } 525 // Mark the last line as the "current" one. Usually this 526 // is the open curly brace. 527 if (source_lines_to_display.lines.size() > 0) 528 source_lines_to_display.current_source_line = 529 source_lines_to_display.lines.size() - 1; 530 } 531 } 532 } 533 sc.GetAddressRange(scope, 0, use_inline_block_range, 534 current_source_line_range); 535 } 536 537 // If we've left a previous source line's address range, print a 538 // new source line 539 if (!current_source_line_range.ContainsFileAddress(addr)) { 540 sc.GetAddressRange(scope, 0, use_inline_block_range, 541 current_source_line_range); 542 543 if (sc != prev_sc && sc.comp_unit && sc.line_entry.IsValid()) { 544 SourceLine this_line; 545 this_line.file = sc.line_entry.file; 546 this_line.line = sc.line_entry.line; 547 548 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, 549 this_line)) { 550 // Only print this source line if it is different from the 551 // last source line we printed. There may have been inlined 552 // functions between these lines that we elided, resulting in 553 // the same line being printed twice in a row for a 554 // contiguous block of assembly instructions. 555 if (this_line != previous_line) { 556 557 std::vector<uint32_t> previous_lines; 558 for (uint32_t i = 0; 559 i < num_mixed_context_lines && 560 (this_line.line - num_mixed_context_lines) > 0; 561 i++) { 562 uint32_t line = 563 this_line.line - num_mixed_context_lines + i; 564 auto pos = source_lines_seen.find(this_line.file); 565 if (pos != source_lines_seen.end()) { 566 if (pos->second.count(line) == 1) { 567 previous_lines.clear(); 568 } else { 569 previous_lines.push_back(line); 570 } 571 } 572 } 573 for (size_t i = 0; i < previous_lines.size(); i++) { 574 SourceLine previous_line; 575 previous_line.file = this_line.file; 576 previous_line.line = previous_lines[i]; 577 auto pos = source_lines_seen.find(previous_line.file); 578 if (pos != source_lines_seen.end()) { 579 pos->second.insert(previous_line.line); 580 } 581 source_lines_to_display.lines.push_back(previous_line); 582 } 583 584 source_lines_to_display.lines.push_back(this_line); 585 source_lines_to_display.current_source_line = 586 source_lines_to_display.lines.size() - 1; 587 588 for (uint32_t i = 0; i < num_mixed_context_lines; i++) { 589 SourceLine next_line; 590 next_line.file = this_line.file; 591 next_line.line = this_line.line + i + 1; 592 auto pos = source_lines_seen.find(next_line.file); 593 if (pos != source_lines_seen.end()) { 594 if (pos->second.count(next_line.line) == 1) 595 break; 596 pos->second.insert(next_line.line); 597 } 598 source_lines_to_display.lines.push_back(next_line); 599 } 600 } 601 previous_line = this_line; 602 } 603 } 604 } 605 } 606 } else { 607 sc.Clear(true); 608 } 609 } 610 611 if (source_lines_to_display.lines.size() > 0) { 612 strm.EOL(); 613 for (size_t idx = 0; idx < source_lines_to_display.lines.size(); 614 idx++) { 615 SourceLine ln = source_lines_to_display.lines[idx]; 616 const char *line_highlight = ""; 617 if (inst_is_at_pc && (options & eOptionMarkPCSourceLine)) { 618 line_highlight = "->"; 619 } else if (idx == source_lines_to_display.current_source_line) { 620 line_highlight = "**"; 621 } 622 source_manager.DisplaySourceLinesWithLineNumbers( 623 ln.file, ln.line, ln.column, 0, 0, line_highlight, &strm); 624 } 625 if (source_lines_to_display.print_source_context_end_eol) 626 strm.EOL(); 627 } 628 629 const bool show_bytes = (options & eOptionShowBytes) != 0; 630 inst->Dump(&strm, max_opcode_byte_size, true, show_bytes, &exe_ctx, &sc, 631 &prev_sc, nullptr, address_text_size); 632 strm.EOL(); 633 } else { 634 break; 635 } 636 } 637 638 return true; 639 } 640 641 bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 642 const char *plugin_name, const char *flavor, 