1 //===-- Disassembler.cpp ----------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Core/Disassembler.h" 10 11 #include "lldb/Core/AddressRange.h" 12 #include "lldb/Core/Debugger.h" 13 #include "lldb/Core/EmulateInstruction.h" 14 #include "lldb/Core/Mangled.h" 15 #include "lldb/Core/Module.h" 16 #include "lldb/Core/ModuleList.h" 17 #include "lldb/Core/PluginManager.h" 18 #include "lldb/Core/SourceManager.h" 19 #include "lldb/Host/FileSystem.h" 20 #include "lldb/Interpreter/OptionValue.h" 21 #include "lldb/Interpreter/OptionValueArray.h" 22 #include "lldb/Interpreter/OptionValueDictionary.h" 23 #include "lldb/Interpreter/OptionValueRegex.h" 24 #include "lldb/Interpreter/OptionValueString.h" 25 #include "lldb/Interpreter/OptionValueUInt64.h" 26 #include "lldb/Symbol/Function.h" 27 #include "lldb/Symbol/Symbol.h" 28 #include "lldb/Symbol/SymbolContext.h" 29 #include "lldb/Target/ExecutionContext.h" 30 #include "lldb/Target/SectionLoadList.h" 31 #include "lldb/Target/StackFrame.h" 32 #include "lldb/Target/Target.h" 33 #include "lldb/Target/Thread.h" 34 #include "lldb/Utility/DataBufferHeap.h" 35 #include "lldb/Utility/DataExtractor.h" 36 #include "lldb/Utility/RegularExpression.h" 37 #include "lldb/Utility/Status.h" 38 #include "lldb/Utility/Stream.h" 39 #include "lldb/Utility/StreamString.h" 40 #include "lldb/Utility/Timer.h" 41 #include "lldb/lldb-private-enumerations.h" 42 #include "lldb/lldb-private-interfaces.h" 43 #include "lldb/lldb-private-types.h" 44 #include "llvm/ADT/Triple.h" 45 #include "llvm/Support/Compiler.h" 46 47 #include <cstdint> 48 #include <cstring> 49 #include <utility> 50 51 #include <assert.h> 52 53 #define DEFAULT_DISASM_BYTE_SIZE 32 54 55 using namespace lldb; 56 using namespace lldb_private; 57 58 DisassemblerSP Disassembler::FindPlugin(const ArchSpec &arch, 59 const char *flavor, 60 const char *plugin_name) { 61 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); 62 Timer scoped_timer(func_cat, 63 "Disassembler::FindPlugin (arch = %s, plugin_name = %s)", 64 arch.GetArchitectureName(), plugin_name); 65 66 DisassemblerCreateInstance create_callback = nullptr; 67 68 if (plugin_name) { 69 ConstString const_plugin_name(plugin_name); 70 create_callback = PluginManager::GetDisassemblerCreateCallbackForPluginName( 71 const_plugin_name); 72 if (create_callback) { 73 DisassemblerSP disassembler_sp(create_callback(arch, flavor)); 74 75 if (disassembler_sp) 76 return disassembler_sp; 77 } 78 } else { 79 for (uint32_t idx = 0; 80 (create_callback = PluginManager::GetDisassemblerCreateCallbackAtIndex( 81 idx)) != nullptr; 82 ++idx) { 83 DisassemblerSP disassembler_sp(create_callback(arch, flavor)); 84 85 if (disassembler_sp) 86 return disassembler_sp; 87 } 88 } 89 return DisassemblerSP(); 90 } 91 92 DisassemblerSP Disassembler::FindPluginForTarget(const TargetSP target_sp, 93 const ArchSpec &arch, 94 const char *flavor, 95 const char *plugin_name) { 96 if (target_sp && flavor == nullptr) { 97 // FIXME - we don't have the mechanism in place to do per-architecture 98 // settings. But since we know that for now we only support flavors on x86 99 // & x86_64, 100 if (arch.GetTriple().getArch() == llvm::Triple::x86 || 101 arch.GetTriple().getArch() == llvm::Triple::x86_64) 102 flavor = target_sp->GetDisassemblyFlavor(); 103 } 104 return FindPlugin(arch, flavor, plugin_name); 105 } 106 107 static void ResolveAddress(const ExecutionContext &exe_ctx, const Address &addr, 108 Address &resolved_addr) { 109 if (!addr.IsSectionOffset()) { 110 // If we weren't passed in a section offset address range, try and resolve 111 // it to something 112 Target *target = exe_ctx.GetTargetPtr(); 113 if (target) { 114 bool is_resolved = 115 target->GetSectionLoadList().IsEmpty() ? 116 target->GetImages().ResolveFileAddress(addr.GetOffset(), 117 resolved_addr) : 118 target->GetSectionLoadList().ResolveLoadAddress(addr.GetOffset(), 119 resolved_addr); 120 121 // We weren't able to resolve the address, just treat it as a raw address 122 if (is_resolved && resolved_addr.IsValid()) 123 return; 124 } 125 } 126 resolved_addr = addr; 127 } 128 129 size_t Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 130 const char *plugin_name, const char *flavor, 131 const ExecutionContext &exe_ctx, 132 SymbolContextList &sc_list, 133 uint32_t num_instructions, 134 bool mixed_source_and_assembly, 135 uint32_t num_mixed_context_lines, 136 uint32_t options, Stream &strm) { 137 size_t success_count = 0; 138 const size_t count = sc_list.GetSize(); 139 SymbolContext sc; 140 AddressRange range; 141 const uint32_t scope = 142 eSymbolContextBlock | eSymbolContextFunction | eSymbolContextSymbol; 143 const bool use_inline_block_range = true; 144 for (size_t i = 0; i < count; ++i) { 145 if (!sc_list.GetContextAtIndex(i, sc)) 146 break; 147 for (uint32_t range_idx = 0; 148 sc.GetAddressRange(scope, range_idx, use_inline_block_range, range); 149 ++range_idx) { 150 if (Disassemble(debugger, arch, plugin_name, flavor, exe_ctx, range, 151 num_instructions, mixed_source_and_assembly, 152 num_mixed_context_lines, options, strm)) { 153 ++success_count; 154 strm.EOL(); 155 } 156 } 157 } 158 return success_count; 159 } 160 161 bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 162 const char *plugin_name, const char *flavor, 163 const ExecutionContext &exe_ctx, 164 ConstString name, Module *module, 165 uint32_t num_instructions, 166 bool mixed_source_and_assembly, 167 uint32_t num_mixed_context_lines, 168 uint32_t options, Stream &strm) { 169 SymbolContextList sc_list; 170 if (name) { 171 const bool include_symbols = true; 172 const bool include_inlines = true; 173 if (module) { 174 module->FindFunctions(name, nullptr, eFunctionNameTypeAuto, 175 include_symbols, include_inlines, true, sc_list); 176 } else if (exe_ctx.GetTargetPtr()) { 177 exe_ctx.GetTargetPtr()->GetImages().FindFunctions( 178 name, eFunctionNameTypeAuto, include_symbols, include_inlines, false, 179 sc_list); 180 } 181 } 182 183 if (sc_list.GetSize()) { 184 return