1 //===-- Disassembler.cpp ----------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/Core/Disassembler.h" 11 12 #include "lldb/Core/AddressRange.h" // for AddressRange 13 #include "lldb/Core/Debugger.h" 14 #include "lldb/Core/EmulateInstruction.h" 15 #include "lldb/Core/Mangled.h" // for Mangled, Mangled... 16 #include "lldb/Core/Module.h" 17 #include "lldb/Core/ModuleList.h" // for ModuleList 18 #include "lldb/Core/PluginManager.h" 19 #include "lldb/Core/SourceManager.h" // for SourceManager 20 #include "lldb/Host/FileSystem.h" 21 #include "lldb/Interpreter/OptionValue.h" 22 #include "lldb/Interpreter/OptionValueArray.h" 23 #include "lldb/Interpreter/OptionValueDictionary.h" 24 #include "lldb/Interpreter/OptionValueRegex.h" 25 #include "lldb/Interpreter/OptionValueString.h" 26 #include "lldb/Interpreter/OptionValueUInt64.h" 27 #include "lldb/Symbol/Function.h" 28 #include "lldb/Symbol/Symbol.h" // for Symbol 29 #include "lldb/Symbol/SymbolContext.h" // for SymbolContext 30 #include "lldb/Target/ExecutionContext.h" 31 #include "lldb/Target/SectionLoadList.h" 32 #include "lldb/Target/StackFrame.h" 33 #include "lldb/Target/Target.h" 34 #include "lldb/Target/Thread.h" // for Thread 35 #include "lldb/Utility/DataBufferHeap.h" 36 #include "lldb/Utility/DataExtractor.h" 37 #include "lldb/Utility/RegularExpression.h" 38 #include "lldb/Utility/Status.h" 39 #include "lldb/Utility/Stream.h" // for Stream 40 #include "lldb/Utility/StreamString.h" // for StreamString 41 #include "lldb/Utility/Timer.h" 42 #include "lldb/lldb-private-enumerations.h" // for InstructionType:... 43 #include "lldb/lldb-private-interfaces.h" // for DisassemblerCrea... 44 #include "lldb/lldb-private-types.h" // for RegisterInfo 45 #include "llvm/ADT/Triple.h" // for Triple, Triple::... 46 #include "llvm/Support/Compiler.h" // for LLVM_PRETTY_FUNC... 47 48 #include <cstdint> // for uint32_t, UINT32... 49 #include <cstring> 50 #include <utility> // for pair 51 52 #include <assert.h> // for assert 53 54 #define DEFAULT_DISASM_BYTE_SIZE 32 55 56 using namespace lldb; 57 using namespace lldb_private; 58 59 DisassemblerSP Disassembler::FindPlugin(const ArchSpec &arch, 60 const char *flavor, 61 const char *plugin_name) { 62 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); 63 Timer scoped_timer(func_cat, 64 "Disassembler::FindPlugin (arch = %s, plugin_name = %s)", 65 arch.GetArchitectureName(), plugin_name); 66 67 DisassemblerCreateInstance create_callback = nullptr; 68 69 if (plugin_name) { 70 ConstString const_plugin_name(plugin_name); 71 create_callback = PluginManager::GetDisassemblerCreateCallbackForPluginName( 72 const_plugin_name); 73 if (create_callback) { 74 DisassemblerSP disassembler_sp(create_callback(arch, flavor)); 75 76 if (disassembler_sp) 77 return disassembler_sp; 78 } 79 } else { 80 for (uint32_t idx = 0; 81 (create_callback = PluginManager::GetDisassemblerCreateCallbackAtIndex( 82 idx)) != nullptr; 83 ++idx) { 84 DisassemblerSP disassembler_sp(create_callback(arch, flavor)); 85 86 if (disassembler_sp) 87 return disassembler_sp; 88 } 89 } 90 return DisassemblerSP(); 91 } 92 93 DisassemblerSP Disassembler::FindPluginForTarget(const TargetSP target_sp, 94 const ArchSpec &arch, 95 const char *flavor, 96 const char *plugin_name) { 97 if (target_sp && flavor == nullptr) { 98 // FIXME - we don't have the mechanism in place to do per-architecture 99 // settings. But since we know that for now we only support flavors on x86 100 // & x86_64, 101 if (arch.GetTriple().getArch() == llvm::Triple::x86 || 102 arch.GetTriple().getArch() == llvm::Triple::x86_64) 103 flavor = target_sp->GetDisassemblyFlavor(); 104 } 105 return FindPlugin(arch, flavor, plugin_name); 106 } 107 108 static void ResolveAddress(const ExecutionContext &exe_ctx, const Address &addr, 109 Address &resolved_addr) { 110 if (!addr.IsSectionOffset()) { 111 // If we weren't passed in a section offset address range, try and resolve 112 // it to something 113 Target *target = exe_ctx.GetTargetPtr(); 114 if (target) { 115 if (target->GetSectionLoadList().IsEmpty()) { 116 target->GetImages().ResolveFileAddress(addr.GetOffset(), resolved_addr); 117 } else { 118 target->GetSectionLoadList().ResolveLoadAddress(addr.GetOffset(), 119 resolved_addr); 120 } 121 // We weren't able to resolve the address, just treat it as a raw address 122 if (resolved_addr.IsValid()) 123 return; 124 } 125 } 126 resolved_addr = addr; 127 } 128 129 size_t Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 130 const char *plugin_name, const char *flavor, 131 const ExecutionContext &exe_ctx, 132 SymbolContextList &sc_list, 133 uint32_t num_instructions, 134 bool mixed_source_and_assembly, 135 uint32_t num_mixed_context_lines, 136 uint32_t options, Stream &strm) { 137 size_t success_count = 0; 138 const size_t count = sc_list.GetSize(); 139 SymbolContext sc; 140 AddressRange range; 141 const uint32_t scope = 142 eSymbolContextBlock | eSymbolContextFunction | eSymbolContextSymbol; 143 const bool use_inline_block_range = true; 144 for (size_t i = 0; i < count; ++i) { 145 if (!sc_list.GetContextAtIndex(i, sc)) 146 break; 147 for (uint32_t range_idx = 0; 148 sc.GetAddressRange(scope, range_idx, use_inline_block_range, range); 149 ++range_idx) { 150 if (Disassemble(debugger, arch, plugin_name, flavor, exe_ctx, range, 151 num_instructions, mixed_source_and_assembly, 152 num_mixed_context_lines, options, strm)) { 153 ++success_count; 154 strm.EOL(); 155 } 156 } 157 } 158 return success_count; 159 } 160 161 bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 162 const char *plugin_name, const char *flavor, 163 const ExecutionContext &exe_ctx, 164 const ConstString &name, Module *module, 165 uint32_t num_instructions, 166 bool mixed_source_and_assembly, 167 uint32_t num_mixed_context_lines, 168 uint32_t options, Stream &strm) { 169 SymbolContextList sc_list; 170 if (name) { 171 const bool include_symbols = true; 172 const bool include_inlines = true; 173 if (module) { 174 module->FindFunctions(name, nullptr, eFunctionNameTypeAuto, 175 include_symbols, include_inlines, true, sc_list); 176 } else