1 //===-- Disassembler.cpp ----------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/Core/Disassembler.h" 11 12 #include "lldb/Core/AddressRange.h" // for AddressRange 13 #include "lldb/Core/Debugger.h" 14 #include "lldb/Core/EmulateInstruction.h" 15 #include "lldb/Core/Mangled.h" // for Mangled, Mangled... 16 #include "lldb/Core/Module.h" 17 #include "lldb/Core/ModuleList.h" // for ModuleList 18 #include "lldb/Core/PluginManager.h" 19 #include "lldb/Core/SourceManager.h" // for SourceManager 20 #include "lldb/Core/Timer.h" 21 #include "lldb/Host/FileSystem.h" 22 #include "lldb/Interpreter/OptionValue.h" 23 #include "lldb/Interpreter/OptionValueArray.h" 24 #include "lldb/Interpreter/OptionValueDictionary.h" 25 #include "lldb/Interpreter/OptionValueRegex.h" 26 #include "lldb/Interpreter/OptionValueString.h" 27 #include "lldb/Interpreter/OptionValueUInt64.h" 28 #include "lldb/Symbol/Function.h" 29 #include "lldb/Symbol/Symbol.h" // for Symbol 30 #include "lldb/Symbol/SymbolContext.h" // for SymbolContext 31 #include "lldb/Target/ExecutionContext.h" 32 #include "lldb/Target/SectionLoadList.h" 33 #include "lldb/Target/StackFrame.h" 34 #include "lldb/Target/Target.h" 35 #include "lldb/Target/Thread.h" // for Thread 36 #include "lldb/Utility/DataBufferHeap.h" 37 #include "lldb/Utility/DataExtractor.h" 38 #include "lldb/Utility/Error.h" 39 #include "lldb/Utility/RegularExpression.h" 40 #include "lldb/Utility/Stream.h" // for Stream 41 #include "lldb/Utility/StreamString.h" // for StreamString 42 #include "lldb/lldb-private-enumerations.h" // for InstructionType:... 43 #include "lldb/lldb-private-interfaces.h" // for DisassemblerCrea... 44 #include "lldb/lldb-private-types.h" // for RegisterInfo 45 #include "llvm/ADT/Triple.h" // for Triple, Triple::... 46 #include "llvm/Support/Compiler.h" // for LLVM_PRETTY_FUNC... 47 48 #include <cstdint> // for uint32_t, UINT32... 49 #include <cstring> 50 #include <utility> // for pair 51 52 #include <assert.h> // for assert 53 54 #define DEFAULT_DISASM_BYTE_SIZE 32 55 56 using namespace lldb; 57 using namespace lldb_private; 58 59 DisassemblerSP Disassembler::FindPlugin(const ArchSpec &arch, 60 const char *flavor, 61 const char *plugin_name) { 62 Timer scoped_timer(LLVM_PRETTY_FUNCTION, 63 "Disassembler::FindPlugin (arch = %s, plugin_name = %s)", 64 arch.GetArchitectureName(), plugin_name); 65 66 DisassemblerCreateInstance create_callback = nullptr; 67 68 if (plugin_name) { 69 ConstString const_plugin_name(plugin_name); 70 create_callback = PluginManager::GetDisassemblerCreateCallbackForPluginName( 71 const_plugin_name); 72 if (create_callback) { 73 DisassemblerSP disassembler_sp(create_callback(arch, flavor)); 74 75 if (disassembler_sp) 76 return disassembler_sp; 77 } 78 } else { 79 for (uint32_t idx = 0; 80 (create_callback = PluginManager::GetDisassemblerCreateCallbackAtIndex( 81 idx)) != nullptr; 82 ++idx) { 83 DisassemblerSP disassembler_sp(create_callback(arch, flavor)); 84 85 if (disassembler_sp) 86 return disassembler_sp; 87 } 88 } 89 return DisassemblerSP(); 90 } 91 92 DisassemblerSP Disassembler::FindPluginForTarget(const TargetSP target_sp, 93 const ArchSpec &arch, 94 const char *flavor, 95 const char *plugin_name) { 96 if (target_sp && flavor == nullptr) { 97 // FIXME - we don't have the mechanism in place to do per-architecture 98 // settings. But since we know that for now 99 // we only support flavors on x86 & x86_64, 100 if (arch.GetTriple().getArch() == llvm::Triple::x86 || 101 arch.GetTriple().getArch() == llvm::Triple::x86_64) 102 flavor = target_sp->GetDisassemblyFlavor(); 103 } 104 return FindPlugin(arch, flavor, plugin_name); 105 } 106 107 static void ResolveAddress(const ExecutionContext &exe_ctx, const Address &addr, 108 Address &resolved_addr) { 109 if (!addr.IsSectionOffset()) { 110 // If we weren't passed in a section offset address range, 111 // try and resolve it to something 112 Target *target = exe_ctx.GetTargetPtr(); 113 if (target) { 114 if (target->GetSectionLoadList().IsEmpty()) { 115 target->GetImages().ResolveFileAddress(addr.GetOffset(), resolved_addr); 116 } else { 117 target->GetSectionLoadList().ResolveLoadAddress(addr.GetOffset(), 118 resolved_addr); 119 } 120 // We weren't able to resolve the address, just treat it as a 121 // raw address 122 if (resolved_addr.IsValid()) 123 return; 124 } 125 } 126 resolved_addr = addr; 127 } 128 129 size_t Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 130 const char *plugin_name, const char *flavor, 131 const ExecutionContext &exe_ctx, 132 SymbolContextList &sc_list, 133 uint32_t num_instructions, 134 bool mixed_source_and_assembly, 135 uint32_t num_mixed_context_lines, 136 uint32_t options, Stream &strm) { 137 size_t success_count = 0; 138 const size_t count = sc_list.GetSize(); 139 SymbolContext sc; 140 AddressRange range; 141 const uint32_t scope = 142 eSymbolContextBlock | eSymbolContextFunction | eSymbolContextSymbol; 143 const bool use_inline_block_range = true; 144 for (size_t i = 0; i < count; ++i) { 145 if (!sc_list.GetContextAtIndex(i, sc)) 146 break; 147 for (uint32_t range_idx = 0; 148 sc.GetAddressRange(scope, range_idx, use_inline_block_range, range); 149 ++range_idx) { 150 if (Disassemble(debugger, arch, plugin_name, flavor, exe_ctx, range, 151 num_instructions, mixed_source_and_assembly, 152 num_mixed_context_lines, options, strm)) { 153 ++success_count; 154 strm.EOL(); 155 } 156 } 157 } 158 return success_count; 159 } 160 161 bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 162 const char *plugin_name, const char *flavor, 163 const ExecutionContext &exe_ctx, 164 const ConstString &name, Module *module, 165 uint32_t num_instructions, 166 bool mixed_source_and_assembly, 167 uint32_t num_mixed_context_lines, 168 uint32_t options, Stream &strm) { 169 SymbolContextList sc_list; 170 if (name) { 171 const bool include_symbols = true; 172 const bool include_inlines = true; 173 if (module) { 174 module->FindFunctions(name, nullptr, eFunctionNameTypeAuto, 175 include_symbols, include_inlines, true, sc_list); 176 } else if (exe_ctx.GetTargetPtr()) { 177 