643 const ExecutionContext &exe_ctx, 644 uint32_t num_instructions, 645 bool mixed_source_and_assembly, 646 uint32_t num_mixed_context_lines, 647 uint32_t options, Stream &strm) { 648 AddressRange range; 649 StackFrame *frame = exe_ctx.GetFramePtr(); 650 if (frame) { 651 SymbolContext sc( 652 frame->GetSymbolContext(eSymbolContextFunction | eSymbolContextSymbol)); 653 if (sc.function) { 654 range = sc.function->GetAddressRange(); 655 } else if (sc.symbol && sc.symbol->ValueIsAddress()) { 656 range.GetBaseAddress() = sc.symbol->GetAddressRef(); 657 range.SetByteSize(sc.symbol->GetByteSize()); 658 } else { 659 range.GetBaseAddress() = frame->GetFrameCodeAddress(); 660 } 661 662 if (range.GetBaseAddress().IsValid() && range.GetByteSize() == 0) 663 range.SetByteSize(DEFAULT_DISASM_BYTE_SIZE); 664 } 665 666 return Disassemble(debugger, arch, plugin_name, flavor, exe_ctx, range, 667 num_instructions, mixed_source_and_assembly, 668 num_mixed_context_lines, options, strm); 669 } 670 671 Instruction::Instruction(const Address &address, AddressClass addr_class) 672 : m_address(address), m_address_class(addr_class), m_opcode(), 673 m_calculated_strings(false) {} 674 675 Instruction::~Instruction() = default; 676 677 AddressClass Instruction::GetAddressClass() { 678 if (m_address_class == AddressClass::eInvalid) 679 m_address_class = m_address.GetAddressClass(); 680 return m_address_class; 681 } 682 683 void Instruction::Dump(lldb_private::Stream *s, uint32_t max_opcode_byte_size, 684 bool show_address, bool show_bytes, 685 const ExecutionContext *exe_ctx, 686 const SymbolContext *sym_ctx, 687 const SymbolContext *prev_sym_ctx, 688 const FormatEntity::Entry *disassembly_addr_format, 689 size_t max_address_text_size) { 690 size_t opcode_column_width = 7; 691 const size_t operand_column_width = 25; 692 693 CalculateMnemonicOperandsAndCommentIfNeeded(exe_ctx); 694 695 StreamString ss; 696 697 if (show_address) { 698 Debugger::FormatDisassemblerAddress(disassembly_addr_format, sym_ctx, 699 prev_sym_ctx, exe_ctx, &m_address, ss); 700 ss.FillLastLineToColumn(max_address_text_size, ' '); 701 } 702 703 if (show_bytes) { 704 if (m_opcode.GetType() == Opcode::eTypeBytes) { 705 // x86_64 and i386 are the only ones that use bytes right now so pad out 706 // the byte dump to be able to always show 15 bytes (3 chars each) plus a 707 // space 708 if (max_opcode_byte_size > 0) 709 m_opcode.Dump(&ss, max_opcode_byte_size * 3 + 1); 710 else 711 m_opcode.Dump(&ss, 15 * 3 + 1); 712 } else { 713 // Else, we have ARM or MIPS which can show up to a uint32_t 0x00000000 714 // (10 spaces) plus two for padding... 715 if (max_opcode_byte_size > 0) 716 m_opcode.Dump(&ss, max_opcode_byte_size * 3 + 1); 717 else 718 m_opcode.Dump(&ss, 12); 719 } 720 } 721 722 const size_t opcode_pos = ss.GetSizeOfLastLine(); 723 724 // The default opcode size of 7 characters is plenty for most architectures 725 // but some like arm can pull out the occasional vqrshrun.s16. We won't get 726 // consistent column spacing in these cases, unfortunately. 727 if (m_opcode_name.length() >= opcode_column_width) { 728 opcode_column_width = m_opcode_name.length() + 1; 729 } 730 731 ss.PutCString(m_opcode_name); 732 ss.FillLastLineToColumn(opcode_pos + opcode_column_width, ' '); 733 ss.PutCString(m_mnemonics); 734 735 if (!m_comment.empty()) { 736 ss.FillLastLineToColumn( 737 opcode_pos + opcode_column_width + operand_column_width, ' '); 738 ss.PutCString(" ; "); 739 ss.PutCString(m_comment); 740 } 741 s->PutCString(ss.GetString()); 742 } 743 744 bool Instruction::DumpEmulation(const ArchSpec &arch) { 745 std::unique_ptr<EmulateInstruction> insn_emulator_ap( 746 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr)); 747 if (insn_emulator_ap) { 748 insn_emulator_ap->SetInstruction(GetOpcode(), GetAddress(), nullptr); 749 return insn_emulator_ap->EvaluateInstruction(0); 750 } 751 752 return false; 753 } 754 755 bool Instruction::CanSetBreakpoint () { 756 return !HasDelaySlot(); 757 } 758 759 bool Instruction::HasDelaySlot() { 760 // Default is false. 