if (exe_ctx.GetTargetPtr()) { 177 exe_ctx.GetTargetPtr()->GetImages().FindFunctions( 178 name, eFunctionNameTypeAuto, include_symbols, include_inlines, false, 179 sc_list); 180 } 181 } 182 183 if (sc_list.GetSize()) { 184 return Disassemble(debugger, arch, plugin_name, flavor, exe_ctx, sc_list, 185 num_instructions, mixed_source_and_assembly, 186 num_mixed_context_lines, options, strm); 187 } 188 return false; 189 } 190 191 lldb::DisassemblerSP Disassembler::DisassembleRange( 192 const ArchSpec &arch, const char *plugin_name, const char *flavor, 193 const ExecutionContext &exe_ctx, const AddressRange &range, 194 bool prefer_file_cache) { 195 lldb::DisassemblerSP disasm_sp; 196 if (range.GetByteSize() > 0 && range.GetBaseAddress().IsValid()) { 197 disasm_sp = Disassembler::FindPluginForTarget(exe_ctx.GetTargetSP(), arch, 198 flavor, plugin_name); 199 200 if (disasm_sp) { 201 size_t bytes_disassembled = disasm_sp->ParseInstructions( 202 &exe_ctx, range, nullptr, prefer_file_cache); 203 if (bytes_disassembled == 0) 204 disasm_sp.reset(); 205 } 206 } 207 return disasm_sp; 208 } 209 210 lldb::DisassemblerSP 211 Disassembler::DisassembleBytes(const ArchSpec &arch, const char *plugin_name, 212 const char *flavor, const Address &start, 213 const void *src, size_t src_len, 214 uint32_t num_instructions, bool data_from_file) { 215 lldb::DisassemblerSP disasm_sp; 216 217 if (src) { 218 disasm_sp = Disassembler::FindPlugin(arch, flavor, plugin_name); 219 220 if (disasm_sp) { 221 DataExtractor data(src, src_len, arch.GetByteOrder(), 222 arch.GetAddressByteSize()); 223 224 (void)disasm_sp->DecodeInstructions(start, data, 0, num_instructions, 225 false, data_from_file); 226 } 227 } 228 229 return disasm_sp; 230 } 231 232 bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 233 const char *plugin_name, const char *flavor, 234 const ExecutionContext &exe_ctx, 235 const AddressRange &disasm_range, 236 uint32_t num_instructions, 237 bool mixed_source_and_assembly, 238 uint32_t num_mixed_context_lines, 239 uint32_t options, Stream &strm) { 240 if (disasm_range.GetByteSize()) { 241 lldb::DisassemblerSP disasm_sp(Disassembler::FindPluginForTarget( 242 exe_ctx.GetTargetSP(), arch, flavor, plugin_name)); 243 244 if (disasm_sp) { 245 AddressRange range; 246 ResolveAddress(exe_ctx, disasm_range.GetBaseAddress(), 247 range.GetBaseAddress()); 248 range.SetByteSize(disasm_range.GetByteSize()); 249 const bool prefer_file_cache = false; 250 size_t bytes_disassembled = disasm_sp->ParseInstructions( 251 &exe_ctx, range, &strm, prefer_file_cache); 252 if (bytes_disassembled == 0) 253 return false; 254 255 return PrintInstructions(disasm_sp.get(), debugger, arch, exe_ctx, 256 num_instructions, mixed_source_and_assembly, 257 num_mixed_context_lines, options, strm); 258 } 259 } 260 return false; 261 } 262 263 bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 264 const char *plugin_name, const char *flavor, 265 const ExecutionContext &exe_ctx, 266 const Address &start_address, 267 uint32_t num_instructions, 268 bool mixed_source_and_assembly, 269 uint32_t num_mixed_context_lines, 270 uint32_t options, Stream &strm) { 271 if (num_instructions > 0) { 272 lldb::DisassemblerSP disasm_sp(Disassembler::FindPluginForTarget( 273 exe_ctx.GetTargetSP(), arch, flavor, plugin_name)); 274 if (disasm_sp) { 275 Address addr; 276 ResolveAddress(exe_ctx, start_address, addr); 277 const bool prefer_file_cache = false; 278 size_t bytes_disassembled = disasm_sp->ParseInstructions( 279 &exe_ctx, addr, num_instructions, prefer_file_cache); 280 if (bytes_disassembled == 0) 281 return false; 282 return PrintInstructions(disasm_sp.get(), debugger, arch, exe_ctx, 283 num_instructions, mixed_source_and_assembly, 284 num_mixed_context_lines, options, strm); 285 } 286 } 287 return false; 288 } 289 290 Disassembler::SourceLine 291 Disassembler::GetFunctionDeclLineEntry(const SymbolContext &sc) { 292 SourceLine decl_line; 293 if (sc.function && sc.line_entry.IsValid()) { 294 LineEntry prologue_end_line = sc.line_entry; 295 FileSpec func_decl_file; 296 uint32_t func_decl_line; 297 sc.function->GetStartLineSourceInfo(func_decl_file, func_decl_line); 298 if (func_decl_file == prologue_end_line.file || 299 func_decl_file == prologue_end_line.original_file) { 300 decl_line.file = func_decl_file; 301 decl_line.line = func_decl_line; 302 // TODO do we care about column on these entries? If so, we need to 303 // plumb that through GetStartLineSourceInfo. 304 decl_line.column = 0; 305 } 306 } 307 return decl_line; 308 } 309 310 void Disassembler::AddLineToSourceLineTables( 311 SourceLine &line, 312 std::map<FileSpec, std::set<uint32_t>> &source_lines_seen) { 313 if (line.IsValid()) { 314 auto source_lines_seen_pos = source_lines_seen.find(line.file); 315 if (source_lines_seen_pos == source_lines_seen.end()) { 316 std::set<uint32_t> lines; 317 lines.insert(line.line); 318 source_lines_seen.emplace(line.file, lines); 319 } else { 320 source_lines_seen_pos->second.insert(line.line); 321 } 322 } 323 } 324 325 bool Disassembler::ElideMixedSourceAndDisassemblyLine( 326 const ExecutionContext &exe_ctx, const SymbolContext &sc, 327 SourceLine &line) { 328 329 // TODO: should we also check target.process.thread.step-avoid-libraries ? 330 331 const RegularExpression *avoid_regex = nullptr; 332 333 // Skip any line #0 entries - they are implementation details 334 if (line.line == 0) 335 return false; 336 337 ThreadSP thread_sp = exe_ctx.GetThreadSP(); 338 if (thread_sp) { 339 avoid_regex = thread_sp->GetSymbolsToAvoidRegexp(); 340 } else { 341 TargetSP target_sp = exe_ctx.GetTargetSP(); 342 if (target_sp) { 343 Status error; 344 OptionValueSP value_sp = target_sp->GetDebugger().GetPropertyValue( 345 &exe_ctx, "target.process.thread.step-avoid-regexp", false, error); 346 if (value_sp && value_sp->GetType() == OptionValue::eTypeRegex) { 347 OptionValueRegex *re = value_sp->GetAsRegex(); 348 if (re) { 349 avoid_regex = re->GetCurrentValue(); 350 } 351 } 352 } 353 } 354 if (avoid_regex && sc.symbol != nullptr) { 355 const char *function_name = 356 sc.GetFunctionName(Mangled::ePreferDemangledWithoutArguments) 357 .GetCString(); 358 if (function_name) { 359 RegularExpression::Match regex_match(1); 360 if (avoid_regex->Execute(function_name, ®ex_match)) { 361 // skip this source line 362 return true; 363 } 364 } 365 } 366 // don't skip this source line 367 return false; 368 } 369 370 bool Disassembler::PrintInstructions(Disassembler *disasm_ptr, 371 Debugger &debugger, const ArchSpec &arch, 372 const ExecutionContext &exe_ctx, 373 uint32_t num_instructions, 374 bool mixed_source_and_assembly, 375 uint32_t num_mixed_context_lines, 376 uint32_t options, Stream &strm) { 377 // We got some things disassembled... 