1 //===-- CommandObjectMemory.cpp ---------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/AST/Decl.h" 10 11 #include "CommandObjectMemory.h" 12 #include "Plugins/ExpressionParser/Clang/ClangPersistentVariables.h" 13 #include "lldb/Core/Debugger.h" 14 #include "lldb/Core/DumpDataExtractor.h" 15 #include "lldb/Core/Module.h" 16 #include "lldb/Core/Section.h" 17 #include "lldb/Core/ValueObjectMemory.h" 18 #include "lldb/DataFormatters/ValueObjectPrinter.h" 19 #include "lldb/Host/OptionParser.h" 20 #include "lldb/Interpreter/CommandInterpreter.h" 21 #include "lldb/Interpreter/CommandReturnObject.h" 22 #include "lldb/Interpreter/OptionArgParser.h" 23 #include "lldb/Interpreter/OptionGroupFormat.h" 24 #include "lldb/Interpreter/OptionGroupOutputFile.h" 25 #include "lldb/Interpreter/OptionGroupValueObjectDisplay.h" 26 #include "lldb/Interpreter/OptionValueString.h" 27 #include "lldb/Interpreter/Options.h" 28 #include "lldb/Symbol/ClangASTContext.h" 29 #include "lldb/Symbol/SymbolFile.h" 30 #include "lldb/Symbol/TypeList.h" 31 #include "lldb/Target/MemoryHistory.h" 32 #include "lldb/Target/MemoryRegionInfo.h" 33 #include "lldb/Target/Process.h" 34 #include "lldb/Target/StackFrame.h" 35 #include "lldb/Target/Thread.h" 36 #include "lldb/Utility/Args.h" 37 #include "lldb/Utility/DataBufferHeap.h" 38 #include "lldb/Utility/DataBufferLLVM.h" 39 #include "lldb/Utility/StreamString.h" 40 41 #include "lldb/lldb-private.h" 42 43 #include <cinttypes> 44 #include <memory> 45 46 using namespace lldb; 47 using namespace lldb_private; 48 49 static constexpr OptionDefinition g_read_memory_options[] = { 50 // clang-format off 51 {LLDB_OPT_SET_1, false, "num-per-line", 'l', OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeNumberPerLine, "The number of items per line to display." }, 52 {LLDB_OPT_SET_2, false, "binary", 'b', OptionParser::eNoArgument, nullptr, {}, 0, eArgTypeNone, "If true, memory will be saved as binary. If false, the memory is saved save as an ASCII dump that " 53 "uses the format, size, count and number per line settings." }, 54 {LLDB_OPT_SET_3, true , "type", 't', OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeNone, "The name of a type to view memory as." }, 55 {LLDB_OPT_SET_3, false, "offset", 'E', OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeCount, "How many elements of the specified type to skip before starting to display data." }, 56 {LLDB_OPT_SET_1 | 57 LLDB_OPT_SET_2 | 58 LLDB_OPT_SET_3, false, "force", 'r', OptionParser::eNoArgument, nullptr, {}, 0, eArgTypeNone, "Necessary if reading over target.max-memory-read-size bytes." }, 59 // clang-format on 60 }; 61 62 class OptionGroupReadMemory : public OptionGroup { 63 public: 64 OptionGroupReadMemory() 65 : m_num_per_line(1, 1), m_output_as_binary(false), m_view_as_type(), 66 m_offset(0, 0) {} 67 68 ~OptionGroupReadMemory() override = default; 69 70 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 71 return llvm::makeArrayRef(g_read_memory_options); 72 } 73 74 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value, 75 ExecutionContext *execution_context) override { 76 Status error; 77 const int short_option = g_read_memory_options[option_idx].short_option; 78 79 switch (short_option) { 80 case 'l': 81 error = m_num_per_line.SetValueFromString(option_value); 82 if (m_num_per_line.GetCurrentValue() == 0) 83 error.SetErrorStringWithFormat( 84 "invalid value for --num-per-line option '%s'", 85 option_value.str().c_str()); 86 break; 87 88 case 'b': 89 m_output_as_binary = true; 90 break; 91 92 case 't': 93 error = m_view_as_type.SetValueFromString(option_value); 94 break; 95 96 case 'r': 97 m_force = true; 98 break; 99 100 case 'E': 101 error = m_offset.SetValueFromString(option_value); 102 break; 103 104 default: 105 error.SetErrorStringWithFormat("unrecognized short option '%c'", 106 short_option); 107 break; 108 } 109 return error; 110 } 111 112 void OptionParsingStarting(ExecutionContext *execution_context) override { 113 m_num_per_line.Clear(); 114 m_output_as_binary = false; 115 m_view_as_type.Clear(); 116 m_force = false; 117 m_offset.Clear(); 118 } 119 120 Status FinalizeSettings(Target *target, OptionGroupFormat &format_options) { 121 Status error; 122 OptionValueUInt64 &byte_size_value = format_options.GetByteSizeValue(); 123 OptionValueUInt64 &count_value = format_options.GetCountValue(); 124 const bool byte_size_option_set = byte_size_value.OptionWasSet(); 125 const bool num_per_line_option_set = m_num_per_line.OptionWasSet(); 126 const bool count_option_set = format_options.GetCountValue().OptionWasSet(); 127 128 switch (format_options.GetFormat()) { 129 default: 130 break; 131 132 case eFormatBoolean: 133 if (!byte_size_option_set) 134 byte_size_value = 1; 135 if (!num_per_line_option_set) 136 m_num_per_line = 1; 137 if (!count_option_set) 138 format_options.GetCountValue() = 8; 139 break; 140 141 case eFormatCString: 142 break; 143 144 case eFormatInstruction: 145 if (count_option_set) 146 byte_size_value = target->GetArchitecture().GetMaximumOpcodeByteSize(); 147 m_num_per_line = 1; 148 break; 149 150 case eFormatAddressInfo: 151 if (!byte_size_option_set) 152 byte_size_value = target->GetArchitecture().GetAddressByteSize(); 153 m_num_per_line = 1; 154 if (!count_option_set) 155 format_options.GetCountValue() = 8; 156 break; 157 158 case eFormatPointer: 159 byte_size_value = target->GetArchitecture().GetAddressByteSize(); 160 if (!num_per_line_option_set) 161 m_num_per_line = 4; 162 if (!count_option_set) 163 format_options.GetCountValue() = 8; 164 break; 165 166 case eFormatBinary: 167 case eFormatFloat: 168 case eFormatOctal: 169 case eFormatDecimal: 170 case eFormatEnum: 171 case eFormatUnicode16: 172 case eFormatUnicode32: 173 case eFormatUnsigned: 174 case eFormatHexFloat: 175 if (!byte_size_option_set) 176 byte_size_value = 4; 177 if (!num_per_line_option_set) 178 m_num_per_line = 1; 179 if (!count_option_set) 180 format_options.GetCountValue() = 8; 181 break; 182 183 case eFormatBytes: 184 case eFormatBytesWithASCII: 185 if (byte_size_option_set) { 186 if (byte_size_value > 1) 187 error.SetErrorStringWithFormat( 188 "display format (bytes/bytes with ASCII) conflicts with the " 189 "specified byte size %" PRIu64 "\n" 190 "\tconsider using a different display format or don't specify " 191 "the byte size.", 192 byte_size_value.GetCurrentValue()); 193 } else 194 byte_size_value = 1; 195 if (!num_per_line_option_set) 196 m_num_per_line = 16; 197 if (!count_option_set) 198 format_options.GetCountValue() = 32; 199 break; 200 201 case eFormatCharArray: 202 case eFormatChar: 203 case eFormatCharPrintable: 204 if (!byte_size_option_set) 205 byte_size_value = 1; 206 if (!num_per_line_option_set) 207 m_num_per_line = 32; 208 if (!count_option_set) 209 format_options.GetCountValue() = 64; 210 break; 211 212 case eFormatComplex: 213 if (!byte_size_option_set) 214 byte_size_value = 8; 215 if (!num_per_line_option_set) 216 m_num_per_line = 1; 217 if (!count_option_set) 218 format_options.GetCountValue() = 8; 219 break; 220 221 case eFormatComplexInteger: 222 if (!byte_size_option_set) 223 byte_size_value = 8; 224 if (!num_per_line_option_set) 225 m_num_per_line = 1; 226 if (!count_option_set) 227 format_options.GetCountValue() = 8; 228 break; 229 230 case eFormatHex: 