exe_ctx.GetTargetPtr()->GetImages().FindFunctions( 178 name, eFunctionNameTypeAuto, include_symbols, include_inlines, false, 179 sc_list); 180 } 181 } 182 183 if (sc_list.GetSize()) { 184 return Disassemble(debugger, arch, plugin_name, flavor, exe_ctx, sc_list, 185 num_instructions, mixed_source_and_assembly, 186 num_mixed_context_lines, options, strm); 187 } 188 return false; 189 } 190 191 lldb::DisassemblerSP Disassembler::DisassembleRange( 192 const ArchSpec &arch, const char *plugin_name, const char *flavor, 193 const ExecutionContext &exe_ctx, const AddressRange &range, 194 bool prefer_file_cache) { 195 lldb::DisassemblerSP disasm_sp; 196 if (range.GetByteSize() > 0 && range.GetBaseAddress().IsValid()) { 197 disasm_sp = Disassembler::FindPluginForTarget(exe_ctx.GetTargetSP(), arch, 198 flavor, plugin_name); 199 200 if (disasm_sp) { 201 size_t bytes_disassembled = disasm_sp->ParseInstructions( 202 &exe_ctx, range, nullptr, prefer_file_cache); 203 if (bytes_disassembled == 0) 204 disasm_sp.reset(); 205 } 206 } 207 return disasm_sp; 208 } 209 210 lldb::DisassemblerSP 211 Disassembler::DisassembleBytes(const ArchSpec &arch, const char *plugin_name, 212 const char *flavor, const Address &start, 213 const void *src, size_t src_len, 214 uint32_t num_instructions, bool data_from_file) { 215 lldb::DisassemblerSP disasm_sp; 216 217 if (src) { 218 disasm_sp = Disassembler::FindPlugin(arch, flavor, plugin_name); 219 220 if (disasm_sp) { 221 DataExtractor data(src, src_len, arch.GetByteOrder(), 222 arch.GetAddressByteSize()); 223 224 (void)disasm_sp->DecodeInstructions(start, data, 0, num_instructions, 225 false, data_from_file); 226 } 227 } 228 229 return disasm_sp; 230 } 231 232 bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 233 const char *plugin_name, const char *flavor, 234 const ExecutionContext &exe_ctx, 235 const AddressRange &disasm_range, 236 uint32_t num_instructions, 237 bool mixed_source_and_assembly, 238 uint32_t num_mixed_context_lines, 239 uint32_t options, Stream &strm) { 240 if (disasm_range.GetByteSize()) { 241 lldb::DisassemblerSP disasm_sp(Disassembler::FindPluginForTarget( 242 exe_ctx.GetTargetSP(), arch, flavor, plugin_name)); 243 244 if (disasm_sp) { 245 AddressRange range; 246 ResolveAddress(exe_ctx, disasm_range.GetBaseAddress(), 247 range.GetBaseAddress()); 248 range.SetByteSize(disasm_range.GetByteSize()); 249 const bool prefer_file_cache = false; 250 size_t bytes_disassembled = disasm_sp->ParseInstructions( 251 &exe_ctx, range, &strm, prefer_file_cache); 252 if (bytes_disassembled == 0) 253 return false; 254 255 return PrintInstructions(disasm_sp.get(), debugger, arch, exe_ctx, 256 num_instructions, mixed_source_and_assembly, 257 num_mixed_context_lines, options, strm); 258 } 259 } 260 return false; 261 } 262 263 bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 264 const char *plugin_name, const char *flavor, 265 const ExecutionContext &exe_ctx, 266 const Address &start_address, 267 uint32_t num_instructions, 268 bool mixed_source_and_assembly, 269 uint32_t num_mixed_context_lines, 270 uint32_t options, Stream &strm) { 271 if (num_instructions > 0) { 272 lldb::DisassemblerSP disasm_sp(Disassembler::FindPluginForTarget( 273 exe_ctx.GetTargetSP(), arch, flavor, plugin_name)); 274 if (disasm_sp) { 275 Address addr; 276 ResolveAddress(exe_ctx, start_address, addr); 277 const bool prefer_file_cache = false; 278 size_t bytes_disassembled = disasm_sp->ParseInstructions( 279 &exe_ctx, addr, num_instructions, prefer_file_cache); 280 if (bytes_disassembled == 0) 281 return false; 282 return PrintInstructions(disasm_sp.get(), debugger, arch, exe_ctx, 283 num_instructions, mixed_source_and_assembly, 284 num_mixed_context_lines, options, strm); 285 } 286 } 287 return false; 288 } 289 290 Disassembler::SourceLine 291 Disassembler::GetFunctionDeclLineEntry(const SymbolContext &sc) { 292 SourceLine decl_line; 293 if (sc.function && sc.line_entry.IsValid()) { 294 LineEntry prologue_end_line = sc.line_entry; 295 FileSpec func_decl_file; 296 uint32_t func_decl_line; 297 sc.function->GetStartLineSourceInfo(func_decl_file, func_decl_line); 298 if (func_decl_file == prologue_end_line.file || 299 func_decl_file == prologue_end_line.original_file) { 300 decl_line.file = func_decl_file; 301 decl_line.line = func_decl_line; 302 // TODO do we care about column on these entries? If so, we need to 303 // plumb that through GetStartLineSourceInfo. 304 decl_line.column = 0; 305 } 306 } 307 return decl_line; 308 } 309 310 void Disassembler::AddLineToSourceLineTables( 311 SourceLine &line, 312 std::map<FileSpec, std::set<uint32_t>> &source_lines_seen) { 313 if (line.IsValid()) { 314 auto source_lines_seen_pos = source_lines_seen.find(line.file); 315 if (source_lines_seen_pos == source_lines_seen.end()) { 316 std::set<uint32_t> lines; 317 lines.insert(line.line); 318 source_lines_seen.emplace(line.file, lines); 319 } else { 320 source_lines_seen_pos->second.insert(line.line); 321 } 322 } 323 } 324 325 bool Disassembler::ElideMixedSourceAndDisassemblyLine( 326 const ExecutionContext &exe_ctx, const SymbolContext &sc, 327 SourceLine &line) { 328 329 // TODO: should we also check target.process.thread.step-avoid-libraries ? 330 331 const RegularExpression *avoid_regex = nullptr; 332 333 // Skip any line #0 entries - they are implementation details 334 if (line.line == 0) 335 return false; 336 337 ThreadSP thread_sp = exe_ctx.GetThreadSP(); 338 if (thread_sp) { 339 avoid_regex = thread_sp->GetSymbolsToAvoidRegexp(); 340 } else { 341 TargetSP target_sp = exe_ctx.GetTargetSP(); 342 if (target_sp) { 343 Error error; 344 OptionValueSP value_sp = target_sp->GetDebugger().GetPropertyValue( 345 &exe_ctx, "target.process.thread.step-avoid-regexp", false, error); 346 if (value_sp && value_sp->GetType() == OptionValue::eTypeRegex) { 347 OptionValueRegex *re = value_sp->GetAsRegex(); 348 if (re) { 349 avoid_regex = re->GetCurrentValue(); 350 } 351 } 352 } 353 } 354 if (avoid_regex && sc.symbol != nullptr) { 355 const char *function_name = 356 sc.GetFunctionName(Mangled::ePreferDemangledWithoutArguments) 357 .GetCString(); 358 if (function_name) { 359 RegularExpression::Match regex_match(1); 360 if (avoid_regex->Execute(function_name, ®ex_match)) { 361 // skip this source line 362 return true; 363 } 364 } 365 } 366 // don't skip this source line 367 return false; 368 } 369 370 bool Disassembler::PrintInstructions(Disassembler *disasm_ptr, 371 Debugger &debugger, const ArchSpec &arch, 372 const ExecutionContext &exe_ctx, 373 uint32_t num_instructions, 374 bool mixed_source_and_assembly, 375 uint32_t num_mixed_context_lines, 376 uint32_t options, Stream &strm) { 377 // We got some things disassembled... 