378 size_t num_instructions_found = disasm_ptr->GetInstructionList().GetSize(); 379 380 if (num_instructions > 0 && num_instructions < num_instructions_found) 381 num_instructions_found = num_instructions; 382 383 const uint32_t max_opcode_byte_size = 384 disasm_ptr->GetInstructionList().GetMaxOpcocdeByteSize(); 385 SymbolContext sc; 386 SymbolContext prev_sc; 387 AddressRange current_source_line_range; 388 const Address *pc_addr_ptr = nullptr; 389 StackFrame *frame = exe_ctx.GetFramePtr(); 390 391 TargetSP target_sp(exe_ctx.GetTargetSP()); 392 SourceManager &source_manager = 393 target_sp ? target_sp->GetSourceManager() : debugger.GetSourceManager(); 394 395 if (frame) { 396 pc_addr_ptr = &frame->GetFrameCodeAddress(); 397 } 398 const uint32_t scope = 399 eSymbolContextLineEntry | eSymbolContextFunction | eSymbolContextSymbol; 400 const bool use_inline_block_range = false; 401 402 const FormatEntity::Entry *disassembly_format = nullptr; 403 FormatEntity::Entry format; 404 if (exe_ctx.HasTargetScope()) { 405 disassembly_format = 406 exe_ctx.GetTargetRef().GetDebugger().GetDisassemblyFormat(); 407 } else { 408 FormatEntity::Parse("${addr}: ", format); 409 disassembly_format = &format; 410 } 411 412 // First pass: step through the list of instructions, find how long the 413 // initial addresses strings are, insert padding in the second pass so the 414 // opcodes all line up nicely. 415 416 // Also build up the source line mapping if this is mixed source & assembly 417 // mode. Calculate the source line for each assembly instruction (eliding 418 // inlined functions which the user wants to skip). 419 420 std::map<FileSpec, std::set<uint32_t>> source_lines_seen; 421 Symbol *previous_symbol = nullptr; 422 423 size_t address_text_size = 0; 424 for (size_t i = 0; i < num_instructions_found; ++i) { 425 Instruction *inst = 426 disasm_ptr->GetInstructionList().GetInstructionAtIndex(i).get(); 427 if (inst) { 428 const Address &addr = inst->GetAddress(); 429 ModuleSP module_sp(addr.GetModule()); 430 if (module_sp) { 431 const uint32_t resolve_mask = eSymbolContextFunction | 432 eSymbolContextSymbol | 433 eSymbolContextLineEntry; 434 uint32_t resolved_mask = 435 module_sp->ResolveSymbolContextForAddress(addr, resolve_mask, sc); 436 if (resolved_mask) { 437 StreamString strmstr; 438 Debugger::FormatDisassemblerAddress(disassembly_format, &sc, nullptr, 439 &exe_ctx, &addr, strmstr); 440 size_t cur_line = strmstr.GetSizeOfLastLine(); 441 if (cur_line > address_text_size) 442 address_text_size = cur_line; 443 444 // Add entries to our "source_lines_seen" map+set which list which 445 // sources lines occur in this disassembly session. We will print 446 // lines of context around a source line, but we don't want to print 447 // a source line that has a line table entry of its own - we'll leave 448 // that source line to be printed when it actually occurs in the 449 // disassembly. 450 451 if (mixed_source_and_assembly && sc.line_entry.IsValid()) { 452 if (sc.symbol != previous_symbol) { 453 SourceLine decl_line = GetFunctionDeclLineEntry(sc); 454 if (ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, decl_line) == 455 false) 456 AddLineToSourceLineTables(decl_line, source_lines_seen); 457 } 458 if (sc.line_entry.IsValid()) { 459 SourceLine this_line; 460 this_line.file = sc.line_entry.file; 461 this_line.line = sc.line_entry.line; 462 this_line.column = sc.line_entry.column; 463 if (ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, this_line) == 464 false) 465 AddLineToSourceLineTables(this_line, source_lines_seen); 466 } 467 } 468 } 469 sc.Clear(false); 470 } 471 } 472 } 473 474 previous_symbol = nullptr; 475 SourceLine previous_line; 476 for (size_t i = 0; i < num_instructions_found; ++i) { 477 Instruction *inst = 478 disasm_ptr->GetInstructionList().GetInstructionAtIndex(i).get(); 479 480 if (inst) { 481 const Address &addr = inst->GetAddress(); 482 const bool inst_is_at_pc = pc_addr_ptr && addr == *pc_addr_ptr; 483 SourceLinesToDisplay source_lines_to_display; 484 485 prev_sc = sc; 486 487 ModuleSP module_sp(addr.GetModule()); 488 if (module_sp) { 489 uint32_t resolved_mask = module_sp->ResolveSymbolContextForAddress( 490 addr, eSymbolContextEverything, sc); 491 if (resolved_mask) { 492 if (mixed_source_and_assembly) { 493 494 // If we've started a new function (non-inlined), print all of the 495 // source lines from the function declaration until the first line 496 // table entry - typically the opening curly brace of the function. 497 if (previous_symbol != sc.symbol) { 498 // The default disassembly format puts an extra blank line 499 // between functions - so when we're displaying the source 500 // context for a function, we don't want to add a blank line 501 // after the source context or we'll end up with two of them. 502 if (previous_symbol != nullptr) 503 source_lines_to_display.print_source_context_end_eol = false; 504 505 previous_symbol = sc.symbol; 506 if (sc.function && sc.line_entry.IsValid()) { 507 LineEntry prologue_end_line = sc.line_entry; 508 if (ElideMixedSourceAndDisassemblyLine( 509 exe_ctx, sc, prologue_end_line) == false) { 510 FileSpec func_decl_file; 511 uint32_t func_decl_line; 512 sc.function->GetStartLineSourceInfo(func_decl_file, 513 func_decl_line); 514 if (func_decl_file == prologue_end_line.file || 515 func_decl_file == prologue_end_line.original_file) { 516 // Add all the lines between the function declaration and 517 // the first non-prologue source line to the list of lines 518 // to print. 