Disassemble(debugger, arch, plugin_name, flavor, exe_ctx, sc_list, 185 num_instructions, mixed_source_and_assembly, 186 num_mixed_context_lines, options, strm); 187 } 188 return false; 189 } 190 191 lldb::DisassemblerSP Disassembler::DisassembleRange( 192 const ArchSpec &arch, const char *plugin_name, const char *flavor, 193 const ExecutionContext &exe_ctx, const AddressRange &range, 194 bool prefer_file_cache) { 195 lldb::DisassemblerSP disasm_sp; 196 if (range.GetByteSize() > 0 && range.GetBaseAddress().IsValid()) { 197 disasm_sp = Disassembler::FindPluginForTarget(exe_ctx.GetTargetSP(), arch, 198 flavor, plugin_name); 199 200 if (disasm_sp) { 201 size_t bytes_disassembled = disasm_sp->ParseInstructions( 202 &exe_ctx, range, nullptr, prefer_file_cache); 203 if (bytes_disassembled == 0) 204 disasm_sp.reset(); 205 } 206 } 207 return disasm_sp; 208 } 209 210 lldb::DisassemblerSP 211 Disassembler::DisassembleBytes(const ArchSpec &arch, const char *plugin_name, 212 const char *flavor, const Address &start, 213 const void *src, size_t src_len, 214 uint32_t num_instructions, bool data_from_file) { 215 lldb::DisassemblerSP disasm_sp; 216 217 if (src) { 218 disasm_sp = Disassembler::FindPlugin(arch, flavor, plugin_name); 219 220 if (disasm_sp) { 221 DataExtractor data(src, src_len, arch.GetByteOrder(), 222 arch.GetAddressByteSize()); 223 224 (void)disasm_sp->DecodeInstructions(start, data, 0, num_instructions, 225 false, data_from_file); 226 } 227 } 228 229 return disasm_sp; 230 } 231 232 bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 233 const char *plugin_name, const char *flavor, 234 const ExecutionContext &exe_ctx, 235 const AddressRange &disasm_range, 236 uint32_t num_instructions, 237 bool mixed_source_and_assembly, 238 uint32_t num_mixed_context_lines, 239 uint32_t options, Stream &strm) { 240 if (disasm_range.GetByteSize()) { 241 lldb::DisassemblerSP disasm_sp(Disassembler::FindPluginForTarget( 242 exe_ctx.GetTargetSP(), arch, flavor, plugin_name)); 243 244 if (disasm_sp) { 245 AddressRange range; 246 ResolveAddress(exe_ctx, disasm_range.GetBaseAddress(), 247 range.GetBaseAddress()); 248 range.SetByteSize(disasm_range.GetByteSize()); 249 const bool prefer_file_cache = false; 250 size_t bytes_disassembled = disasm_sp->ParseInstructions( 251 &exe_ctx, range, &strm, prefer_file_cache); 252 if (bytes_disassembled == 0) 253 return false; 254 255 return PrintInstructions(disasm_sp.get(), debugger, arch, exe_ctx, 256 num_instructions, mixed_source_and_assembly, 257 num_mixed_context_lines, options, strm); 258 } 259 } 260 return false; 261 } 262 263 bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 264 const char *plugin_name, const char *flavor, 265 const ExecutionContext &exe_ctx, 266 const Address &start_address, 267 uint32_t num_instructions, 268 bool mixed_source_and_assembly, 269 uint32_t num_mixed_context_lines, 270 uint32_t options, Stream &strm) { 271 if (num_instructions > 0) { 272 lldb::DisassemblerSP disasm_sp(Disassembler::FindPluginForTarget( 273 exe_ctx.GetTargetSP(), arch, flavor, plugin_name)); 274 if (disasm_sp) { 275 Address addr; 276 ResolveAddress(exe_ctx, start_address, addr); 277 const bool prefer_file_cache = false; 278 size_t bytes_disassembled = disasm_sp->ParseInstructions( 279 &exe_ctx, addr, num_instructions, prefer_file_cache); 280 if (bytes_disassembled == 0) 281 return false; 282 return PrintInstructions(disasm_sp.get(), debugger, arch, exe_ctx, 283 num_instructions, mixed_source_and_assembly, 284 num_mixed_context_lines, options, strm); 285 } 286 } 287 return false; 288 } 289 290 Disassembler::SourceLine 291 Disassembler::GetFunctionDeclLineEntry(const SymbolContext &sc) { 292 SourceLine decl_line; 293 if (sc.function && sc.line_entry.IsValid()) { 294 LineEntry prologue_end_line = sc.line_entry; 295 FileSpec func_decl_file; 296 uint32_t func_decl_line; 297 sc.function->GetStartLineSourceInfo(func_decl_file, func_decl_line); 298 if (func_decl_file == prologue_end_line.file || 299 func_decl_file == prologue_end_line.original_file) { 300 decl_line.file = func_decl_file; 301 decl_line.line = func_decl_line; 302 // TODO do we care about column on these entries? If so, we need to 303 // plumb that through GetStartLineSourceInfo. 304 decl_line.column = 0; 305 } 306 } 307 return decl_line; 308 } 309 310 void Disassembler::AddLineToSourceLineTables( 311 SourceLine &line, 312 std::map<FileSpec, std::set<uint32_t>> &source_lines_seen) { 313 if (line.IsValid()) { 314 auto source_lines_seen_pos = source_lines_seen.find(line.file); 315 if (source_lines_seen_pos == source_lines_seen.end()) { 316 std::set<uint32_t> lines; 317 lines.insert(line.line); 318 source_lines_seen.emplace(line.file, lines); 319 } else { 320 source_lines_seen_pos->second.insert(line.line); 321 } 322 } 323 } 324 325 bool Disassembler::ElideMixedSourceAndDisassemblyLine( 326 const ExecutionContext &exe_ctx, const SymbolContext &sc, 327 SourceLine &line) { 328 329 // TODO: should we also check target.process.thread.step-avoid-libraries ? 330 331 const RegularExpression *avoid_regex = nullptr; 332 333 // Skip any line #0 entries - they are implementation details 334 if (line.line == 0) 335 return false; 336 337 ThreadSP thread_sp = exe_ctx.GetThreadSP(); 338 if (thread_sp) { 339 avoid_regex = thread_sp->GetSymbolsToAvoidRegexp(); 340 } else { 341 TargetSP target_sp = exe_ctx.GetTargetSP(); 342 if (target_sp) { 343 Status error; 344 OptionValueSP value_sp = target_sp->GetDebugger().GetPropertyValue( 345 &exe_ctx, "target.process.thread.step-avoid-regexp", false, error); 346 if (value_sp && value_sp->GetType() == OptionValue::eTypeRegex) { 347 OptionValueRegex *re = value_sp->GetAsRegex(); 348 if (re) { 349 avoid_regex = re->GetCurrentValue(); 350 } 351 } 352 } 353 } 354 if (avoid_regex && sc.symbol != nullptr) { 355 const char *function_name = 356 sc.GetFunctionName(Mangled::ePreferDemangledWithoutArguments) 357 .GetCString(); 358 if (function_name && avoid_regex->Execute(function_name)) { 359 // skip this source line 360 return true; 361 } 362 } 363 // don't skip this source line 364 return false; 365 } 366 367 bool Disassembler::PrintInstructions(Disassembler *disasm_ptr, 368 Debugger &debugger, const ArchSpec &arch, 369 const ExecutionContext &exe_ctx, 370 uint32_t num_instructions, 371 bool mixed_source_and_assembly, 372 uint32_t num_mixed_context_lines, 373 uint32_t options, Stream &strm) { 374 // We got some things disassembled... 