231 if (!byte_size_option_set) 232 byte_size_value = 4; 233 if (!num_per_line_option_set) { 234 switch (byte_size_value) { 235 case 1: 236 case 2: 237 m_num_per_line = 8; 238 break; 239 case 4: 240 m_num_per_line = 4; 241 break; 242 case 8: 243 m_num_per_line = 2; 244 break; 245 default: 246 m_num_per_line = 1; 247 break; 248 } 249 } 250 if (!count_option_set) 251 count_value = 8; 252 break; 253 254 case eFormatVectorOfChar: 255 case eFormatVectorOfSInt8: 256 case eFormatVectorOfUInt8: 257 case eFormatVectorOfSInt16: 258 case eFormatVectorOfUInt16: 259 case eFormatVectorOfSInt32: 260 case eFormatVectorOfUInt32: 261 case eFormatVectorOfSInt64: 262 case eFormatVectorOfUInt64: 263 case eFormatVectorOfFloat16: 264 case eFormatVectorOfFloat32: 265 case eFormatVectorOfFloat64: 266 case eFormatVectorOfUInt128: 267 if (!byte_size_option_set) 268 byte_size_value = 128; 269 if (!num_per_line_option_set) 270 m_num_per_line = 1; 271 if (!count_option_set) 272 count_value = 4; 273 break; 274 } 275 return error; 276 } 277 278 bool AnyOptionWasSet() const { 279 return m_num_per_line.OptionWasSet() || m_output_as_binary || 280 m_view_as_type.OptionWasSet() || m_offset.OptionWasSet(); 281 } 282 283 OptionValueUInt64 m_num_per_line; 284 bool m_output_as_binary; 285 OptionValueString m_view_as_type; 286 bool m_force; 287 OptionValueUInt64 m_offset; 288 }; 289 290 //---------------------------------------------------------------------- 291 // Read memory from the inferior process 292 //---------------------------------------------------------------------- 293 class CommandObjectMemoryRead : public CommandObjectParsed { 294 public: 295 CommandObjectMemoryRead(CommandInterpreter &interpreter) 296 : CommandObjectParsed( 297 interpreter, "memory read", 298 "Read from the memory of the current target process.", nullptr, 299 eCommandRequiresTarget | eCommandProcessMustBePaused), 300 m_option_group(), m_format_options(eFormatBytesWithASCII, 1, 8), 301 m_memory_options(), m_outfile_options(), m_varobj_options(), 302 m_next_addr(LLDB_INVALID_ADDRESS), m_prev_byte_size(0), 303 m_prev_format_options(eFormatBytesWithASCII, 1, 8), 304 m_prev_memory_options(), m_prev_outfile_options(), 305 m_prev_varobj_options() { 306 CommandArgumentEntry arg1; 307 CommandArgumentEntry arg2; 308 CommandArgumentData start_addr_arg; 309 CommandArgumentData end_addr_arg; 310 311 // Define the first (and only) variant of this arg. 312 start_addr_arg.arg_type = eArgTypeAddressOrExpression; 313 start_addr_arg.arg_repetition = eArgRepeatPlain; 314 315 // There is only one variant this argument could be; put it into the 316 // argument entry. 317 arg1.push_back(start_addr_arg); 318 319 // Define the first (and only) variant of this arg. 320 end_addr_arg.arg_type = eArgTypeAddressOrExpression; 321 end_addr_arg.arg_repetition = eArgRepeatOptional; 322 323 // There is only one variant this argument could be; put it into the 324 // argument entry. 325 arg2.push_back(end_addr_arg); 326 327 // Push the data for the first argument into the m_arguments vector. 328 m_arguments.push_back(arg1); 329 m_arguments.push_back(arg2); 330 331 // Add the "--format" and "--count" options to group 1 and 3 332 m_option_group.Append(&m_format_options, 333 OptionGroupFormat::OPTION_GROUP_FORMAT | 334 OptionGroupFormat::OPTION_GROUP_COUNT, 335 LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3); 336 m_option_group.Append(&m_format_options, 337 OptionGroupFormat::OPTION_GROUP_GDB_FMT, 338 LLDB_OPT_SET_1 | LLDB_OPT_SET_3); 339 // Add the "--size" option to group 1 and 2 340 m_option_group.Append(&m_format_options, 341 OptionGroupFormat::OPTION_GROUP_SIZE, 342 