519 for (uint32_t lineno = func_decl_line; 520 lineno <= prologue_end_line.line; lineno++) { 521 SourceLine this_line; 522 this_line.file = func_decl_file; 523 this_line.line = lineno; 524 source_lines_to_display.lines.push_back(this_line); 525 } 526 // Mark the last line as the "current" one. Usually this 527 // is the open curly brace. 528 if (source_lines_to_display.lines.size() > 0) 529 source_lines_to_display.current_source_line = 530 source_lines_to_display.lines.size() - 1; 531 } 532 } 533 } 534 sc.GetAddressRange(scope, 0, use_inline_block_range, 535 current_source_line_range); 536 } 537 538 // If we've left a previous source line's address range, print a 539 // new source line 540 if (!current_source_line_range.ContainsFileAddress(addr)) { 541 sc.GetAddressRange(scope, 0, use_inline_block_range, 542 current_source_line_range); 543 544 if (sc != prev_sc && sc.comp_unit && sc.line_entry.IsValid()) { 545 SourceLine this_line; 546 this_line.file = sc.line_entry.file; 547 this_line.line = sc.line_entry.line; 548 549 if (ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, 550 this_line) == false) { 551 // Only print this source line if it is different from the 552 // last source line we printed. There may have been inlined 553 // functions between these lines that we elided, resulting in 554 // the same line being printed twice in a row for a 555 // contiguous block of assembly instructions. 556 if (this_line != previous_line) { 557 558 std::vector<uint32_t> previous_lines; 559 for (uint32_t i = 0; 560 i < num_mixed_context_lines && 561 (this_line.line - num_mixed_context_lines) > 0; 562 i++) { 563 uint32_t line = 564 this_line.line - num_mixed_context_lines + i; 565 auto pos = source_lines_seen.find(this_line.file); 566 if (pos != source_lines_seen.end()) { 567 if (pos->second.count(line) == 1) { 568 previous_lines.clear(); 569 } else { 570 previous_lines.push_back(line); 571 } 572 } 573 } 574 for (size_t i = 0; i < previous_lines.size(); i++) { 575 SourceLine previous_line; 576 previous_line.file = this_line.file; 577 previous_line.line = previous_lines[i]; 578 auto pos = source_lines_seen.find(previous_line.file); 579 if (pos != source_lines_seen.end()) { 580 pos->second.insert(previous_line.line); 581 } 582 source_lines_to_display.lines.push_back(previous_line); 583 } 584 585 source_lines_to_display.lines.push_back(this_line); 586 source_lines_to_display.current_source_line = 587 source_lines_to_display.lines.size() - 1; 588 589 for (uint32_t i = 0; i < num_mixed_context_lines; i++) { 590 SourceLine next_line; 591 next_line.file = this_line.file; 592 next_line.line = this_line.line + i + 1; 593 auto pos = source_lines_seen.find(next_line.file); 594 if (pos != source_lines_seen.end()) { 595 if (pos->second.count(next_line.line) == 1) 596 break; 597 pos->second.insert(next_line.line); 598 } 599 source_lines_to_display.lines.push_back(next_line); 600 } 601 } 602 previous_line = this_line; 603 } 604 } 605 } 606 } 607 } else { 608 sc.Clear(true); 609 } 610 } 611 612 if (source_lines_to_display.lines.size() > 0) { 613 strm.EOL(); 614 for (size_t idx = 0; idx < source_lines_to_display.lines.size(); 615 idx++) { 616 SourceLine ln = source_lines_to_display.lines[idx]; 617 const char *line_highlight = ""; 618 if (inst_is_at_pc && (options & eOptionMarkPCSourceLine)) { 619 line_highlight = "->"; 620 } else if (idx == source_lines_to_display.current_source_line) { 621 line_highlight = "**"; 622 } 623 source_manager.DisplaySourceLinesWithLineNumbers( 624 ln.file, ln.line, ln.column, 0, 0, line_highlight, &strm); 625 } 626 if (source_lines_to_display.print_source_context_end_eol) 627 strm.EOL(); 628 } 629 630 const bool show_bytes = (options & eOptionShowBytes) != 0; 631 inst->Dump(&strm, max_opcode_byte_size, true, show_bytes, &exe_ctx, &sc, 632 &prev_sc, nullptr, address_text_size); 633 strm.EOL(); 634 } else { 635 break; 636 } 637 } 638 639 return true; 640 } 641 642 bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 643 const char *plugin_name, const char *flavor, 644 const ExecutionContext &exe_ctx, 645 uint32_t num_instructions, 646 bool mixed_source_and_assembly, 647 uint32_t num_mixed_context_lines, 648 uint32_t options, Stream &strm) { 649 AddressRange range; 650 StackFrame *frame = exe_ctx.GetFramePtr(); 651 if (frame) { 652 SymbolContext sc( 653 frame->GetSymbolContext(eSymbolContextFunction | eSymbolContextSymbol)); 654 if (sc.function) { 655 range = sc.function->GetAddressRange(); 656 } else if (sc.symbol && sc.symbol->ValueIsAddress()) { 657 range.GetBaseAddress() = sc.symbol->GetAddressRef(); 658 range.SetByteSize(sc.symbol->GetByteSize()); 659 } else { 660 range.GetBaseAddress() = frame->GetFrameCodeAddress(); 661 } 662 663 if (range.GetBaseAddress().IsValid() && range.GetByteSize() == 0) 664 range.SetByteSize(DEFAULT_DISASM_BYTE_SIZE); 665 } 666 667 return Disassemble(debugger, arch, plugin_name, flavor, exe_ctx, range, 668 num_instructions, mixed_source_and_assembly, 669 num_mixed_context_lines, options, strm); 670 } 671 672 Instruction::Instruction(const Address &address, AddressClass addr_class) 673 : m_address(address), m_address_class(addr_class), m_opcode(), 674 m_calculated_strings(false) {} 675 676 Instruction::~Instruction() = default; 677 678 AddressClass Instruction::GetAddressClass() { 679 if (m_address_class == eAddressClassInvalid) 680 m_address_class = m_address.GetAddressClass(); 681 return m_address_class; 682 } 683 684 void Instruction::Dump(lldb_private::Stream *s, uint32_t max_opcode_byte_size, 685 bool show_address, bool show_bytes, 686 const ExecutionContext *exe_ctx, 687 const SymbolContext *sym_ctx, 688 const SymbolContext *prev_sym_ctx, 689 const FormatEntity::Entry *disassembly_addr_format, 690 size_t max_address_text_size) { 691 size_t opcode_column_width = 7; 692 const size_t operand_column_width = 25; 693 694 CalculateMnemonicOperandsAndCommentIfNeeded(exe_ctx); 695 696 StreamString ss; 697 698 if (show_address) { 699 Debugger::FormatDisassemblerAddress(disassembly_addr_format, sym_ctx, 700 prev_sym_ctx, exe_ctx, &m_address, ss); 701 ss.FillLastLineToColumn(max_address_text_size, ' '); 702 } 703 704 if (show_bytes) { 705 if (m_opcode.GetType() == Opcode::eTypeBytes) { 706 // x86_64 and i386 are the only ones that use bytes right now so pad out 707 // the byte dump to be able to always show 15 bytes (3 chars each) plus a 708 // space 709 if (max_opcode_byte_size > 0) 710 m_opcode.Dump(&ss, max_opcode_byte_size * 3 + 1); 711 else 712 m_opcode.Dump(&ss, 15 * 3 + 1); 713 } else { 714 // Else, we have ARM or MIPS which can show up to a uint32_t 0x00000000 715 // (10 spaces) plus two for padding... 