375 size_t num_instructions_found = disasm_ptr->GetInstructionList().GetSize(); 376 377 if (num_instructions > 0 && num_instructions < num_instructions_found) 378 num_instructions_found = num_instructions; 379 380 const uint32_t max_opcode_byte_size = 381 disasm_ptr->GetInstructionList().GetMaxOpcocdeByteSize(); 382 SymbolContext sc; 383 SymbolContext prev_sc; 384 AddressRange current_source_line_range; 385 const Address *pc_addr_ptr = nullptr; 386 StackFrame *frame = exe_ctx.GetFramePtr(); 387 388 TargetSP target_sp(exe_ctx.GetTargetSP()); 389 SourceManager &source_manager = 390 target_sp ? target_sp->GetSourceManager() : debugger.GetSourceManager(); 391 392 if (frame) { 393 pc_addr_ptr = &frame->GetFrameCodeAddress(); 394 } 395 const uint32_t scope = 396 eSymbolContextLineEntry | eSymbolContextFunction | eSymbolContextSymbol; 397 const bool use_inline_block_range = false; 398 399 const FormatEntity::Entry *disassembly_format = nullptr; 400 FormatEntity::Entry format; 401 if (exe_ctx.HasTargetScope()) { 402 disassembly_format = 403 exe_ctx.GetTargetRef().GetDebugger().GetDisassemblyFormat(); 404 } else { 405 FormatEntity::Parse("${addr}: ", format); 406 disassembly_format = &format; 407 } 408 409 // First pass: step through the list of instructions, find how long the 410 // initial addresses strings are, insert padding in the second pass so the 411 // opcodes all line up nicely. 412 413 // Also build up the source line mapping if this is mixed source & assembly 414 // mode. Calculate the source line for each assembly instruction (eliding 415 // inlined functions which the user wants to skip). 416 417 std::map<FileSpec, std::set<uint32_t>> source_lines_seen; 418 Symbol *previous_symbol = nullptr; 419 420 size_t address_text_size = 0; 421 for (size_t i = 0; i < num_instructions_found; ++i) { 422 Instruction *inst = 423 disasm_ptr->GetInstructionList().GetInstructionAtIndex(i).get(); 424 if (inst) { 425 const Address &addr = inst->GetAddress(); 426 ModuleSP module_sp(addr.GetModule()); 427 if (module_sp) { 428 const SymbolContextItem resolve_mask = eSymbolContextFunction | 429 eSymbolContextSymbol | 430 eSymbolContextLineEntry; 431 uint32_t resolved_mask = 432 module_sp->ResolveSymbolContextForAddress(addr, resolve_mask, sc); 433 if (resolved_mask) { 434 StreamString strmstr; 435 Debugger::FormatDisassemblerAddress(disassembly_format, &sc, nullptr, 436 &exe_ctx, &addr, strmstr); 437 size_t cur_line = strmstr.GetSizeOfLastLine(); 438 if (cur_line > address_text_size) 439 address_text_size = cur_line; 440 441 // Add entries to our "source_lines_seen" map+set which list which 442 // sources lines occur in this disassembly session. We will print 443 // lines of context around a source line, but we don't want to print 444 // a source line that has a line table entry of its own - we'll leave 445 // that source line to be printed when it actually occurs in the 446 // disassembly. 447 448 if (mixed_source_and_assembly && sc.line_entry.IsValid()) { 449 if (sc.symbol != previous_symbol) { 450 SourceLine decl_line = GetFunctionDeclLineEntry(sc); 451 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, decl_line)) 452 AddLineToSourceLineTables(decl_line, source_lines_seen); 453 } 454 if (sc.line_entry.IsValid()) { 455 SourceLine this_line; 456 this_line.file = sc.line_entry.file; 457 this_line.line = sc.line_entry.line; 458 this_line.column = sc.line_entry.column; 459 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, this_line)) 460 AddLineToSourceLineTables(this_line, source_lines_seen); 461 } 462 } 463 } 464 sc.Clear(false); 465 } 466 } 467 } 468 469 previous_symbol = nullptr; 470 SourceLine previous_line; 471 for (size_t i = 0; i < num_instructions_found; ++i) { 472 Instruction *inst = 473 disasm_ptr->GetInstructionList().GetInstructionAtIndex(i).get(); 474 475 if (inst) { 476 const Address &addr = inst->GetAddress(); 477 const bool inst_is_at_pc = pc_addr_ptr && addr == *pc_addr_ptr; 478 SourceLinesToDisplay source_lines_to_display; 479 480 prev_sc = sc; 481 482 ModuleSP module_sp(addr.GetModule()); 483 if (module_sp) { 484 uint32_t resolved_mask = module_sp->ResolveSymbolContextForAddress( 485 addr, eSymbolContextEverything, sc); 486 if (resolved_mask) { 487 if (mixed_source_and_assembly) { 488 489 // If we've started a new function (non-inlined), print all of the 490 // source lines from the function declaration until the first line 491 // table entry - typically the opening curly brace of the function. 492 if (previous_symbol != sc.symbol) { 493 // The default disassembly format puts an extra blank line 494 // between functions - so when we're displaying the source 495 // context for a function, we don't want to add a blank line 496 // after the source context or we'll end up with two of them. 497 if (previous_symbol != nullptr) 498 source_lines_to_display.print_source_context_end_eol = false; 499 500 previous_symbol = sc.symbol; 501 if (sc.function && sc.line_entry.IsValid()) { 502 LineEntry prologue_end_line = sc.line_entry; 503 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, 504 prologue_end_line)) { 505 FileSpec func_decl_file; 506 uint32_t func_decl_line; 507 sc.function->GetStartLineSourceInfo(func_decl_file, 508 func_decl_line); 509 if (func_decl_file == prologue_end_line.file || 510 func_decl_file == prologue_end_line.original_file) { 511 // Add all the lines between the function declaration and 512 // the first non-prologue source line to the list of lines 513 // to print. 