1 //===-- CommandObjectMemory.cpp ---------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // C Includes 11 #include <inttypes.h> 12 13 // C++ Includes 14 // Other libraries and framework includes 15 #include "clang/AST/Decl.h" 16 17 // Project includes 18 #include "CommandObjectMemory.h" 19 #include "Plugins/ExpressionParser/Clang/ClangPersistentVariables.h" 20 #include "lldb/Core/Debugger.h" 21 #include "lldb/Core/DumpDataExtractor.h" 22 #include "lldb/Core/Module.h" 23 #include "lldb/Core/Section.h" 24 #include "lldb/Core/ValueObjectMemory.h" 25 #include "lldb/DataFormatters/ValueObjectPrinter.h" 26 #include "lldb/Host/OptionParser.h" 27 #include "lldb/Interpreter/CommandInterpreter.h" 28 #include "lldb/Interpreter/CommandReturnObject.h" 29 #include "lldb/Interpreter/OptionArgParser.h" 30 #include "lldb/Interpreter/OptionGroupFormat.h" 31 #include "lldb/Interpreter/OptionGroupOutputFile.h" 32 #include "lldb/Interpreter/OptionGroupValueObjectDisplay.h" 33 #include "lldb/Interpreter/OptionValueString.h" 34 #include "lldb/Interpreter/Options.h" 35 #include "lldb/Symbol/ClangASTContext.h" 36 #include "lldb/Symbol/SymbolFile.h" 37 #include "lldb/Symbol/TypeList.h" 38 #include "lldb/Target/MemoryHistory.h" 39 #include "lldb/Target/MemoryRegionInfo.h" 40 #include "lldb/Target/Process.h" 41 #include "lldb/Target/StackFrame.h" 42 #include "lldb/Target/Thread.h" 43 #include "lldb/Utility/Args.h" 44 #include "lldb/Utility/DataBufferHeap.h" 45 #include "lldb/Utility/DataBufferLLVM.h" 46 #include "lldb/Utility/StreamString.h" 47 48 #include "lldb/lldb-private.h" 49 50 using namespace lldb; 51 using namespace lldb_private; 52 53 static OptionDefinition g_read_memory_options[] = { 54 // clang-format off 55 {LLDB_OPT_SET_1, false, "num-per-line", 'l', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeNumberPerLine, "The number of items per line to display." }, 56 {LLDB_OPT_SET_2, false, "binary", 'b', OptionParser::eNoArgument, nullptr, nullptr, 0, eArgTypeNone, "If true, memory will be saved as binary. If false, the memory is saved save as an ASCII dump that " 57 "uses the format, size, count and number per line settings." }, 58 {LLDB_OPT_SET_3, true , "type", 't', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeNone, "The name of a type to view memory as." }, 59 {LLDB_OPT_SET_3, false, "offset", 'E', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeCount, "How many elements of the specified type to skip before starting to display data." }, 60 {LLDB_OPT_SET_1 | 61 LLDB_OPT_SET_2 | 62 LLDB_OPT_SET_3, false, "force", 'r', OptionParser::eNoArgument, nullptr, nullptr, 0, eArgTypeNone, "Necessary if reading over target.max-memory-read-size bytes." }, 63 // clang-format on 64 }; 65 66 class OptionGroupReadMemory : public OptionGroup { 67 public: 68 OptionGroupReadMemory() 69 : m_num_per_line(1, 1), m_output_as_binary(false), m_view_as_type(), 70 m_offset(0, 0) {} 71 72 ~OptionGroupReadMemory() override = default; 73 74 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 75 return llvm::makeArrayRef(g_read_memory_options); 76 } 77 78 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value, 79 ExecutionContext *execution_context) override { 80 Status error; 81 const int short_option = g_read_memory_options[option_idx].short_option; 82 83 switch (short_option) { 84 case 'l': 85 error = m_num_per_line.SetValueFromString(option_value); 86 if (m_num_per_line.GetCurrentValue() == 0) 87 error.SetErrorStringWithFormat( 88 "invalid value for --num-per-line option '%s'", 89 option_value.str().c_str()); 90 break; 91 92 case 'b': 93 m_output_as_binary = true; 94 break; 95 96 case 't': 97 error = m_view_as_type.SetValueFromString(option_value); 98 break; 99 100 case 'r': 101 m_force = true; 102 break; 103 104 case 'E': 105 error = m_offset.SetValueFromString(option_value); 106 break; 107 108 default: 109 error.SetErrorStringWithFormat("unrecognized short option '%c'", 110 short_option); 111 break; 112 } 113 return error; 114 } 115 116 void OptionParsingStarting(ExecutionContext *execution_context) override { 117 m_num_per_line.Clear(); 118 m_output_as_binary = false; 119 m_view_as_type.Clear(); 120 m_force = false; 121 m_offset.Clear(); 122 } 123 124 Status FinalizeSettings(Target *target, OptionGroupFormat &format_options) { 125 Status error; 126 OptionValueUInt64 &byte_size_value = format_options.GetByteSizeValue(); 127 OptionValueUInt64 &count_value = format_options.GetCountValue(); 128 const bool byte_size_option_set = byte_size_value.OptionWasSet(); 129 const bool num_per_line_option_set = m_num_per_line.OptionWasSet(); 130 const bool count_option_set = format_options.GetCountValue().OptionWasSet(); 131 132 switch (format_options.GetFormat()) { 133 default: 134 break; 135 136 case eFormatBoolean: 137 if (!byte_size_option_set) 138 byte_size_value = 1; 139 if (!num_per_line_option_set) 140 m_num_per_line = 1; 141 if (!count_option_set) 142 format_options.GetCountValue() = 8; 143 break; 144 145 case eFormatCString: 146 break; 147 148 case eFormatInstruction: 149 if (count_option_set) 150 byte_size_value = target->GetArchitecture().GetMaximumOpcodeByteSize(); 151 m_num_per_line = 1; 152 break; 153 154 case eFormatAddressInfo: 155 if (!byte_size_option_set) 156 byte_size_value = target->GetArchitecture().GetAddressByteSize(); 157 m_num_per_line = 1; 158 if (!count_option_set) 159 format_options.GetCountValue() = 8; 160 break; 161 162 case eFormatPointer: 163 byte_size_value = target->GetArchitecture().GetAddressByteSize(); 164 if (!num_per_line_option_set) 165 m_num_per_line = 4; 166 if (!count_option_set) 167 format_options.GetCountValue() = 8; 168 break; 169 170 case eFormatBinary: 171 case eFormatFloat: 172 case eFormatOctal: 173 case eFormatDecimal: 174 case eFormatEnum: 175 case eFormatUnicode16: 176 case eFormatUnicode32: 177 case eFormatUnsigned: 178 case eFormatHexFloat: 179 if (!byte_size_option_set) 180 byte_size_value = 4; 181 if (!num_per_line_option_set) 182 m_num_per_line = 1; 183 if (!count_option_set) 184 format_options.GetCountValue() = 8; 185 break; 186 187 case eFormatBytes: 188 case eFormatBytesWithASCII: 189 if (byte_size_option_set) { 190 if (byte_size_value > 1) 191 error.SetErrorStringWithFormat( 192 "display format (bytes/bytes with ASCII) conflicts with the " 193 "specified byte size %" PRIu64 "\n" 194 "\tconsider using a different display format or don't specify " 195 "the byte size.", 196 byte_size_value.GetCurrentValue()); 197 } else 198 byte_size_value = 1; 199 if (!num_per_line_option_set) 200 m_num_per_line = 16; 201 if (!count_option_set) 202 format_options.GetCountValue() = 32; 203 break; 204 205 case eFormatCharArray: 206 case eFormatChar: 207 case eFormatCharPrintable: 208 if (!byte_size_option_set) 209 byte_size_value = 1; 210 if (!num_per_line_option_set) 211 m_num_per_line = 32; 212 if (!count_option_set) 213 format_options.GetCountValue() = 64; 214 break; 215 216 case eFormatComplex: 217 if (!byte_size_option_set) 218 byte_size_value = 8; 219 if (!num_per_line_option_set) 220 m_num_per_line = 1; 221 if (!count_option_set) 222 format_options.GetCountValue() = 8; 223 break; 224 225 case eFormatComplexInteger: 226 if (!byte_size_option_set) 227 byte_size_value = 8; 228 if (!num_per_line_option_set) 229 m_num_per_line = 1; 230 if (!count_option_set) 231 format_options.GetCountValue() = 8; 232 break; 233 234 case eFormatHex: 235 if (!byte_size_option_set) 236 byte_size_value = 4; 237 if (!num_per_line_option_set) { 238 switch (byte_size_value) { 