LLDB_OPT_SET_1 | LLDB_OPT_SET_2); 343 m_option_group.Append(&m_memory_options); 344 m_option_group.Append(&m_outfile_options, LLDB_OPT_SET_ALL, 345 LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3); 346 m_option_group.Append(&m_varobj_options, LLDB_OPT_SET_ALL, LLDB_OPT_SET_3); 347 m_option_group.Finalize(); 348 } 349 350 ~CommandObjectMemoryRead() override = default; 351 352 Options *GetOptions() override { return &m_option_group; } 353 354 const char *GetRepeatCommand(Args ¤t_command_args, 355 uint32_t index) override { 356 return m_cmd_name.c_str(); 357 } 358 359 protected: 360 bool DoExecute(Args &command, CommandReturnObject &result) override { 361 // No need to check "target" for validity as eCommandRequiresTarget ensures 362 // it is valid 363 Target *target = m_exe_ctx.GetTargetPtr(); 364 365 const size_t argc = command.GetArgumentCount(); 366 367 if ((argc == 0 && m_next_addr == LLDB_INVALID_ADDRESS) || argc > 2) { 368 result.AppendErrorWithFormat("%s takes a start address expression with " 369 "an optional end address expression.\n", 370 m_cmd_name.c_str()); 371 result.AppendRawWarning("Expressions should be quoted if they contain " 372 "spaces or other special characters.\n"); 373 result.SetStatus(eReturnStatusFailed); 374 return false; 375 } 376 377 CompilerType clang_ast_type; 378 Status error; 379 380 const char *view_as_type_cstr = 381 m_memory_options.m_view_as_type.GetCurrentValue(); 382 if (view_as_type_cstr && view_as_type_cstr[0]) { 383 // We are viewing memory as a type 384 385 const bool exact_match = false; 386 TypeList type_list; 387 uint32_t reference_count = 0; 388 uint32_t pointer_count = 0; 389 size_t idx; 390 391 #define ALL_KEYWORDS \ 392 KEYWORD("const") \ 393 KEYWORD("volatile") \ 394 KEYWORD("restrict") \ 395 KEYWORD("struct") \ 396 KEYWORD("class") \ 397 KEYWORD("union") 398 399 #define KEYWORD(s) s, 400 static const char *g_keywords[] = {ALL_KEYWORDS}; 401 #undef KEYWORD 402 403 #define KEYWORD(s) (sizeof(s) - 1), 404 static const int g_keyword_lengths[] = {ALL_KEYWORDS}; 405 #undef KEYWORD 406 407 #undef ALL_KEYWORDS 408 409 static size_t g_num_keywords = sizeof(g_keywords) / sizeof(const char *); 410 std::string type_str(view_as_type_cstr); 411 412 // Remove all instances of g_keywords that are followed by spaces 413 for (size_t i = 0; i < g_num_keywords; ++i) { 414 const char *keyword = g_keywords[i]; 415 int keyword_len = g_keyword_lengths[i]; 416 417 idx = 0; 418 while ((idx = type_str.find(keyword, idx)) != std::string::npos) { 419 if (type_str[idx + keyword_len] == ' ' || 420 type_str[idx + keyword_len] == '\t') { 421 type_str.erase(idx, keyword_len + 1); 422 idx = 0; 423 } else { 424 idx += keyword_len; 425 } 426 } 427 } 428 bool done = type_str.empty(); 429 // 430 idx = type_str.find_first_not_of(" \t"); 431 if (idx > 0 && idx != std::string::npos) 432 type_str.erase(0, idx); 433 while (!done) { 434 // Strip trailing spaces 435 if (type_str.empty()) 436 done = true; 437 else { 438 switch (type_str[type_str.size() - 1]) { 439 case '*': 440 ++pointer_count; 441 LLVM_FALLTHROUGH; 442 case ' ': 443 case '\t': 444 type_str.erase(type_str.size() - 1); 445 break; 446 447 case '&': 448 if (reference_count == 0) { 449 reference_count = 1; 450 type_str.erase(type_str.size() - 1); 451 } else { 452 result.AppendErrorWithFormat("invalid type string: '%s'\n", 453 view_as_type_cstr); 454 result.SetStatus(eReturnStatusFailed); 455 return false; 456 } 457 break; 458 459 default: 460 done = true; 461 break; 462 } 463 } 464 } 465 466 llvm::DenseSet<lldb_private::SymbolFile *> searched_symbol_files; 467 ConstString lookup_type_name(type_str.c_str()); 