1 //===-- Disassembler.cpp ----------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Core/Disassembler.h" 10 11 #include "lldb/Core/AddressRange.h" 12 #include "lldb/Core/Debugger.h" 13 #include "lldb/Core/EmulateInstruction.h" 14 #include "lldb/Core/Mangled.h" 15 #include "lldb/Core/Module.h" 16 #include "lldb/Core/ModuleList.h" 17 #include "lldb/Core/PluginManager.h" 18 #include "lldb/Core/SourceManager.h" 19 #include "lldb/Host/FileSystem.h" 20 #include "lldb/Interpreter/OptionValue.h" 21 #include "lldb/Interpreter/OptionValueArray.h" 22 #include "lldb/Interpreter/OptionValueDictionary.h" 23 #include "lldb/Interpreter/OptionValueRegex.h" 24 #include "lldb/Interpreter/OptionValueString.h" 25 #include "lldb/Interpreter/OptionValueUInt64.h" 26 #include "lldb/Symbol/Function.h" 27 #include "lldb/Symbol/Symbol.h" 28 #include "lldb/Symbol/SymbolContext.h" 29 #include "lldb/Target/ExecutionContext.h" 30 #include "lldb/Target/SectionLoadList.h" 31 #include "lldb/Target/StackFrame.h" 32 #include "lldb/Target/Target.h" 33 #include "lldb/Target/Thread.h" 34 #include "lldb/Utility/DataBufferHeap.h" 35 #include "lldb/Utility/DataExtractor.h" 36 #include "lldb/Utility/RegularExpression.h" 37 #include "lldb/Utility/Status.h" 38 #include "lldb/Utility/Stream.h" 39 #include "lldb/Utility/StreamString.h" 40 #include "lldb/Utility/Timer.h" 41 #include "lldb/lldb-private-enumerations.h" 42 #include "lldb/lldb-private-interfaces.h" 43 #include "lldb/lldb-private-types.h" 44 #include "llvm/ADT/Triple.h" 45 #include "llvm/Support/Compiler.h" 46 47 #include <cstdint> 48 #include <cstring> 49 #include <utility> 50 51 #include <assert.h> 52 53 #define DEFAULT_DISASM_BYTE_SIZE 32 54 55 using namespace lldb; 56 using namespace lldb_private; 57 58 DisassemblerSP Disassembler::FindPlugin(const ArchSpec &arch, 59 const char *flavor, 60 const char *plugin_name) { 61 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); 62 Timer scoped_timer(func_cat, 63 "Disassembler::FindPlugin (arch = %s, plugin_name = %s)", 64 arch.GetArchitectureName(), plugin_name); 65 66 DisassemblerCreateInstance create_callback = nullptr; 67 68 if (plugin_name) { 69 ConstString const_plugin_name(plugin_name); 70 create_callback = PluginManager::GetDisassemblerCreateCallbackForPluginName( 71 const_plugin_name); 72 if (create_callback) { 73 DisassemblerSP disassembler_sp(create_callback(arch, flavor)); 74 75 if (disassembler_sp) 76 return disassembler_sp; 77 } 78 } else { 79 for (uint32_t idx = 0; 80 (create_callback = PluginManager::GetDisassemblerCreateCallbackAtIndex( 81 idx)) != nullptr; 82 ++idx) { 83 DisassemblerSP disassembler_sp(create_callback(arch, flavor)); 84 85 if (disassembler_sp) 86 return disassembler_sp; 87 } 88 } 89 return DisassemblerSP(); 90 } 91 92 DisassemblerSP Disassembler::FindPluginForTarget(const TargetSP target_sp, 93 const ArchSpec &arch, 94 const char *flavor, 95 const char *plugin_name) { 96 if (target_sp && flavor == nullptr) { 97 // FIXME - we don't have the mechanism in place to do per-architecture 98 // settings. But since we know that for now we only support flavors on x86 99 // & x86_64, 100 if (arch.GetTriple().getArch() == llvm::Triple::x86 || 101 arch.GetTriple().getArch() == llvm::Triple::x86_64) 102 flavor = target_sp->GetDisassemblyFlavor(); 103 } 104 return FindPlugin(arch, flavor, plugin_name); 105 } 106 107 static void ResolveAddress(const ExecutionContext &exe_ctx, const Address &addr, 108 Address &resolved_addr) { 109 if (!addr.IsSectionOffset()) { 110 // If we weren't passed in a section offset address range, try and resolve 111 // it to something 112 Target *target = exe_ctx.GetTargetPtr(); 113 if (target) { 114 bool is_resolved = 115 target->GetSectionLoadList().IsEmpty() ? 116 target->GetImages().ResolveFileAddress(addr.GetOffset(), 117 resolved_addr) : 118 target->GetSectionLoadList().ResolveLoadAddress(addr.GetOffset(), 119 resolved_addr); 120 121 // We weren't able to resolve the address, just treat it as a raw address 122 if (is_resolved && resolved_addr.IsValid()) 123 return; 124 } 125 } 126 resolved_addr = addr; 127 } 128 129 size_t Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 130 const char *plugin_name, const char *flavor, 131 const ExecutionContext &exe_ctx, 132 SymbolContextList &sc_list, 133 uint32_t num_instructions, 134 bool mixed_source_and_assembly, 135 uint32_t num_mixed_context_lines, 136 uint32_t options, Stream &strm) { 137 size_t success_count = 0; 138 const size_t count = sc_list.GetSize(); 139 SymbolContext sc; 140 AddressRange range; 141 const uint32_t scope = 142 eSymbolContextBlock | eSymbolContextFunction | eSymbolContextSymbol; 143 const bool use_inline_block_range = true; 144 for (size_t i = 0; i < count; ++i) { 145 if (!sc_list.GetContextAtIndex(i, sc)) 146 break; 147 for (uint32_t range_idx = 0; 148 sc.GetAddressRange(scope, range_idx, use_inline_block_range, range); 149 ++range_idx) { 150 if (Disassemble(debugger, arch, plugin_name, flavor, exe_ctx, range, 151 num_instructions, mixed_source_and_assembly, 152 num_mixed_context_lines, options, strm)) { 153 ++success_count; 154 strm.EOL(); 155 } 156 } 157 } 158 return success_count; 159 } 160 161 bool Disassembler::Disassemble( 162 Debugger &debugger, const ArchSpec &arch, const char *plugin_name, 163 const char *flavor, const ExecutionContext &exe_ctx, ConstString name, 164 Module *module, uint32_t num_instructions, bool mixed_source_and_assembly, 165 uint32_t num_mixed_context_lines, uint32_t options, Stream &strm) { 166 // If no name is given there's nothing to disassemble. 167 if (!name) 168 return false; 169 170 const bool include_symbols = true; 171 const bool include_inlines = true; 172 173 // Find functions matching the given name. 174 SymbolContextList sc_list; 175 if (module) { 176 module->FindFunctions(name, nullptr, eFunctionNameTypeAuto, include_symbols, 177 include_inlines, true, sc_list); 178 } else if (exe_ctx.GetTargetPtr()) { 179 exe_ctx.GetTargetPtr()->GetImages().FindFunctions( 180 name, eFunctionNameTypeAuto, include_symbols, include_inlines, false, 181 sc_list); 182 } 183 184 // If no functions were found there's nothing to disassemble. 