761 return false; 762 } 763 764 OptionValueSP Instruction::ReadArray(FILE *in_file, Stream *out_stream, 765 OptionValue::Type data_type) { 766 bool done = false; 767 char buffer[1024]; 768 769 auto option_value_sp = std::make_shared<OptionValueArray>(1u << data_type); 770 771 int idx = 0; 772 while (!done) { 773 if (!fgets(buffer, 1023, in_file)) { 774 out_stream->Printf( 775 "Instruction::ReadArray: Error reading file (fgets).\n"); 776 option_value_sp.reset(); 777 return option_value_sp; 778 } 779 780 std::string line(buffer); 781 782 size_t len = line.size(); 783 if (line[len - 1] == '\n') { 784 line[len - 1] = '\0'; 785 line.resize(len - 1); 786 } 787 788 if ((line.size() == 1) && line[0] == ']') { 789 done = true; 790 line.clear(); 791 } 792 793 if (!line.empty()) { 794 std::string value; 795 static RegularExpression g_reg_exp( 796 llvm::StringRef("^[ \t]*([^ \t]+)[ \t]*$")); 797 RegularExpression::Match regex_match(1); 798 bool reg_exp_success = g_reg_exp.Execute(line, ®ex_match); 799 if (reg_exp_success) 800 regex_match.GetMatchAtIndex(line.c_str(), 1, value); 801 else 802 value = line; 803 804 OptionValueSP data_value_sp; 805 switch (data_type) { 806 case OptionValue::eTypeUInt64: 807 data_value_sp = std::make_shared<OptionValueUInt64>(0, 0); 808 data_value_sp->SetValueFromString(value); 809 break; 810 // Other types can be added later as needed. 811 default: 812 data_value_sp = std::make_shared<OptionValueString>(value.c_str(), ""); 813 break; 814 } 815 816 option_value_sp->GetAsArray()->InsertValue(idx, data_value_sp); 817 ++idx; 818 } 819 } 820 821 return option_value_sp; 822 } 823 824 OptionValueSP Instruction::ReadDictionary(FILE *in_file, Stream *out_stream) { 825 bool done = false; 826 char buffer[1024]; 827 828 auto option_value_sp = std::make_shared<OptionValueDictionary>(); 829 static ConstString encoding_key("data_encoding"); 830 OptionValue::Type data_type = OptionValue::eTypeInvalid; 831 832 while (!done) { 833 // Read the next line in the file 834 if (!fgets(buffer, 1023, in_file)) { 835 out_stream->Printf( 836 "Instruction::ReadDictionary: Error reading file (fgets).\n"); 837 option_value_sp.reset(); 838 return option_value_sp; 839 } 840 841 // Check to see if the line contains the end-of-dictionary marker ("}") 842 std::string line(buffer); 843 844 size_t len = line.size(); 845 if (line[len - 1] == '\n') { 846 line[len - 1] = '\0'; 847 line.resize(len - 1); 848 } 849 850 if ((line.size() == 1) && (line[0] == '}')) { 851 done = true; 852 line.clear(); 853 } 854 855 // Try to find a key-value pair in the current line and add it to the 856 // dictionary. 857 if (!line.empty()) { 858 static RegularExpression g_reg_exp(llvm::StringRef( 859 "^[ \t]*([a-zA-Z_][a-zA-Z0-9_]*)[ \t]*=[ \t]*(.*)[ \t]*$")); 860 RegularExpression::Match regex_match(2); 861 862 bool reg_exp_success = g_reg_exp.Execute(line, ®ex_match); 863 std::string key; 864 std::string value; 865 if (reg_exp_success) { 866 regex_match.GetMatchAtIndex(line.c_str(), 1, key); 867 regex_match.GetMatchAtIndex(line.c_str(), 2, value); 868 } else { 869 out_stream->Printf("Instruction::ReadDictionary: Failure executing " 870 "regular expression.\n"); 871 option_value_sp.reset(); 872 return option_value_sp; 873 } 874 875 ConstString const_key(key.c_str()); 876 // Check value to see if it's the start of an array or dictionary. 