468 StackFrame *frame = m_exe_ctx.GetFramePtr(); 469 ModuleSP search_first; 470 if (frame) { 471 search_first = frame->GetSymbolContext(eSymbolContextModule).module_sp; 472 } 473 target->GetImages().FindTypes(search_first.get(), lookup_type_name, 474 exact_match, 1, searched_symbol_files, 475 type_list); 476 477 if (type_list.GetSize() == 0 && lookup_type_name.GetCString() && 478 *lookup_type_name.GetCString() == '$') { 479 if (ClangPersistentVariables *persistent_vars = 480 llvm::dyn_cast_or_null<ClangPersistentVariables>( 481 target->GetPersistentExpressionStateForLanguage( 482 lldb::eLanguageTypeC))) { 483 clang::TypeDecl *tdecl = llvm::dyn_cast_or_null<clang::TypeDecl>( 484 persistent_vars->GetPersistentDecl( 485 ConstString(lookup_type_name))); 486 487 if (tdecl) { 488 clang_ast_type.SetCompilerType( 489 ClangASTContext::GetASTContext(&tdecl->getASTContext()), 490 reinterpret_cast<lldb::opaque_compiler_type_t>( 491 const_cast<clang::Type *>(tdecl->getTypeForDecl()))); 492 } 493 } 494 } 495 496 if (!clang_ast_type.IsValid()) { 497 if (type_list.GetSize() == 0) { 498 result.AppendErrorWithFormat("unable to find any types that match " 499 "the raw type '%s' for full type '%s'\n", 500 lookup_type_name.GetCString(), 501 view_as_type_cstr); 502 result.SetStatus(eReturnStatusFailed); 503 return false; 504 } else { 505 TypeSP type_sp(type_list.GetTypeAtIndex(0)); 506 clang_ast_type = type_sp->GetFullCompilerType(); 507 } 508 } 509 510 while (pointer_count > 0) { 511 CompilerType pointer_type = clang_ast_type.GetPointerType(); 512 if (pointer_type.IsValid()) 513 clang_ast_type = pointer_type; 514 else { 515 result.AppendError("unable make a pointer type\n"); 516 result.SetStatus(eReturnStatusFailed); 517 return false; 518 } 519 --pointer_count; 520 } 521 522 llvm::Optional<uint64_t> size = clang_ast_type.GetByteSize(nullptr); 523 if (!size) { 524 result.AppendErrorWithFormat( 525 "unable to get the byte size of the type '%s'\n", 526 view_as_type_cstr); 527 result.SetStatus(eReturnStatusFailed); 528 return false; 529 } 530 m_format_options.GetByteSizeValue() = *size; 531 532 if (!m_format_options.GetCountValue().OptionWasSet()) 533 m_format_options.GetCountValue() = 1; 534 } else { 535 error = m_memory_options.FinalizeSettings(target, m_format_options); 536 } 537 538 // Look for invalid combinations of settings 539 if (error.Fail()) { 540 result.AppendError(error.AsCString()); 541 result.SetStatus(eReturnStatusFailed); 542 return false; 543 } 544 545 lldb::addr_t addr; 546 size_t total_byte_size = 0; 547 if (argc == 0) { 548 // Use the last address and byte size and all options as they were if no 549 // options have been set 550 addr = m_next_addr; 551 total_byte_size = m_prev_byte_size; 552 clang_ast_type = m_prev_clang_ast_type; 553 if (!m_format_options.AnyOptionWasSet() && 554 !m_memory_options.AnyOptionWasSet() && 555 !m_outfile_options.AnyOptionWasSet() && 556 !m_varobj_options.AnyOptionWasSet()) { 557 m_format_options = m_prev_format_options; 558 m_memory_options = m_prev_memory_options; 559 m_outfile_options = m_prev_outfile_options; 560 m_varobj_options = m_prev_varobj_options; 561 } 562 } 563 564 size_t item_count = m_format_options.GetCountValue().GetCurrentValue(); 565 566 // TODO For non-8-bit byte addressable architectures this needs to be 567 // revisited to fully support all lldb's range of formatting options. 568 // Furthermore code memory reads (for those architectures) will not be 569 // correctly formatted even w/o formatting options. 