185 if (sc_list.IsEmpty()) 186 return false; 187 188 return Disassemble(debugger, arch, plugin_name, flavor, exe_ctx, sc_list, 189 num_instructions, mixed_source_and_assembly, 190 num_mixed_context_lines, options, strm); 191 } 192 193 lldb::DisassemblerSP Disassembler::DisassembleRange( 194 const ArchSpec &arch, const char *plugin_name, const char *flavor, 195 const ExecutionContext &exe_ctx, const AddressRange &range, 196 bool prefer_file_cache) { 197 if (range.GetByteSize() <= 0) 198 return {}; 199 200 if (!range.GetBaseAddress().IsValid()) 201 return {}; 202 203 lldb::DisassemblerSP disasm_sp = Disassembler::FindPluginForTarget( 204 exe_ctx.GetTargetSP(), arch, flavor, plugin_name); 205 206 if (!disasm_sp) 207 return {}; 208 209 const size_t bytes_disassembled = 210 disasm_sp->ParseInstructions(&exe_ctx, range, nullptr, prefer_file_cache); 211 if (bytes_disassembled == 0) 212 return {}; 213 214 return disasm_sp; 215 } 216 217 lldb::DisassemblerSP 218 Disassembler::DisassembleBytes(const ArchSpec &arch, const char *plugin_name, 219 const char *flavor, const Address &start, 220 const void *src, size_t src_len, 221 uint32_t num_instructions, bool data_from_file) { 222 if (!src) 223 return {}; 224 225 lldb::DisassemblerSP disasm_sp = 226 Disassembler::FindPlugin(arch, flavor, plugin_name); 227 228 if (!disasm_sp) 229 return {}; 230 231 DataExtractor data(src, src_len, arch.GetByteOrder(), 232 arch.GetAddressByteSize()); 233 234 (void)disasm_sp->DecodeInstructions(start, data, 0, num_instructions, false, 235 data_from_file); 236 return disasm_sp; 237 } 238 239 bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 240 const char *plugin_name, const char *flavor, 241 const ExecutionContext &exe_ctx, 242 const AddressRange &disasm_range, 243 uint32_t num_instructions, 244 bool mixed_source_and_assembly, 245 uint32_t num_mixed_context_lines, 246 uint32_t options, Stream &strm) { 247 if (disasm_range.GetByteSize()) { 248 lldb::DisassemblerSP disasm_sp(Disassembler::FindPluginForTarget( 249 exe_ctx.GetTargetSP(), arch, flavor, plugin_name)); 250 251 if (disasm_sp) { 252 AddressRange range; 253 ResolveAddress(exe_ctx, disasm_range.GetBaseAddress(), 254 range.GetBaseAddress()); 255 range.SetByteSize(disasm_range.GetByteSize()); 256 const bool prefer_file_cache = false; 257 size_t bytes_disassembled = disasm_sp->ParseInstructions( 258 &exe_ctx, range, &strm, prefer_file_cache); 259 if (bytes_disassembled == 0) 260 return false; 261 262 return PrintInstructions(disasm_sp.get(), debugger, arch, exe_ctx, 263 num_instructions, mixed_source_and_assembly, 264 num_mixed_context_lines, options, strm); 265 } 266 } 267 return false; 268 } 269 270 bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 271 const char *plugin_name, const char *flavor, 272 const ExecutionContext &exe_ctx, 273 const Address &start_address, 274 uint32_t num_instructions, 275 bool mixed_source_and_assembly, 276 uint32_t num_mixed_context_lines, 277 uint32_t options, Stream &strm) { 278 if (num_instructions > 0) { 279 lldb::DisassemblerSP disasm_sp(Disassembler::FindPluginForTarget( 280 exe_ctx.GetTargetSP(), arch, flavor, plugin_name)); 281 if (disasm_sp) { 282 Address addr; 283 ResolveAddress(exe_ctx, start_address, addr); 284 const bool prefer_file_cache = false; 285 size_t bytes_disassembled = disasm_sp->ParseInstructions( 286 &exe_ctx, addr, num_instructions, prefer_file_cache); 287 if (bytes_disassembled == 0) 288 return false; 289 return PrintInstructions(disasm_sp.get(), debugger, arch, exe_ctx, 290 num_instructions, mixed_source_and_assembly, 291 num_mixed_context_lines, options, strm); 292 } 293 } 294 return false; 295 } 296 297 Disassembler::SourceLine 298 Disassembler::GetFunctionDeclLineEntry(const SymbolContext &sc) { 299 SourceLine decl_line; 300 if (sc.function && sc.line_entry.IsValid()) { 301 LineEntry prologue_end_line = sc.line_entry; 302 FileSpec func_decl_file; 303 uint32_t func_decl_line; 304 sc.function->GetStartLineSourceInfo(func_decl_file, func_decl_line); 305 if (func_decl_file == prologue_end_line.file || 306 func_decl_file == prologue_end_line.original_file) { 307 decl_line.file = func_decl_file; 308 decl_line.line = func_decl_line; 309 // TODO do we care about column on these entries? If so, we need to 310 // plumb that through GetStartLineSourceInfo. 311 decl_line.column = 0; 312 } 313 } 314 return decl_line; 315 } 316 317 void Disassembler::AddLineToSourceLineTables( 318 SourceLine &line, 319 std::map<FileSpec, std::set<uint32_t>> &source_lines_seen) { 320 if (line.IsValid()) { 321 auto source_lines_seen_pos = source_lines_seen.find(line.file); 322 if (source_lines_seen_pos == source_lines_seen.end()) { 323 std::set<uint32_t> lines; 324 lines.insert(line.line); 325 source_lines_seen.emplace(line.file, lines); 326 } else { 327 source_lines_seen_pos->second.insert(line.line); 328 } 329 } 330 } 331 332 bool Disassembler::ElideMixedSourceAndDisassemblyLine( 333 const ExecutionContext &exe_ctx, const SymbolContext &sc, 334 SourceLine &line) { 335 336 // TODO: should we also check target.process.thread.step-avoid-libraries ? 337 338 const RegularExpression *avoid_regex = nullptr; 339 340 // Skip any line #0 entries - they are implementation details 341 if (line.line == 0) 342 return false; 343 344 ThreadSP thread_sp = exe_ctx.GetThreadSP(); 345 if (thread_sp) { 346 avoid_regex = thread_sp->GetSymbolsToAvoidRegexp(); 347 } else { 348 TargetSP target_sp = exe_ctx.GetTargetSP(); 349 if (target_sp) { 350 Status error; 351 OptionValueSP value_sp = target_sp->GetDebugger().GetPropertyValue( 352 &exe_ctx, "target.process.thread.step-avoid-regexp", false, error); 353 if (value_sp && value_sp->GetType() == OptionValue::eTypeRegex) { 354 OptionValueRegex *re = value_sp->GetAsRegex(); 355 if (re) { 356 avoid_regex = re->GetCurrentValue(); 357 } 358 } 359 } 360 } 361 if (avoid_regex && sc.symbol != nullptr) { 362 const char *function_name = 363 sc.GetFunctionName(Mangled::ePreferDemangledWithoutArguments) 364 .GetCString(); 365 if (function_name && avoid_regex->Execute(function_name)) { 366 // skip this source line 367 return true; 368 } 369 } 370 // don't skip this source line 371 return false; 372 } 373 374 bool Disassembler::PrintInstructions(Disassembler *disasm_ptr, 375 Debugger &debugger, const ArchSpec &arch, 376 const ExecutionContext &exe_ctx, 377 uint32_t num_instructions, 378 bool mixed_source_and_assembly, 379 uint32_t num_mixed_context_lines, 380 uint32_t options, Stream &strm) { 381 // We got some things disassembled... 