378 size_t num_instructions_found = disasm_ptr->GetInstructionList().GetSize(); 379 380 if (num_instructions > 0 && num_instructions < num_instructions_found) 381 num_instructions_found = num_instructions; 382 383 const uint32_t max_opcode_byte_size = 384 disasm_ptr->GetInstructionList().GetMaxOpcocdeByteSize(); 385 SymbolContext sc; 386 SymbolContext prev_sc; 387 AddressRange current_source_line_range; 388 const Address *pc_addr_ptr = nullptr; 389 StackFrame *frame = exe_ctx.GetFramePtr(); 390 391 TargetSP target_sp(exe_ctx.GetTargetSP()); 392 SourceManager &source_manager = 393 target_sp ? target_sp->GetSourceManager() : debugger.GetSourceManager(); 394 395 if (frame) { 396 pc_addr_ptr = &frame->GetFrameCodeAddress(); 397 } 398 const uint32_t scope = 399 eSymbolContextLineEntry | eSymbolContextFunction | eSymbolContextSymbol; 400 const bool use_inline_block_range = false; 401 402 const FormatEntity::Entry *disassembly_format = nullptr; 403 FormatEntity::Entry format; 404 if (exe_ctx.HasTargetScope()) { 405 disassembly_format = 406 exe_ctx.GetTargetRef().GetDebugger().GetDisassemblyFormat(); 407 } else { 408 FormatEntity::Parse("${addr}: ", format); 409 disassembly_format = &format; 410 } 411 412 // First pass: step through the list of instructions, 413 // find how long the initial addresses strings are, insert padding 414 // in the second pass so the opcodes all line up nicely. 415 416 // Also build up the source line mapping if this is mixed source & assembly 417 // mode. 418 // Calculate the source line for each assembly instruction (eliding inlined 419 // functions 420 // which the user wants to skip). 421 422 std::map<FileSpec, std::set<uint32_t>> source_lines_seen; 423 Symbol *previous_symbol = nullptr; 424 425 size_t address_text_size = 0; 426 for (size_t i = 0; i < num_instructions_found; ++i) { 427 Instruction *inst = 428 disasm_ptr->GetInstructionList().GetInstructionAtIndex(i).get(); 429 if (inst) { 430 const Address &addr = inst->GetAddress(); 431 ModuleSP module_sp(addr.GetModule()); 432 if (module_sp) { 433 const uint32_t resolve_mask = eSymbolContextFunction | 434 eSymbolContextSymbol | 435 eSymbolContextLineEntry; 436 uint32_t resolved_mask = 437 module_sp->ResolveSymbolContextForAddress(addr, resolve_mask, sc); 438 if (resolved_mask) { 439 StreamString strmstr; 440 Debugger::FormatDisassemblerAddress(disassembly_format, &sc, nullptr, 441 &exe_ctx, &addr, strmstr); 442 size_t cur_line = strmstr.GetSizeOfLastLine(); 443 if (cur_line > address_text_size) 444 address_text_size = cur_line; 445 446 // Add entries to our "source_lines_seen" map+set which list which 447 // sources lines occur in this disassembly session. We will print 448 // lines of context around a source line, but we don't want to print 449 // a source line that has a line table entry of its own - we'll leave 450 // that source line to be printed when it actually occurs in the 451 // disassembly. 452 453 if (mixed_source_and_assembly && sc.line_entry.IsValid()) { 454 if (sc.symbol != previous_symbol) { 455 SourceLine decl_line = GetFunctionDeclLineEntry(sc); 456 if (ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, decl_line) == 457 false) 458 AddLineToSourceLineTables(decl_line, source_lines_seen); 459 } 460 if (sc.line_entry.IsValid()) { 461 SourceLine this_line; 462 this_line.file = sc.line_entry.file; 463 this_line.line = sc.line_entry.line; 464 this_line.column = sc.line_entry.column; 465 if (ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, this_line) == 466 false) 467 AddLineToSourceLineTables(this_line, source_lines_seen); 468 } 469 } 470 } 471 sc.Clear(false); 472 } 473 } 474 } 475 476 previous_symbol = nullptr; 477 SourceLine previous_line; 478 for (size_t i = 0; i < num_instructions_found; ++i) { 479 Instruction *inst = 480 disasm_ptr->GetInstructionList().GetInstructionAtIndex(i).get(); 481 482 if (inst) { 483 const Address &addr = inst->GetAddress(); 484 const bool inst_is_at_pc = pc_addr_ptr && addr == *pc_addr_ptr; 485 SourceLinesToDisplay source_lines_to_display; 486 487 prev_sc = sc; 488 489 ModuleSP module_sp(addr.GetModule()); 490 if (module_sp) { 491 uint32_t resolved_mask = module_sp->ResolveSymbolContextForAddress( 492 addr, eSymbolContextEverything, sc); 493 if (resolved_mask) { 494 if (mixed_source_and_assembly) { 495 496 // If we've started a new function (non-inlined), print all of the 497 // source lines from the 498 // function declaration until the first line table entry - typically 499 // the opening curly brace of 500 // the function. 501 if (previous_symbol != sc.symbol) { 502 // The default disassembly format puts an extra blank line between 503 // functions - so 504 // when we're displaying the source context for a function, we 505 // don't want to add 506 // a blank line after the source context or we'll end up with two 507 // of them. 508 if (previous_symbol != nullptr) 509 source_lines_to_display.print_source_context_end_eol = false; 510 511 previous_symbol = sc.symbol; 512 if (sc.function && sc.line_entry.IsValid()) { 513 LineEntry prologue_end_line = sc.line_entry; 514 if (ElideMixedSourceAndDisassemblyLine( 515 exe_ctx, sc, prologue_end_line) == false) { 516 FileSpec func_decl_file; 517 uint32_t func_decl_line; 518 sc.function->GetStartLineSourceInfo(func_decl_file, 519 func_decl_line); 520 if (func_decl_file == prologue_end_line.file || 521 func_decl_file == prologue_end_line.original_file) { 522 // Add all the lines between the function declaration 523 // and the first non-prologue source line to the list 524 // of lines to print. 