239 case 1: 240 case 2: 241 m_num_per_line = 8; 242 break; 243 case 4: 244 m_num_per_line = 4; 245 break; 246 case 8: 247 m_num_per_line = 2; 248 break; 249 default: 250 m_num_per_line = 1; 251 break; 252 } 253 } 254 if (!count_option_set) 255 count_value = 8; 256 break; 257 258 case eFormatVectorOfChar: 259 case eFormatVectorOfSInt8: 260 case eFormatVectorOfUInt8: 261 case eFormatVectorOfSInt16: 262 case eFormatVectorOfUInt16: 263 case eFormatVectorOfSInt32: 264 case eFormatVectorOfUInt32: 265 case eFormatVectorOfSInt64: 266 case eFormatVectorOfUInt64: 267 case eFormatVectorOfFloat16: 268 case eFormatVectorOfFloat32: 269 case eFormatVectorOfFloat64: 270 case eFormatVectorOfUInt128: 271 if (!byte_size_option_set) 272 byte_size_value = 128; 273 if (!num_per_line_option_set) 274 m_num_per_line = 1; 275 if (!count_option_set) 276 count_value = 4; 277 break; 278 } 279 return error; 280 } 281 282 bool AnyOptionWasSet() const { 283 return m_num_per_line.OptionWasSet() || m_output_as_binary || 284 m_view_as_type.OptionWasSet() || m_offset.OptionWasSet(); 285 } 286 287 OptionValueUInt64 m_num_per_line; 288 bool m_output_as_binary; 289 OptionValueString m_view_as_type; 290 bool m_force; 291 OptionValueUInt64 m_offset; 292 }; 293 294 //---------------------------------------------------------------------- 295 // Read memory from the inferior process 296 //---------------------------------------------------------------------- 297 class CommandObjectMemoryRead : public CommandObjectParsed { 298 public: 299 CommandObjectMemoryRead(CommandInterpreter &interpreter) 300 : CommandObjectParsed( 301 interpreter, "memory read", 302 "Read from the memory of the current target process.", nullptr, 303 eCommandRequiresTarget | eCommandProcessMustBePaused), 304 m_option_group(), m_format_options(eFormatBytesWithASCII, 1, 8), 305 m_memory_options(), m_outfile_options(), m_varobj_options(), 306 m_next_addr(LLDB_INVALID_ADDRESS), m_prev_byte_size(0), 307 m_prev_format_options(eFormatBytesWithASCII, 1, 8), 308 m_prev_memory_options(), m_prev_outfile_options(), 309 m_prev_varobj_options() { 310 CommandArgumentEntry arg1; 311 CommandArgumentEntry arg2; 312 CommandArgumentData start_addr_arg; 313 CommandArgumentData end_addr_arg; 314 315 // Define the first (and only) variant of this arg. 316 start_addr_arg.arg_type = eArgTypeAddressOrExpression; 317 start_addr_arg.arg_repetition = eArgRepeatPlain; 318 319 // There is only one variant this argument could be; put it into the 320 // argument entry. 321 arg1.push_back(start_addr_arg); 322 323 // Define the first (and only) variant of this arg. 324 end_addr_arg.arg_type = eArgTypeAddressOrExpression; 325 end_addr_arg.arg_repetition = eArgRepeatOptional; 326 327 // There is only one variant this argument could be; put it into the 328 // argument entry. 329 arg2.push_back(end_addr_arg); 330 331 // Push the data for the first argument into the m_arguments vector. 332 m_arguments.push_back(arg1); 333 m_arguments.push_back(arg2); 334 335 // Add the "--format" and "--count" options to group 1 and 3 336 m_option_group.Append(&m_format_options, 337 OptionGroupFormat::OPTION_GROUP_FORMAT | 338 OptionGroupFormat::OPTION_GROUP_COUNT, 339 LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3); 340 m_option_group.Append(&m_format_options, 341 OptionGroupFormat::OPTION_GROUP_GDB_FMT, 342 LLDB_OPT_SET_1 | LLDB_OPT_SET_3); 343 // Add the "--size" option to group 1 and 2 344 m_option_group.Append(&m_format_options, 345 OptionGroupFormat::OPTION_GROUP_SIZE, 346 LLDB_OPT_SET_1 | LLDB_OPT_SET_2); 347 m_option_group.Append(&m_memory_options); 348 m_option_group.Append(&m_outfile_options, LLDB_OPT_SET_ALL, 349 LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3); 350 m_option_group.Append(&m_varobj_options, LLDB_OPT_SET_ALL, LLDB_OPT_SET_3); 351 m_option_group.Finalize(); 352 } 353 354 ~CommandObjectMemoryRead() override = default; 355 356 Options *GetOptions() override { return &m_option_group; } 357 358 const char *GetRepeatCommand(Args ¤t_command_args, 359 uint32_t index) override { 360 return m_cmd_name.c_str(); 361 } 362 363 protected: 364 bool DoExecute(Args &command, CommandReturnObject &result) override { 365 // No need to check "target" for validity as eCommandRequiresTarget ensures 366 // it is valid 367 Target *target = m_exe_ctx.GetTargetPtr(); 368 369 const size_t argc = command.GetArgumentCount(); 370 371 if ((argc == 0 && m_next_addr == LLDB_INVALID_ADDRESS) || argc > 2) { 372 result.AppendErrorWithFormat("%s takes a start address expression with " 373 "an optional end address expression.\n", 374 m_cmd_name.c_str()); 375 result.AppendRawWarning("Expressions should be quoted if they contain " 376 "spaces or other special characters.\n"); 377 result.SetStatus(eReturnStatusFailed); 378 return false; 379 } 380 381 CompilerType clang_ast_type; 382 Status error; 383 384 const char *view_as_type_cstr = 385 m_memory_options.m_view_as_type.GetCurrentValue(); 386 if (view_as_type_cstr && view_as_type_cstr[0]) { 387 // We are viewing memory as a type 388 389 SymbolContext sc; 390 const bool exact_match = false; 391 TypeList type_list; 392 uint32_t reference_count = 0; 393 uint32_t pointer_count = 0; 394 size_t idx; 395 396 #define ALL_KEYWORDS \ 397 KEYWORD("const") \ 398 KEYWORD("volatile") \ 399 KEYWORD("restrict") \ 400 KEYWORD("struct") \ 401 KEYWORD("class") \ 402 KEYWORD("union") 403 404 #define KEYWORD(s) s, 405 static const char *g_keywords[] = {ALL_KEYWORDS}; 406 #undef KEYWORD 407 408 #define KEYWORD(s) (sizeof(s) - 1), 409 static const int g_keyword_lengths[] = {ALL_KEYWORDS}; 410 #undef KEYWORD 411 412 #undef ALL_KEYWORDS 413 414 static size_t g_num_keywords = sizeof(g_keywords) / sizeof(const char *); 415 std::string type_str(view_as_type_cstr); 416 417 // Remove all instances of g_keywords that are followed by spaces 418 for (size_t i = 0; i < g_num_keywords; ++i) { 419 const char *keyword = g_keywords[i]; 420 int keyword_len = g_keyword_lengths[i]; 421 422 idx = 0; 423 while ((idx = type_str.find(keyword, idx)) != std::string::npos) { 424 if (type_str[idx + keyword_len] == ' ' || 425 type_str[idx + keyword_len] == '\t') { 426 type_str.erase(idx, keyword_len + 1); 427 idx = 0; 428 } else { 429 idx += keyword_len; 430 } 431 } 432 } 433 bool done = type_str.empty(); 434 // 435 idx = type_str.find_first_not_of(" \t"); 436 if (idx > 0 && idx != std::string::npos) 437 type_str.erase(0, idx); 438 while (!done) { 439 // Strip trailing spaces 440 if (type_str.empty()) 441 done = true; 442 else { 443 switch (type_str[type_str.size() - 1]) { 444 case '*': 445 ++pointer_count; 446 LLVM_FALLTHROUGH; 447 case ' ': 448 case '\t': 449 type_str.erase(type_str.size() - 1); 450 break; 451 452 case '&': 453 if (reference_count == 0) { 454 reference_count = 1; 455 type_str.erase(type_str.size() - 1); 456 } else { 457 result.AppendErrorWithFormat("invalid type string: '%s'\n", 458 view_as_type_cstr); 459 result.SetStatus(eReturnStatusFailed); 460 return false; 461 } 462 break; 463 464 default: 465 done = true; 466 break; 467 } 468 } 469 } 470 471 llvm::DenseSet<lldb_private::SymbolFile *> searched_symbol_files; 472 ConstString lookup_type_name(type_str.c_str()); 473 StackFrame *frame = m_exe_ctx.GetFramePtr(); 474 if (frame) { 475 sc = frame->GetSymbolContext(eSymbolContextModule); 476 if (sc.module_sp) { 477 sc.module_sp->FindTypes(sc, lookup_type_name, exact_match, 1, 478 searched_symbol_files, type_list); 479 } 480 } 481 if (type_list.GetSize() == 0) { 482 