514 for (uint32_t lineno = func_decl_line; 515 lineno <= prologue_end_line.line; lineno++) { 516 SourceLine this_line; 517 this_line.file = func_decl_file; 518 this_line.line = lineno; 519 source_lines_to_display.lines.push_back(this_line); 520 } 521 // Mark the last line as the "current" one. Usually this 522 // is the open curly brace. 523 if (source_lines_to_display.lines.size() > 0) 524 source_lines_to_display.current_source_line = 525 source_lines_to_display.lines.size() - 1; 526 } 527 } 528 } 529 sc.GetAddressRange(scope, 0, use_inline_block_range, 530 current_source_line_range); 531 } 532 533 // If we've left a previous source line's address range, print a 534 // new source line 535 if (!current_source_line_range.ContainsFileAddress(addr)) { 536 sc.GetAddressRange(scope, 0, use_inline_block_range, 537 current_source_line_range); 538 539 if (sc != prev_sc && sc.comp_unit && sc.line_entry.IsValid()) { 540 SourceLine this_line; 541 this_line.file = sc.line_entry.file; 542 this_line.line = sc.line_entry.line; 543 544 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, 545 this_line)) { 546 // Only print this source line if it is different from the 547 // last source line we printed. There may have been inlined 548 // functions between these lines that we elided, resulting in 549 // the same line being printed twice in a row for a 550 // contiguous block of assembly instructions. 551 if (this_line != previous_line) { 552 553 std::vector<uint32_t> previous_lines; 554 for (uint32_t i = 0; 555 i < num_mixed_context_lines && 556 (this_line.line - num_mixed_context_lines) > 0; 557 i++) { 558 uint32_t line = 559 this_line.line - num_mixed_context_lines + i; 560 auto pos = source_lines_seen.find(this_line.file); 561 if (pos != source_lines_seen.end()) { 562 if (pos->second.count(line) == 1) { 563 previous_lines.clear(); 564 } else { 565 previous_lines.push_back(line); 566 } 567 } 568 } 569 for (size_t i = 0; i < previous_lines.size(); i++) { 570 SourceLine previous_line; 571 previous_line.file = this_line.file; 572 previous_line.line = previous_lines[i]; 573 auto pos = source_lines_seen.find(previous_line.file); 574 if (pos != source_lines_seen.end()) { 575 pos->second.insert(previous_line.line); 576 } 577 source_lines_to_display.lines.push_back(previous_line); 578 } 579 580 source_lines_to_display.lines.push_back(this_line); 581 source_lines_to_display.current_source_line = 582 source_lines_to_display.lines.size() - 1; 583 584 for (uint32_t i = 0; i < num_mixed_context_lines; i++) { 585 SourceLine next_line; 586 next_line.file = this_line.file; 587 next_line.line = this_line.line + i + 1; 588 auto pos = source_lines_seen.find(next_line.file); 589 if (pos != source_lines_seen.end()) { 590 if (pos->second.count(next_line.line) == 1) 591 break; 592 pos->second.insert(next_line.line); 593 } 594 source_lines_to_display.lines.push_back(next_line); 595 } 596 } 597 previous_line = this_line; 598 } 599 } 600 } 601 } 602 } else { 603 sc.Clear(true); 604 } 605 } 606 607 if (source_lines_to_display.lines.size() > 0) { 608 strm.EOL(); 609 for (size_t idx = 0; idx < source_lines_to_display.lines.size(); 610 idx++) { 611 SourceLine ln = source_lines_to_display.lines[idx]; 612 const char *line_highlight = ""; 613 if (inst_is_at_pc && (options & eOptionMarkPCSourceLine)) { 614 line_highlight = "->"; 615 } else if (idx == source_lines_to_display.current_source_line) { 616 line_highlight = "**"; 617 } 618 source_manager.DisplaySourceLinesWithLineNumbers( 619 ln.file, ln.line, ln.column, 0, 0, line_highlight, &strm); 620 } 621 if (source_lines_to_display.print_source_context_end_eol) 622 strm.EOL(); 623 } 624 625 const bool show_bytes = (options & eOptionShowBytes) != 0; 626 inst->Dump(&strm, max_opcode_byte_size, true, show_bytes, &exe_ctx, &sc, 627 &prev_sc, nullptr, address_text_size); 628 strm.EOL(); 629 } else { 630 break; 631 } 632 } 633 634 return true; 635 } 636 637 bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 638 const char *plugin_name, const char *flavor, 639 const ExecutionContext &exe_ctx, 640 uint32_t num_instructions, 641 bool mixed_source_and_assembly, 642 uint32_t num_mixed_context_lines, 643 uint32_t options, Stream &strm) { 644 AddressRange range; 645 StackFrame *frame = exe_ctx.GetFramePtr(); 646 if (frame) { 647 SymbolContext sc( 648 frame->GetSymbolContext(eSymbolContextFunction | eSymbolContextSymbol)); 649 if (sc.function) { 650 range = sc.function->GetAddressRange(); 651 } else if (sc.symbol && sc.symbol->ValueIsAddress()) { 652 range.GetBaseAddress() = sc.symbol->GetAddressRef(); 653 range.SetByteSize(sc.symbol->GetByteSize()); 654 } else { 655 range.GetBaseAddress() = frame->GetFrameCodeAddress(); 656 } 657 658 if (range.GetBaseAddress().IsValid() && range.GetByteSize() == 0) 659 range.SetByteSize(DEFAULT_DISASM_BYTE_SIZE); 660 } 661 662 return Disassemble(debugger, arch, plugin_name, flavor, exe_ctx, range, 663 num_instructions, mixed_source_and_assembly, 664 num_mixed_context_lines, options, strm); 665 } 666 667 Instruction::Instruction(const Address &address, AddressClass addr_class) 668 : m_address(address), m_address_class(addr_class), m_opcode(), 669 m_calculated_strings(false) {} 670 671 Instruction::~Instruction() = default; 672 673 AddressClass Instruction::GetAddressClass() { 674 if (m_address_class == AddressClass::eInvalid) 675 m_address_class = m_address.GetAddressClass(); 676 return m_address_class; 677 } 678 679 void Instruction::Dump(lldb_private::Stream *s, uint32_t max_opcode_byte_size, 680 bool show_address, bool show_bytes, 681 const ExecutionContext *exe_ctx, 682 const SymbolContext *sym_ctx, 683 const SymbolContext *prev_sym_ctx, 684 const FormatEntity::Entry *disassembly_addr_format, 685 size_t max_address_text_size) { 686 size_t opcode_column_width = 7; 687 const size_t operand_column_width = 25; 688 689 CalculateMnemonicOperandsAndCommentIfNeeded(exe_ctx); 690 691 StreamString ss; 692 693 if (show_address) { 694 Debugger::FormatDisassemblerAddress(disassembly_addr_format, sym_ctx, 695 prev_sym_ctx, exe_ctx, &m_address, ss); 696 ss.FillLastLineToColumn(max_address_text_size, ' '); 697 } 698 699 if (show_bytes) { 700 if (m_opcode.GetType() == Opcode::eTypeBytes) { 701 // x86_64 and i386 are the only ones that use bytes right now so pad out 702 // the byte dump to be able to always show 15 bytes (3 chars each) plus a 703 // space 704 if (max_opcode_byte_size > 0) 705 m_opcode.Dump(&ss, max_opcode_byte_size * 3 + 1); 706 else 707 m_opcode.Dump(&ss, 15 * 3 + 1); 708 } else { 709 // Else, we have ARM or MIPS which can show up to a uint32_t 0x00000000 710 // (10 spaces) plus two for padding... 