382 size_t num_instructions_found = disasm_ptr->GetInstructionList().GetSize(); 383 384 if (num_instructions > 0 && num_instructions < num_instructions_found) 385 num_instructions_found = num_instructions; 386 387 const uint32_t max_opcode_byte_size = 388 disasm_ptr->GetInstructionList().GetMaxOpcocdeByteSize(); 389 SymbolContext sc; 390 SymbolContext prev_sc; 391 AddressRange current_source_line_range; 392 const Address *pc_addr_ptr = nullptr; 393 StackFrame *frame = exe_ctx.GetFramePtr(); 394 395 TargetSP target_sp(exe_ctx.GetTargetSP()); 396 SourceManager &source_manager = 397 target_sp ? target_sp->GetSourceManager() : debugger.GetSourceManager(); 398 399 if (frame) { 400 pc_addr_ptr = &frame->GetFrameCodeAddress(); 401 } 402 const uint32_t scope = 403 eSymbolContextLineEntry | eSymbolContextFunction | eSymbolContextSymbol; 404 const bool use_inline_block_range = false; 405 406 const FormatEntity::Entry *disassembly_format = nullptr; 407 FormatEntity::Entry format; 408 if (exe_ctx.HasTargetScope()) { 409 disassembly_format = 410 exe_ctx.GetTargetRef().GetDebugger().GetDisassemblyFormat(); 411 } else { 412 FormatEntity::Parse("${addr}: ", format); 413 disassembly_format = &format; 414 } 415 416 // First pass: step through the list of instructions, find how long the 417 // initial addresses strings are, insert padding in the second pass so the 418 // opcodes all line up nicely. 419 420 // Also build up the source line mapping if this is mixed source & assembly 421 // mode. Calculate the source line for each assembly instruction (eliding 422 // inlined functions which the user wants to skip). 423 424 std::map<FileSpec, std::set<uint32_t>> source_lines_seen; 425 Symbol *previous_symbol = nullptr; 426 427 size_t address_text_size = 0; 428 for (size_t i = 0; i < num_instructions_found; ++i) { 429 Instruction *inst = 430 disasm_ptr->GetInstructionList().GetInstructionAtIndex(i).get(); 431 if (inst) { 432 const Address &addr = inst->GetAddress(); 433 ModuleSP module_sp(addr.GetModule()); 434 if (module_sp) { 435 const SymbolContextItem resolve_mask = eSymbolContextFunction | 436 eSymbolContextSymbol | 437 eSymbolContextLineEntry; 438 uint32_t resolved_mask = 439 module_sp->ResolveSymbolContextForAddress(addr, resolve_mask, sc); 440 if (resolved_mask) { 441 StreamString strmstr; 442 Debugger::FormatDisassemblerAddress(disassembly_format, &sc, nullptr, 443 &exe_ctx, &addr, strmstr); 444 size_t cur_line = strmstr.GetSizeOfLastLine(); 445 if (cur_line > address_text_size) 446 address_text_size = cur_line; 447 448 // Add entries to our "source_lines_seen" map+set which list which 449 // sources lines occur in this disassembly session. We will print 450 // lines of context around a source line, but we don't want to print 451 // a source line that has a line table entry of its own - we'll leave 452 // that source line to be printed when it actually occurs in the 453 // disassembly. 454 455 if (mixed_source_and_assembly && sc.line_entry.IsValid()) { 456 if (sc.symbol != previous_symbol) { 457 SourceLine decl_line = GetFunctionDeclLineEntry(sc); 458 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, decl_line)) 459 AddLineToSourceLineTables(decl_line, source_lines_seen); 460 } 461 if (sc.line_entry.IsValid()) { 462 SourceLine this_line; 463 this_line.file = sc.line_entry.file; 464 this_line.line = sc.line_entry.line; 465 this_line.column = sc.line_entry.column; 466 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, this_line)) 467 AddLineToSourceLineTables(this_line, source_lines_seen); 468 } 469 } 470 } 471 sc.Clear(false); 472 } 473 } 474 } 475 476 previous_symbol = nullptr; 477 SourceLine previous_line; 478 for (size_t i = 0; i < num_instructions_found; ++i) { 479 Instruction *inst = 480 disasm_ptr->GetInstructionList().GetInstructionAtIndex(i).get(); 481 482 if (inst) { 483 const Address &addr = inst->GetAddress(); 484 const bool inst_is_at_pc = pc_addr_ptr && addr == *pc_addr_ptr; 485 SourceLinesToDisplay source_lines_to_display; 486 487 prev_sc = sc; 488 489 ModuleSP module_sp(addr.GetModule()); 490 if (module_sp) { 491 uint32_t resolved_mask = module_sp->ResolveSymbolContextForAddress( 492 addr, eSymbolContextEverything, sc); 493 if (resolved_mask) { 494 if (mixed_source_and_assembly) { 495 496 // If we've started a new function (non-inlined), print all of the 497 // source lines from the function declaration until the first line 498 // table entry - typically the opening curly brace of the function. 499 if (previous_symbol != sc.symbol) { 500 // The default disassembly format puts an extra blank line 501 // between functions - so when we're displaying the source 502 // context for a function, we don't want to add a blank line 503 // after the source context or we'll end up with two of them. 504 if (previous_symbol != nullptr) 505 source_lines_to_display.print_source_context_end_eol = false; 506 507 previous_symbol = sc.symbol; 508 if (sc.function && sc.line_entry.IsValid()) { 509 LineEntry prologue_end_line = sc.line_entry; 510 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, 511 prologue_end_line)) { 512 FileSpec func_decl_file; 513 uint32_t func_decl_line; 514 sc.function->GetStartLineSourceInfo(func_decl_file, 515 func_decl_line); 516 if (func_decl_file == prologue_end_line.file || 517 func_decl_file == prologue_end_line.original_file) { 518 // Add all the lines between the function declaration and 519 // the first non-prologue source line to the list of lines 520 // to print. 