525 for (uint32_t lineno = func_decl_line; 526 lineno <= prologue_end_line.line; lineno++) { 527 SourceLine this_line; 528 this_line.file = func_decl_file; 529 this_line.line = lineno; 530 source_lines_to_display.lines.push_back(this_line); 531 } 532 // Mark the last line as the "current" one. Usually 533 // this is the open curly brace. 534 if (source_lines_to_display.lines.size() > 0) 535 source_lines_to_display.current_source_line = 536 source_lines_to_display.lines.size() - 1; 537 } 538 } 539 } 540 sc.GetAddressRange(scope, 0, use_inline_block_range, 541 current_source_line_range); 542 } 543 544 // If we've left a previous source line's address range, print a new 545 // source line 546 if (!current_source_line_range.ContainsFileAddress(addr)) { 547 sc.GetAddressRange(scope, 0, use_inline_block_range, 548 current_source_line_range); 549 550 if (sc != prev_sc && sc.comp_unit && sc.line_entry.IsValid()) { 551 SourceLine this_line; 552 this_line.file = sc.line_entry.file; 553 this_line.line = sc.line_entry.line; 554 555 if (ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, 556 this_line) == false) { 557 // Only print this source line if it is different from the 558 // last source line we printed. There may have been inlined 559 // functions between these lines that we elided, resulting in 560 // the same line being printed twice in a row for a contiguous 561 // block of assembly instructions. 562 if (this_line != previous_line) { 563 564 std::vector<uint32_t> previous_lines; 565 for (uint32_t i = 0; 566 i < num_mixed_context_lines && 567 (this_line.line - num_mixed_context_lines) > 0; 568 i++) { 569 uint32_t line = 570 this_line.line - num_mixed_context_lines + i; 571 auto pos = source_lines_seen.find(this_line.file); 572 if (pos != source_lines_seen.end()) { 573 if (pos->second.count(line) == 1) { 574 previous_lines.clear(); 575 } else { 576 previous_lines.push_back(line); 577 } 578 } 579 } 580 for (size_t i = 0; i < previous_lines.size(); i++) { 581 SourceLine previous_line; 582 previous_line.file = this_line.file; 583 previous_line.line = previous_lines[i]; 584 auto pos = source_lines_seen.find(previous_line.file); 585 if (pos != source_lines_seen.end()) { 586 pos->second.insert(previous_line.line); 587 } 588 source_lines_to_display.lines.push_back(previous_line); 589 } 590 591 source_lines_to_display.lines.push_back(this_line); 592 source_lines_to_display.current_source_line = 593 source_lines_to_display.lines.size() - 1; 594 595 for (uint32_t i = 0; i < num_mixed_context_lines; i++) { 596 SourceLine next_line; 597 next_line.file = this_line.file; 598 next_line.line = this_line.line + i + 1; 599 auto pos = source_lines_seen.find(next_line.file); 600 if (pos != source_lines_seen.end()) { 601 if (pos->second.count(next_line.line) == 1) 602 break; 603 pos->second.insert(next_line.line); 604 } 605 source_lines_to_display.lines.push_back(next_line); 606 } 607 } 608 previous_line = this_line; 609 } 610 } 611 } 612 } 613 } else { 614 sc.Clear(true); 615 } 616 } 617 618 if (source_lines_to_display.lines.size() > 0) { 619 strm.EOL(); 620 for (size_t idx = 0; idx < source_lines_to_display.lines.size(); 621 idx++) { 622 SourceLine ln = source_lines_to_display.lines[idx]; 623 const char *line_highlight = ""; 624 if (inst_is_at_pc && (options & eOptionMarkPCSourceLine)) { 625 line_highlight = "->"; 626 } else if (idx == source_lines_to_display.current_source_line) { 627 line_highlight = "**"; 628 } 629 source_manager.DisplaySourceLinesWithLineNumbers( 630 ln.file, ln.line, ln.column, 0, 0, line_highlight, &strm); 631 } 632 if (source_lines_to_display.print_source_context_end_eol) 633 strm.EOL(); 634 } 635 636 const bool show_bytes = (options & eOptionShowBytes) != 0; 637 inst->Dump(&strm, max_opcode_byte_size, true, show_bytes, &exe_ctx, &sc, 638 &prev_sc, nullptr, address_text_size); 639 strm.EOL(); 640 } else { 641 break; 642 } 643 } 644 645 return true; 646 } 647 648 bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 649 const char *plugin_name, const char *flavor, 650 const ExecutionContext &exe_ctx, 651 uint32_t num_instructions, 652 bool mixed_source_and_assembly, 653 uint32_t num_mixed_context_lines, 654 uint32_t options, Stream &strm) { 655 AddressRange range; 656 StackFrame *frame = exe_ctx.GetFramePtr(); 657 if (frame) { 658 SymbolContext sc( 659 frame->GetSymbolContext(eSymbolContextFunction | eSymbolContextSymbol)); 660 if (sc.function) { 661 range = sc.function->GetAddressRange(); 662 } else if (sc.symbol && sc.symbol->ValueIsAddress()) { 663 range.GetBaseAddress() = sc.symbol->GetAddressRef(); 664 range.SetByteSize(sc.symbol->GetByteSize()); 665 } else { 666 range.GetBaseAddress() = frame->GetFrameCodeAddress(); 667 } 668 669 if (range.GetBaseAddress().IsValid() && range.GetByteSize() == 0) 670 range.SetByteSize(DEFAULT_DISASM_BYTE_SIZE); 671 } 672 673 return Disassemble(debugger, arch, plugin_name, flavor, exe_ctx, range, 674 num_instructions, mixed_source_and_assembly, 675 num_mixed_context_lines, options, strm); 676 } 677 678 Instruction::Instruction(const Address &address, AddressClass addr_class) 679 : m_address(address), m_address_class(addr_class), m_opcode(), 680 m_calculated_strings(false) {} 681 682 Instruction::~Instruction() = default; 683 684 AddressClass Instruction::GetAddressClass() { 685 if (m_address_class == eAddressClassInvalid) 686 m_address_class = m_address.GetAddressClass(); 687 return m_address_class; 688 } 689 690 void Instruction::Dump(lldb_private::Stream *s, uint32_t max_opcode_byte_size, 691 bool show_address, bool show_bytes, 692 const ExecutionContext *exe_ctx, 693 const SymbolContext *sym_ctx, 694 const SymbolContext *prev_sym_ctx, 695 const FormatEntity::Entry *disassembly_addr_format, 696 size_t max_address_text_size) { 697 size_t opcode_column_width = 7; 698 const size_t operand_column_width = 25; 699 700 CalculateMnemonicOperandsAndCommentIfNeeded(exe_ctx); 701 702 StreamString ss; 703 704 if (show_address) { 705 Debugger::FormatDisassemblerAddress(disassembly_addr_format, sym_ctx, 706 prev_sym_ctx, exe_ctx, &m_address, ss); 707 ss.FillLastLineToColumn(max_address_text_size, ' '); 708 } 709 710 if (show_bytes) { 711 if (m_opcode.GetType() == Opcode::eTypeBytes) { 712 // x86_64 and i386 are the only ones that use bytes right now so 713 // pad out the byte dump to be able to always show 15 bytes (3 chars each) 714 // plus a space 715 if (max_opcode_byte_size > 0) 716 m_opcode.Dump(&ss, max_opcode_byte_size * 3 + 1); 717 else 718 m_opcode.Dump(&ss, 15 * 3 + 1); 719 } else { 720 // Else, we have ARM or MIPS which can show up to a uint32_t 721 // 0x00000000 (10 spaces) plus two for padding... 