711 if (max_opcode_byte_size > 0) 712 m_opcode.Dump(&ss, max_opcode_byte_size * 3 + 1); 713 else 714 m_opcode.Dump(&ss, 12); 715 } 716 } 717 718 const size_t opcode_pos = ss.GetSizeOfLastLine(); 719 720 // The default opcode size of 7 characters is plenty for most architectures 721 // but some like arm can pull out the occasional vqrshrun.s16. We won't get 722 // consistent column spacing in these cases, unfortunately. 723 if (m_opcode_name.length() >= opcode_column_width) { 724 opcode_column_width = m_opcode_name.length() + 1; 725 } 726 727 ss.PutCString(m_opcode_name); 728 ss.FillLastLineToColumn(opcode_pos + opcode_column_width, ' '); 729 ss.PutCString(m_mnemonics); 730 731 if (!m_comment.empty()) { 732 ss.FillLastLineToColumn( 733 opcode_pos + opcode_column_width + operand_column_width, ' '); 734 ss.PutCString(" ; "); 735 ss.PutCString(m_comment); 736 } 737 s->PutCString(ss.GetString()); 738 } 739 740 bool Instruction::DumpEmulation(const ArchSpec &arch) { 741 std::unique_ptr<EmulateInstruction> insn_emulator_up( 742 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr)); 743 if (insn_emulator_up) { 744 insn_emulator_up->SetInstruction(GetOpcode(), GetAddress(), nullptr); 745 return insn_emulator_up->EvaluateInstruction(0); 746 } 747 748 return false; 749 } 750 751 bool Instruction::CanSetBreakpoint () { 752 return !HasDelaySlot(); 753 } 754 755 bool Instruction::HasDelaySlot() { 756 // Default is false. 757 return false; 758 } 759 760 OptionValueSP Instruction::ReadArray(FILE *in_file, Stream *out_stream, 761 OptionValue::Type data_type) { 762 bool done = false; 763 char buffer[1024]; 764 765 auto option_value_sp = std::make_shared<OptionValueArray>(1u << data_type); 766 767 int idx = 0; 768 while (!done) { 769 if (!fgets(buffer, 1023, in_file)) { 770 out_stream->Printf( 771 "Instruction::ReadArray: Error reading file (fgets).\n"); 772 option_value_sp.reset(); 773 return option_value_sp; 774 } 775 776 std::string line(buffer); 777 778 size_t len = line.size(); 779 if (line[len - 1] == '\n') { 780 line[len - 1] = '\0'; 781 line.resize(len - 1); 782 } 783 784 if ((line.size() == 1) && line[0] == ']') { 785 done = true; 786 line.clear(); 787 } 788 789 if (!line.empty()) { 790 std::string value; 791 static RegularExpression g_reg_exp( 792 llvm::StringRef("^[ \t]*([^ \t]+)[ \t]*$")); 793 llvm::SmallVector<llvm::StringRef, 2> matches; 794 if (g_reg_exp.Execute(line, &matches)) 795 value = matches[1].str(); 796 else 797 value = line; 798 799 OptionValueSP data_value_sp; 800 switch (data_type) { 801 case OptionValue::eTypeUInt64: 802 data_value_sp = std::make_shared<OptionValueUInt64>(0, 0); 803 data_value_sp->SetValueFromString(value); 804 break; 805 // Other types can be added later as needed. 806 default: 807 data_value_sp = std::make_shared<OptionValueString>(value.c_str(), ""); 808 break; 809 } 810 811 option_value_sp->GetAsArray()->InsertValue(idx, data_value_sp); 812 ++idx; 813 } 814 } 815 816 return option_value_sp; 817 } 818 819 OptionValueSP Instruction::ReadDictionary(FILE *in_file, Stream *out_stream) { 820 bool done = false; 821 char buffer[1024]; 822 823 auto option_value_sp = std::make_shared<OptionValueDictionary>(); 824 static ConstString encoding_key("data_encoding"); 825 OptionValue::Type data_type = OptionValue::eTypeInvalid; 826 827 while (!done) { 828 // Read the next line in the file 829 if (!fgets(buffer, 1023, in_file)) { 830 out_stream->Printf( 831 "Instruction::ReadDictionary: Error reading file (fgets).\n"); 832 option_value_sp.reset(); 833 return option_value_sp; 834 } 835 836 // Check to see if the line contains the end-of-dictionary marker ("}") 837 std::string line(buffer); 838 839 size_t len = line.size(); 840 if (line[len - 1] == '\n') { 841 line[len - 1] = '\0'; 842 line.resize(len - 1); 843 } 844 845 if ((line.size() == 1) && (line[0] == '}')) { 846 done = true; 847 line.clear(); 848 } 849 850 // Try to find a key-value pair in the current line and add it to the 851 // dictionary. 852 if (!line.empty()) { 853 static RegularExpression g_reg_exp(llvm::StringRef( 854 "^[ \t]*([a-zA-Z_][a-zA-Z0-9_]*)[ \t]*=[ \t]*(.*)[ \t]*$")); 855 856 llvm::SmallVector<llvm::StringRef, 3> matches; 857 858 bool reg_exp_success = g_reg_exp.Execute(line, &matches); 859 std::string key; 860 std::string value; 861 if (reg_exp_success) { 862 key = matches[1].str(); 863 value = matches[2].str(); 864 } else { 865 out_stream->Printf("Instruction::ReadDictionary: Failure executing " 866 "regular expression.\n"); 867 option_value_sp.reset(); 868 return option_value_sp; 869 } 870 871 ConstString const_key(key.c_str()); 872 // Check value to see if it's the start of an array or dictionary. 873 874 lldb::OptionValueSP value_sp; 875 assert(value.empty() == false); 876 assert(key.empty() == false); 877 878 if (value[0] == '{') { 879 assert(value.size() == 1); 880 // value is a dictionary 881 value_sp = ReadDictionary(in_file, out_stream); 882 if (!value_sp) { 883 option_value_sp.reset(); 884 return option_value_sp; 885 } 886 } else if (value[0] == '[') { 887 assert(value.size() == 1); 888 // value is an array 889 value_sp = ReadArray(in_file, out_stream, data_type); 890 if (!value_sp) { 891 option_value_sp.reset(); 892 return option_value_sp; 893 } 894 // We've used the data_type to read an array; re-set the type to 895 // Invalid 896 data_type = OptionValue::eTypeInvalid; 897 } else if ((value[0] == '0') && (value[1] == 'x')) { 898 value_sp = std::make_shared<OptionValueUInt64>(0, 0); 899 value_sp->SetValueFromString(value); 900 } else { 901 size_t len = value.size(); 902 if ((value[0] == '"') && (value[len - 1] == '"')) 903 value = value.substr(1, len - 2); 904 value_sp = std::make_shared<OptionValueString>(value.c_str(), ""); 905 } 906 907 if (const_key == encoding_key) { 908 // A 'data_encoding=..." is NOT a normal key-value pair; it is meta-data 909 // indicating the 910 // data type of an upcoming array (usually the next bit of data to be 911 // read in). 