target->GetImages().FindTypes(sc, lookup_type_name, exact_match, 1, 483 searched_symbol_files, type_list); 484 } 485 486 if (type_list.GetSize() == 0 && lookup_type_name.GetCString() && 487 *lookup_type_name.GetCString() == '$') { 488 if (ClangPersistentVariables *persistent_vars = 489 llvm::dyn_cast_or_null<ClangPersistentVariables>( 490 target->GetPersistentExpressionStateForLanguage( 491 lldb::eLanguageTypeC))) { 492 clang::TypeDecl *tdecl = llvm::dyn_cast_or_null<clang::TypeDecl>( 493 persistent_vars->GetPersistentDecl( 494 ConstString(lookup_type_name))); 495 496 if (tdecl) { 497 clang_ast_type.SetCompilerType( 498 ClangASTContext::GetASTContext(&tdecl->getASTContext()), 499 reinterpret_cast<lldb::opaque_compiler_type_t>( 500 const_cast<clang::Type *>(tdecl->getTypeForDecl()))); 501 } 502 } 503 } 504 505 if (!clang_ast_type.IsValid()) { 506 if (type_list.GetSize() == 0) { 507 result.AppendErrorWithFormat("unable to find any types that match " 508 "the raw type '%s' for full type '%s'\n", 509 lookup_type_name.GetCString(), 510 view_as_type_cstr); 511 result.SetStatus(eReturnStatusFailed); 512 return false; 513 } else { 514 TypeSP type_sp(type_list.GetTypeAtIndex(0)); 515 clang_ast_type = type_sp->GetFullCompilerType(); 516 } 517 } 518 519 while (pointer_count > 0) { 520 CompilerType pointer_type = clang_ast_type.GetPointerType(); 521 if (pointer_type.IsValid()) 522 clang_ast_type = pointer_type; 523 else { 524 result.AppendError("unable make a pointer type\n"); 525 result.SetStatus(eReturnStatusFailed); 526 return false; 527 } 528 --pointer_count; 529 } 530 531 m_format_options.GetByteSizeValue() = clang_ast_type.GetByteSize(nullptr); 532 533 if (m_format_options.GetByteSizeValue() == 0) { 534 result.AppendErrorWithFormat( 535 "unable to get the byte size of the type '%s'\n", 536 view_as_type_cstr); 537 result.SetStatus(eReturnStatusFailed); 538 return false; 539 } 540 541 if (!m_format_options.GetCountValue().OptionWasSet()) 542 m_format_options.GetCountValue() = 1; 543 } else { 544 error = m_memory_options.FinalizeSettings(target, m_format_options); 545 } 546 547 // Look for invalid combinations of settings 548 if (error.Fail()) { 549 result.AppendError(error.AsCString()); 550 result.SetStatus(eReturnStatusFailed); 551 return false; 552 } 553 554 lldb::addr_t addr; 555 size_t total_byte_size = 0; 556 if (argc == 0) { 557 // Use the last address and byte size and all options as they were if no 558 // options have been set 559 addr = m_next_addr; 560 total_byte_size = m_prev_byte_size; 561 clang_ast_type = m_prev_clang_ast_type; 562 if (!m_format_options.AnyOptionWasSet() && 563 !m_memory_options.AnyOptionWasSet() && 564 !m_outfile_options.AnyOptionWasSet() && 565 !m_varobj_options.AnyOptionWasSet()) { 566 m_format_options = m_prev_format_options; 567 m_memory_options = m_prev_memory_options; 568 m_outfile_options = m_prev_outfile_options; 569 m_varobj_options = m_prev_varobj_options; 570 } 571 } 572 573 size_t item_count = m_format_options.GetCountValue().GetCurrentValue(); 574 575 // TODO For non-8-bit byte addressable architectures this needs to be 576 // revisited to fully support all lldb's range of formatting options. 577 // Furthermore code memory reads (for those architectures) will not be 578 // correctly formatted even w/o formatting options. 579 size_t item_byte_size = 580 target->GetArchitecture().GetDataByteSize() > 1 581 ? target->GetArchitecture().GetDataByteSize() 582 : m_format_options.GetByteSizeValue().GetCurrentValue(); 583 584 const size_t num_per_line = 585 m_memory_options.m_num_per_line.GetCurrentValue(); 586 587 if (total_byte_size == 0) { 588 total_byte_size = item_count * item_byte_size; 589 if (total_byte_size == 0) 590 total_byte_size = 32; 591 } 592 593 if (argc > 0) 594 addr = OptionArgParser::ToAddress(&m_exe_ctx, command[0].ref, 595 LLDB_INVALID_ADDRESS, &error); 596 597 if (addr == LLDB_INVALID_ADDRESS) { 598 result.AppendError("invalid start address expression."); 599 result.AppendError(error.AsCString()); 600 result.SetStatus(eReturnStatusFailed); 601 return false; 602 } 603 604 if (argc == 2) { 605 lldb::addr_t end_addr = OptionArgParser::ToAddress( 606 &m_exe_ctx, command[1].ref, LLDB_INVALID_ADDRESS, nullptr); 607 if (end_addr == LLDB_INVALID_ADDRESS) { 608 result.AppendError("invalid end address expression."); 609 result.AppendError(error.AsCString()); 610 result.SetStatus(eReturnStatusFailed); 611 return false; 612 } else if (end_addr <= addr) { 613 result.AppendErrorWithFormat( 614 "end address (0x%" PRIx64 615 ") must be greater that the start address (0x%" PRIx64 ").\n", 616 end_addr, addr); 617 result.SetStatus(eReturnStatusFailed); 618 return false; 619 } else if (m_format_options.GetCountValue().OptionWasSet()) { 620 result.AppendErrorWithFormat( 621 "specify either the end address (0x%" PRIx64 622 ") or the count (--count %" PRIu64 "), not both.\n", 623 end_addr, (uint64_t)item_count); 624 result.SetStatus(eReturnStatusFailed); 625 return false; 626 } 627 628 total_byte_size = end_addr - addr; 629 item_count = total_byte_size / item_byte_size; 630 } 631 632 uint32_t max_unforced_size = target->GetMaximumMemReadSize(); 633 634 if (total_byte_size > max_unforced_size && !m_memory_options.m_force) { 635 result.AppendErrorWithFormat( 636 "Normally, \'memory read\' will not read over %" PRIu32 637 " bytes of data.\n", 638 max_unforced_size); 639 result.AppendErrorWithFormat( 640 "Please use --force to override this restriction just once.\n"); 641 result.AppendErrorWithFormat("or set target.max-memory-read-size if you " 642 "will often need a larger limit.\n"); 643 return false; 644 } 645 646 DataBufferSP data_sp; 647 size_t bytes_read = 0; 648 if (clang_ast_type.GetOpaqueQualType()) { 649 // Make sure we don't display our type as ASCII bytes like the default 650 // memory read 651 if (!m_format_options.GetFormatValue().OptionWasSet()) 652 m_format_options.GetFormatValue().SetCurrentValue(eFormatDefault); 653 654 bytes_read = clang_ast_type.GetByteSize(nullptr) * 655 m_format_options.GetCountValue().GetCurrentValue(); 656 657 if (argc > 0) 658 addr = addr + (clang_ast_type.GetByteSize(nullptr) * 659 m_memory_options.m_offset.GetCurrentValue()); 660 } else if (m_format_options.GetFormatValue().GetCurrentValue() != 661 eFormatCString) { 662 data_sp.reset(new DataBufferHeap(total_byte_size, '\0')); 663 if (data_sp->GetBytes() == nullptr) { 664 result.AppendErrorWithFormat( 665 "can't allocate 0x%" PRIx32 666 " bytes for the memory read buffer, specify a smaller size to read", 667 (uint32_t)total_byte_size); 668 result.SetStatus(eReturnStatusFailed); 669 return false; 670 } 671 672 Address address(addr, nullptr); 673 bytes_read = target->ReadMemory(address, false, data_sp->GetBytes(), 674 data_sp->GetByteSize(), error); 675 if (bytes_read == 0) { 676 const char *error_cstr = error.AsCString(); 677 if (error_cstr && error_cstr[0]) { 678 result.AppendError(error_cstr); 679 } else { 680 result.AppendErrorWithFormat( 681 "failed to read memory from 0x%" PRIx64 ".\n", addr); 682 } 683 result.SetStatus(eReturnStatusFailed); 684 return false; 685 } 686 687 if (bytes_read < total_byte_size) 688 result.AppendWarningWithFormat( 689 "Not all bytes (%" PRIu64 "/%" PRIu64 690 ") were able to be read from 0x%" PRIx64 ".