722 if (max_opcode_byte_size > 0) 723 m_opcode.Dump(&ss, max_opcode_byte_size * 3 + 1); 724 else 725 m_opcode.Dump(&ss, 12); 726 } 727 } 728 729 const size_t opcode_pos = ss.GetSizeOfLastLine(); 730 731 // The default opcode size of 7 characters is plenty for most architectures 732 // but some like arm can pull out the occasional vqrshrun.s16. We won't get 733 // consistent column spacing in these cases, unfortunately. 734 if (m_opcode_name.length() >= opcode_column_width) { 735 opcode_column_width = m_opcode_name.length() + 1; 736 } 737 738 ss.PutCString(m_opcode_name); 739 ss.FillLastLineToColumn(opcode_pos + opcode_column_width, ' '); 740 ss.PutCString(m_mnemonics); 741 742 if (!m_comment.empty()) { 743 ss.FillLastLineToColumn( 744 opcode_pos + opcode_column_width + operand_column_width, ' '); 745 ss.PutCString(" ; "); 746 ss.PutCString(m_comment); 747 } 748 s->PutCString(ss.GetString()); 749 } 750 751 bool Instruction::DumpEmulation(const ArchSpec &arch) { 752 std::unique_ptr<EmulateInstruction> insn_emulator_ap( 753 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr)); 754 if (insn_emulator_ap) { 755 insn_emulator_ap->SetInstruction(GetOpcode(), GetAddress(), nullptr); 756 return insn_emulator_ap->EvaluateInstruction(0); 757 } 758 759 return false; 760 } 761 762 bool Instruction::CanSetBreakpoint () { 763 return !HasDelaySlot(); 764 } 765 766 bool Instruction::HasDelaySlot() { 767 // Default is false. 768 return false; 769 } 770 771 OptionValueSP Instruction::ReadArray(FILE *in_file, Stream *out_stream, 772 OptionValue::Type data_type) { 773 bool done = false; 774 char buffer[1024]; 775 776 auto option_value_sp = std::make_shared<OptionValueArray>(1u << data_type); 777 778 int idx = 0; 779 while (!done) { 780 if (!fgets(buffer, 1023, in_file)) { 781 out_stream->Printf( 782 "Instruction::ReadArray: Error reading file (fgets).\n"); 783 option_value_sp.reset(); 784 return option_value_sp; 785 } 786 787 std::string line(buffer); 788 789 size_t len = line.size(); 790 if (line[len - 1] == '\n') { 791 line[len - 1] = '\0'; 792 line.resize(len - 1); 793 } 794 795 if ((line.size() == 1) && line[0] == ']') { 796 done = true; 797 line.clear(); 798 } 799 800 if (!line.empty()) { 801 std::string value; 802 static RegularExpression g_reg_exp( 803 llvm::StringRef("^[ \t]*([^ \t]+)[ \t]*$")); 804 RegularExpression::Match regex_match(1); 805 bool reg_exp_success = g_reg_exp.Execute(line, ®ex_match); 806 if (reg_exp_success) 807 regex_match.GetMatchAtIndex(line.c_str(), 1, value); 808 else 809 value = line; 810 811 OptionValueSP data_value_sp; 812 switch (data_type) { 813 case OptionValue::eTypeUInt64: 814 data_value_sp = std::make_shared<OptionValueUInt64>(0, 0); 815 data_value_sp->SetValueFromString(value); 816 break; 817 // Other types can be added later as needed. 818 default: 819 data_value_sp = std::make_shared<OptionValueString>(value.c_str(), ""); 820 break; 821 } 822 823 option_value_sp->GetAsArray()->InsertValue(idx, data_value_sp); 824 ++idx; 825 } 826 } 827 828 return option_value_sp; 829 } 830 831 OptionValueSP Instruction::ReadDictionary(FILE *in_file, Stream *out_stream) { 832 bool done = false; 833 char buffer[1024]; 834 835 auto option_value_sp = std::make_shared<OptionValueDictionary>(); 836 static ConstString encoding_key("data_encoding"); 837 OptionValue::Type data_type = OptionValue::eTypeInvalid; 838 839 while (!done) { 840 // Read the next line in the file 841 if (!fgets(buffer, 1023, in_file)) { 842 out_stream->Printf( 843 "Instruction::ReadDictionary: Error reading file (fgets).\n"); 844 option_value_sp.reset(); 845 return option_value_sp; 846 } 847 848 // Check to see if the line contains the end-of-dictionary marker ("}") 849 std::string line(buffer); 850 851 size_t len = line.size(); 852 if (line[len - 1] == '\n') { 853 line[len - 1] = '\0'; 854 line.resize(len - 1); 855 } 856 857 if ((line.size() == 1) && (line[0] == '}')) { 858 done = true; 859 line.clear(); 860 } 861 862 // Try to find a key-value pair in the current line and add it to the 863 // dictionary. 864 if (!line.empty()) { 865 static RegularExpression g_reg_exp(llvm::StringRef( 866 "^[ \t]*([a-zA-Z_][a-zA-Z0-9_]*)[ \t]*=[ \t]*(.*)[ \t]*$")); 867 RegularExpression::Match regex_match(2); 868 869 bool reg_exp_success = g_reg_exp.Execute(line, ®ex_match); 870 std::string key; 871 std::string value; 872 if (reg_exp_success) { 873 regex_match.GetMatchAtIndex(line.c_str(), 1, key); 874 regex_match.GetMatchAtIndex(line.c_str(), 2, value); 875 } else { 876 out_stream->Printf("Instruction::ReadDictionary: Failure executing " 877 "regular expression.\n"); 878 option_value_sp.reset(); 879 return option_value_sp; 880 } 881 882 ConstString const_key(key.c_str()); 883 // Check value to see if it's the start of an array or dictionary. 884 885 lldb::OptionValueSP value_sp; 886 assert(value.empty() == false); 887 assert(key.empty() == false); 888 889 if (value[0] == '{') { 890 assert(value.size() == 1); 891 // value is a dictionary 892 value_sp = ReadDictionary(in_file, out_stream); 893 if (!value_sp) { 894 option_value_sp.reset(); 895 return option_value_sp; 896 } 897 } else if (value[0] == '[') { 898 assert(value.size() == 1); 899 // value is an array 900 value_sp = ReadArray(in_file, out_stream, data_type); 901 if (!value_sp) { 902 option_value_sp.reset(); 903 return option_value_sp; 904 } 905 // We've used the data_type to read an array; re-set the type to Invalid 906 data_type = OptionValue::eTypeInvalid; 907 } else if ((value[0] == '0') && (value[1] == 'x')) { 908 value_sp = std::make_shared<OptionValueUInt64>(0, 0); 909 value_sp->SetValueFromString(value); 910 } else { 911 size_t len = value.size(); 912 if ((value[0] == '"') && (value[len - 1] == '"')) 913 value = value.substr(1, len - 2); 914 value_sp = std::make_shared<OptionValueString>(value.c_str(), ""); 915 } 916 917 if (const_key == encoding_key) { 918 // A 'data_encoding=..." is NOT a normal key-value pair; it is meta-data 919 // indicating the 920 // data type of an upcoming array (usually the next bit of data to be 921 // read in). 