877 878 lldb::OptionValueSP value_sp; 879 assert(value.empty() == false); 880 assert(key.empty() == false); 881 882 if (value[0] == '{') { 883 assert(value.size() == 1); 884 // value is a dictionary 885 value_sp = ReadDictionary(in_file, out_stream); 886 if (!value_sp) { 887 option_value_sp.reset(); 888 return option_value_sp; 889 } 890 } else if (value[0] == '[') { 891 assert(value.size() == 1); 892 // value is an array 893 value_sp = ReadArray(in_file, out_stream, data_type); 894 if (!value_sp) { 895 option_value_sp.reset(); 896 return option_value_sp; 897 } 898 // We've used the data_type to read an array; re-set the type to 899 // Invalid 900 data_type = OptionValue::eTypeInvalid; 901 } else if ((value[0] == '0') && (value[1] == 'x')) { 902 value_sp = std::make_shared<OptionValueUInt64>(0, 0); 903 value_sp->SetValueFromString(value); 904 } else { 905 size_t len = value.size(); 906 if ((value[0] == '"') && (value[len - 1] == '"')) 907 value = value.substr(1, len - 2); 908 value_sp = std::make_shared<OptionValueString>(value.c_str(), ""); 909 } 910 911 if (const_key == encoding_key) { 912 // A 'data_encoding=..." is NOT a normal key-value pair; it is meta-data 913 // indicating the 914 // data type of an upcoming array (usually the next bit of data to be 915 // read in). 916 if (strcmp(value.c_str(), "uint32_t") == 0) 917 data_type = OptionValue::eTypeUInt64; 918 } else 919 option_value_sp->GetAsDictionary()->SetValueForKey(const_key, value_sp, 920 false); 921 } 922 } 923 924 return option_value_sp; 925 } 926 927 bool Instruction::TestEmulation(Stream *out_stream, const char *file_name) { 928 if (!out_stream) 929 return false; 930 931 if (!file_name) { 932 out_stream->Printf("Instruction::TestEmulation: Missing file_name."); 933 return false; 934 } 935 FILE *test_file = FileSystem::Instance().Fopen(file_name, "r"); 936 if (!test_file) { 937 out_stream->Printf( 938 "Instruction::TestEmulation: Attempt to open test file failed."); 939 return false; 940 } 941 942 char buffer[256]; 943 if (!fgets(buffer, 255, test_file)) { 944 out_stream->Printf( 945 "Instruction::TestEmulation: Error reading first line of test file.\n"); 946 fclose(test_file); 947 return false; 948 } 949 950 if (strncmp(buffer, "InstructionEmulationState={", 27) != 0) { 951 out_stream->Printf("Instructin::TestEmulation: Test file does not contain " 952 "emulation state dictionary\n"); 953 fclose(test_file); 954 return false; 955 } 956 957 // Read all the test information from the test file into an 958 // OptionValueDictionary. 959 960 OptionValueSP data_dictionary_sp(ReadDictionary(test_file, out_stream)); 961 if (!data_dictionary_sp) { 962 out_stream->Printf( 963 "Instruction::TestEmulation: Error reading Dictionary Object.\n"); 964 fclose(test_file); 965 return false; 966 } 967 968 fclose(test_file); 969 970 OptionValueDictionary *data_dictionary = 971 data_dictionary_sp->GetAsDictionary(); 972 static ConstString description_key("assembly_string"); 973 static ConstString triple_key("triple"); 974 975 OptionValueSP value_sp = data_dictionary->GetValueForKey(description_key); 976 977 if (!value_sp) { 978 out_stream->Printf("Instruction::TestEmulation: Test file does not " 979 "contain description string.\n"); 980 return false; 981 } 982 983 SetDescription(value_sp->GetStringValue()); 984 985 value_sp = data_dictionary->GetValueForKey(triple_key); 986 if (!value_sp) { 987 out_stream->Printf( 988 "Instruction::TestEmulation: Test file does not contain triple.