521 for (uint32_t lineno = func_decl_line; 522 lineno <= prologue_end_line.line; lineno++) { 523 SourceLine this_line; 524 this_line.file = func_decl_file; 525 this_line.line = lineno; 526 source_lines_to_display.lines.push_back(this_line); 527 } 528 // Mark the last line as the "current" one. Usually this 529 // is the open curly brace. 530 if (source_lines_to_display.lines.size() > 0) 531 source_lines_to_display.current_source_line = 532 source_lines_to_display.lines.size() - 1; 533 } 534 } 535 } 536 sc.GetAddressRange(scope, 0, use_inline_block_range, 537 current_source_line_range); 538 } 539 540 // If we've left a previous source line's address range, print a 541 // new source line 542 if (!current_source_line_range.ContainsFileAddress(addr)) { 543 sc.GetAddressRange(scope, 0, use_inline_block_range, 544 current_source_line_range); 545 546 if (sc != prev_sc && sc.comp_unit && sc.line_entry.IsValid()) { 547 SourceLine this_line; 548 this_line.file = sc.line_entry.file; 549 this_line.line = sc.line_entry.line; 550 551 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, 552 this_line)) { 553 // Only print this source line if it is different from the 554 // last source line we printed. There may have been inlined 555 // functions between these lines that we elided, resulting in 556 // the same line being printed twice in a row for a 557 // contiguous block of assembly instructions. 558 if (this_line != previous_line) { 559 560 std::vector<uint32_t> previous_lines; 561 for (uint32_t i = 0; 562 i < num_mixed_context_lines && 563 (this_line.line - num_mixed_context_lines) > 0; 564 i++) { 565 uint32_t line = 566 this_line.line - num_mixed_context_lines + i; 567 auto pos = source_lines_seen.find(this_line.file); 568 if (pos != source_lines_seen.end()) { 569 if (pos->second.count(line) == 1) { 570 previous_lines.clear(); 571 } else { 572 previous_lines.push_back(line); 573 } 574 } 575 } 576 for (size_t i = 0; i < previous_lines.size(); i++) { 577 SourceLine previous_line; 578 previous_line.file = this_line.file; 579 previous_line.line = previous_lines[i]; 580 auto pos = source_lines_seen.find(previous_line.file); 581 if (pos != source_lines_seen.end()) { 582 pos->second.insert(previous_line.line); 583 } 584 source_lines_to_display.lines.push_back(previous_line); 585 } 586 587 source_lines_to_display.lines.push_back(this_line); 588 source_lines_to_display.current_source_line = 589 source_lines_to_display.lines.size() - 1; 590 591 for (uint32_t i = 0; i < num_mixed_context_lines; i++) { 592 SourceLine next_line; 593 next_line.file = this_line.file; 594 next_line.line = this_line.line + i + 1; 595 auto pos = source_lines_seen.find(next_line.file); 596 if (pos != source_lines_seen.end()) { 597 if (pos->second.count(next_line.line) == 1) 598 break; 599 pos->second.insert(next_line.line); 600 } 601 source_lines_to_display.lines.push_back(next_line); 602 } 603 } 604 previous_line = this_line; 605 } 606 } 607 } 608 } 609 } else { 610 sc.Clear(true); 611 } 612 } 613 614 if (source_lines_to_display.lines.size() > 0) { 615 strm.EOL(); 616 for (size_t idx = 0; idx < source_lines_to_display.lines.size(); 617 idx++) { 618 SourceLine ln = source_lines_to_display.lines[idx]; 619 const char *line_highlight = ""; 620 if (inst_is_at_pc && (options & eOptionMarkPCSourceLine)) { 621 line_highlight = "->"; 622 } else if (idx == source_lines_to_display.current_source_line) { 623 line_highlight = "**"; 624 } 625 source_manager.DisplaySourceLinesWithLineNumbers( 626 ln.file, ln.line, ln.column, 0, 0, line_highlight, &strm); 627 } 628 if (source_lines_to_display.print_source_context_end_eol) 629 strm.EOL(); 630 } 631 632 const bool show_bytes = (options & eOptionShowBytes) != 0; 633 inst->Dump(&strm, max_opcode_byte_size, true, show_bytes, &exe_ctx, &sc, 634 &prev_sc, nullptr, address_text_size); 635 strm.EOL(); 636 } else { 637 break; 638 } 639 } 640 641 return true; 642 } 643 644 bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 645 const char *plugin_name, const char *flavor, 646 const ExecutionContext &exe_ctx, 647 uint32_t num_instructions, 648 bool mixed_source_and_assembly, 649 uint32_t num_mixed_context_lines, 650 uint32_t options, Stream &strm) { 651 AddressRange range; 652 StackFrame *frame = exe_ctx.GetFramePtr(); 653 if (frame) { 654 SymbolContext sc( 655 frame->GetSymbolContext(eSymbolContextFunction | eSymbolContextSymbol)); 656 if (sc.function) { 657 range = sc.function->GetAddressRange(); 658 } else if (sc.symbol && sc.symbol->ValueIsAddress()) { 659 range.GetBaseAddress() = sc.symbol->GetAddressRef(); 660 range.SetByteSize(sc.symbol->GetByteSize()); 661 } else { 662 range.GetBaseAddress() = frame->GetFrameCodeAddress(); 663 } 664 665 if (range.GetBaseAddress().IsValid() && range.GetByteSize() == 0) 666 range.SetByteSize(DEFAULT_DISASM_BYTE_SIZE); 667 } 668 669 return Disassemble(debugger, arch, plugin_name, flavor, exe_ctx, range, 670 num_instructions, mixed_source_and_assembly, 671 num_mixed_context_lines, options, strm); 672 } 673 674 Instruction::Instruction(const Address &address, AddressClass addr_class) 675 : m_address(address), m_address_class(addr_class), m_opcode(), 676 m_calculated_strings(false) {} 677 678 Instruction::~Instruction() = default; 679 680 AddressClass Instruction::GetAddressClass() { 681 if (m_address_class == AddressClass::eInvalid) 682 m_address_class = m_address.GetAddressClass(); 683 return m_address_class; 684 } 685 686 void Instruction::Dump(lldb_private::Stream *s, uint32_t max_opcode_byte_size, 687 bool show_address, bool show_bytes, 688 const ExecutionContext *exe_ctx, 689 const SymbolContext *sym_ctx, 690 const SymbolContext *prev_sym_ctx, 691 const FormatEntity::Entry *disassembly_addr_format, 692 size_t max_address_text_size) { 693 size_t opcode_column_width = 7; 694 const size_t operand_column_width = 25; 695 696 CalculateMnemonicOperandsAndCommentIfNeeded(exe_ctx); 697 698 StreamString ss; 699 700 if (show_address) { 701 Debugger::FormatDisassemblerAddress(disassembly_addr_format, sym_ctx, 702 prev_sym_ctx, exe_ctx, &m_address, ss); 703 ss.FillLastLineToColumn(max_address_text_size, ' '); 704 } 705 706 if (show_bytes) { 707 if (m_opcode.GetType() == Opcode::eTypeBytes) { 708 // x86_64 and i386 are the only ones that use bytes right now so pad out 709 // the byte dump to be able to always show 15 bytes (3 chars each) plus a 710 // space 711 if (max_opcode_byte_size > 0) 712 m_opcode.Dump(&ss, max_opcode_byte_size * 3 + 1); 713 else 714 m_opcode.Dump(&ss, 15 * 3 + 1); 715 } else { 716 // Else, we have ARM or MIPS which can show up to a uint32_t 0x00000000 717 // (10 spaces) plus two for padding... 