\n", 691 (uint64_t)bytes_read, (uint64_t)total_byte_size, addr); 692 } else { 693 // we treat c-strings as a special case because they do not have a fixed 694 // size 695 if (m_format_options.GetByteSizeValue().OptionWasSet() && 696 !m_format_options.HasGDBFormat()) 697 item_byte_size = m_format_options.GetByteSizeValue().GetCurrentValue(); 698 else 699 item_byte_size = target->GetMaximumSizeOfStringSummary(); 700 if (!m_format_options.GetCountValue().OptionWasSet()) 701 item_count = 1; 702 data_sp.reset(new DataBufferHeap((item_byte_size + 1) * item_count, 703 '\0')); // account for NULLs as necessary 704 if (data_sp->GetBytes() == nullptr) { 705 result.AppendErrorWithFormat( 706 "can't allocate 0x%" PRIx64 707 " bytes for the memory read buffer, specify a smaller size to read", 708 (uint64_t)((item_byte_size + 1) * item_count)); 709 result.SetStatus(eReturnStatusFailed); 710 return false; 711 } 712 uint8_t *data_ptr = data_sp->GetBytes(); 713 auto data_addr = addr; 714 auto count = item_count; 715 item_count = 0; 716 bool break_on_no_NULL = false; 717 while (item_count < count) { 718 std::string buffer; 719 buffer.resize(item_byte_size + 1, 0); 720 Status error; 721 size_t read = target->ReadCStringFromMemory(data_addr, &buffer[0], 722 item_byte_size + 1, error); 723 if (error.Fail()) { 724 result.AppendErrorWithFormat( 725 "failed to read memory from 0x%" PRIx64 ".\n", addr); 726 result.SetStatus(eReturnStatusFailed); 727 return false; 728 } 729 730 if (item_byte_size == read) { 731 result.AppendWarningWithFormat( 732 "unable to find a NULL terminated string at 0x%" PRIx64 733 ".Consider increasing the maximum read length.\n", 734 data_addr); 735 --read; 736 break_on_no_NULL = true; 737 } else 738 ++read; // account for final NULL byte 739 740 memcpy(data_ptr, &buffer[0], read); 741 data_ptr += read; 742 data_addr += read; 743 bytes_read += read; 744 item_count++; // if we break early we know we only read item_count 745 // strings 746 747 if (break_on_no_NULL) 748 break; 749 } 750 data_sp.reset(new DataBufferHeap(data_sp->GetBytes(), bytes_read + 1)); 751 } 752 753 m_next_addr = addr + bytes_read; 754 m_prev_byte_size = bytes_read; 755 m_prev_format_options = m_format_options; 756 m_prev_memory_options = m_memory_options; 757 m_prev_outfile_options = m_outfile_options; 758 m_prev_varobj_options = m_varobj_options; 759 m_prev_clang_ast_type = clang_ast_type; 760 761 StreamFile outfile_stream; 762 Stream *output_stream = nullptr; 763 const FileSpec &outfile_spec = 764 m_outfile_options.GetFile().GetCurrentValue(); 765 if (outfile_spec) { 766 char path[PATH_MAX]; 767 outfile_spec.GetPath(path, sizeof(path)); 768 769 uint32_t open_options = 770 File::eOpenOptionWrite | File::eOpenOptionCanCreate; 771 const bool append = m_outfile_options.GetAppend().GetCurrentValue(); 772 if (append) 773 open_options |= File::eOpenOptionAppend; 774 775 if (outfile_stream.GetFile().Open(path, open_options).Success()) { 776 if (m_memory_options.m_output_as_binary) { 777 const size_t bytes_written = 778 outfile_stream.Write(data_sp->GetBytes(), bytes_read); 779 if (bytes_written > 0) { 780 result.GetOutputStream().Printf( 781 "%zi bytes %s to '%s'\n", bytes_written, 782 append ? "appended" : "written", path); 783 return true; 784 } else { 785 result.AppendErrorWithFormat("Failed to write %" PRIu64 786 " bytes to '%s'.\n", 787 (uint64_t)bytes_read, path); 788 result.SetStatus(eReturnStatusFailed); 789 return false; 790 } 791 } else { 792 // We are going to write ASCII to the file just point the 793 // output_stream to our outfile_stream... 794 output_stream = &outfile_stream; 795 } 796 } else { 797 result.AppendErrorWithFormat("Failed to open file '%s' for %s.\n", path, 798 append ? "append" : "write"); 799 result.SetStatus(eReturnStatusFailed); 800 return false; 801 } 802 } else { 803 output_stream = &result.GetOutputStream(); 804 } 805 806 ExecutionContextScope *exe_scope = m_exe_ctx.GetBestExecutionContextScope(); 807 if (clang_ast_type.GetOpaqueQualType()) { 808 for (uint32_t i = 0; i < item_count; ++i) { 809 addr_t item_addr = addr + (i * item_byte_size); 810 Address address(item_addr); 811 StreamString name_strm; 812 name_strm.Printf("0x%" PRIx64, item_addr); 813 ValueObjectSP valobj_sp(ValueObjectMemory::Create( 814 exe_scope, name_strm.GetString(), address, clang_ast_type)); 815 if (valobj_sp) { 816 Format format = m_format_options.GetFormat(); 817 if (format != eFormatDefault) 818 valobj_sp->SetFormat(format); 819 820 DumpValueObjectOptions options(m_varobj_options.GetAsDumpOptions( 821 eLanguageRuntimeDescriptionDisplayVerbosityFull, format)); 822 823 valobj_sp->Dump(*output_stream, options); 824 } else { 825 result.AppendErrorWithFormat( 826 "failed to create a value object for: (%s) %s\n", 827 view_as_type_cstr, name_strm.GetData()); 828 result.SetStatus(eReturnStatusFailed); 829 return false; 830 } 831 } 832 return true; 833 } 834 835 result.SetStatus(eReturnStatusSuccessFinishResult); 836 DataExtractor data(data_sp, target->GetArchitecture().GetByteOrder(), 837 target->GetArchitecture().GetAddressByteSize(), 838 target->GetArchitecture().GetDataByteSize()); 839 840 Format format = m_format_options.GetFormat(); 841 if (((format == eFormatChar) || (format == eFormatCharPrintable)) && 842 (item_byte_size != 1)) { 843 // if a count was not passed, or it is 1 844 if (!m_format_options.GetCountValue().OptionWasSet() || item_count == 1) { 845 // this turns requests such as 846 // memory read -fc -s10 -c1 *charPtrPtr 847 // which make no sense (what is a char of size 10?) into a request for 848 // fetching 10 chars of size 1 from the same memory location 849 format = eFormatCharArray; 850 item_count = item_byte_size; 851 item_byte_size = 1; 852 } else { 853 // here we passed a count, and it was not 1 so we have a byte_size and 854 // a count we could well multiply those, but instead let's just fail 855 result.AppendErrorWithFormat( 856 "reading memory as characters of size %" PRIu64 " is not supported", 857 (uint64_t)item_byte_size); 858 result.SetStatus(eReturnStatusFailed); 859 return false; 860 } 861 } 862 863 assert(output_stream); 864 size_t bytes_dumped = DumpDataExtractor( 865 data, output_stream, 0, format, item_byte_size, item_count, 866 num_per_line / target->GetArchitecture().GetDataByteSize(), addr, 0, 0, 867 exe_scope); 868 m_next_addr = addr + bytes_dumped; 869 output_stream->EOL(); 870 return true; 871 } 872 873 OptionGroupOptions m_option_group; 874 OptionGroupFormat m_format_options; 875 OptionGroupReadMemory m_memory_options; 876 OptionGroupOutputFile m_outfile_options; 877 OptionGroupValueObjectDisplay m_varobj_options; 878 lldb::addr_t m_next_addr; 879 lldb::addr_t m_prev_byte_size; 880 OptionGroupFormat m_prev_format_options; 881 OptionGroupReadMemory m_prev_memory_options; 882 OptionGroupOutputFile m_prev_outfile_options; 883 OptionGroupValueObjectDisplay m_prev_varobj_options; 884 CompilerType m_prev_clang_ast_type; 885 }; 886 887 OptionDefinition g_memory_find_option_table[] = { 888 // clang-format off 889 {LLDB_OPT_SET_1, true, "expression", 'e', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeExpression, "Evaluate an expression to obtain a byte pattern."}, 890 {LLDB_OPT_SET_2, true, "string", 's', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeName, "Use text to find a byte pattern."}, 891 {LLDB_OPT_SET_ALL, false, "count", 'c', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeCount, "How many times to perform the search."}, 892 {LLDB_OPT_SET_ALL, false, "dump-offset", 'o', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeOffset, "When dumping memory for a match, an offset from the match location to start dumping from."