716 if (max_opcode_byte_size > 0) 717 m_opcode.Dump(&ss, max_opcode_byte_size * 3 + 1); 718 else 719 m_opcode.Dump(&ss, 12); 720 } 721 } 722 723 const size_t opcode_pos = ss.GetSizeOfLastLine(); 724 725 // The default opcode size of 7 characters is plenty for most architectures 726 // but some like arm can pull out the occasional vqrshrun.s16. We won't get 727 // consistent column spacing in these cases, unfortunately. 728 if (m_opcode_name.length() >= opcode_column_width) { 729 opcode_column_width = m_opcode_name.length() + 1; 730 } 731 732 ss.PutCString(m_opcode_name); 733 ss.FillLastLineToColumn(opcode_pos + opcode_column_width, ' '); 734 ss.PutCString(m_mnemonics); 735 736 if (!m_comment.empty()) { 737 ss.FillLastLineToColumn( 738 opcode_pos + opcode_column_width + operand_column_width, ' '); 739 ss.PutCString(" ; "); 740 ss.PutCString(m_comment); 741 } 742 s->PutCString(ss.GetString()); 743 } 744 745 bool Instruction::DumpEmulation(const ArchSpec &arch) { 746 std::unique_ptr<EmulateInstruction> insn_emulator_ap( 747 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr)); 748 if (insn_emulator_ap) { 749 insn_emulator_ap->SetInstruction(GetOpcode(), GetAddress(), nullptr); 750 return insn_emulator_ap->EvaluateInstruction(0); 751 } 752 753 return false; 754 } 755 756 bool Instruction::CanSetBreakpoint () { 757 return !HasDelaySlot(); 758 } 759 760 bool Instruction::HasDelaySlot() { 761 // Default is false. 762 return false; 763 } 764 765 OptionValueSP Instruction::ReadArray(FILE *in_file, Stream *out_stream, 766 OptionValue::Type data_type) { 767 bool done = false; 768 char buffer[1024]; 769 770 auto option_value_sp = std::make_shared<OptionValueArray>(1u << data_type); 771 772 int idx = 0; 773 while (!done) { 774 if (!fgets(buffer, 1023, in_file)) { 775 out_stream->Printf( 776 "Instruction::ReadArray: Error reading file (fgets).\n"); 777 option_value_sp.reset(); 778 return option_value_sp; 779 } 780 781 std::string line(buffer); 782 783 size_t len = line.size(); 784 if (line[len - 1] == '\n') { 785 line[len - 1] = '\0'; 786 line.resize(len - 1); 787 } 788 789 if ((line.size() == 1) && line[0] == ']') { 790 done = true; 791 line.clear(); 792 } 793 794 if (!line.empty()) { 795 std::string value; 796 static RegularExpression g_reg_exp( 797 llvm::StringRef("^[ \t]*([^ \t]+)[ \t]*$")); 798 RegularExpression::Match regex_match(1); 799 bool reg_exp_success = g_reg_exp.Execute(line, ®ex_match); 800 if (reg_exp_success) 801 regex_match.GetMatchAtIndex(line.c_str(), 1, value); 802 else 803 value = line; 804 805 OptionValueSP data_value_sp; 806 switch (data_type) { 807 case OptionValue::eTypeUInt64: 808 data_value_sp = std::make_shared<OptionValueUInt64>(0, 0); 809 data_value_sp->SetValueFromString(value); 810 break; 811 // Other types can be added later as needed. 812 default: 813 data_value_sp = std::make_shared<OptionValueString>(value.c_str(), ""); 814 break; 815 } 816 817 option_value_sp->GetAsArray()->InsertValue(idx, data_value_sp); 818 ++idx; 819 } 820 } 821 822 return option_value_sp; 823 } 824 825 OptionValueSP Instruction::ReadDictionary(FILE *in_file, Stream *out_stream) { 826 bool done = false; 827 char buffer[1024]; 828 829 auto option_value_sp = std::make_shared<OptionValueDictionary>(); 830 static ConstString encoding_key("data_encoding"); 831 OptionValue::Type data_type = OptionValue::eTypeInvalid; 832 833 while (!done) { 834 // Read the next line in the file 835 if (!fgets(buffer, 1023, in_file)) { 836 out_stream->Printf( 837 "Instruction::ReadDictionary: Error reading file (fgets).\n"); 838 option_value_sp.reset(); 839 return option_value_sp; 840 } 841 842 // Check to see if the line contains the end-of-dictionary marker ("}") 843 std::string line(buffer); 844 845 size_t len = line.size(); 846 if (line[len - 1] == '\n') { 847 line[len - 1] = '\0'; 848 line.resize(len - 1); 849 } 850 851 if ((line.size() == 1) && (line[0] == '}')) { 852 done = true; 853 line.clear(); 854 } 855 856 // Try to find a key-value pair in the current line and add it to the 857 // dictionary. 858 if (!line.empty()) { 859 static RegularExpression g_reg_exp(llvm::StringRef( 860 "^[ \t]*([a-zA-Z_][a-zA-Z0-9_]*)[ \t]*=[ \t]*(.*)[ \t]*$")); 861 RegularExpression::Match regex_match(2); 862 863 bool reg_exp_success = g_reg_exp.Execute(line, ®ex_match); 864 std::string key; 865 std::string value; 866 if (reg_exp_success) { 867 regex_match.GetMatchAtIndex(line.c_str(), 1, key); 868 regex_match.GetMatchAtIndex(line.c_str(), 2, value); 869 } else { 870 out_stream->Printf("Instruction::ReadDictionary: Failure executing " 871 "regular expression.\n"); 872 option_value_sp.reset(); 873 return option_value_sp; 874 } 875 876 ConstString const_key(key.c_str()); 877 // Check value to see if it's the start of an array or dictionary. 878 879 lldb::OptionValueSP value_sp; 880 assert(value.empty() == false); 881 assert(key.empty() == false); 882 883 if (value[0] == '{') { 884 assert(value.size() == 1); 885 // value is a dictionary 886 value_sp = ReadDictionary(in_file, out_stream); 887 if (!value_sp) { 888 option_value_sp.reset(); 889 return option_value_sp; 890 } 891 } else if (value[0] == '[') { 892 assert(value.size() == 1); 893 // value is an array 894 value_sp = ReadArray(in_file, out_stream, data_type); 895 if (!value_sp) { 896 option_value_sp.reset(); 897 return option_value_sp; 898 } 899 // We've used the data_type to read an array; re-set the type to 900 // Invalid 901 data_type = OptionValue::eTypeInvalid; 902 } else if ((value[0] == '0') && (value[1] == 'x')) { 903 value_sp = std::make_shared<OptionValueUInt64>(0, 0); 904 value_sp->SetValueFromString(value); 905 } else { 906 size_t len = value.size(); 907 if ((value[0] == '"') && (value[len - 1] == '"')) 908 value = value.substr(1, len - 2); 909 value_sp = std::make_shared<OptionValueString>(value.c_str(), ""); 910 } 911 912 if (const_key == encoding_key) { 913 // A 'data_encoding=..." is NOT a normal key-value pair; it is meta-data 914 // indicating the 915 // data type of an upcoming array (usually the next bit of data to be 916 // read in). 