\n"); 989 return false; 990 } 991 992 ArchSpec arch; 993 arch.SetTriple(llvm::Triple(value_sp->GetStringValue())); 994 995 bool success = false; 996 std::unique_ptr<EmulateInstruction> insn_emulator_ap( 997 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr)); 998 if (insn_emulator_ap) 999 success = 1000 insn_emulator_ap->TestEmulation(out_stream, arch, data_dictionary); 1001 1002 if (success) 1003 out_stream->Printf("Emulation test succeeded."); 1004 else 1005 out_stream->Printf("Emulation test failed."); 1006 1007 return success; 1008 } 1009 1010 bool Instruction::Emulate( 1011 const ArchSpec &arch, uint32_t evaluate_options, void *baton, 1012 EmulateInstruction::ReadMemoryCallback read_mem_callback, 1013 EmulateInstruction::WriteMemoryCallback write_mem_callback, 1014 EmulateInstruction::ReadRegisterCallback read_reg_callback, 1015 EmulateInstruction::WriteRegisterCallback write_reg_callback) { 1016 std::unique_ptr<EmulateInstruction> insn_emulator_ap( 1017 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr)); 1018 if (insn_emulator_ap) { 1019 insn_emulator_ap->SetBaton(baton); 1020 insn_emulator_ap->SetCallbacks(read_mem_callback, write_mem_callback, 1021 read_reg_callback, write_reg_callback); 1022 insn_emulator_ap->SetInstruction(GetOpcode(), GetAddress(), nullptr); 1023 return insn_emulator_ap->EvaluateInstruction(evaluate_options); 1024 } 1025 1026 return false; 1027 } 1028 1029 uint32_t Instruction::GetData(DataExtractor &data) { 1030 return m_opcode.GetData(data); 1031 } 1032 1033 InstructionList::InstructionList() : m_instructions() {} 1034 1035 InstructionList::~InstructionList() = default; 1036 1037 size_t InstructionList::GetSize() const { return m_instructions.size(); } 1038 1039 uint32_t InstructionList::GetMaxOpcocdeByteSize() const { 1040 uint32_t max_inst_size = 0; 1041 collection::const_iterator pos, end; 1042 for (pos = m_instructions.begin(), end = m_instructions.end(); pos != end; 1043 ++pos) { 1044 uint32_t inst_size = (*pos)->GetOpcode().GetByteSize(); 1045 if (max_inst_size < inst_size) 1046 max_inst_size = inst_size; 1047 } 1048 return max_inst_size; 1049 } 1050 1051 InstructionSP InstructionList::GetInstructionAtIndex(size_t idx) const { 1052 InstructionSP inst_sp; 1053 if (idx < m_instructions.size()) 1054 inst_sp = m_instructions[idx]; 1055 return inst_sp; 1056 } 1057 1058 void InstructionList::Dump(Stream *s, bool show_address, bool show_bytes, 1059 const ExecutionContext *exe_ctx) { 1060 const uint32_t max_opcode_byte_size = GetMaxOpcocdeByteSize(); 1061 collection::const_iterator pos, begin, end; 1062 1063 const FormatEntity::Entry *disassembly_format = nullptr; 1064 FormatEntity::Entry format; 1065 if (exe_ctx && exe_ctx->HasTargetScope()) { 1066 disassembly_format = 1067 exe_ctx->GetTargetRef().GetDebugger().GetDisassemblyFormat(); 1068 } else { 1069 FormatEntity::Parse("${addr}: ", format); 1070 disassembly_format = &format; 1071 } 1072 1073 for (begin = m_instructions.begin(), end = m_instructions.end(), pos = begin; 1074 pos != end; ++pos) { 1075 if (pos != begin) 1076 s->EOL(); 1077 (*pos)->Dump(s, max_opcode_byte_size, show_address, show_bytes, exe_ctx, 1078 nullptr, nullptr, disassembly_format, 0); 1079 } 1080 } 1081 1082 void InstructionList::Clear() { m_instructions.clear(); } 1083 1084 void InstructionList::Append(lldb::InstructionSP &inst_sp) { 1085 if (inst_sp) 1086 m_instructions.push_back(inst_sp); 1087 } 1088 1089 uint32_t 1090 InstructionList::GetIndexOfNextBranchInstruction(uint32_t start, 1091 Target &target) const { 1092 size_t num_instructions = m_instructions.size(); 1093 1094 uint32_t next_branch = UINT32_MAX; 1095 size_t i; 1096 for (i = start; i < num_instructions; i++) { 1097 if (m_instructions[i]->DoesBranch()) { 1098 next_branch = i; 1099 break; 1100 } 1101 } 1102 1103 // Hexagon needs the first instruction of the packet with the branch. Go 1104 // backwards until we find an instruction marked end-of-packet, or until we 1105 // hit start. 1106 if (target.GetArchitecture().GetTriple().getArch() == llvm::Triple::hexagon) { 1107 // If we didn't find a branch, find the last packet start. 