}, 893 // clang-format on 894 }; 895 896 //---------------------------------------------------------------------- 897 // Find the specified data in memory 898 //---------------------------------------------------------------------- 899 class CommandObjectMemoryFind : public CommandObjectParsed { 900 public: 901 class OptionGroupFindMemory : public OptionGroup { 902 public: 903 OptionGroupFindMemory() : OptionGroup(), m_count(1), m_offset(0) {} 904 905 ~OptionGroupFindMemory() override = default; 906 907 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 908 return llvm::makeArrayRef(g_memory_find_option_table); 909 } 910 911 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value, 912 ExecutionContext *execution_context) override { 913 Status error; 914 const int short_option = 915 g_memory_find_option_table[option_idx].short_option; 916 917 switch (short_option) { 918 case 'e': 919 m_expr.SetValueFromString(option_value); 920 break; 921 922 case 's': 923 m_string.SetValueFromString(option_value); 924 break; 925 926 case 'c': 927 if (m_count.SetValueFromString(option_value).Fail()) 928 error.SetErrorString("unrecognized value for count"); 929 break; 930 931 case 'o': 932 if (m_offset.SetValueFromString(option_value).Fail()) 933 error.SetErrorString("unrecognized value for dump-offset"); 934 break; 935 936 default: 937 error.SetErrorStringWithFormat("unrecognized short option '%c'", 938 short_option); 939 break; 940 } 941 return error; 942 } 943 944 void OptionParsingStarting(ExecutionContext *execution_context) override { 945 m_expr.Clear(); 946 m_string.Clear(); 947 m_count.Clear(); 948 } 949 950 OptionValueString m_expr; 951 OptionValueString m_string; 952 OptionValueUInt64 m_count; 953 OptionValueUInt64 m_offset; 954 }; 955 956 CommandObjectMemoryFind(CommandInterpreter &interpreter) 957 : CommandObjectParsed( 958 interpreter, "memory find", 959 "Find a value in the memory of the current target process.", 960 nullptr, eCommandRequiresProcess | eCommandProcessMustBeLaunched), 961 m_option_group(), m_memory_options() { 962 CommandArgumentEntry arg1; 963 CommandArgumentEntry arg2; 964 CommandArgumentData addr_arg; 965 CommandArgumentData value_arg; 966 967 // Define the first (and only) variant of this arg. 968 addr_arg.arg_type = eArgTypeAddressOrExpression; 969 addr_arg.arg_repetition = eArgRepeatPlain; 970 971 // There is only one variant this argument could be; put it into the 972 // argument entry. 973 arg1.push_back(addr_arg); 974 975 // Define the first (and only) variant of this arg. 976 value_arg.arg_type = eArgTypeAddressOrExpression; 977 value_arg.arg_repetition = eArgRepeatPlain; 978 979 // There is only one variant this argument could be; put it into the 980 // argument entry. 981 arg2.push_back(value_arg); 982 983 // Push the data for the first argument into the m_arguments vector. 984 m_arguments.push_back(arg1); 985 m_arguments.push_back(arg2); 986 987 m_option_group.Append(&m_memory_options); 988 m_option_group.Finalize(); 989 } 990 991 ~CommandObjectMemoryFind() override = default; 992 993 Options *GetOptions() override { return &m_option_group; } 994 995 protected: 996 class ProcessMemoryIterator { 997 public: 998 ProcessMemoryIterator(ProcessSP process_sp, lldb::addr_t base) 999 : m_process_sp(process_sp), m_base_addr(base), m_is_valid(true) { 1000 lldbassert(process_sp.get() != nullptr); 1001 } 1002 1003 bool IsValid() { return m_is_valid; } 1004 1005 uint8_t operator[](lldb::addr_t offset) { 1006 if (!IsValid()) 1007 return 0; 1008 1009 uint8_t retval = 0; 1010 Status error; 1011 if (0 == 1012 m_process_sp->ReadMemory(m_base_addr + offset, &retval, 1, error)) { 1013 m_is_valid = false; 1014 return 0; 1015 } 1016 1017 return retval; 1018 } 1019 1020 private: 1021 ProcessSP m_process_sp; 1022 lldb::addr_t m_base_addr; 1023 bool m_is_valid; 1024 }; 1025 bool DoExecute(Args &command, CommandReturnObject &result) override { 1026 // No need to check "process" for validity as eCommandRequiresProcess 1027 // ensures it is valid 1028 Process *process = m_exe_ctx.GetProcessPtr(); 1029 1030 const size_t argc = command.GetArgumentCount(); 1031 1032 if (argc != 2) { 1033 result.AppendError("two addresses needed for memory find"); 1034 return false; 1035 } 1036 1037 Status error; 1038 lldb::addr_t low_addr = OptionArgParser::ToAddress( 1039 &m_exe_ctx, command[0].ref, LLDB_INVALID_ADDRESS, &error); 1040 if (low_addr == LLDB_INVALID_ADDRESS || error.Fail()) { 1041 result.AppendError("invalid low address"); 1042 return false; 1043 } 1044 lldb::addr_t high_addr = OptionArgParser::ToAddress( 1045 &m_exe_ctx, command[1].ref, LLDB_INVALID_ADDRESS, &error); 1046 if (high_addr == LLDB_INVALID_ADDRESS || error.Fail()) { 1047 result.AppendError("invalid high address"); 1048 return false; 1049 } 1050 1051 if (high_addr <= low_addr) { 1052 result.AppendError( 1053 "starting address must be smaller than ending address"); 1054 return false; 1055 } 1056 1057 lldb::addr_t found_location = LLDB_INVALID_ADDRESS; 1058 1059 DataBufferHeap buffer; 1060 1061 if (m_memory_options.m_string.OptionWasSet()) 1062 buffer.CopyData(m_memory_options.m_string.GetStringValue()); 1063 else if (m_memory_options.m_expr.OptionWasSet()) { 1064 StackFrame *frame = m_exe_ctx.GetFramePtr(); 1065 ValueObjectSP result_sp; 1066 if ((eExpressionCompleted == 1067 process->GetTarget().EvaluateExpression( 1068 m_memory_options.m_expr.GetStringValue(), frame, result_sp)) && 1069 result_sp) { 1070 uint64_t value = result_sp->GetValueAsUnsigned(0); 1071 switch (result_sp->GetCompilerType().GetByteSize(nullptr)) { 1072 case 1: { 1073 uint8_t byte = (uint8_t)value; 1074 buffer.CopyData(&byte, 1); 1075 } break; 1076 case 2: { 1077 uint16_t word = (uint16_t)value; 1078 buffer.CopyData(&word, 2); 1079 } break; 1080 case 4: { 1081 uint32_t lword = (uint32_t)value; 1082 buffer.CopyData(&lword, 4); 1083 } break; 1084 case 8: { 1085 buffer.CopyData(&value, 8); 1086 } break; 1087 case 3: 1088 case 5: 1089 case 6: 1090 case 7: 1091 result.AppendError("unknown type. pass a string instead"); 1092 return false; 1093 default: 1094 result.AppendError( 1095 "result size larger than 8 bytes. pass a string instead"); 1096 return false; 1097 } 1098 } else { 1099 result.AppendError( 1100 "expression evaluation failed. pass a string instead"); 1101 return false; 1102 } 1103 } else { 1104 result.AppendError( 1105 "please pass either a block of text, or an expression to evaluate."); 1106 return false; 1107 } 1108 1109 size_t count = m_memory_options.m_count.GetCurrentValue(); 1110 found_location = low_addr; 1111 bool ever_found = false; 1112 while (count) { 1113 found_location = FastSearch(found_location, high_addr, buffer.GetBytes(), 1114 buffer.GetByteSize()); 1115 if (found_location == LLDB_INVALID_ADDRESS) { 1116 if (!ever_found) { 1117 result.AppendMessage("data not found within the range.\n"); 1118 result.SetStatus(lldb::eReturnStatusSuccessFinishNoResult); 1119 } else 1120 result.AppendMessage("no more matches within the range.