922 if (strcmp(value.c_str(), "uint32_t") == 0) 923 data_type = OptionValue::eTypeUInt64; 924 } else 925 option_value_sp->GetAsDictionary()->SetValueForKey(const_key, value_sp, 926 false); 927 } 928 } 929 930 return option_value_sp; 931 } 932 933 bool Instruction::TestEmulation(Stream *out_stream, const char *file_name) { 934 if (!out_stream) 935 return false; 936 937 if (!file_name) { 938 out_stream->Printf("Instruction::TestEmulation: Missing file_name."); 939 return false; 940 } 941 FILE *test_file = FileSystem::Fopen(file_name, "r"); 942 if (!test_file) { 943 out_stream->Printf( 944 "Instruction::TestEmulation: Attempt to open test file failed."); 945 return false; 946 } 947 948 char buffer[256]; 949 if (!fgets(buffer, 255, test_file)) { 950 out_stream->Printf( 951 "Instruction::TestEmulation: Error reading first line of test file.\n"); 952 fclose(test_file); 953 return false; 954 } 955 956 if (strncmp(buffer, "InstructionEmulationState={", 27) != 0) { 957 out_stream->Printf("Instructin::TestEmulation: Test file does not contain " 958 "emulation state dictionary\n"); 959 fclose(test_file); 960 return false; 961 } 962 963 // Read all the test information from the test file into an 964 // OptionValueDictionary. 965 966 OptionValueSP data_dictionary_sp(ReadDictionary(test_file, out_stream)); 967 if (!data_dictionary_sp) { 968 out_stream->Printf( 969 "Instruction::TestEmulation: Error reading Dictionary Object.\n"); 970 fclose(test_file); 971 return false; 972 } 973 974 fclose(test_file); 975 976 OptionValueDictionary *data_dictionary = 977 data_dictionary_sp->GetAsDictionary(); 978 static ConstString description_key("assembly_string"); 979 static ConstString triple_key("triple"); 980 981 OptionValueSP value_sp = data_dictionary->GetValueForKey(description_key); 982 983 if (!value_sp) { 984 out_stream->Printf("Instruction::TestEmulation: Test file does not " 985 "contain description string.\n"); 986 return false; 987 } 988 989 SetDescription(value_sp->GetStringValue()); 990 991 value_sp = data_dictionary->GetValueForKey(triple_key); 992 if (!value_sp) { 993 out_stream->Printf( 994 "Instruction::TestEmulation: Test file does not contain triple.\n"); 995 return false; 996 } 997 998 ArchSpec arch; 999 arch.SetTriple(llvm::Triple(value_sp->GetStringValue())); 1000 1001 bool success = false; 1002 std::unique_ptr<EmulateInstruction> insn_emulator_ap( 1003 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr)); 1004 if (insn_emulator_ap) 1005 success = 1006 insn_emulator_ap->TestEmulation(out_stream, arch, data_dictionary); 1007 1008 if (success) 1009 out_stream->Printf("Emulation test succeeded."); 1010 else 1011 out_stream->Printf("Emulation test failed."); 1012 1013 return success; 1014 } 1015 1016 bool Instruction::Emulate( 1017 const ArchSpec &arch, uint32_t evaluate_options, void *baton, 1018 EmulateInstruction::ReadMemoryCallback read_mem_callback, 1019 EmulateInstruction::WriteMemoryCallback write_mem_callback, 1020 EmulateInstruction::ReadRegisterCallback read_reg_callback, 1021 EmulateInstruction::WriteRegisterCallback write_reg_callback) { 1022 std::unique_ptr<EmulateInstruction> insn_emulator_ap( 1023 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr)); 1024 if (insn_emulator_ap) { 1025 insn_emulator_ap->SetBaton(baton); 1026 insn_emulator_ap->SetCallbacks(read_mem_callback, write_mem_callback, 1027 read_reg_callback, write_reg_callback); 1028 insn_emulator_ap->SetInstruction(GetOpcode(), GetAddress(), nullptr); 1029 return insn_emulator_ap->EvaluateInstruction(evaluate_options); 1030 } 1031 1032 return false; 1033 } 1034 1035 uint32_t Instruction::GetData(DataExtractor &data) { 1036 return m_opcode.GetData(data); 1037 } 1038 1039 InstructionList::InstructionList() : m_instructions() {} 1040 1041 InstructionList::~InstructionList() = default; 1042 1043 size_t InstructionList::GetSize() const { return m_instructions.size(); } 1044 1045 uint32_t InstructionList::GetMaxOpcocdeByteSize() const { 1046 uint32_t max_inst_size = 0; 1047 collection::const_iterator pos, end; 1048 for (pos = m_instructions.begin(), end = m_instructions.end(); pos != end; 1049 ++pos) { 1050 uint32_t inst_size = (*pos)->GetOpcode().GetByteSize(); 1051 if (max_inst_size < inst_size) 1052 max_inst_size = inst_size; 1053 } 1054 return max_inst_size; 1055 } 1056 1057 InstructionSP InstructionList::GetInstructionAtIndex(size_t idx) const { 1058 InstructionSP inst_sp; 1059 if (idx < m_instructions.size()) 1060 inst_sp = m_instructions[idx]; 1061 return inst_sp; 1062 } 1063 1064 void InstructionList::Dump(Stream *s, bool show_address, bool show_bytes, 1065 const ExecutionContext *exe_ctx) { 1066 const uint32_t max_opcode_byte_size = GetMaxOpcocdeByteSize(); 1067 collection::const_iterator pos, begin, end; 1068 1069 const FormatEntity::Entry *disassembly_format = nullptr; 1070 FormatEntity::Entry format; 1071 if (exe_ctx && exe_ctx->HasTargetScope()) { 1072 disassembly_format = 1073 exe_ctx->GetTargetRef().GetDebugger().GetDisassemblyFormat(); 1074 } else { 1075 FormatEntity::Parse("${addr}: ", format); 1076 disassembly_format = &format; 1077 } 1078 1079 for (begin = m_instructions.begin(), end = m_instructions.end(), pos = begin; 1080 pos != end; ++pos) { 1081 if (pos != begin) 1082 s->EOL(); 1083 (*pos)->Dump(s, max_opcode_byte_size, show_address, show_bytes, exe_ctx, 1084 nullptr, nullptr, disassembly_format, 0); 1085 } 1086 } 1087 1088 void InstructionList::Clear() { m_instructions.clear(); } 1089 1090 void InstructionList::Append(lldb::InstructionSP &inst_sp) { 1091 if (inst_sp) 1092 m_instructions.push_back(inst_sp); 1093 } 1094 1095 uint32_t 1096 InstructionList::GetIndexOfNextBranchInstruction(uint32_t start, 1097 Target &target) const { 1098 size_t num_instructions = m_instructions.size(); 1099 1100 uint32_t next_branch = UINT32_MAX; 1101 size_t i; 1102 for (i = start; i < num_instructions; i++) { 1103 if (m_instructions[i]->DoesBranch()) { 1104 next_branch = i; 1105 break; 1106 } 1107 } 1108 1109 // Hexagon needs the first instruction of the packet with the branch. 