917 if (strcmp(value.c_str(), "uint32_t") == 0) 918 data_type = OptionValue::eTypeUInt64; 919 } else 920 option_value_sp->GetAsDictionary()->SetValueForKey(const_key, value_sp, 921 false); 922 } 923 } 924 925 return option_value_sp; 926 } 927 928 bool Instruction::TestEmulation(Stream *out_stream, const char *file_name) { 929 if (!out_stream) 930 return false; 931 932 if (!file_name) { 933 out_stream->Printf("Instruction::TestEmulation: Missing file_name."); 934 return false; 935 } 936 FILE *test_file = FileSystem::Fopen(file_name, "r"); 937 if (!test_file) { 938 out_stream->Printf( 939 "Instruction::TestEmulation: Attempt to open test file failed."); 940 return false; 941 } 942 943 char buffer[256]; 944 if (!fgets(buffer, 255, test_file)) { 945 out_stream->Printf( 946 "Instruction::TestEmulation: Error reading first line of test file.\n"); 947 fclose(test_file); 948 return false; 949 } 950 951 if (strncmp(buffer, "InstructionEmulationState={", 27) != 0) { 952 out_stream->Printf("Instructin::TestEmulation: Test file does not contain " 953 "emulation state dictionary\n"); 954 fclose(test_file); 955 return false; 956 } 957 958 // Read all the test information from the test file into an 959 // OptionValueDictionary. 960 961 OptionValueSP data_dictionary_sp(ReadDictionary(test_file, out_stream)); 962 if (!data_dictionary_sp) { 963 out_stream->Printf( 964 "Instruction::TestEmulation: Error reading Dictionary Object.\n"); 965 fclose(test_file); 966 return false; 967 } 968 969 fclose(test_file); 970 971 OptionValueDictionary *data_dictionary = 972 data_dictionary_sp->GetAsDictionary(); 973 static ConstString description_key("assembly_string"); 974 static ConstString triple_key("triple"); 975 976 OptionValueSP value_sp = data_dictionary->GetValueForKey(description_key); 977 978 if (!value_sp) { 979 out_stream->Printf("Instruction::TestEmulation: Test file does not " 980 "contain description string.\n"); 981 return false; 982 } 983 984 SetDescription(value_sp->GetStringValue()); 985 986 value_sp = data_dictionary->GetValueForKey(triple_key); 987 if (!value_sp) { 988 out_stream->Printf( 989 "Instruction::TestEmulation: Test file does not contain triple.\n"); 990 return false; 991 } 992 993 ArchSpec arch; 994 arch.SetTriple(llvm::Triple(value_sp->GetStringValue())); 995 996 bool success = false; 997 std::unique_ptr<EmulateInstruction> insn_emulator_ap( 998 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr)); 999 if (insn_emulator_ap) 1000 success = 1001 insn_emulator_ap->TestEmulation(out_stream, arch, data_dictionary); 1002 1003 if (success) 1004 out_stream->Printf("Emulation test succeeded."); 1005 else 1006 out_stream->Printf("Emulation test failed."); 1007 1008 return success; 1009 } 1010 1011 bool Instruction::Emulate( 1012 const ArchSpec &arch, uint32_t evaluate_options, void *baton, 1013 EmulateInstruction::ReadMemoryCallback read_mem_callback, 1014 EmulateInstruction::WriteMemoryCallback write_mem_callback, 1015 EmulateInstruction::ReadRegisterCallback read_reg_callback, 1016 EmulateInstruction::WriteRegisterCallback write_reg_callback) { 1017 std::unique_ptr<EmulateInstruction> insn_emulator_ap( 1018 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr)); 1019 if (insn_emulator_ap) { 1020 insn_emulator_ap->SetBaton(baton); 1021 insn_emulator_ap->SetCallbacks(read_mem_callback, write_mem_callback, 1022 read_reg_callback, write_reg_callback); 1023 insn_emulator_ap->SetInstruction(GetOpcode(), GetAddress(), nullptr); 1024 return insn_emulator_ap->EvaluateInstruction(evaluate_options); 1025 } 1026 1027 return false; 1028 } 1029 1030 uint32_t Instruction::GetData(DataExtractor &data) { 1031 return m_opcode.GetData(data); 1032 } 1033 1034 InstructionList::InstructionList() : m_instructions() {} 1035 1036 InstructionList::~InstructionList() = default; 1037 1038 size_t InstructionList::GetSize() const { return m_instructions.size(); } 1039 1040 uint32_t InstructionList::GetMaxOpcocdeByteSize() const { 1041 uint32_t max_inst_size = 0; 1042 collection::const_iterator pos, end; 1043 for (pos = m_instructions.begin(), end = m_instructions.end(); pos != end; 1044 ++pos) { 1045 uint32_t inst_size = (*pos)->GetOpcode().GetByteSize(); 1046 if (max_inst_size < inst_size) 1047 max_inst_size = inst_size; 1048 } 1049 return max_inst_size; 1050 } 1051 1052 InstructionSP InstructionList::GetInstructionAtIndex(size_t idx) const { 1053 InstructionSP inst_sp; 1054 if (idx < m_instructions.size()) 1055 inst_sp = m_instructions[idx]; 1056 return inst_sp; 1057 } 1058 1059 void InstructionList::Dump(Stream *s, bool show_address, bool show_bytes, 1060 const ExecutionContext *exe_ctx) { 1061 const uint32_t max_opcode_byte_size = GetMaxOpcocdeByteSize(); 1062 collection::const_iterator pos, begin, end; 1063 1064 const FormatEntity::Entry *disassembly_format = nullptr; 1065 FormatEntity::Entry format; 1066 if (exe_ctx && exe_ctx->HasTargetScope()) { 1067 disassembly_format = 1068 exe_ctx->GetTargetRef().GetDebugger().GetDisassemblyFormat(); 1069 } else { 1070 FormatEntity::Parse("${addr}: ", format); 1071 disassembly_format = &format; 1072 } 1073 1074 for (begin = m_instructions.begin(), end = m_instructions.end(), pos = begin; 1075 pos != end; ++pos) { 1076 if (pos != begin) 1077 s->EOL(); 1078 (*pos)->Dump(s, max_opcode_byte_size, show_address, show_bytes, exe_ctx, 1079 nullptr, nullptr, disassembly_format, 0); 1080 } 1081 } 1082 1083 void InstructionList::Clear() { m_instructions.clear(); } 1084 1085 void InstructionList::Append(lldb::InstructionSP &inst_sp) { 1086 if (inst_sp) 1087 m_instructions.push_back(inst_sp); 1088 } 1089 1090 uint32_t 1091 InstructionList::GetIndexOfNextBranchInstruction(uint32_t start, 1092 Target &target) const { 1093 size_t num_instructions = m_instructions.size(); 1094 1095 uint32_t next_branch = UINT32_MAX; 1096 size_t i; 1097 for (i = start; i < num_instructions; i++) { 1098 if (m_instructions[i]->DoesBranch()) { 1099 next_branch = i; 1100 break; 1101 } 1102 } 1103 1104 // Hexagon needs the first instruction of the packet with the branch. Go 1105 // backwards until we find an instruction marked end-of-packet, or until we 1106 // hit start. 