718 if (max_opcode_byte_size > 0) 719 m_opcode.Dump(&ss, max_opcode_byte_size * 3 + 1); 720 else 721 m_opcode.Dump(&ss, 12); 722 } 723 } 724 725 const size_t opcode_pos = ss.GetSizeOfLastLine(); 726 727 // The default opcode size of 7 characters is plenty for most architectures 728 // but some like arm can pull out the occasional vqrshrun.s16. We won't get 729 // consistent column spacing in these cases, unfortunately. 730 if (m_opcode_name.length() >= opcode_column_width) { 731 opcode_column_width = m_opcode_name.length() + 1; 732 } 733 734 ss.PutCString(m_opcode_name); 735 ss.FillLastLineToColumn(opcode_pos + opcode_column_width, ' '); 736 ss.PutCString(m_mnemonics); 737 738 if (!m_comment.empty()) { 739 ss.FillLastLineToColumn( 740 opcode_pos + opcode_column_width + operand_column_width, ' '); 741 ss.PutCString(" ; "); 742 ss.PutCString(m_comment); 743 } 744 s->PutCString(ss.GetString()); 745 } 746 747 bool Instruction::DumpEmulation(const ArchSpec &arch) { 748 std::unique_ptr<EmulateInstruction> insn_emulator_up( 749 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr)); 750 if (insn_emulator_up) { 751 insn_emulator_up->SetInstruction(GetOpcode(), GetAddress(), nullptr); 752 return insn_emulator_up->EvaluateInstruction(0); 753 } 754 755 return false; 756 } 757 758 bool Instruction::CanSetBreakpoint () { 759 return !HasDelaySlot(); 760 } 761 762 bool Instruction::HasDelaySlot() { 763 // Default is false. 764 return false; 765 } 766 767 OptionValueSP Instruction::ReadArray(FILE *in_file, Stream *out_stream, 768 OptionValue::Type data_type) { 769 bool done = false; 770 char buffer[1024]; 771 772 auto option_value_sp = std::make_shared<OptionValueArray>(1u << data_type); 773 774 int idx = 0; 775 while (!done) { 776 if (!fgets(buffer, 1023, in_file)) { 777 out_stream->Printf( 778 "Instruction::ReadArray: Error reading file (fgets).\n"); 779 option_value_sp.reset(); 780 return option_value_sp; 781 } 782 783 std::string line(buffer); 784 785 size_t len = line.size(); 786 if (line[len - 1] == '\n') { 787 line[len - 1] = '\0'; 788 line.resize(len - 1); 789 } 790 791 if ((line.size() == 1) && line[0] == ']') { 792 done = true; 793 line.clear(); 794 } 795 796 if (!line.empty()) { 797 std::string value; 798 static RegularExpression g_reg_exp( 799 llvm::StringRef("^[ \t]*([^ \t]+)[ \t]*$")); 800 llvm::SmallVector<llvm::StringRef, 2> matches; 801 if (g_reg_exp.Execute(line, &matches)) 802 value = matches[1].str(); 803 else 804 value = line; 805 806 OptionValueSP data_value_sp; 807 switch (data_type) { 808 case OptionValue::eTypeUInt64: 809 data_value_sp = std::make_shared<OptionValueUInt64>(0, 0); 810 data_value_sp->SetValueFromString(value); 811 break; 812 // Other types can be added later as needed. 813 default: 814 data_value_sp = std::make_shared<OptionValueString>(value.c_str(), ""); 815 break; 816 } 817 818 option_value_sp->GetAsArray()->InsertValue(idx, data_value_sp); 819 ++idx; 820 } 821 } 822 823 return option_value_sp; 824 } 825 826 OptionValueSP Instruction::ReadDictionary(FILE *in_file, Stream *out_stream) { 827 bool done = false; 828 char buffer[1024]; 829 830 auto option_value_sp = std::make_shared<OptionValueDictionary>(); 831 static ConstString encoding_key("data_encoding"); 832 OptionValue::Type data_type = OptionValue::eTypeInvalid; 833 834 while (!done) { 835 // Read the next line in the file 836 if (!fgets(buffer, 1023, in_file)) { 837 out_stream->Printf( 838 "Instruction::ReadDictionary: Error reading file (fgets).\n"); 839 option_value_sp.reset(); 840 return option_value_sp; 841 } 842 843 // Check to see if the line contains the end-of-dictionary marker ("}") 844 std::string line(buffer); 845 846 size_t len = line.size(); 847 if (line[len - 1] == '\n') { 848 line[len - 1] = '\0'; 849 line.resize(len - 1); 850 } 851 852 if ((line.size() == 1) && (line[0] == '}')) { 853 done = true; 854 line.clear(); 855 } 856 857 // Try to find a key-value pair in the current line and add it to the 858 // dictionary. 859 if (!line.empty()) { 860 static RegularExpression g_reg_exp(llvm::StringRef( 861 "^[ \t]*([a-zA-Z_][a-zA-Z0-9_]*)[ \t]*=[ \t]*(.*)[ \t]*$")); 862 863 llvm::SmallVector<llvm::StringRef, 3> matches; 864 865 bool reg_exp_success = g_reg_exp.Execute(line, &matches); 866 std::string key; 867 std::string value; 868 if (reg_exp_success) { 869 key = matches[1].str(); 870 value = matches[2].str(); 871 } else { 872 out_stream->Printf("Instruction::ReadDictionary: Failure executing " 873 "regular expression.\n"); 874 option_value_sp.reset(); 875 return option_value_sp; 876 } 877 878 ConstString const_key(key.c_str()); 879 // Check value to see if it's the start of an array or dictionary. 880 881 lldb::OptionValueSP value_sp; 882 assert(value.empty() == false); 883 assert(key.empty() == false); 884 885 if (value[0] == '{') { 886 assert(value.size() == 1); 887 // value is a dictionary 888 value_sp = ReadDictionary(in_file, out_stream); 889 if (!value_sp) { 890 option_value_sp.reset(); 891 return option_value_sp; 892 } 893 } else if (value[0] == '[') { 894 assert(value.size() == 1); 895 // value is an array 896 value_sp = ReadArray(in_file, out_stream, data_type); 897 if (!value_sp) { 898 option_value_sp.reset(); 899 return option_value_sp; 900 } 901 // We've used the data_type to read an array; re-set the type to 902 // Invalid 903 data_type = OptionValue::eTypeInvalid; 904 } else if ((value[0] == '0') && (value[1] == 'x')) { 905 value_sp = std::make_shared<OptionValueUInt64>(0, 0); 906 value_sp->SetValueFromString(value); 907 } else { 908 size_t len = value.size(); 909 if ((value[0] == '"') && (value[len - 1] == '"')) 910 value = value.substr(1, len - 2); 911 value_sp = std::make_shared<OptionValueString>(value.c_str(), ""); 912 } 913 914 if (const_key == encoding_key) { 915 // A 'data_encoding=..." is NOT a normal key-value pair; it is meta-data 916 // indicating the 917 // data type of an upcoming array (usually the next bit of data to be 918 // read in). 