912 if (strcmp(value.c_str(), "uint32_t") == 0) 913 data_type = OptionValue::eTypeUInt64; 914 } else 915 option_value_sp->GetAsDictionary()->SetValueForKey(const_key, value_sp, 916 false); 917 } 918 } 919 920 return option_value_sp; 921 } 922 923 bool Instruction::TestEmulation(Stream *out_stream, const char *file_name) { 924 if (!out_stream) 925 return false; 926 927 if (!file_name) { 928 out_stream->Printf("Instruction::TestEmulation: Missing file_name."); 929 return false; 930 } 931 FILE *test_file = FileSystem::Instance().Fopen(file_name, "r"); 932 if (!test_file) { 933 out_stream->Printf( 934 "Instruction::TestEmulation: Attempt to open test file failed."); 935 return false; 936 } 937 938 char buffer[256]; 939 if (!fgets(buffer, 255, test_file)) { 940 out_stream->Printf( 941 "Instruction::TestEmulation: Error reading first line of test file.\n"); 942 fclose(test_file); 943 return false; 944 } 945 946 if (strncmp(buffer, "InstructionEmulationState={", 27) != 0) { 947 out_stream->Printf("Instructin::TestEmulation: Test file does not contain " 948 "emulation state dictionary\n"); 949 fclose(test_file); 950 return false; 951 } 952 953 // Read all the test information from the test file into an 954 // OptionValueDictionary. 955 956 OptionValueSP data_dictionary_sp(ReadDictionary(test_file, out_stream)); 957 if (!data_dictionary_sp) { 958 out_stream->Printf( 959 "Instruction::TestEmulation: Error reading Dictionary Object.\n"); 960 fclose(test_file); 961 return false; 962 } 963 964 fclose(test_file); 965 966 OptionValueDictionary *data_dictionary = 967 data_dictionary_sp->GetAsDictionary(); 968 static ConstString description_key("assembly_string"); 969 static ConstString triple_key("triple"); 970 971 OptionValueSP value_sp = data_dictionary->GetValueForKey(description_key); 972 973 if (!value_sp) { 974 out_stream->Printf("Instruction::TestEmulation: Test file does not " 975 "contain description string.\n"); 976 return false; 977 } 978 979 SetDescription(value_sp->GetStringValue()); 980 981 value_sp = data_dictionary->GetValueForKey(triple_key); 982 if (!value_sp) { 983 out_stream->Printf( 984 "Instruction::TestEmulation: Test file does not contain triple.\n"); 985 return false; 986 } 987 988 ArchSpec arch; 989 arch.SetTriple(llvm::Triple(value_sp->GetStringValue())); 990 991 bool success = false; 992 std::unique_ptr<EmulateInstruction> insn_emulator_up( 993 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr)); 994 if (insn_emulator_up) 995 success = 996 insn_emulator_up->TestEmulation(out_stream, arch, data_dictionary); 997 998 if (success) 999 out_stream->Printf("Emulation test succeeded."); 1000 else 1001 out_stream->Printf("Emulation test failed."); 1002 1003 return success; 1004 } 1005 1006 bool Instruction::Emulate( 1007 const ArchSpec &arch, uint32_t evaluate_options, void *baton, 1008 EmulateInstruction::ReadMemoryCallback read_mem_callback, 1009 EmulateInstruction::WriteMemoryCallback write_mem_callback, 1010 EmulateInstruction::ReadRegisterCallback read_reg_callback, 1011 EmulateInstruction::WriteRegisterCallback write_reg_callback) { 1012 std::unique_ptr<EmulateInstruction> insn_emulator_up( 1013 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr)); 1014 if (insn_emulator_up) { 1015 insn_emulator_up->SetBaton(baton); 1016 insn_emulator_up->SetCallbacks(read_mem_callback, write_mem_callback, 1017 read_reg_callback, write_reg_callback); 1018 insn_emulator_up->SetInstruction(GetOpcode(), GetAddress(), nullptr); 1019 return insn_emulator_up->EvaluateInstruction(evaluate_options); 1020 } 1021 1022 return false; 1023 } 1024 1025 uint32_t Instruction::GetData(DataExtractor &data) { 1026 return m_opcode.GetData(data); 1027 } 1028 1029 InstructionList::InstructionList() : m_instructions() {} 1030 1031 InstructionList::~InstructionList() = default; 1032 1033 size_t InstructionList::GetSize() const { return m_instructions.size(); } 1034 1035 uint32_t InstructionList::GetMaxOpcocdeByteSize() const { 1036 uint32_t max_inst_size = 0; 1037 collection::const_iterator pos, end; 1038 for (pos = m_instructions.begin(), end = m_instructions.end(); pos != end; 1039 ++pos) { 1040 uint32_t inst_size = (*pos)->GetOpcode().GetByteSize(); 1041 if (max_inst_size < inst_size) 1042 max_inst_size = inst_size; 1043 } 1044 return max_inst_size; 1045 } 1046 1047 InstructionSP InstructionList::GetInstructionAtIndex(size_t idx) const { 1048 InstructionSP inst_sp; 1049 if (idx < m_instructions.size()) 1050 inst_sp = m_instructions[idx]; 1051 return inst_sp; 1052 } 1053 1054 void InstructionList::Dump(Stream *s, bool show_address, bool show_bytes, 1055 const ExecutionContext *exe_ctx) { 1056 const uint32_t max_opcode_byte_size = GetMaxOpcocdeByteSize(); 1057 collection::const_iterator pos, begin, end; 1058 1059 const FormatEntity::Entry *disassembly_format = nullptr; 1060 FormatEntity::Entry format; 1061 if (exe_ctx && exe_ctx->HasTargetScope()) { 1062 disassembly_format = 1063 exe_ctx->GetTargetRef().GetDebugger().GetDisassemblyFormat(); 1064 } else { 1065 FormatEntity::Parse("${addr}: ", format); 1066 disassembly_format = &format; 1067 } 1068 1069 for (begin = m_instructions.begin(), end = m_instructions.end(), pos = begin; 1070 pos != end; ++pos) { 1071 if (pos != begin) 1072 s->EOL(); 1073 (*pos)->Dump(s, max_opcode_byte_size, show_address, show_bytes, exe_ctx, 1074 nullptr, nullptr, disassembly_format, 0); 1075 } 1076 } 1077 1078 void InstructionList::Clear() { m_instructions.clear(); } 1079 1080 void InstructionList::Append(lldb::InstructionSP &inst_sp) { 1081 if (inst_sp) 1082 m_instructions.push_back(inst_sp); 1083 } 1084 1085 uint32_t 1086 InstructionList::GetIndexOfNextBranchInstruction(uint32_t start, 1087 Target &target, 1088 bool ignore_calls) const { 1089 size_t num_instructions = m_instructions.size(); 1090 1091 uint32_t next_branch = UINT32_MAX; 1092 size_t i; 1093 for (i = start; i < num_instructions; i++) { 1094 if (m_instructions[i]->DoesBranch()) { 1095 if (ignore_calls && m_instructions[i]->IsCall()) 1096 continue; 1097 next_branch = i; 1098 break; 1099 } 1100 } 1101 1102 // Hexagon needs the first instruction of the packet with the branch. Go 1103 // backwards until we find an instruction marked end-of-packet, or until we 1104 // hit start. 