1107 if (target.GetArchitecture().GetTriple().getArch() == llvm::Triple::hexagon) { 1108 // If we didn't find a branch, find the last packet start. 1109 if (next_branch == UINT32_MAX) { 1110 i = num_instructions - 1; 1111 } 1112 1113 while (i > start) { 1114 --i; 1115 1116 Status error; 1117 uint32_t inst_bytes; 1118 bool prefer_file_cache = false; // Read from process if process is running 1119 lldb::addr_t load_addr = LLDB_INVALID_ADDRESS; 1120 target.ReadMemory(m_instructions[i]->GetAddress(), prefer_file_cache, 1121 &inst_bytes, sizeof(inst_bytes), error, &load_addr); 1122 // If we have an error reading memory, return start 1123 if (!error.Success()) 1124 return start; 1125 // check if this is the last instruction in a packet bits 15:14 will be 1126 // 11b or 00b for a duplex 1127 if (((inst_bytes & 0xC000) == 0xC000) || 1128 ((inst_bytes & 0xC000) == 0x0000)) { 1129 // instruction after this should be the start of next packet 1130 next_branch = i + 1; 1131 break; 1132 } 1133 } 1134 1135 if (next_branch == UINT32_MAX) { 1136 // We couldn't find the previous packet, so return start 1137 next_branch = start; 1138 } 1139 } 1140 return next_branch; 1141 } 1142 1143 uint32_t 1144 InstructionList::GetIndexOfInstructionAtAddress(const Address &address) { 1145 size_t num_instructions = m_instructions.size(); 1146 uint32_t index = UINT32_MAX; 1147 for (size_t i = 0; i < num_instructions; i++) { 1148 if (m_instructions[i]->GetAddress() == address) { 1149 index = i; 1150 break; 1151 } 1152 } 1153 return index; 1154 } 1155 1156 uint32_t 1157 InstructionList::GetIndexOfInstructionAtLoadAddress(lldb::addr_t load_addr, 1158 Target &target) { 1159 Address address; 1160 address.SetLoadAddress(load_addr, &target); 1161 return GetIndexOfInstructionAtAddress(address); 1162 } 1163 1164 size_t Disassembler::ParseInstructions(const ExecutionContext *exe_ctx, 1165 const AddressRange &range, 1166 Stream *error_strm_ptr, 1167 bool prefer_file_cache) { 1168 if (exe_ctx) { 1169 Target *target = exe_ctx->GetTargetPtr(); 1170 const addr_t byte_size = range.GetByteSize(); 1171 if (target == nullptr || byte_size == 0 || 1172 !range.GetBaseAddress().IsValid()) 1173 return 0; 1174 1175 auto data_sp = std::make_shared<DataBufferHeap>(byte_size, '\0'); 1176 1177 Status error; 1178 lldb::addr_t load_addr = LLDB_INVALID_ADDRESS; 1179 const size_t bytes_read = target->ReadMemory( 1180 range.GetBaseAddress(), prefer_file_cache, data_sp->GetBytes(), 1181 data_sp->GetByteSize(), error, &load_addr); 1182 1183 if (bytes_read > 0) { 1184 if (bytes_read != data_sp->GetByteSize()) 1185 data_sp->SetByteSize(bytes_read); 1186 DataExtractor data(data_sp, m_arch.GetByteOrder(), 1187 m_arch.GetAddressByteSize()); 1188 const bool data_from_file = load_addr == LLDB_INVALID_ADDRESS; 1189 return DecodeInstructions(range.GetBaseAddress(), data, 0, UINT32_MAX, 1190 false, data_from_file); 1191 } else if (error_strm_ptr) { 1192 const char *error_cstr = error.AsCString(); 1193 if (error_cstr) { 1194 error_strm_ptr->Printf("error: %s\n", error_cstr); 1195 } 1196 } 1197 } else if (error_strm_ptr) { 1198 error_strm_ptr->PutCString("error: invalid execution context\n"); 1199 } 1200 return 0; 1201 } 1202 1203 size_t Disassembler::ParseInstructions(const ExecutionContext *exe_ctx, 1204 const Address &start, 1205 uint32_t num_instructions, 1206 bool prefer_file_cache) { 1207 m_instruction_list.Clear(); 1208 1209 if (exe_ctx == nullptr || num_instructions == 0 || !start.IsValid()) 1210 return 0; 1211 1212 Target *target = exe_ctx->GetTargetPtr(); 1213 // Calculate the max buffer size we will need in order to disassemble 1214 const addr_t byte_size = num_instructions * m_arch.GetMaximumOpcodeByteSize(); 1215 1216 if (target == nullptr || byte_size == 0) 1217 return 0; 1218 1219 DataBufferHeap *heap_buffer = new DataBufferHeap(byte_size, '\0'); 1220 DataBufferSP data_sp(heap_buffer); 1221 1222 Status error; 1223 lldb::addr_t load_addr = LLDB_INVALID_ADDRESS; 1224 const size_t bytes_read = 1225 target->ReadMemory(start, prefer_file_cache, heap_buffer->GetBytes(), 1226 byte_size, error, &load_addr); 1227 1228 const bool data_from_file = load_addr == LLDB_INVALID_ADDRESS; 1229 1230 if (bytes_read == 0) 1231 return 0; 1232 DataExtractor data(data_sp, m_arch.GetByteOrder(), 1233 m_arch.GetAddressByteSize()); 1234 1235 const bool append_instructions = true; 1236 DecodeInstructions(start, data, 0, num_instructions, append_instructions, 1237 data_from_file); 1238 1239 return m_instruction_list.GetSize(); 1240 } 1241 1242 //---------------------------------------------------------------------- 1243 // Disassembler copy constructor 1244 //---------------------------------------------------------------------- 1245 Disassembler::Disassembler(const ArchSpec &arch, const char *flavor) 1246 : m_arch(arch), m_instruction_list(), m_base_addr(LLDB_INVALID_ADDRESS), 1247 m_flavor() { 1248 if (flavor == nullptr) 1249 m_flavor.assign("default"); 1250 else 1251 m_flavor.assign(flavor); 1252 1253 // If this is an arm variant that can only include thumb (T16, T32) 1254 // instructions, force the arch triple to be "thumbv.." instead of "armv..." 1255 if (arch.IsAlwaysThumbInstructions()) { 1256 std::string thumb_arch_name(arch.GetTriple().getArchName().str()); 1257 // Replace "arm" with "thumb" so we get all thumb variants correct 1258 if (thumb_arch_name.size() > 3) { 1259 thumb_arch_name.erase(0, 3); 1260 thumb_arch_name.insert(0, "thumb"); 1261 } 1262 m_arch.SetTriple(thumb_arch_name.c_str()); 1263 } 1264 } 1265 1266 Disassembler::~Disassembler() = default; 1267 1268 InstructionList &Disassembler::GetInstructionList() { 1269 return m_instruction_list; 1270 } 1271 1272 const InstructionList &Disassembler::GetInstructionList() const { 1273 return m_instruction_list; 1274 } 1275 1276 //---------------------------------------------------------------------- 1277 // Class PseudoInstruction 1278 //---------------------------------------------------------------------- 1279 1280 PseudoInstruction::PseudoInstruction() 1281 : Instruction(Address(), eAddressClassUnknown), m_description() {} 1282 1283 PseudoInstruction::~PseudoInstruction() = default; 1284 1285 bool PseudoInstruction::DoesBranch() { 1286 // This is NOT a valid question for a pseudo instruction. 