1110 // Go backwards until we find an instruction marked end-of-packet, or 1111 // until we hit start. 1112 if (target.GetArchitecture().GetTriple().getArch() == llvm::Triple::hexagon) { 1113 // If we didn't find a branch, find the last packet start. 1114 if (next_branch == UINT32_MAX) { 1115 i = num_instructions - 1; 1116 } 1117 1118 while (i > start) { 1119 --i; 1120 1121 Error error; 1122 uint32_t inst_bytes; 1123 bool prefer_file_cache = false; // Read from process if process is running 1124 lldb::addr_t load_addr = LLDB_INVALID_ADDRESS; 1125 target.ReadMemory(m_instructions[i]->GetAddress(), prefer_file_cache, 1126 &inst_bytes, sizeof(inst_bytes), error, &load_addr); 1127 // If we have an error reading memory, return start 1128 if (!error.Success()) 1129 return start; 1130 // check if this is the last instruction in a packet 1131 // bits 15:14 will be 11b or 00b for a duplex 1132 if (((inst_bytes & 0xC000) == 0xC000) || 1133 ((inst_bytes & 0xC000) == 0x0000)) { 1134 // instruction after this should be the start of next packet 1135 next_branch = i + 1; 1136 break; 1137 } 1138 } 1139 1140 if (next_branch == UINT32_MAX) { 1141 // We couldn't find the previous packet, so return start 1142 next_branch = start; 1143 } 1144 } 1145 return next_branch; 1146 } 1147 1148 uint32_t 1149 InstructionList::GetIndexOfInstructionAtAddress(const Address &address) { 1150 size_t num_instructions = m_instructions.size(); 1151 uint32_t index = UINT32_MAX; 1152 for (size_t i = 0; i < num_instructions; i++) { 1153 if (m_instructions[i]->GetAddress() == address) { 1154 index = i; 1155 break; 1156 } 1157 } 1158 return index; 1159 } 1160 1161 uint32_t 1162 InstructionList::GetIndexOfInstructionAtLoadAddress(lldb::addr_t load_addr, 1163 Target &target) { 1164 Address address; 1165 address.SetLoadAddress(load_addr, &target); 1166 return GetIndexOfInstructionAtAddress(address); 1167 } 1168 1169 size_t Disassembler::ParseInstructions(const ExecutionContext *exe_ctx, 1170 const AddressRange &range, 1171 Stream *error_strm_ptr, 1172 bool prefer_file_cache) { 1173 if (exe_ctx) { 1174 Target *target = exe_ctx->GetTargetPtr(); 1175 const addr_t byte_size = range.GetByteSize(); 1176 if (target == nullptr || byte_size == 0 || 1177 !range.GetBaseAddress().IsValid()) 1178 return 0; 1179 1180 auto data_sp = std::make_shared<DataBufferHeap>(byte_size, '\0'); 1181 1182 Error error; 1183 lldb::addr_t load_addr = LLDB_INVALID_ADDRESS; 1184 const size_t bytes_read = target->ReadMemory( 1185 range.GetBaseAddress(), prefer_file_cache, data_sp->GetBytes(), 1186 data_sp->GetByteSize(), error, &load_addr); 1187 1188 if (bytes_read > 0) { 1189 if (bytes_read != data_sp->GetByteSize()) 1190 data_sp->SetByteSize(bytes_read); 1191 DataExtractor data(data_sp, m_arch.GetByteOrder(), 1192 m_arch.GetAddressByteSize()); 1193 const bool data_from_file = load_addr == LLDB_INVALID_ADDRESS; 1194 return DecodeInstructions(range.GetBaseAddress(), data, 0, UINT32_MAX, 1195 false, data_from_file); 1196 } else if (error_strm_ptr) { 1197 const char *error_cstr = error.AsCString(); 1198 if (error_cstr) { 1199 error_strm_ptr->Printf("error: %s\n", error_cstr); 1200 } 1201 } 1202 } else if (error_strm_ptr) { 1203 error_strm_ptr->PutCString("error: invalid execution context\n"); 1204 } 1205 return 0; 1206 } 1207 1208 size_t Disassembler::ParseInstructions(const ExecutionContext *exe_ctx, 1209 const Address &start, 1210 uint32_t num_instructions, 1211 bool prefer_file_cache) { 1212 m_instruction_list.Clear(); 1213 1214 if (exe_ctx == nullptr || num_instructions == 0 || !start.IsValid()) 1215 return 0; 1216 1217 Target *target = exe_ctx->GetTargetPtr(); 1218 // Calculate the max buffer size we will need in order to disassemble 1219 const addr_t byte_size = num_instructions * m_arch.GetMaximumOpcodeByteSize(); 1220 1221 if (target == nullptr || byte_size == 0) 1222 return 0; 1223 1224 DataBufferHeap *heap_buffer = new DataBufferHeap(byte_size, '\0'); 1225 DataBufferSP data_sp(heap_buffer); 1226 1227 Error error; 1228 lldb::addr_t load_addr = LLDB_INVALID_ADDRESS; 1229 const size_t bytes_read = 1230 target->ReadMemory(start, prefer_file_cache, heap_buffer->GetBytes(), 1231 byte_size, error, &load_addr); 1232 1233 const bool data_from_file = load_addr == LLDB_INVALID_ADDRESS; 1234 1235 if (bytes_read == 0) 1236 return 0; 1237 DataExtractor data(data_sp, m_arch.GetByteOrder(), 1238 m_arch.GetAddressByteSize()); 1239 1240 const bool append_instructions = true; 1241 DecodeInstructions(start, data, 0, num_instructions, append_instructions, 1242 data_from_file); 1243 1244 return m_instruction_list.GetSize(); 1245 } 1246 1247 //---------------------------------------------------------------------- 1248 // Disassembler copy constructor 1249 //---------------------------------------------------------------------- 1250 Disassembler::Disassembler(const ArchSpec &arch, const char *flavor) 1251 : m_arch(arch), m_instruction_list(), m_base_addr(LLDB_INVALID_ADDRESS), 1252 m_flavor() { 1253 if (flavor == nullptr) 1254 m_flavor.assign("default"); 1255 else 1256 m_flavor.assign(flavor); 1257 1258 // If this is an arm variant that can only include thumb (T16, T32) 1259 // instructions, force the arch triple to be "thumbv.." instead of 1260 // "armv..." 1261 if (arch.IsAlwaysThumbInstructions()) { 1262 std::string thumb_arch_name(arch.GetTriple().getArchName().str()); 1263 // Replace "arm" with "thumb" so we get all thumb variants correct 1264 if (thumb_arch_name.size() > 3) { 1265 thumb_arch_name.erase(0, 3); 1266 thumb_arch_name.insert(0, "thumb"); 1267 } 1268 m_arch.SetTriple(thumb_arch_name.c_str()); 1269 } 1270 } 1271 1272 Disassembler::~Disassembler() = default; 1273 1274 InstructionList &Disassembler::GetInstructionList() { 1275 return m_instruction_list; 1276 } 1277 1278 const InstructionList &Disassembler::GetInstructionList() const { 1279 return m_instruction_list; 1280 } 1281 1282 //---------------------------------------------------------------------- 1283 // Class PseudoInstruction 1284 //---------------------------------------------------------------------- 1285 1286 PseudoInstruction::PseudoInstruction() 1287 : Instruction(Address(), eAddressClassUnknown), m_description() {} 1288 1289 PseudoInstruction::~PseudoInstruction() = default; 1290 1291 bool PseudoInstruction::DoesBranch() { 1292 // This is NOT a valid question for a pseudo instruction. 