\n"); 1121 break; 1122 } 1123 result.AppendMessageWithFormat("data found at location: 0x%" PRIx64 "\n", 1124 found_location); 1125 1126 DataBufferHeap dumpbuffer(32, 0); 1127 process->ReadMemory( 1128 found_location + m_memory_options.m_offset.GetCurrentValue(), 1129 dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(), error); 1130 if (!error.Fail()) { 1131 DataExtractor data(dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(), 1132 process->GetByteOrder(), 1133 process->GetAddressByteSize()); 1134 DumpDataExtractor( 1135 data, &result.GetOutputStream(), 0, lldb::eFormatBytesWithASCII, 1, 1136 dumpbuffer.GetByteSize(), 16, 1137 found_location + m_memory_options.m_offset.GetCurrentValue(), 0, 0); 1138 result.GetOutputStream().EOL(); 1139 } 1140 1141 --count; 1142 found_location++; 1143 ever_found = true; 1144 } 1145 1146 result.SetStatus(lldb::eReturnStatusSuccessFinishResult); 1147 return true; 1148 } 1149 1150 lldb::addr_t FastSearch(lldb::addr_t low, lldb::addr_t high, uint8_t *buffer, 1151 size_t buffer_size) { 1152 const size_t region_size = high - low; 1153 1154 if (region_size < buffer_size) 1155 return LLDB_INVALID_ADDRESS; 1156 1157 std::vector<size_t> bad_char_heuristic(256, buffer_size); 1158 ProcessSP process_sp = m_exe_ctx.GetProcessSP(); 1159 ProcessMemoryIterator iterator(process_sp, low); 1160 1161 for (size_t idx = 0; idx < buffer_size - 1; idx++) { 1162 decltype(bad_char_heuristic)::size_type bcu_idx = buffer[idx]; 1163 bad_char_heuristic[bcu_idx] = buffer_size - idx - 1; 1164 } 1165 for (size_t s = 0; s <= (region_size - buffer_size);) { 1166 int64_t j = buffer_size - 1; 1167 while (j >= 0 && buffer[j] == iterator[s + j]) 1168 j--; 1169 if (j < 0) 1170 return low + s; 1171 else 1172 s += bad_char_heuristic[iterator[s + buffer_size - 1]]; 1173 } 1174 1175 return LLDB_INVALID_ADDRESS; 1176 } 1177 1178 OptionGroupOptions m_option_group; 1179 OptionGroupFindMemory m_memory_options; 1180 }; 1181 1182 OptionDefinition g_memory_write_option_table[] = { 1183 // clang-format off 1184 {LLDB_OPT_SET_1, true, "infile", 'i', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeFilename, "Write memory using the contents of a file."}, 1185 {LLDB_OPT_SET_1, false, "offset", 'o', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeOffset, "Start writing bytes from an offset within the input file."}, 1186 // clang-format on 1187 }; 1188 1189 //---------------------------------------------------------------------- 1190 // Write memory to the inferior process 1191 //---------------------------------------------------------------------- 1192 class CommandObjectMemoryWrite : public CommandObjectParsed { 1193 public: 1194 class OptionGroupWriteMemory : public OptionGroup { 1195 public: 1196 OptionGroupWriteMemory() : OptionGroup() {} 1197 1198 ~OptionGroupWriteMemory() override = default; 1199 1200 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 1201 return llvm::makeArrayRef(g_memory_write_option_table); 1202 } 1203 1204 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value, 1205 ExecutionContext *execution_context) override { 1206 Status error; 1207 const int short_option = 1208 g_memory_write_option_table[option_idx].short_option; 1209 1210 switch (short_option) { 1211 case 'i': 1212 m_infile.SetFile(option_value, true, FileSpec::Style::native); 1213 if (!m_infile.Exists()) { 1214 m_infile.Clear(); 1215 error.SetErrorStringWithFormat("input file does not exist: '%s'", 1216 option_value.str().c_str()); 1217 } 1218 break; 1219 1220 case 'o': { 1221 if (option_value.getAsInteger(0, m_infile_offset)) { 1222 m_infile_offset = 0; 1223 error.SetErrorStringWithFormat("invalid offset string '%s'", 1224 option_value.str().c_str()); 1225 } 1226 } break; 1227 1228 default: 1229 error.SetErrorStringWithFormat("unrecognized short option '%c'", 1230 short_option); 1231 break; 1232 } 1233 return error; 1234 } 1235 1236 void OptionParsingStarting(ExecutionContext *execution_context) override { 1237 m_infile.Clear(); 1238 m_infile_offset = 0; 1239 } 1240 1241 FileSpec m_infile; 1242 off_t m_infile_offset; 1243 }; 1244 1245 CommandObjectMemoryWrite(CommandInterpreter &interpreter) 1246 : CommandObjectParsed( 1247 interpreter, "memory write", 1248 "Write to the memory of the current target process.", nullptr, 1249 eCommandRequiresProcess | eCommandProcessMustBeLaunched), 1250 m_option_group(), m_format_options(eFormatBytes, 1, UINT64_MAX), 1251 m_memory_options() { 1252 CommandArgumentEntry arg1; 1253 CommandArgumentEntry arg2; 1254 CommandArgumentData addr_arg; 1255 CommandArgumentData value_arg; 1256 1257 // Define the first (and only) variant of this arg. 1258 addr_arg.arg_type = eArgTypeAddress; 1259 addr_arg.arg_repetition = eArgRepeatPlain; 1260 1261 // There is only one variant this argument could be; put it into the 1262 // argument entry. 1263 arg1.push_back(addr_arg); 1264 1265 // Define the first (and only) variant of this arg. 1266 value_arg.arg_type = eArgTypeValue; 1267 value_arg.arg_repetition = eArgRepeatPlus; 1268 1269 // There is only one variant this argument could be; put it into the 1270 // argument entry. 1271 arg2.push_back(value_arg); 1272 1273 // Push the data for the first argument into the m_arguments vector. 1274 m_arguments.push_back(arg1); 1275 m_arguments.push_back(arg2); 1276 1277 m_option_group.Append(&m_format_options, 1278 OptionGroupFormat::OPTION_GROUP_FORMAT, 1279 LLDB_OPT_SET_1); 1280 m_option_group.Append(&m_format_options, 1281 OptionGroupFormat::OPTION_GROUP_SIZE, 1282 LLDB_OPT_SET_1 | LLDB_OPT_SET_2); 1283 m_option_group.Append(&m_memory_options, LLDB_OPT_SET_ALL, LLDB_OPT_SET_2); 1284 m_option_group.Finalize(); 1285 } 1286 1287 ~CommandObjectMemoryWrite() override = default; 1288 1289 Options *GetOptions() override { return &m_option_group; } 1290 1291 bool UIntValueIsValidForSize(uint64_t uval64, size_t total_byte_size) { 1292 if (total_byte_size > 8) 1293 return false; 1294 1295 if (total_byte_size == 8) 1296 return true; 1297 1298 const uint64_t max = ((uint64_t)1 << (uint64_t)(total_byte_size * 8)) - 1; 1299 return uval64 <= max; 1300 } 1301 1302 bool SIntValueIsValidForSize(int64_t sval64, size_t total_byte_size) { 1303 if (total_byte_size > 8) 1304 return false; 1305 1306 if (total_byte_size == 8) 1307 return true; 1308 1309 const int64_t max = ((int64_t)1 << (uint64_t)(total_byte_size * 8 - 1)) - 1; 1310 const int64_t min = ~(max); 1311 return min <= sval64 && sval64 <= max; 1312 } 1313 1314 protected: 1315 bool DoExecute(Args &command, CommandReturnObject &result) override { 1316 // No need to check "process" for validity as eCommandRequiresProcess 1317 // ensures it is valid 1318 Process *process = m_exe_ctx.GetProcessPtr(); 1319 1320 const size_t argc = command.GetArgumentCount(); 1321 1322 if (m_memory_options.m_infile) { 1323 if (argc < 1) { 1324 result.AppendErrorWithFormat( 1325 "%s takes a destination address when writing file contents.\n", 1326 m_cmd_name.c_str()); 1327 result.SetStatus(eReturnStatusFailed); 1328 return false; 1329 } 1330 } else if (argc < 2) { 1331 result.AppendErrorWithFormat( 1332 "%s takes a destination address and at least one value.