1287 return false; 1288 } 1289 1290 bool PseudoInstruction::HasDelaySlot() { 1291 // This is NOT a valid question for a pseudo instruction. 1292 return false; 1293 } 1294 1295 size_t PseudoInstruction::Decode(const lldb_private::Disassembler &disassembler, 1296 const lldb_private::DataExtractor &data, 1297 lldb::offset_t data_offset) { 1298 return m_opcode.GetByteSize(); 1299 } 1300 1301 void PseudoInstruction::SetOpcode(size_t opcode_size, void *opcode_data) { 1302 if (!opcode_data) 1303 return; 1304 1305 switch (opcode_size) { 1306 case 8: { 1307 uint8_t value8 = *((uint8_t *)opcode_data); 1308 m_opcode.SetOpcode8(value8, eByteOrderInvalid); 1309 break; 1310 } 1311 case 16: { 1312 uint16_t value16 = *((uint16_t *)opcode_data); 1313 m_opcode.SetOpcode16(value16, eByteOrderInvalid); 1314 break; 1315 } 1316 case 32: { 1317 uint32_t value32 = *((uint32_t *)opcode_data); 1318 m_opcode.SetOpcode32(value32, eByteOrderInvalid); 1319 break; 1320 } 1321 case 64: { 1322 uint64_t value64 = *((uint64_t *)opcode_data); 1323 m_opcode.SetOpcode64(value64, eByteOrderInvalid); 1324 break; 1325 } 1326 default: 1327 break; 1328 } 1329 } 1330 1331 void PseudoInstruction::SetDescription(llvm::StringRef description) { 1332 m_description = description; 1333 } 1334 1335 Instruction::Operand Instruction::Operand::BuildRegister(ConstString &r) { 1336 Operand ret; 1337 ret.m_type = Type::Register; 1338 ret.m_register = r; 1339 return ret; 1340 } 1341 1342 Instruction::Operand Instruction::Operand::BuildImmediate(lldb::addr_t imm, 1343 bool neg) { 1344 Operand ret; 1345 ret.m_type = Type::Immediate; 1346 ret.m_immediate = imm; 1347 ret.m_negative = neg; 1348 return ret; 1349 } 1350 1351 Instruction::Operand Instruction::Operand::BuildImmediate(int64_t imm) { 1352 Operand ret; 1353 ret.m_type = Type::Immediate; 1354 if (imm < 0) { 1355 ret.m_immediate = -imm; 1356 ret.m_negative = true; 1357 } else { 1358 ret.m_immediate = imm; 1359 ret.m_negative = false; 1360 } 1361 return ret; 1362 } 1363 1364 Instruction::Operand 1365 Instruction::Operand::BuildDereference(const Operand &ref) { 1366 Operand ret; 1367 ret.m_type = Type::Dereference; 1368 ret.m_children = {ref}; 1369 return ret; 1370 } 1371 1372 Instruction::Operand Instruction::Operand::BuildSum(const Operand &lhs, 1373 const Operand &rhs) { 1374 Operand ret; 1375 ret.m_type = Type::Sum; 1376 ret.m_children = {lhs, rhs}; 1377 return ret; 1378 } 1379 1380 Instruction::Operand Instruction::Operand::BuildProduct(const Operand &lhs, 1381 const Operand &rhs) { 1382 Operand ret; 1383 ret.m_type = Type::Product; 1384 ret.m_children = {lhs, rhs}; 1385 return ret; 1386 } 1387 1388 std::function<bool(const Instruction::Operand &)> 1389 lldb_private::OperandMatchers::MatchBinaryOp( 1390 std::function<bool(const Instruction::Operand &)> base, 1391 std::function<bool(const Instruction::Operand &)> left, 1392 std::function<bool(const Instruction::Operand &)> right) { 1393 return [base, left, right](const Instruction::Operand &op) -> bool { 1394 return (base(op) && op.m_children.size() == 2 && 1395 ((left(op.m_children[0]) && right(op.m_children[1])) || 1396 (left(op.m_children[1]) && right(op.m_children[0])))); 1397 }; 1398 } 1399 1400 std::function<bool(const Instruction::Operand &)> 1401 lldb_private::OperandMatchers::MatchUnaryOp( 1402 std::function<bool(const Instruction::Operand &)> base, 1403 std::function<bool(const Instruction::Operand &)> child) { 1404 return [base, child](const Instruction::Operand &op) -> bool { 1405 return (base(op) && op.m_children.size() == 1 && child(op.m_children[0])); 1406 }; 1407 } 1408 1409 std::function<bool(const Instruction::Operand &)> 1410 lldb_private::OperandMatchers::MatchRegOp(const RegisterInfo &info) { 1411 return [&info](const Instruction::Operand &op) { 1412 return (op.m_type == Instruction::Operand::Type::Register && 1413 (op.m_register == ConstString(info.name) || 1414 op.m_register == ConstString(info.alt_name))); 1415 }; 1416 } 1417 1418 std::function<bool(const Instruction::Operand &)> 1419 lldb_private::OperandMatchers::FetchRegOp(ConstString ®) { 1420 return [®](const Instruction::Operand &op) { 1421 if (op.m_type != Instruction::Operand::Type::Register) { 1422 return false; 1423 } 1424 reg = op.m_register; 1425 return true; 1426 }; 1427 } 1428 1429 std::function<bool(const Instruction::Operand &)> 1430 lldb_private::OperandMatchers::MatchImmOp(int64_t imm) { 1431 return [imm](const Instruction::Operand &op) { 1432 return (op.m_type == Instruction::Operand::Type::Immediate && 1433 ((op.m_negative && op.m_immediate == (uint64_t)-imm) || 1434 (!op.m_negative && op.m_immediate == (uint64_t)imm))); 1435 }; 1436 } 1437 1438 std::function<bool(const Instruction::Operand &)> 1439 lldb_private::OperandMatchers::FetchImmOp(int64_t &imm) { 1440 return [&imm](const Instruction::Operand &op) { 1441 if (op.m_type != Instruction::Operand::Type::Immediate) { 1442 return false; 1443 } 1444 if (op.m_negative) { 1445 imm = -((int64_t)op.m_immediate); 1446 } else { 1447 imm = ((int64_t)op.m_immediate); 1448 } 1449 return true; 1450 }; 1451 } 1452 1453 std::function<bool(const Instruction::Operand &)> 1454 lldb_private::OperandMatchers::MatchOpType(Instruction::Operand::Type type) { 1455 return [type](const Instruction::Operand &op) { return op.m_type == type; }; 1456 } 1457