1105 if (target.GetArchitecture().GetTriple().getArch() == llvm::Triple::hexagon) { 1106 // If we didn't find a branch, find the last packet start. 1107 if (next_branch == UINT32_MAX) { 1108 i = num_instructions - 1; 1109 } 1110 1111 while (i > start) { 1112 --i; 1113 1114 Status error; 1115 uint32_t inst_bytes; 1116 bool prefer_file_cache = false; // Read from process if process is running 1117 lldb::addr_t load_addr = LLDB_INVALID_ADDRESS; 1118 target.ReadMemory(m_instructions[i]->GetAddress(), prefer_file_cache, 1119 &inst_bytes, sizeof(inst_bytes), error, &load_addr); 1120 // If we have an error reading memory, return start 1121 if (!error.Success()) 1122 return start; 1123 // check if this is the last instruction in a packet bits 15:14 will be 1124 // 11b or 00b for a duplex 1125 if (((inst_bytes & 0xC000) == 0xC000) || 1126 ((inst_bytes & 0xC000) == 0x0000)) { 1127 // instruction after this should be the start of next packet 1128 next_branch = i + 1; 1129 break; 1130 } 1131 } 1132 1133 if (next_branch == UINT32_MAX) { 1134 // We couldn't find the previous packet, so return start 1135 next_branch = start; 1136 } 1137 } 1138 return next_branch; 1139 } 1140 1141 uint32_t 1142 InstructionList::GetIndexOfInstructionAtAddress(const Address &address) { 1143 size_t num_instructions = m_instructions.size(); 1144 uint32_t index = UINT32_MAX; 1145 for (size_t i = 0; i < num_instructions; i++) { 1146 if (m_instructions[i]->GetAddress() == address) { 1147 index = i; 1148 break; 1149 } 1150 } 1151 return index; 1152 } 1153 1154 uint32_t 1155 InstructionList::GetIndexOfInstructionAtLoadAddress(lldb::addr_t load_addr, 1156 Target &target) { 1157 Address address; 1158 address.SetLoadAddress(load_addr, &target); 1159 return GetIndexOfInstructionAtAddress(address); 1160 } 1161 1162 size_t Disassembler::ParseInstructions(const ExecutionContext *exe_ctx, 1163 const AddressRange &range, 1164 Stream *error_strm_ptr, 1165 bool prefer_file_cache) { 1166 if (exe_ctx) { 1167 Target *target = exe_ctx->GetTargetPtr(); 1168 const addr_t byte_size = range.GetByteSize(); 1169 if (target == nullptr || byte_size == 0 || 1170 !range.GetBaseAddress().IsValid()) 1171 return 0; 1172 1173 auto data_sp = std::make_shared<DataBufferHeap>(byte_size, '\0'); 1174 1175 Status error; 1176 lldb::addr_t load_addr = LLDB_INVALID_ADDRESS; 1177 const size_t bytes_read = target->ReadMemory( 1178 range.GetBaseAddress(), prefer_file_cache, data_sp->GetBytes(), 1179 data_sp->GetByteSize(), error, &load_addr); 1180 1181 if (bytes_read > 0) { 1182 if (bytes_read != data_sp->GetByteSize()) 1183 data_sp->SetByteSize(bytes_read); 1184 DataExtractor data(data_sp, m_arch.GetByteOrder(), 1185 m_arch.GetAddressByteSize()); 1186 const bool data_from_file = load_addr == LLDB_INVALID_ADDRESS; 1187 return DecodeInstructions(range.GetBaseAddress(), data, 0, UINT32_MAX, 1188 false, data_from_file); 1189 } else if (error_strm_ptr) { 1190 const char *error_cstr = error.AsCString(); 1191 if (error_cstr) { 1192 error_strm_ptr->Printf("error: %s\n", error_cstr); 1193 } 1194 } 1195 } else if (error_strm_ptr) { 1196 error_strm_ptr->PutCString("error: invalid execution context\n"); 1197 } 1198 return 0; 1199 } 1200 1201 size_t Disassembler::ParseInstructions(const ExecutionContext *exe_ctx, 1202 const Address &start, 1203 uint32_t num_instructions, 1204 bool prefer_file_cache) { 1205 m_instruction_list.Clear(); 1206 1207 if (exe_ctx == nullptr || num_instructions == 0 || !start.IsValid()) 1208 return 0; 1209 1210 Target *target = exe_ctx->GetTargetPtr(); 1211 // Calculate the max buffer size we will need in order to disassemble 1212 const addr_t byte_size = num_instructions * m_arch.GetMaximumOpcodeByteSize(); 1213 1214 if (target == nullptr || byte_size == 0) 1215 return 0; 1216 1217 DataBufferHeap *heap_buffer = new DataBufferHeap(byte_size, '\0'); 1218 DataBufferSP data_sp(heap_buffer); 1219 1220 Status error; 1221 lldb::addr_t load_addr = LLDB_INVALID_ADDRESS; 1222 const size_t bytes_read = 1223 target->ReadMemory(start, prefer_file_cache, heap_buffer->GetBytes(), 1224 byte_size, error, &load_addr); 1225 1226 const bool data_from_file = load_addr == LLDB_INVALID_ADDRESS; 1227 1228 if (bytes_read == 0) 1229 return 0; 1230 DataExtractor data(data_sp, m_arch.GetByteOrder(), 1231 m_arch.GetAddressByteSize()); 1232 1233 const bool append_instructions = true; 1234 DecodeInstructions(start, data, 0, num_instructions, append_instructions, 1235 data_from_file); 1236 1237 return m_instruction_list.GetSize(); 1238 } 1239 1240 // Disassembler copy constructor 1241 Disassembler::Disassembler(const ArchSpec &arch, const char *flavor) 1242 : m_arch(arch), m_instruction_list(), m_base_addr(LLDB_INVALID_ADDRESS), 1243 m_flavor() { 1244 if (flavor == nullptr) 1245 m_flavor.assign("default"); 1246 else 1247 m_flavor.assign(flavor); 1248 1249 // If this is an arm variant that can only include thumb (T16, T32) 1250 // instructions, force the arch triple to be "thumbv.." instead of "armv..." 1251 if (arch.IsAlwaysThumbInstructions()) { 1252 std::string thumb_arch_name(arch.GetTriple().getArchName().str()); 1253 // Replace "arm" with "thumb" so we get all thumb variants correct 1254 if (thumb_arch_name.size() > 3) { 1255 thumb_arch_name.erase(0, 3); 1256 thumb_arch_name.insert(0, "thumb"); 1257 } 1258 m_arch.SetTriple(thumb_arch_name.c_str()); 1259 } 1260 } 1261 1262 Disassembler::~Disassembler() = default; 1263 1264 InstructionList &Disassembler::GetInstructionList() { 1265 return m_instruction_list; 1266 } 1267 1268 const InstructionList &Disassembler::GetInstructionList() const { 1269 return m_instruction_list; 1270 } 1271 1272 // Class PseudoInstruction 1273 1274 PseudoInstruction::PseudoInstruction() 1275 : Instruction(Address(), AddressClass::eUnknown), m_description() {} 1276 1277 PseudoInstruction::~PseudoInstruction() = default; 1278 1279 bool PseudoInstruction::DoesBranch() { 1280 // This is NOT a valid question for a pseudo instruction. 