\n", 1333 m_cmd_name.c_str()); 1334 result.SetStatus(eReturnStatusFailed); 1335 return false; 1336 } 1337 1338 StreamString buffer( 1339 Stream::eBinary, 1340 process->GetTarget().GetArchitecture().GetAddressByteSize(), 1341 process->GetTarget().GetArchitecture().GetByteOrder()); 1342 1343 OptionValueUInt64 &byte_size_value = m_format_options.GetByteSizeValue(); 1344 size_t item_byte_size = byte_size_value.GetCurrentValue(); 1345 1346 Status error; 1347 lldb::addr_t addr = OptionArgParser::ToAddress( 1348 &m_exe_ctx, command[0].ref, LLDB_INVALID_ADDRESS, &error); 1349 1350 if (addr == LLDB_INVALID_ADDRESS) { 1351 result.AppendError("invalid address expression\n"); 1352 result.AppendError(error.AsCString()); 1353 result.SetStatus(eReturnStatusFailed); 1354 return false; 1355 } 1356 1357 if (m_memory_options.m_infile) { 1358 size_t length = SIZE_MAX; 1359 if (item_byte_size > 1) 1360 length = item_byte_size; 1361 auto data_sp = DataBufferLLVM::CreateSliceFromPath( 1362 m_memory_options.m_infile.GetPath(), length, 1363 m_memory_options.m_infile_offset); 1364 if (data_sp) { 1365 length = data_sp->GetByteSize(); 1366 if (length > 0) { 1367 Status error; 1368 size_t bytes_written = 1369 process->WriteMemory(addr, data_sp->GetBytes(), length, error); 1370 1371 if (bytes_written == length) { 1372 // All bytes written 1373 result.GetOutputStream().Printf( 1374 "%" PRIu64 " bytes were written to 0x%" PRIx64 "\n", 1375 (uint64_t)bytes_written, addr); 1376 result.SetStatus(eReturnStatusSuccessFinishResult); 1377 } else if (bytes_written > 0) { 1378 // Some byte written 1379 result.GetOutputStream().Printf( 1380 "%" PRIu64 " bytes of %" PRIu64 1381 " requested were written to 0x%" PRIx64 "\n", 1382 (uint64_t)bytes_written, (uint64_t)length, addr); 1383 result.SetStatus(eReturnStatusSuccessFinishResult); 1384 } else { 1385 result.AppendErrorWithFormat("Memory write to 0x%" PRIx64 1386 " failed: %s.\n", 1387 addr, error.AsCString()); 1388 result.SetStatus(eReturnStatusFailed); 1389 } 1390 } 1391 } else { 1392 result.AppendErrorWithFormat("Unable to read contents of file.\n"); 1393 result.SetStatus(eReturnStatusFailed); 1394 } 1395 return result.Succeeded(); 1396 } else if (item_byte_size == 0) { 1397 if (m_format_options.GetFormat() == eFormatPointer) 1398 item_byte_size = buffer.GetAddressByteSize(); 1399 else 1400 item_byte_size = 1; 1401 } 1402 1403 command.Shift(); // shift off the address argument 1404 uint64_t uval64; 1405 int64_t sval64; 1406 bool success = false; 1407 for (auto &entry : command) { 1408 switch (m_format_options.GetFormat()) { 1409 case kNumFormats: 1410 case eFormatFloat: // TODO: add support for floats soon 1411 case eFormatCharPrintable: 1412 case eFormatBytesWithASCII: 1413 case eFormatComplex: 1414 case eFormatEnum: 1415 case eFormatUnicode16: 1416 case eFormatUnicode32: 1417 case eFormatVectorOfChar: 1418 case eFormatVectorOfSInt8: 1419 case eFormatVectorOfUInt8: 1420 case eFormatVectorOfSInt16: 1421 case eFormatVectorOfUInt16: 1422 case eFormatVectorOfSInt32: 1423 case eFormatVectorOfUInt32: 1424 case eFormatVectorOfSInt64: 1425 case eFormatVectorOfUInt64: 1426 case eFormatVectorOfFloat16: 1427 case eFormatVectorOfFloat32: 1428 case eFormatVectorOfFloat64: 1429 case eFormatVectorOfUInt128: 1430 case eFormatOSType: 1431 case eFormatComplexInteger: 1432 case eFormatAddressInfo: 1433 case eFormatHexFloat: 1434 case eFormatInstruction: 1435 case eFormatVoid: 1436 result.AppendError("unsupported format for writing memory"); 1437 result.SetStatus(eReturnStatusFailed); 1438 return false; 1439 1440 case eFormatDefault: 1441 case eFormatBytes: 1442 case eFormatHex: 1443 case eFormatHexUppercase: 1444 case eFormatPointer: 1445 { 1446 // Decode hex bytes 1447 // Be careful, getAsInteger with a radix of 16 rejects "0xab" so we 1448 // have to special case that: 1449 bool success = false; 1450 if (entry.ref.startswith("0x")) 1451 success = !entry.ref.getAsInteger(0, uval64); 1452 if (!success) 1453 success = !entry.ref.getAsInteger(16, uval64); 1454 if (!success) { 1455 result.AppendErrorWithFormat( 1456 "'%s' is not a valid hex string value.\n", entry.c_str()); 1457 result.SetStatus(eReturnStatusFailed); 1458 return false; 1459 } else if (!UIntValueIsValidForSize(uval64, item_byte_size)) { 1460 result.AppendErrorWithFormat("Value 0x%" PRIx64 1461 " is too large to fit in a %" PRIu64 1462 " byte unsigned integer value.\n", 1463 uval64, (uint64_t)item_byte_size); 1464 result.SetStatus(eReturnStatusFailed); 1465 return false; 1466 } 1467 buffer.PutMaxHex64(uval64, item_byte_size); 1468 break; 1469 } 1470 case eFormatBoolean: 1471 uval64 = OptionArgParser::ToBoolean(entry.ref, false, &success); 1472 if (!success) { 1473 result.AppendErrorWithFormat( 1474 "'%s' is not a valid boolean string value.\n", entry.c_str()); 1475 result.SetStatus(eReturnStatusFailed); 1476 return false; 1477 } 1478 buffer.PutMaxHex64(uval64, item_byte_size); 1479 break; 1480 1481 case eFormatBinary: 1482 if (entry.ref.getAsInteger(2, uval64)) { 1483 result.AppendErrorWithFormat( 1484 "'%s' is not a valid binary string value.\n", entry.c_str()); 1485 result.SetStatus(eReturnStatusFailed); 1486 return false; 1487 } else if (!UIntValueIsValidForSize(uval64, item_byte_size)) { 1488 result.AppendErrorWithFormat("Value 0x%" PRIx64 1489 " is too large to fit in a %" PRIu64 1490 " byte unsigned integer value.\n", 1491 uval64, (uint64_t)item_byte_size); 1492 result.SetStatus(eReturnStatusFailed); 1493 return false; 1494 } 1495 buffer.PutMaxHex64(uval64, item_byte_size); 1496 break; 1497 1498 case eFormatCharArray: 1499 case eFormatChar: 1500 case eFormatCString: { 1501 if (entry.ref.empty()) 1502 break; 1503 1504 size_t len = entry.ref.size(); 1505 // Include the NULL for C strings... 1506 if (m_format_options.GetFormat() == eFormatCString) 1507 ++len; 1508 Status error; 1509 if (process->WriteMemory(addr, entry.c_str(), len, error) == len) { 1510 addr += len; 1511 } else { 1512 result.AppendErrorWithFormat("Memory write to 0x%" PRIx64 1513 " failed: %s.\n", 1514 addr, error.AsCString()); 1515 result.SetStatus(eReturnStatusFailed); 1516 return false; 1517 } 1518 break; 1519 } 1520 case eFormatDecimal: 1521 if (entry.ref.getAsInteger(0, sval64)) { 1522 result.AppendErrorWithFormat( 1523 "'%s' is not a valid signed decimal value.\n", entry.c_str()); 1524 result.SetStatus(eReturnStatusFailed); 1525 return false; 1526 } else if (!SIntValueIsValidForSize(sval64, item_byte_size)) { 1527 result.AppendErrorWithFormat( 1528 "Value %" PRIi64 " is too large or small to fit in a %" PRIu64 1529 " byte signed integer value.\n", 1530 sval64, (uint64_t)item_byte_size); 1531 result.SetStatus(eReturnStatusFailed); 1532 return false; 1533 } 1534 buffer.PutMaxHex64(sval64, item_byte_size); 1535 break; 1536 1537 case eFormatUnsigned: 1538 1539 if (!entry.ref.getAsInteger(0, uval64)) { 1540 result.AppendErrorWithFormat( 1541 "'%s' is not a valid unsigned decimal string value.\n", 1542 entry.c_str()); 1543 result.SetStatus(eReturnStatusFailed); 1544 return false; 1545 } else if (!UIntValueIsValidForSize(uval64, item_byte_size)) { 1546 result.AppendErrorWithFormat("Value %" PRIu64 1547 " is too large to fit in a %" PRIu64 1548 " byte unsigned integer value.\n", 1549 uval64, (uint64_t)item_byte_size); 1550 result.SetStatus(eReturnStatusFailed); 1551 return false; 1552 } 1553 buffer.PutMaxHex64(uval64, item_byte_size); 1554 break; 1555 1556 case eFormatOctal: 1557 if (entry.ref.getAsInteger(8, uval64)) { 1558 result.AppendErrorWithFormat( 1559 "'%s' is not a valid octal string value.\n", entry.c_str()); 1560 result.SetStatus(eReturnStatusFailed); 1561 return false; 1562 } else if (!UIntValueIsValidForSize(uval64, item_byte_size)) { 1563 result.AppendErrorWithFormat("Value %" PRIo64 1564 " is too large to fit in a %" PRIu64 1565 " byte unsigned integer value.\n", 1566 uval64, (uint64_t)item_byte_size); 1567 result.SetStatus(eReturnStatusFailed); 1568 return false; 1569 } 1570 buffer.PutMaxHex64(uval64, item_byte_size); 1571 break; 1572 } 1573 } 1574 1575 if (!buffer.GetString().empty()) { 1576 Status error; 1577 if (process->WriteMemory(addr, buffer.GetString().data(), 1578 buffer.GetString().size(), 1579 error) == buffer.GetString().size()) 1580 return true; 1581 else { 1582 result.AppendErrorWithFormat("Memory write to 0x%" PRIx64 1583 " failed: %s.