1293 return false; 1294 } 1295 1296 bool PseudoInstruction::HasDelaySlot() { 1297 // This is NOT a valid question for a pseudo instruction. 1298 return false; 1299 } 1300 1301 size_t PseudoInstruction::Decode(const lldb_private::Disassembler &disassembler, 1302 const lldb_private::DataExtractor &data, 1303 lldb::offset_t data_offset) { 1304 return m_opcode.GetByteSize(); 1305 } 1306 1307 void PseudoInstruction::SetOpcode(size_t opcode_size, void *opcode_data) { 1308 if (!opcode_data) 1309 return; 1310 1311 switch (opcode_size) { 1312 case 8: { 1313 uint8_t value8 = *((uint8_t *)opcode_data); 1314 m_opcode.SetOpcode8(value8, eByteOrderInvalid); 1315 break; 1316 } 1317 case 16: { 1318 uint16_t value16 = *((uint16_t *)opcode_data); 1319 m_opcode.SetOpcode16(value16, eByteOrderInvalid); 1320 break; 1321 } 1322 case 32: { 1323 uint32_t value32 = *((uint32_t *)opcode_data); 1324 m_opcode.SetOpcode32(value32, eByteOrderInvalid); 1325 break; 1326 } 1327 case 64: { 1328 uint64_t value64 = *((uint64_t *)opcode_data); 1329 m_opcode.SetOpcode64(value64, eByteOrderInvalid); 1330 break; 1331 } 1332 default: 1333 break; 1334 } 1335 } 1336 1337 void PseudoInstruction::SetDescription(llvm::StringRef description) { 1338 m_description = description; 1339 } 1340 1341 Instruction::Operand Instruction::Operand::BuildRegister(ConstString &r) { 1342 Operand ret; 1343 ret.m_type = Type::Register; 1344 ret.m_register = r; 1345 return ret; 1346 } 1347 1348 Instruction::Operand Instruction::Operand::BuildImmediate(lldb::addr_t imm, 1349 bool neg) { 1350 Operand ret; 1351 ret.m_type = Type::Immediate; 1352 ret.m_immediate = imm; 1353 ret.m_negative = neg; 1354 return ret; 1355 } 1356 1357 Instruction::Operand Instruction::Operand::BuildImmediate(int64_t imm) { 1358 Operand ret; 1359 ret.m_type = Type::Immediate; 1360 if (imm < 0) { 1361 ret.m_immediate = -imm; 1362 ret.m_negative = true; 1363 } else { 1364 ret.m_immediate = imm; 1365 ret.m_negative = false; 1366 } 1367 return ret; 1368 } 1369 1370 Instruction::Operand 1371 Instruction::Operand::BuildDereference(const Operand &ref) { 1372 Operand ret; 1373 ret.m_type = Type::Dereference; 1374 ret.m_children = {ref}; 1375 return ret; 1376 } 1377 1378 Instruction::Operand Instruction::Operand::BuildSum(const Operand &lhs, 1379 const Operand &rhs) { 1380 Operand ret; 1381 ret.m_type = Type::Sum; 1382 ret.m_children = {lhs, rhs}; 1383 return ret; 1384 } 1385 1386 Instruction::Operand Instruction::Operand::BuildProduct(const Operand &lhs, 1387 const Operand &rhs) { 1388 Operand ret; 1389 ret.m_type = Type::Product; 1390 ret.m_children = {lhs, rhs}; 1391 return ret; 1392 } 1393 1394 std::function<bool(const Instruction::Operand &)> 1395 lldb_private::OperandMatchers::MatchBinaryOp( 1396 std::function<bool(const Instruction::Operand &)> base, 1397 std::function<bool(const Instruction::Operand &)> left, 1398 std::function<bool(const Instruction::Operand &)> right) { 1399 return [base, left, right](const Instruction::Operand &op) -> bool { 1400 return (base(op) && op.m_children.size() == 2 && 1401 ((left(op.m_children[0]) && right(op.m_children[1])) || 1402 (left(op.m_children[1]) && right(op.m_children[0])))); 1403 }; 1404 } 1405 1406 std::function<bool(const Instruction::Operand &)> 1407 lldb_private::OperandMatchers::MatchUnaryOp( 1408 std::function<bool(const Instruction::Operand &)> base, 1409 std::function<bool(const Instruction::Operand &)> child) { 1410 return [base, child](const Instruction::Operand &op) -> bool { 1411 return (base(op) && op.m_children.size() == 1 && child(op.m_children[0])); 1412 }; 1413 } 1414 1415 std::function<bool(const Instruction::Operand &)> 1416 lldb_private::OperandMatchers::MatchRegOp(const RegisterInfo &info) { 1417 return [&info](const Instruction::Operand &op) { 1418 return (op.m_type == Instruction::Operand::Type::Register && 1419 (op.m_register == ConstString(info.name) || 1420 op.m_register == ConstString(info.alt_name))); 1421 }; 1422 } 1423 1424 std::function<bool(const Instruction::Operand &)> 1425 lldb_private::OperandMatchers::FetchRegOp(ConstString ®) { 1426 return [®](const Instruction::Operand &op) { 1427 if (op.m_type != Instruction::Operand::Type::Register) { 1428 return false; 1429 } 1430 reg = op.m_register; 1431 return true; 1432 }; 1433 } 1434 1435 std::function<bool(const Instruction::Operand &)> 1436 lldb_private::OperandMatchers::MatchImmOp(int64_t imm) { 1437 return [imm](const Instruction::Operand &op) { 1438 return (op.m_type == Instruction::Operand::Type::Immediate && 1439 ((op.m_negative && op.m_immediate == (uint64_t)-imm) || 1440 (!op.m_negative && op.m_immediate == (uint64_t)imm))); 1441 }; 1442 } 1443 1444 std::function<bool(const Instruction::Operand &)> 1445 lldb_private::OperandMatchers::FetchImmOp(int64_t &imm) { 1446 return [&imm](const Instruction::Operand &op) { 1447 if (op.m_type != Instruction::Operand::Type::Immediate) { 1448 return false; 1449 } 1450 if (op.m_negative) { 1451 imm = -((int64_t)op.m_immediate); 1452 } else { 1453 imm = ((int64_t)op.m_immediate); 1454 } 1455 return true; 1456 }; 1457 } 1458 1459 std::function<bool(const Instruction::Operand &)> 1460 lldb_private::OperandMatchers::MatchOpType(Instruction::Operand::Type type) { 1461 return [type](const Instruction::Operand &op) { return op.m_type == type; }; 1462 } 1463 1464