1281 return false; 1282 } 1283 1284 bool PseudoInstruction::HasDelaySlot() { 1285 // This is NOT a valid question for a pseudo instruction. 1286 return false; 1287 } 1288 1289 size_t PseudoInstruction::Decode(const lldb_private::Disassembler &disassembler, 1290 const lldb_private::DataExtractor &data, 1291 lldb::offset_t data_offset) { 1292 return m_opcode.GetByteSize(); 1293 } 1294 1295 void PseudoInstruction::SetOpcode(size_t opcode_size, void *opcode_data) { 1296 if (!opcode_data) 1297 return; 1298 1299 switch (opcode_size) { 1300 case 8: { 1301 uint8_t value8 = *((uint8_t *)opcode_data); 1302 m_opcode.SetOpcode8(value8, eByteOrderInvalid); 1303 break; 1304 } 1305 case 16: { 1306 uint16_t value16 = *((uint16_t *)opcode_data); 1307 m_opcode.SetOpcode16(value16, eByteOrderInvalid); 1308 break; 1309 } 1310 case 32: { 1311 uint32_t value32 = *((uint32_t *)opcode_data); 1312 m_opcode.SetOpcode32(value32, eByteOrderInvalid); 1313 break; 1314 } 1315 case 64: { 1316 uint64_t value64 = *((uint64_t *)opcode_data); 1317 m_opcode.SetOpcode64(value64, eByteOrderInvalid); 1318 break; 1319 } 1320 default: 1321 break; 1322 } 1323 } 1324 1325 void PseudoInstruction::SetDescription(llvm::StringRef description) { 1326 m_description = description; 1327 } 1328 1329 Instruction::Operand Instruction::Operand::BuildRegister(ConstString &r) { 1330 Operand ret; 1331 ret.m_type = Type::Register; 1332 ret.m_register = r; 1333 return ret; 1334 } 1335 1336 Instruction::Operand Instruction::Operand::BuildImmediate(lldb::addr_t imm, 1337 bool neg) { 1338 Operand ret; 1339 ret.m_type = Type::Immediate; 1340 ret.m_immediate = imm; 1341 ret.m_negative = neg; 1342 return ret; 1343 } 1344 1345 Instruction::Operand Instruction::Operand::BuildImmediate(int64_t imm) { 1346 Operand ret; 1347 ret.m_type = Type::Immediate; 1348 if (imm < 0) { 1349 ret.m_immediate = -imm; 1350 ret.m_negative = true; 1351 } else { 1352 ret.m_immediate = imm; 1353 ret.m_negative = false; 1354 } 1355 return ret; 1356 } 1357 1358 Instruction::Operand 1359 Instruction::Operand::BuildDereference(const Operand &ref) { 1360 Operand ret; 1361 ret.m_type = Type::Dereference; 1362 ret.m_children = {ref}; 1363 return ret; 1364 } 1365 1366 Instruction::Operand Instruction::Operand::BuildSum(const Operand &lhs, 1367 const Operand &rhs) { 1368 Operand ret; 1369 ret.m_type = Type::Sum; 1370 ret.m_children = {lhs, rhs}; 1371 return ret; 1372 } 1373 1374 Instruction::Operand Instruction::Operand::BuildProduct(const Operand &lhs, 1375 const Operand &rhs) { 1376 Operand ret; 1377 ret.m_type = Type::Product; 1378 ret.m_children = {lhs, rhs}; 1379 return ret; 1380 } 1381 1382 std::function<bool(const Instruction::Operand &)> 1383 lldb_private::OperandMatchers::MatchBinaryOp( 1384 std::function<bool(const Instruction::Operand &)> base, 1385 std::function<bool(const Instruction::Operand &)> left, 1386 std::function<bool(const Instruction::Operand &)> right) { 1387 return [base, left, right](const Instruction::Operand &op) -> bool { 1388 return (base(op) && op.m_children.size() == 2 && 1389 ((left(op.m_children[0]) && right(op.m_children[1])) || 1390 (left(op.m_children[1]) && right(op.m_children[0])))); 1391 }; 1392 } 1393 1394 std::function<bool(const Instruction::Operand &)> 1395 lldb_private::OperandMatchers::MatchUnaryOp( 1396 std::function<bool(const Instruction::Operand &)> base, 1397 std::function<bool(const Instruction::Operand &)> child) { 1398 return [base, child](const Instruction::Operand &op) -> bool { 1399 return (base(op) && op.m_children.size() == 1 && child(op.m_children[0])); 1400 }; 1401 } 1402 1403 std::function<bool(const Instruction::Operand &)> 1404 lldb_private::OperandMatchers::MatchRegOp(const RegisterInfo &info) { 1405 return [&info](const Instruction::Operand &op) { 1406 return (op.m_type == Instruction::Operand::Type::Register && 1407 (op.m_register == ConstString(info.name) || 1408 op.m_register == ConstString(info.alt_name))); 1409 }; 1410 } 1411 1412 std::function<bool(const Instruction::Operand &)> 1413 lldb_private::OperandMatchers::FetchRegOp(ConstString ®) { 1414 return [®](const Instruction::Operand &op) { 1415 if (op.m_type != Instruction::Operand::Type::Register) { 1416 return false; 1417 } 1418 reg = op.m_register; 1419 return true; 1420 }; 1421 } 1422 1423 std::function<bool(const Instruction::Operand &)> 1424 lldb_private::OperandMatchers::MatchImmOp(int64_t imm) { 1425 return [imm](const Instruction::Operand &op) { 1426 return (op.m_type == Instruction::Operand::Type::Immediate && 1427 ((op.m_negative && op.m_immediate == (uint64_t)-imm) || 1428 (!op.m_negative && op.m_immediate == (uint64_t)imm))); 1429 }; 1430 } 1431 1432 std::function<bool(const Instruction::Operand &)> 1433 lldb_private::OperandMatchers::FetchImmOp(int64_t &imm) { 1434 return [&imm](const Instruction::Operand &op) { 1435 if (op.m_type != Instruction::Operand::Type::Immediate) { 1436 return false; 1437 } 1438 if (op.m_negative) { 1439 imm = -((int64_t)op.m_immediate); 1440 } else { 1441 imm = ((int64_t)op.m_immediate); 1442 } 1443 return true; 1444 }; 1445 } 1446 1447 std::function<bool(const Instruction::Operand &)> 1448 lldb_private::OperandMatchers::MatchOpType(Instruction::Operand::Type type) { 1449 return [type](const Instruction::Operand &op) { return op.m_type == type; }; 1450 } 1451