\n", 1584 addr, error.AsCString()); 1585 result.SetStatus(eReturnStatusFailed); 1586 return false; 1587 } 1588 } 1589 return true; 1590 } 1591 1592 OptionGroupOptions m_option_group; 1593 OptionGroupFormat m_format_options; 1594 OptionGroupWriteMemory m_memory_options; 1595 }; 1596 1597 //---------------------------------------------------------------------- 1598 // Get malloc/free history of a memory address. 1599 //---------------------------------------------------------------------- 1600 class CommandObjectMemoryHistory : public CommandObjectParsed { 1601 public: 1602 CommandObjectMemoryHistory(CommandInterpreter &interpreter) 1603 : CommandObjectParsed( 1604 interpreter, "memory history", "Print recorded stack traces for " 1605 "allocation/deallocation events " 1606 "associated with an address.", 1607 nullptr, 1608 eCommandRequiresTarget | eCommandRequiresProcess | 1609 eCommandProcessMustBePaused | eCommandProcessMustBeLaunched) { 1610 CommandArgumentEntry arg1; 1611 CommandArgumentData addr_arg; 1612 1613 // Define the first (and only) variant of this arg. 1614 addr_arg.arg_type = eArgTypeAddress; 1615 addr_arg.arg_repetition = eArgRepeatPlain; 1616 1617 // There is only one variant this argument could be; put it into the 1618 // argument entry. 1619 arg1.push_back(addr_arg); 1620 1621 // Push the data for the first argument into the m_arguments vector. 1622 m_arguments.push_back(arg1); 1623 } 1624 1625 ~CommandObjectMemoryHistory() override = default; 1626 1627 const char *GetRepeatCommand(Args ¤t_command_args, 1628 uint32_t index) override { 1629 return m_cmd_name.c_str(); 1630 } 1631 1632 protected: 1633 bool DoExecute(Args &command, CommandReturnObject &result) override { 1634 const size_t argc = command.GetArgumentCount(); 1635 1636 if (argc == 0 || argc > 1) { 1637 result.AppendErrorWithFormat("%s takes an address expression", 1638 m_cmd_name.c_str()); 1639 result.SetStatus(eReturnStatusFailed); 1640 return false; 1641 } 1642 1643 Status error; 1644 lldb::addr_t addr = OptionArgParser::ToAddress( 1645 &m_exe_ctx, command[0].ref, LLDB_INVALID_ADDRESS, &error); 1646 1647 if (addr == LLDB_INVALID_ADDRESS) { 1648 result.AppendError("invalid address expression"); 1649 result.AppendError(error.AsCString()); 1650 result.SetStatus(eReturnStatusFailed); 1651 return false; 1652 } 1653 1654 Stream *output_stream = &result.GetOutputStream(); 1655 1656 const ProcessSP &process_sp = m_exe_ctx.GetProcessSP(); 1657 const MemoryHistorySP &memory_history = 1658 MemoryHistory::FindPlugin(process_sp); 1659 1660 if (!memory_history) { 1661 result.AppendError("no available memory history provider"); 1662 result.SetStatus(eReturnStatusFailed); 1663 return false; 1664 } 1665 1666 HistoryThreads thread_list = memory_history->GetHistoryThreads(addr); 1667 1668 const bool stop_format = false; 1669 for (auto thread : thread_list) { 1670 thread->GetStatus(*output_stream, 0, UINT32_MAX, 0, stop_format); 1671 } 1672 1673 result.SetStatus(eReturnStatusSuccessFinishResult); 1674 1675 return true; 1676 } 1677 }; 1678 1679 //------------------------------------------------------------------------- 1680 // CommandObjectMemoryRegion 1681 //------------------------------------------------------------------------- 1682 #pragma mark CommandObjectMemoryRegion 1683 1684 class CommandObjectMemoryRegion : public CommandObjectParsed { 1685 public: 1686 CommandObjectMemoryRegion(CommandInterpreter &interpreter) 1687 : CommandObjectParsed(interpreter, "memory region", 1688 "Get information on the memory region containing " 1689 "an address in the current target process.", 1690 "memory region ADDR", 1691 eCommandRequiresProcess | eCommandTryTargetAPILock | 1692 eCommandProcessMustBeLaunched), 1693 m_prev_end_addr(LLDB_INVALID_ADDRESS) {} 1694 1695 ~CommandObjectMemoryRegion() override = default; 1696 1697 protected: 1698 bool DoExecute(Args &command, CommandReturnObject &result) override { 1699 ProcessSP process_sp = m_exe_ctx.GetProcessSP(); 1700 if (process_sp) { 1701 Status error; 1702 lldb::addr_t load_addr = m_prev_end_addr; 1703 m_prev_end_addr = LLDB_INVALID_ADDRESS; 1704 1705 const size_t argc = command.GetArgumentCount(); 1706 if (argc > 1 || (argc == 0 && load_addr == LLDB_INVALID_ADDRESS)) { 1707 result.AppendErrorWithFormat("'%s' takes one argument:\nUsage: %s\n", 1708 m_cmd_name.c_str(), m_cmd_syntax.c_str()); 1709 result.SetStatus(eReturnStatusFailed); 1710 } else { 1711 if (command.GetArgumentCount() == 1) { 1712 auto load_addr_str = command[0].ref; 1713 load_addr = OptionArgParser::ToAddress(&m_exe_ctx, load_addr_str, 1714 LLDB_INVALID_ADDRESS, &error); 1715 if (error.Fail() || load_addr == LLDB_INVALID_ADDRESS) { 1716 result.AppendErrorWithFormat( 1717 "invalid address argument \"%s\": %s\n", command[0].c_str(), 1718 error.AsCString()); 1719 result.SetStatus(eReturnStatusFailed); 1720 } 1721 } 1722 1723 lldb_private::MemoryRegionInfo range_info; 1724 error = process_sp->GetMemoryRegionInfo(load_addr, range_info); 1725 if (error.Success()) { 1726 lldb_private::Address addr; 1727 ConstString section_name; 1728 if (process_sp->GetTarget().ResolveLoadAddress(load_addr, addr)) { 1729 SectionSP section_sp(addr.GetSection()); 1730 if (section_sp) { 1731 // Got the top most section, not the deepest section 1732 while (section_sp->GetParent()) 1733 section_sp = section_sp->GetParent(); 1734 section_name = section_sp->GetName(); 1735 } 1736 } 1737 result.AppendMessageWithFormat( 1738 "[0x%16.16" PRIx64 "-0x%16.16" PRIx64 ") %c%c%c%s%s\n", 1739 range_info.GetRange().GetRangeBase(), 1740 range_info.GetRange().GetRangeEnd(), 1741 range_info.GetReadable() ? 'r' : '-', 1742 range_info.GetWritable() ? 'w' : '-', 1743 range_info.GetExecutable() ? 'x' : '-', section_name ? " " : "", 1744 section_name ? section_name.AsCString() : ""); 1745 m_prev_end_addr = range_info.GetRange().GetRangeEnd(); 1746 result.SetStatus(eReturnStatusSuccessFinishResult); 1747 } else { 1748 result.SetStatus(eReturnStatusFailed); 1749 result.AppendErrorWithFormat("%s\n", error.AsCString()); 1750 } 1751 } 1752 } else { 1753 m_prev_end_addr = LLDB_INVALID_ADDRESS; 1754 result.AppendError("invalid process"); 1755 result.SetStatus(eReturnStatusFailed); 1756 } 1757 return result.Succeeded(); 1758 } 1759 1760 const char *GetRepeatCommand(Args ¤t_command_args, 1761 uint32_t index) override { 1762 // If we repeat this command, repeat it without any arguments so we can 1763 // show the next memory range 1764 return m_cmd_name.c_str(); 1765 } 1766 1767 lldb::addr_t m_prev_end_addr; 1768 }; 1769 1770 //------------------------------------------------------------------------- 1771 // CommandObjectMemory 1772 //------------------------------------------------------------------------- 1773 1774 CommandObjectMemory::CommandObjectMemory(CommandInterpreter &interpreter) 1775 : CommandObjectMultiword( 1776 interpreter, "memory", 1777 "Commands for operating on memory in the current target process.", 1778 "memory <subcommand> [<subcommand-options>]") { 1779 LoadSubCommand("find", 1780 CommandObjectSP(new CommandObjectMemoryFind(interpreter))); 1781 LoadSubCommand("read", 1782 CommandObjectSP(new CommandObjectMemoryRead(interpreter))); 1783 LoadSubCommand("write", 1784 CommandObjectSP(new CommandObjectMemoryWrite(interpreter))); 1785 LoadSubCommand("history", 1786 CommandObjectSP(new CommandObjectMemoryHistory(interpreter))); 1787 LoadSubCommand("region", 1788 CommandObjectSP(new CommandObjectMemoryRegion(interpreter))); 1789 } 1790 1791 CommandObjectMemory::~CommandObjectMemory() = default; 1792