570 size_t item_byte_size = 571 target->GetArchitecture().GetDataByteSize() > 1 572 ? target->GetArchitecture().GetDataByteSize() 573 : m_format_options.GetByteSizeValue().GetCurrentValue(); 574 575 const size_t num_per_line = 576 m_memory_options.m_num_per_line.GetCurrentValue(); 577 578 if (total_byte_size == 0) { 579 total_byte_size = item_count * item_byte_size; 580 if (total_byte_size == 0) 581 total_byte_size = 32; 582 } 583 584 if (argc > 0) 585 addr = OptionArgParser::ToAddress(&m_exe_ctx, command[0].ref, 586 LLDB_INVALID_ADDRESS, &error); 587 588 if (addr == LLDB_INVALID_ADDRESS) { 589 result.AppendError("invalid start address expression."); 590 result.AppendError(error.AsCString()); 591 result.SetStatus(eReturnStatusFailed); 592 return false; 593 } 594 595 if (argc == 2) { 596 lldb::addr_t end_addr = OptionArgParser::ToAddress( 597 &m_exe_ctx, command[1].ref, LLDB_INVALID_ADDRESS, nullptr); 598 if (end_addr == LLDB_INVALID_ADDRESS) { 599 result.AppendError("invalid end address expression."); 600 result.AppendError(error.AsCString()); 601 result.SetStatus(eReturnStatusFailed); 602 return false; 603 } else if (end_addr <= addr) { 604 result.AppendErrorWithFormat( 605 "end address (0x%" PRIx64 606 ") must be greater that the start address (0x%" PRIx64 ").\n", 607 end_addr, addr); 608 result.SetStatus(eReturnStatusFailed); 609 return false; 610 } else if (m_format_options.GetCountValue().OptionWasSet()) { 611 result.AppendErrorWithFormat( 612 "specify either the end address (0x%" PRIx64 613 ") or the count (--count %" PRIu64 "), not both.\n", 614 end_addr, (uint64_t)item_count); 615 result.SetStatus(eReturnStatusFailed); 616 return false; 617 } 618 619 total_byte_size = end_addr - addr; 620 item_count = total_byte_size / item_byte_size; 621 } 622 623 uint32_t max_unforced_size = target->GetMaximumMemReadSize(); 624 625 if (total_byte_size > max_unforced_size && !m_memory_options.m_force) { 626 result.AppendErrorWithFormat( 627 "Normally, \'memory read\' will not read over %" PRIu32 628 " bytes of data.\n", 629 max_unforced_size); 630 result.AppendErrorWithFormat( 631 "Please use --force to override this restriction just once.\n"); 632 result.AppendErrorWithFormat("or set target.max-memory-read-size if you " 633 "will often need a larger limit.\n"); 634 return false; 635 } 636 637 DataBufferSP data_sp; 638 size_t bytes_read = 0; 639 if (clang_ast_type.GetOpaqueQualType()) { 640 // Make sure we don't display our type as ASCII bytes like the default 641 // memory read 642 if (!m_format_options.GetFormatValue().OptionWasSet()) 643 m_format_options.GetFormatValue().SetCurrentValue(eFormatDefault); 644 645 llvm::Optional<uint64_t> size = clang_ast_type.GetByteSize(nullptr); 646 if (!size) { 647 result.AppendError("can't get size of type"); 648 return false; 649 } 650 bytes_read = *size * m_format_options.GetCountValue().GetCurrentValue(); 651 652 if (argc > 0) 653 addr = addr + (*size * m_memory_options.m_offset.GetCurrentValue()); 654 } else if (m_format_options.GetFormatValue().GetCurrentValue() != 655 eFormatCString) { 656 data_sp = std::make_shared<DataBufferHeap>(total_byte_size, '\0'); 657 if (data_sp->GetBytes() == nullptr) { 658 result.AppendErrorWithFormat( 659 "can't allocate 0x%" PRIx32 660 " bytes for the memory read buffer, specify a smaller size to read", 661 (uint32_t)total_byte_size); 662 result.SetStatus(eReturnStatusFailed); 663 return false; 664 } 665 666 Address address(addr, nullptr); 667 bytes_read = target->ReadMemory(address, false, data_sp->GetBytes(), 668 data_sp->GetByteSize(), error); 669 if (bytes_read == 0) { 670 const char *error_cstr = error.AsCString(); 671 if (error_cstr && error_cstr[0]) { 672 result.AppendError(error_cstr); 673 } else { 674 result.AppendErrorWithFormat( 675 "failed to read memory from 0x%" PRIx64 ".