919 if (strcmp(value.c_str(), "uint32_t") == 0) 920 data_type = OptionValue::eTypeUInt64; 921 } else 922 option_value_sp->GetAsDictionary()->SetValueForKey(const_key, value_sp, 923 false); 924 } 925 } 926 927 return option_value_sp; 928 } 929 930 bool Instruction::TestEmulation(Stream *out_stream, const char *file_name) { 931 if (!out_stream) 932 return false; 933 934 if (!file_name) { 935 out_stream->Printf("Instruction::TestEmulation: Missing file_name."); 936 return false; 937 } 938 FILE *test_file = FileSystem::Instance().Fopen(file_name, "r"); 939 if (!test_file) { 940 out_stream->Printf( 941 "Instruction::TestEmulation: Attempt to open test file failed."); 942 return false; 943 } 944 945 char buffer[256]; 946 if (!fgets(buffer, 255, test_file)) { 947 out_stream->Printf( 948 "Instruction::TestEmulation: Error reading first line of test file.\n"); 949 fclose(test_file); 950 return false; 951 } 952 953 if (strncmp(buffer, "InstructionEmulationState={", 27) != 0) { 954 out_stream->Printf("Instructin::TestEmulation: Test file does not contain " 955 "emulation state dictionary\n"); 956 fclose(test_file); 957 return false; 958 } 959 960 // Read all the test information from the test file into an 961 // OptionValueDictionary. 962 963 OptionValueSP data_dictionary_sp(ReadDictionary(test_file, out_stream)); 964 if (!data_dictionary_sp) { 965 out_stream->Printf( 966 "Instruction::TestEmulation: Error reading Dictionary Object.\n"); 967 fclose(test_file); 968 return false; 969 } 970 971 fclose(test_file); 972 973 OptionValueDictionary *data_dictionary = 974 data_dictionary_sp->GetAsDictionary(); 975 static ConstString description_key("assembly_string"); 976 static ConstString triple_key("triple"); 977 978 OptionValueSP value_sp = data_dictionary->GetValueForKey(description_key); 979 980 if (!value_sp) { 981 out_stream->Printf("Instruction::TestEmulation: Test file does not " 982 "contain description string.\n"); 983 return false; 984 } 985 986 SetDescription(value_sp->GetStringValue()); 987 988 value_sp = data_dictionary->GetValueForKey(triple_key); 989 if (!value_sp) { 990 out_stream->Printf( 991 "Instruction::TestEmulation: Test file does not contain triple.\n"); 992 return false; 993 } 994 995 ArchSpec arch; 996 arch.SetTriple(llvm::Triple(value_sp->GetStringValue())); 997 998 bool success = false; 999 std::unique_ptr<EmulateInstruction> insn_emulator_up( 1000 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr)); 1001 if (insn_emulator_up) 1002 success = 1003 insn_emulator_up->TestEmulation(out_stream, arch, data_dictionary); 1004 1005 if (success) 1006 out_stream->Printf("Emulation test succeeded."); 1007 else 1008 out_stream->Printf("Emulation test failed."); 1009 1010 return success; 1011 } 1012 1013 bool Instruction::Emulate( 1014 const ArchSpec &arch, uint32_t evaluate_options, void *baton, 1015 EmulateInstruction::ReadMemoryCallback read_mem_callback, 1016 EmulateInstruction::WriteMemoryCallback write_mem_callback, 1017 EmulateInstruction::ReadRegisterCallback read_reg_callback, 1018 EmulateInstruction::WriteRegisterCallback write_reg_callback) { 1019 std::unique_ptr<EmulateInstruction> insn_emulator_up( 1020 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr)); 1021 if (insn_emulator_up) { 1022 insn_emulator_up->SetBaton(baton); 1023 insn_emulator_up->SetCallbacks(read_mem_callback, write_mem_callback, 1024 read_reg_callback, write_reg_callback); 1025 insn_emulator_up->SetInstruction(GetOpcode(), GetAddress(), nullptr); 1026 return insn_emulator_up->EvaluateInstruction(evaluate_options); 1027 } 1028 1029 return false; 1030 } 1031 1032 uint32_t Instruction::GetData(DataExtractor &data) { 1033 return m_opcode.GetData(data); 1034 } 1035 1036 InstructionList::InstructionList() : m_instructions() {} 1037 1038 InstructionList::~InstructionList() = default; 1039 1040 size_t InstructionList::GetSize() const { return m_instructions.size(); } 1041 1042 uint32_t InstructionList::GetMaxOpcocdeByteSize() const { 1043 uint32_t max_inst_size = 0; 1044 collection::const_iterator pos, end; 1045 for (pos = m_instructions.begin(), end = m_instructions.end(); pos != end; 1046 ++pos) { 1047 uint32_t inst_size = (*pos)->GetOpcode().GetByteSize(); 1048 if (max_inst_size < inst_size) 1049 max_inst_size = inst_size; 1050 } 1051 return max_inst_size; 1052 } 1053 1054 InstructionSP InstructionList::GetInstructionAtIndex(size_t idx) const { 1055 InstructionSP inst_sp; 1056 if (idx < m_instructions.size()) 1057 inst_sp = m_instructions[idx]; 1058 return inst_sp; 1059 } 1060 1061 void InstructionList::Dump(Stream *s, bool show_address, bool show_bytes, 1062 const ExecutionContext *exe_ctx) { 1063 const uint32_t max_opcode_byte_size = GetMaxOpcocdeByteSize(); 1064 collection::const_iterator pos, begin, end; 1065 1066 const FormatEntity::Entry *disassembly_format = nullptr; 1067 FormatEntity::Entry format; 1068 if (exe_ctx && exe_ctx->HasTargetScope()) { 1069 disassembly_format = 1070 exe_ctx->GetTargetRef().GetDebugger().GetDisassemblyFormat(); 1071 } else { 1072 FormatEntity::Parse("${addr}: ", format); 1073 disassembly_format = &format; 1074 } 1075 1076 for (begin = m_instructions.begin(), end = m_instructions.end(), pos = begin; 1077 pos != end; ++pos) { 1078 if (pos != begin) 1079 s->EOL(); 1080 (*pos)->Dump(s, max_opcode_byte_size, show_address, show_bytes, exe_ctx, 1081 nullptr, nullptr, disassembly_format, 0); 1082 } 1083 } 1084 1085 void InstructionList::Clear() { m_instructions.clear(); } 1086 1087 void InstructionList::Append(lldb::InstructionSP &inst_sp) { 1088 if (inst_sp) 1089 m_instructions.push_back(inst_sp); 1090 } 1091 1092 uint32_t 1093 InstructionList::GetIndexOfNextBranchInstruction(uint32_t start, 1094 Target &target, 1095 bool ignore_calls) const { 1096 size_t num_instructions = m_instructions.size(); 1097 1098 uint32_t next_branch = UINT32_MAX; 1099 size_t i; 1100 for (i = start; i < num_instructions; i++) { 1101 if (m_instructions[i]->DoesBranch()) { 1102 if (ignore_calls && m_instructions[i]->IsCall()) 1103 continue; 1104 next_branch = i; 1105 break; 1106 } 1107 } 1108 1109 // Hexagon needs the first instruction of the packet with the branch. Go 1110 // backwards until we find an instruction marked end-of-packet, or until we 1111 // hit start. 