1108 if (next_branch == UINT32_MAX) { 1109 i = num_instructions - 1; 1110 } 1111 1112 while (i > start) { 1113 --i; 1114 1115 Status error; 1116 uint32_t inst_bytes; 1117 bool prefer_file_cache = false; // Read from process if process is running 1118 lldb::addr_t load_addr = LLDB_INVALID_ADDRESS; 1119 target.ReadMemory(m_instructions[i]->GetAddress(), prefer_file_cache, 1120 &inst_bytes, sizeof(inst_bytes), error, &load_addr); 1121 // If we have an error reading memory, return start 1122 if (!error.Success()) 1123 return start; 1124 // check if this is the last instruction in a packet bits 15:14 will be 1125 // 11b or 00b for a duplex 1126 if (((inst_bytes & 0xC000) == 0xC000) || 1127 ((inst_bytes & 0xC000) == 0x0000)) { 1128 // instruction after this should be the start of next packet 1129 next_branch = i + 1; 1130 break; 1131 } 1132 } 1133 1134 if (next_branch == UINT32_MAX) { 1135 // We couldn't find the previous packet, so return start 1136 next_branch = start; 1137 } 1138 } 1139 return next_branch; 1140 } 1141 1142 uint32_t 1143 InstructionList::GetIndexOfInstructionAtAddress(const Address &address) { 1144 size_t num_instructions = m_instructions.size(); 1145 uint32_t index = UINT32_MAX; 1146 for (size_t i = 0; i < num_instructions; i++) { 1147 if (m_instructions[i]->GetAddress() == address) { 1148 index = i; 1149 break; 1150 } 1151 } 1152 return index; 1153 } 1154 1155 uint32_t 1156 InstructionList::GetIndexOfInstructionAtLoadAddress(lldb::addr_t load_addr, 1157 Target &target) { 1158 Address address; 1159 address.SetLoadAddress(load_addr, &target); 1160 return GetIndexOfInstructionAtAddress(address); 1161 } 1162 1163 size_t Disassembler::ParseInstructions(const ExecutionContext *exe_ctx, 1164 const AddressRange &range, 1165 Stream *error_strm_ptr, 1166 bool prefer_file_cache) { 1167 if (exe_ctx) { 1168 Target *target = exe_ctx->GetTargetPtr(); 1169 const addr_t byte_size = range.GetByteSize(); 1170 if (target == nullptr || byte_size == 0 || 1171 !range.GetBaseAddress().IsValid()) 1172 return 0; 1173 1174 auto data_sp = std::make_shared<DataBufferHeap>(byte_size, '\0'); 1175 1176 Status error; 1177 lldb::addr_t load_addr = LLDB_INVALID_ADDRESS; 1178 const size_t bytes_read = target->ReadMemory( 1179 range.GetBaseAddress(), prefer_file_cache, data_sp->GetBytes(), 1180 data_sp->GetByteSize(), error, &load_addr); 1181 1182 if (bytes_read > 0) { 1183 if (bytes_read != data_sp->GetByteSize()) 1184 data_sp->SetByteSize(bytes_read); 1185 DataExtractor data(data_sp, m_arch.GetByteOrder(), 1186 m_arch.GetAddressByteSize()); 1187 const bool data_from_file = load_addr == LLDB_INVALID_ADDRESS; 1188 return DecodeInstructions(range.GetBaseAddress(), data, 0, UINT32_MAX, 1189 false, data_from_file); 1190 } else if (error_strm_ptr) { 1191 const char *error_cstr = error.AsCString(); 1192 if (error_cstr) { 1193 error_strm_ptr->Printf("error: %s\n", error_cstr); 1194 } 1195 } 1196 } else if (error_strm_ptr) { 1197 error_strm_ptr->PutCString("error: invalid execution context\n"); 1198 } 1199 return 0; 1200 } 1201 1202 size_t Disassembler::ParseInstructions(const ExecutionContext *exe_ctx, 1203 const Address &start, 1204 uint32_t num_instructions, 1205 bool prefer_file_cache) { 1206 m_instruction_list.Clear(); 1207 1208 if (exe_ctx == nullptr || num_instructions == 0 || !start.IsValid()) 1209 return 0; 1210 1211 Target *target = exe_ctx->GetTargetPtr(); 1212 // Calculate the max buffer size we will need in order to disassemble 1213 const addr_t byte_size = num_instructions * m_arch.GetMaximumOpcodeByteSize(); 1214 1215 if (target == nullptr || byte_size == 0) 1216 return 0; 1217 1218 DataBufferHeap *heap_buffer = new DataBufferHeap(byte_size, '\0'); 1219 DataBufferSP data_sp(heap_buffer); 1220 1221 Status error; 1222 lldb::addr_t load_addr = LLDB_INVALID_ADDRESS; 1223 const size_t bytes_read = 1224 