\n", addr); 676 } 677 result.SetStatus(eReturnStatusFailed); 678 return false; 679 } 680 681 if (bytes_read < total_byte_size) 682 result.AppendWarningWithFormat( 683 "Not all bytes (%" PRIu64 "/%" PRIu64 684 ") were able to be read from 0x%" PRIx64 ".\n", 685 (uint64_t)bytes_read, (uint64_t)total_byte_size, addr); 686 } else { 687 // we treat c-strings as a special case because they do not have a fixed 688 // size 689 if (m_format_options.GetByteSizeValue().OptionWasSet() && 690 !m_format_options.HasGDBFormat()) 691 item_byte_size = m_format_options.GetByteSizeValue().GetCurrentValue(); 692 else 693 item_byte_size = target->GetMaximumSizeOfStringSummary(); 694 if (!m_format_options.GetCountValue().OptionWasSet()) 695 item_count = 1; 696 data_sp = std::make_shared<DataBufferHeap>( 697 (item_byte_size + 1) * item_count, 698 '\0'); // account for NULLs as necessary 699 if (data_sp->GetBytes() == nullptr) { 700 result.AppendErrorWithFormat( 701 "can't allocate 0x%" PRIx64 702 " bytes for the memory read buffer, specify a smaller size to read", 703 (uint64_t)((item_byte_size + 1) * item_count)); 704 result.SetStatus(eReturnStatusFailed); 705 return false; 706 } 707 uint8_t *data_ptr = data_sp->GetBytes(); 708 auto data_addr = addr; 709 auto count = item_count; 710 item_count = 0; 711 bool break_on_no_NULL = false; 712 while (item_count < count) { 713 std::string buffer; 714 buffer.resize(item_byte_size + 1, 0); 715 Status error; 716 size_t read = target->ReadCStringFromMemory(data_addr, &buffer[0], 717 item_byte_size + 1, error); 718 if (error.Fail()) { 719 result.AppendErrorWithFormat( 720 "failed to read memory from 0x%" PRIx64 ".\n", addr); 721 result.SetStatus(eReturnStatusFailed); 722 return false; 723 } 724 725 if (item_byte_size == read) { 726 result.AppendWarningWithFormat( 727 "unable to find a NULL terminated string at 0x%" PRIx64 728 ".Consider increasing the maximum read length.\n", 729 data_addr); 730 --read; 731 break_on_no_NULL = true; 732 } else 733 ++read; // account for final NULL byte 734 735 memcpy(data_ptr, &buffer[0], read); 736 data_ptr += read; 737 data_addr += read; 738 bytes_read += read; 739 item_count++; // if we break early we know we only read item_count 740 // strings 741 742 if (break_on_no_NULL) 743 break; 744 } 745 data_sp = 746 std::make_shared<DataBufferHeap>(data_sp->GetBytes(), bytes_read + 1); 747 } 748 749 m_next_addr = addr + bytes_read; 750 m_prev_byte_size = bytes_read; 751 m_prev_format_options = m_format_options; 752 m_prev_memory_options = m_memory_options; 753 m_prev_outfile_options = m_outfile_options; 754 m_prev_varobj_options = m_varobj_options; 755 m_prev_clang_ast_type = clang_ast_type; 756 757 StreamFile outfile_stream; 758 Stream *output_stream = nullptr; 759 const FileSpec &outfile_spec = 760 m_outfile_options.GetFile().GetCurrentValue(); 761 762 std::string path = outfile_spec.GetPath(); 763 if (outfile_spec) { 764 765 uint32_t open_options = 766 File::eOpenOptionWrite | File::eOpenOptionCanCreate; 767 const bool append = m_outfile_options.GetAppend().GetCurrentValue(); 768 if (append) 769 open_options |= File::eOpenOptionAppend; 770 771 Status error = FileSystem::Instance().Open(outfile_stream.GetFile(), 772 outfile_spec, open_options); 773 if (error.Success()) { 774 if (m_memory_options.m_output_as_binary) { 775 const size_t bytes_written = 776 outfile_stream.Write(data_sp->GetBytes(), bytes_read); 777 if (bytes_written > 0) { 778 result.GetOutputStream().Printf( 779 "%zi bytes %s to '%s'\n", bytes_written, 780 append ? "appended" : "written", path.c_str()); 781 return true; 782 } else { 783 result.AppendErrorWithFormat("Failed to write %" PRIu64 784 " bytes to '%s'.