1112 if (target.GetArchitecture().GetTriple().getArch() == llvm::Triple::hexagon) { 1113 // If we didn't find a branch, find the last packet start. 1114 if (next_branch == UINT32_MAX) { 1115 i = num_instructions - 1; 1116 } 1117 1118 while (i > start) { 1119 --i; 1120 1121 Status error; 1122 uint32_t inst_bytes; 1123 bool prefer_file_cache = false; // Read from process if process is running 1124 lldb::addr_t load_addr = LLDB_INVALID_ADDRESS; 1125 target.ReadMemory(m_instructions[i]->GetAddress(), prefer_file_cache, 1126 &inst_bytes, sizeof(inst_bytes), error, &load_addr); 1127 // If we have an error reading memory, return start 1128 if (!error.Success()) 1129 return start; 1130 // check if this is the last instruction in a packet bits 15:14 will be 1131 // 11b or 00b for a duplex 1132 if (((inst_bytes & 0xC000) == 0xC000) || 1133 ((inst_bytes & 0xC000) == 0x0000)) { 1134 // instruction after this should be the start of next packet 1135 next_branch = i + 1; 1136 break; 1137 } 1138 } 1139 1140 if (next_branch == UINT32_MAX) { 1141 // We couldn't find the previous packet, so return start 1142 next_branch = start; 1143 } 1144 } 1145 return next_branch; 1146 } 1147 1148 uint32_t 1149 InstructionList::GetIndexOfInstructionAtAddress(const Address &address) { 1150 size_t num_instructions = m_instructions.size(); 1151 uint32_t index = UINT32_MAX; 1152 for (size_t i = 0; i < num_instructions; i++) { 1153 if (m_instructions[i]->GetAddress() == address) { 1154 index = i; 1155 break; 1156 } 1157 } 1158 return index; 1159 } 1160 1161 uint32_t 1162 InstructionList::GetIndexOfInstructionAtLoadAddress(lldb::addr_t load_addr, 1163 Target &target) { 1164 Address address; 1165 address.SetLoadAddress(load_addr, &target); 1166 return GetIndexOfInstructionAtAddress(address); 1167 } 1168 1169 size_t Disassembler::ParseInstructions(const ExecutionContext *exe_ctx, 1170 const AddressRange &range, 1171 Stream *error_strm_ptr, 1172 bool prefer_file_cache) { 1173 if (exe_ctx) { 1174 Target *target = exe_ctx->GetTargetPtr(); 1175 const addr_t byte_size = range.GetByteSize(); 1176 if (target == nullptr || byte_size == 0 || 1177 !range.GetBaseAddress().IsValid()) 1178 return 0; 1179 1180 auto data_sp = std::make_shared<DataBufferHeap>(byte_size, '\0'); 1181 1182 Status error; 1183 lldb::addr_t load_addr = LLDB_INVALID_ADDRESS; 1184 const size_t bytes_read = target->ReadMemory( 1185 range.GetBaseAddress(), prefer_file_cache, data_sp->GetBytes(), 1186 data_sp->GetByteSize(), error, &load_addr); 1187 1188 if (bytes_read > 0) { 1189 if (bytes_read != data_sp->GetByteSize()) 1190 data_sp->SetByteSize(bytes_read); 1191 DataExtractor data(data_sp, m_arch.GetByteOrder(), 1192 m_arch.GetAddressByteSize()); 1193 const bool data_from_file = load_addr == LLDB_INVALID_ADDRESS; 1194 return DecodeInstructions(range.GetBaseAddress(), data, 0, UINT32_MAX, 1195 false, data_from_file); 1196 } else if (error_strm_ptr) { 1197 const char *error_cstr = error.AsCString(); 1198 if (error_cstr) { 1199 error_strm_ptr->Printf("error: %s\n", error_cstr); 1200 } 1201 } 1202 } else if (error_strm_ptr) { 1203 error_strm_ptr->PutCString("error: invalid execution context\n"); 1204 } 1205 return 0; 1206 } 1207 1208 size_t Disassembler::ParseInstructions(const ExecutionContext *exe_ctx, 1209 const Address &start, 1210 uint32_t num_instructions, 1211 bool prefer_file_cache) { 1212 m_instruction_list.Clear(); 1213 1214 if (exe_ctx == nullptr || num_instructions == 0 || !start.IsValid()) 1215 return 0; 1216 1217 Target *target = exe_ctx->GetTargetPtr(); 1218 // Calculate the max buffer size we will need in order to disassemble 1219 const addr_t byte_size = num_instructions * m_arch.GetMaximumOpcodeByteSize(); 1220 1221 if (target == nullptr || byte_size == 0) 1222 return 0; 1223 1224 DataBufferHeap *heap_buffer = new DataBufferHeap(byte_size, '\0'); 1225 DataBufferSP data_sp(heap_buffer); 1226 1227 Status error; 1228 lldb::addr_t load_addr = LLDB_INVALID_ADDRESS; 1229 const size_t bytes_read = 1230 target->ReadMemory(start, prefer_file_cache, heap_buffer->GetBytes(), 1231 byte_size, error, &load_addr); 1232 1233 const bool data_from_file = load_addr == LLDB_INVALID_ADDRESS; 1234 1235 if (bytes_read == 0) 1236 return 0; 1237 DataExtractor data(data_sp, m_arch.GetByteOrder(), 1238 m_arch.GetAddressByteSize()); 1239 1240 const bool append_instructions = true; 1241 DecodeInstructions(start, data, 0, num_instructions, append_instructions, 1242 data_from_file); 1243 1244 return m_instruction_list.GetSize(); 1245 } 1246 1247 // Disassembler copy constructor 1248 Disassembler::Disassembler(const ArchSpec &arch, const char *flavor) 1249 : m_arch(arch), m_instruction_list(), m_base_addr(LLDB_INVALID_ADDRESS), 1250 m_flavor() { 1251 if (flavor == nullptr) 1252 m_flavor.assign("default"); 1253 else 1254 m_flavor.assign(flavor); 1255 1256 // If this is an arm variant that can only include thumb (T16, T32) 1257 // instructions, force the arch triple to be "thumbv.." instead of "armv..." 1258 if (arch.IsAlwaysThumbInstructions()) { 1259 std::string thumb_arch_name(arch.GetTriple().getArchName().str()); 1260 // Replace "arm" with "thumb" so we get all thumb variants correct 1261 if (thumb_arch_name.size() > 3) { 1262 thumb_arch_name.erase(0, 3); 1263 thumb_arch_name.insert(0, "thumb"); 1264 } 1265 m_arch.SetTriple(thumb_arch_name.c_str()); 1266 } 1267 } 1268 1269 Disassembler::~Disassembler() = default; 1270 1271 InstructionList &Disassembler::GetInstructionList() { 1272 return m_instruction_list; 1273 } 1274 1275 const InstructionList &Disassembler::GetInstructionList() const { 1276 return m_instruction_list; 1277 } 1278 1279 // Class PseudoInstruction 1280 1281 PseudoInstruction::PseudoInstruction() 1282 : Instruction(Address(), AddressClass::eUnknown), m_description() {} 1283 1284 PseudoInstruction::~PseudoInstruction() = default; 1285 1286 bool PseudoInstruction::DoesBranch() { 1287 // This is NOT a valid question for a pseudo instruction. 