target->ReadMemory(start, prefer_file_cache, heap_buffer->GetBytes(), 1225 byte_size, error, &load_addr); 1226 1227 const bool data_from_file = load_addr == LLDB_INVALID_ADDRESS; 1228 1229 if (bytes_read == 0) 1230 return 0; 1231 DataExtractor data(data_sp, m_arch.GetByteOrder(), 1232 m_arch.GetAddressByteSize()); 1233 1234 const bool append_instructions = true; 1235 DecodeInstructions(start, data, 0, num_instructions, append_instructions, 1236 data_from_file); 1237 1238 return m_instruction_list.GetSize(); 1239 } 1240 1241 //---------------------------------------------------------------------- 1242 // Disassembler copy constructor 1243 //---------------------------------------------------------------------- 1244 Disassembler::Disassembler(const ArchSpec &arch, const char *flavor) 1245 : m_arch(arch), m_instruction_list(), m_base_addr(LLDB_INVALID_ADDRESS), 1246 m_flavor() { 1247 if (flavor == nullptr) 1248 m_flavor.assign("default"); 1249 else 1250 m_flavor.assign(flavor); 1251 1252 // If this is an arm variant that can only include thumb (T16, T32) 1253 // instructions, force the arch triple to be "thumbv.." instead of "armv..." 1254 if (arch.IsAlwaysThumbInstructions()) { 1255 std::string thumb_arch_name(arch.GetTriple().getArchName().str()); 1256 // Replace "arm" with "thumb" so we get all thumb variants correct 1257 if (thumb_arch_name.size() > 3) { 1258 thumb_arch_name.erase(0, 3); 1259 thumb_arch_name.insert(0, "thumb"); 1260 } 1261 m_arch.SetTriple(thumb_arch_name.c_str()); 1262 } 1263 } 1264 1265 Disassembler::~Disassembler() = default; 1266 1267 InstructionList &Disassembler::GetInstructionList() { 1268 return m_instruction_list; 1269 } 1270 1271 const InstructionList &Disassembler::GetInstructionList() const { 1272 return m_instruction_list; 1273 } 1274 1275 //---------------------------------------------------------------------- 1276 // Class PseudoInstruction 1277 //---------------------------------------------------------------------- 1278 1279 PseudoInstruction::PseudoInstruction() 1280 : Instruction(Address(), AddressClass::eUnknown), m_description() {} 1281 1282 PseudoInstruction::~PseudoInstruction() = default; 1283 1284 bool PseudoInstruction::DoesBranch() { 1285 // This is NOT a valid question for a pseudo instruction. 1286 return false; 1287 } 1288 1289 bool PseudoInstruction::HasDelaySlot() { 1290 // This is NOT a valid question for a pseudo instruction. 1291 return false; 1292 } 1293 1294 size_t PseudoInstruction::Decode(const lldb_private::Disassembler &disassembler, 1295 const lldb_private::DataExtractor &data, 1296 lldb::offset_t data_offset) { 1297 return m_opcode.GetByteSize(); 1298 } 1299 1300 void PseudoInstruction::SetOpcode(size_t opcode_size, void *opcode_data) { 1301 if (!opcode_data) 1302 return; 1303 1304 switch (opcode_size) { 1305 case 8: { 1306 uint8_t value8 = *((uint8_t *)opcode_data); 1307 m_opcode.SetOpcode8(value8, eByteOrderInvalid); 1308 break; 1309 } 1310 case 16: { 1311 uint16_t value16 = *((uint16_t *)opcode_data); 1312 m_opcode.SetOpcode16(value16, eByteOrderInvalid); 1313 break; 1314 } 1315 case 32: { 1316 uint32_t value32 = *((uint32_t *)opcode_data); 1317 m_opcode.SetOpcode32(value32, eByteOrderInvalid); 1318 break; 1319 } 1320 case 64: { 1321 uint64_t value64 = *((uint64_t *)opcode_data); 1322 m_opcode.SetOpcode64(value64, eByteOrderInvalid); 1323 break; 1324 } 1325 default: 1326 break; 1327 } 1328 } 1329 1330 void PseudoInstruction::SetDescription(llvm::StringRef description) { 1331 m_description = description; 1332 } 1333 1334 Instruction::Operand Instruction::Operand::BuildRegister(ConstString &r) { 1335 Operand ret; 1336 ret.m_type = Type::Register; 1337 ret.m_register = r; 1338 return ret; 1339 } 1340 1341 Instruction::Operand Instruction::Operand::BuildImmediate(lldb::addr_t imm, 1342 