1288 return false; 1289 } 1290 1291 bool PseudoInstruction::HasDelaySlot() { 1292 // This is NOT a valid question for a pseudo instruction. 1293 return false; 1294 } 1295 1296 size_t PseudoInstruction::Decode(const lldb_private::Disassembler &disassembler, 1297 const lldb_private::DataExtractor &data, 1298 lldb::offset_t data_offset) { 1299 return m_opcode.GetByteSize(); 1300 } 1301 1302 void PseudoInstruction::SetOpcode(size_t opcode_size, void *opcode_data) { 1303 if (!opcode_data) 1304 return; 1305 1306 switch (opcode_size) { 1307 case 8: { 1308 uint8_t value8 = *((uint8_t *)opcode_data); 1309 m_opcode.SetOpcode8(value8, eByteOrderInvalid); 1310 break; 1311 } 1312 case 16: { 1313 uint16_t value16 = *((uint16_t *)opcode_data); 1314 m_opcode.SetOpcode16(value16, eByteOrderInvalid); 1315 break; 1316 } 1317 case 32: { 1318 uint32_t value32 = *((uint32_t *)opcode_data); 1319 m_opcode.SetOpcode32(value32, eByteOrderInvalid); 1320 break; 1321 } 1322 case 64: { 1323 uint64_t value64 = *((uint64_t *)opcode_data); 1324 m_opcode.SetOpcode64(value64, eByteOrderInvalid); 1325 break; 1326 } 1327 default: 1328 break; 1329 } 1330 } 1331 1332 void PseudoInstruction::SetDescription(llvm::StringRef description) { 1333 m_description = description; 1334 } 1335 1336 Instruction::Operand Instruction::Operand::BuildRegister(ConstString &r) { 1337 Operand ret; 1338 ret.m_type = Type::Register; 1339 ret.m_register = r; 1340 return ret; 1341 } 1342 1343 Instruction::Operand Instruction::Operand::BuildImmediate(lldb::addr_t imm, 1344 bool neg) { 1345 Operand ret; 1346 ret.m_type = Type::Immediate; 1347 ret.m_immediate = imm; 1348 ret.m_negative = neg; 1349 return ret; 1350 } 1351 1352 Instruction::Operand Instruction::Operand::BuildImmediate(int64_t imm) { 1353 Operand ret; 1354 ret.m_type = Type::Immediate; 1355 if (imm < 0) { 1356 ret.m_immediate = -imm; 1357 ret.m_negative = true; 1358 } else { 1359 ret.m_immediate = imm; 1360 ret.m_negative = false; 1361 } 1362 return ret; 1363 } 1364 1365 Instruction::Operand 1366 Instruction::Operand::BuildDereference(const Operand &ref) { 1367 Operand ret; 1368 ret.m_type = Type::Dereference; 1369 ret.m_children = {ref}; 1370 return ret; 1371 } 1372 1373 Instruction::Operand Instruction::Operand::BuildSum(const Operand &lhs, 1374 const Operand &rhs) { 1375 Operand ret; 1376 ret.m_type = Type::Sum; 1377 ret.m_children = {lhs, rhs}; 1378 return ret; 1379 } 1380 1381 Instruction::Operand Instruction::Operand::BuildProduct(const Operand &lhs, 1382 const Operand &rhs) { 1383 Operand ret; 1384 ret.m_type = Type::Product; 1385 ret.m_children = {lhs, rhs}; 1386 return ret; 1387 } 1388 1389 std::function<bool(const Instruction::Operand &)> 1390 lldb_private::OperandMatchers::MatchBinaryOp( 1391 std::function<bool(const Instruction::Operand &)> base, 1392 std::function<bool(const Instruction::Operand &)> left, 1393 std::function<bool(const Instruction::Operand &)> right) { 1394 return [base, left, right](const Instruction::Operand &op) -> bool { 1395 return (base(op) && op.m_children.size() == 2 && 1396 ((left(op.m_children[0]) && right(op.m_children[1])) || 1397 (left(op.m_children[1]) && right(op.m_children[0])))); 1398 }; 1399 } 1400 1401 std::function<bool(const Instruction::Operand &)> 1402 lldb_private::OperandMatchers::MatchUnaryOp( 1403 std::function<bool(const Instruction::Operand &)> base, 1404 std::function<bool(const Instruction::Operand &)> child) { 1405 return [base, child](const Instruction::Operand &op) -> bool { 1406 return (base(op) && op.m_children.size() == 1 && child(op.m_children[0])); 1407 }; 1408 } 1409 1410 std::function<bool(const Instruction::Operand &)> 1411 lldb_private::OperandMatchers::MatchRegOp(const RegisterInfo &info) { 1412 return [&info](const Instruction::Operand &op) { 1413 return (op.m_type == Instruction::Operand::Type::Register && 1414 (op.m_register == ConstString(info.name) || 1415 op.m_register == ConstString(info.alt_name))); 1416 }; 1417 } 1418 1419 std::function<bool(const Instruction::Operand &)> 1420 lldb_private::OperandMatchers::FetchRegOp(ConstString ®) { 1421 return [®](const Instruction::Operand &op) { 1422 if (op.m_type != Instruction::Operand::Type::Register) { 1423 return false; 1424 } 1425 reg = op.m_register; 1426 return true; 1427 }; 1428 } 1429 1430 std::function<bool(const Instruction::Operand &)> 1431 lldb_private::OperandMatchers::MatchImmOp(int64_t imm) { 1432 return [imm](const Instruction::Operand &op) { 1433 return (op.m_type == Instruction::Operand::Type::Immediate && 1434 ((op.m_negative && op.m_immediate == (uint64_t)-imm) || 1435 (!op.m_negative && op.m_immediate == (uint64_t)imm))); 1436 }; 1437 } 1438 1439 std::function<bool(const Instruction::Operand &)> 1440 lldb_private::OperandMatchers::FetchImmOp(int64_t &imm) { 1441 return [&imm](const Instruction::Operand &op) { 1442 if (op.m_type != Instruction::Operand::Type::Immediate) { 1443 return false; 1444 } 1445 if (op.m_negative) { 1446 imm = -((int64_t)op.m_immediate); 1447 } else { 1448 imm = ((int64_t)op.m_immediate); 1449 } 1450 return true; 1451 }; 1452 } 1453 1454 std::function<bool(const Instruction::Operand &)> 1455 lldb_private::OperandMatchers::MatchOpType(Instruction::Operand::Type type) { 1456 return [type](const Instruction::Operand &op) { return op.m_type == type; }; 1457 } 1458