bool neg) { 1343 Operand ret; 1344 ret.m_type = Type::Immediate; 1345 ret.m_immediate = imm; 1346 ret.m_negative = neg; 1347 return ret; 1348 } 1349 1350 Instruction::Operand Instruction::Operand::BuildImmediate(int64_t imm) { 1351 Operand ret; 1352 ret.m_type = Type::Immediate; 1353 if (imm < 0) { 1354 ret.m_immediate = -imm; 1355 ret.m_negative = true; 1356 } else { 1357 ret.m_immediate = imm; 1358 ret.m_negative = false; 1359 } 1360 return ret; 1361 } 1362 1363 Instruction::Operand 1364 Instruction::Operand::BuildDereference(const Operand &ref) { 1365 Operand ret; 1366 ret.m_type = Type::Dereference; 1367 ret.m_children = {ref}; 1368 return ret; 1369 } 1370 1371 Instruction::Operand Instruction::Operand::BuildSum(const Operand &lhs, 1372 const Operand &rhs) { 1373 Operand ret; 1374 ret.m_type = Type::Sum; 1375 ret.m_children = {lhs, rhs}; 1376 return ret; 1377 } 1378 1379 Instruction::Operand Instruction::Operand::BuildProduct(const Operand &lhs, 1380 const Operand &rhs) { 1381 Operand ret; 1382 ret.m_type = Type::Product; 1383 ret.m_children = {lhs, rhs}; 1384 return ret; 1385 } 1386 1387 std::function<bool(const Instruction::Operand &)> 1388 lldb_private::OperandMatchers::MatchBinaryOp( 1389 std::function<bool(const Instruction::Operand &)> base, 1390 std::function<bool(const Instruction::Operand &)> left, 1391 std::function<bool(const Instruction::Operand &)> right) { 1392 return [base, left, right](const Instruction::Operand &op) -> bool { 1393 return (base(op) && op.m_children.size() == 2 && 1394 ((left(op.m_children[0]) && right(op.m_children[1])) || 1395 (left(op.m_children[1]) && right(op.m_children[0])))); 1396 }; 1397 } 1398 1399 std::function<bool(const Instruction::Operand &)> 1400 lldb_private::OperandMatchers::MatchUnaryOp( 1401 std::function<bool(const Instruction::Operand &)> base, 1402 std::function<bool(const Instruction::Operand &)> child) { 1403 return [base, child](const Instruction::Operand &op) -> bool { 1404 return (base(op) && op.m_children.size() == 1 && child(op.m_children[0])); 1405 }; 1406 } 1407 1408 std::function<bool(const Instruction::Operand &)> 1409 lldb_private::OperandMatchers::MatchRegOp(const RegisterInfo &info) { 1410 return [&info](const Instruction::Operand &op) { 1411 return (op.m_type == Instruction::Operand::Type::Register && 1412 (op.m_register == ConstString(info.name) || 1413 op.m_register == ConstString(info.alt_name))); 1414 }; 1415 } 1416 1417 std::function<bool(const Instruction::Operand &)> 1418 lldb_private::OperandMatchers::FetchRegOp(ConstString ®) { 1419 return [®](const Instruction::Operand &op) { 1420 if (op.m_type != Instruction::Operand::Type::Register) { 1421 return false; 1422 } 1423 reg = op.m_register; 1424 return true; 1425 }; 1426 } 1427 1428 std::function<bool(const Instruction::Operand &)> 1429 lldb_private::OperandMatchers::MatchImmOp(int64_t imm) { 1430 return [imm](const Instruction::Operand &op) { 1431 return (op.m_type == Instruction::Operand::Type::Immediate && 1432 ((op.m_negative && op.m_immediate == (uint64_t)-imm) || 1433 (!op.m_negative && op.m_immediate == (uint64_t)imm))); 1434 }; 1435 } 1436 1437 std::function<bool(const Instruction::Operand &)> 1438 lldb_private::OperandMatchers::FetchImmOp(int64_t &imm) { 1439 return [&imm](const Instruction::Operand &op) { 1440 if (op.m_type != Instruction::Operand::Type::Immediate) { 1441 return false; 1442 } 1443 if (op.m_negative) { 1444 imm = -((int64_t)op.m_immediate); 1445 } else { 1446 imm = ((int64_t)op.m_immediate); 1447 } 1448 return true; 1449 }; 1450 } 1451 1452 std::function<bool(const Instruction::Operand &)> 1453 lldb_private::OperandMatchers::MatchOpType(Instruction::Operand::Type type) { 1454 return [type](const Instruction::Operand &op) { return op.m_type == type; }; 1455 } 1456