\n", 785 (uint64_t)bytes_read, path.c_str()); 786 result.SetStatus(eReturnStatusFailed); 787 return false; 788 } 789 } else { 790 // We are going to write ASCII to the file just point the 791 // output_stream to our outfile_stream... 792 output_stream = &outfile_stream; 793 } 794 } else { 795 result.AppendErrorWithFormat("Failed to open file '%s' for %s.\n", 796 path.c_str(), append ? "append" : "write"); 797 result.SetStatus(eReturnStatusFailed); 798 return false; 799 } 800 } else { 801 output_stream = &result.GetOutputStream(); 802 } 803 804 ExecutionContextScope *exe_scope = m_exe_ctx.GetBestExecutionContextScope(); 805 if (clang_ast_type.GetOpaqueQualType()) { 806 for (uint32_t i = 0; i < item_count; ++i) { 807 addr_t item_addr = addr + (i * item_byte_size); 808 Address address(item_addr); 809 StreamString name_strm; 810 name_strm.Printf("0x%" PRIx64, item_addr); 811 ValueObjectSP valobj_sp(ValueObjectMemory::Create( 812 exe_scope, name_strm.GetString(), address, clang_ast_type)); 813 if (valobj_sp) { 814 Format format = m_format_options.GetFormat(); 815 if (format != eFormatDefault) 816 valobj_sp->SetFormat(format); 817 818 DumpValueObjectOptions options(m_varobj_options.GetAsDumpOptions( 819 eLanguageRuntimeDescriptionDisplayVerbosityFull, format)); 820 821 valobj_sp->Dump(*output_stream, options); 822 } else { 823 result.AppendErrorWithFormat( 824 "failed to create a value object for: (%s) %s\n", 825 view_as_type_cstr, name_strm.GetData()); 826 result.SetStatus(eReturnStatusFailed); 827 return false; 828 } 829 } 830 return true; 831 } 832 833 result.SetStatus(eReturnStatusSuccessFinishResult); 834 DataExtractor data(data_sp, target->GetArchitecture().GetByteOrder(), 835 target->GetArchitecture().GetAddressByteSize(), 836 target->GetArchitecture().GetDataByteSize()); 837 838 Format format = m_format_options.GetFormat(); 839 if (((format == eFormatChar) || (format == eFormatCharPrintable)) && 840 (item_byte_size != 1)) { 841 // if a count was not passed, or it is 1 842 if (!m_format_options.GetCountValue().OptionWasSet() || item_count == 1) { 843 // this turns requests such as 844 // memory read -fc -s10 -c1 *charPtrPtr 845 // which make no sense (what is a char of size 10?) into a request for 846 // fetching 10 chars of size 1 from the same memory location 847 format = eFormatCharArray; 848 item_count = item_byte_size; 849 item_byte_size = 1; 850 } else { 851 // here we passed a count, and it was not 1 so we have a byte_size and 852 // a count we could well multiply those, but instead let's just fail 853 result.AppendErrorWithFormat( 854 "reading memory as characters of size %" PRIu64 " is not supported", 855 (uint64_t)item_byte_size); 856 result.SetStatus(eReturnStatusFailed); 857 return false; 858 } 859 } 860 861 assert(output_stream); 862 size_t bytes_dumped = DumpDataExtractor( 863 data, output_stream, 0, format, item_byte_size, item_count, 864 num_per_line / target->GetArchitecture().GetDataByteSize(), addr, 0, 0, 865 exe_scope); 866 m_next_addr = addr + bytes_dumped; 867 output_stream->EOL(); 868 return true; 869 } 870 871 OptionGroupOptions m_option_group; 872 OptionGroupFormat m_format_options; 873 OptionGroupReadMemory m_memory_options; 874 OptionGroupOutputFile m_outfile_options; 875 OptionGroupValueObjectDisplay m_varobj_options; 876 lldb::addr_t m_next_addr; 877 lldb::addr_t m_prev_byte_size; 878 OptionGroupFormat m_prev_format_options; 879 OptionGroupReadMemory m_prev_memory_options; 880 OptionGroupOutputFile m_prev_outfile_options; 881 OptionGroupValueObjectDisplay m_prev_varobj_options; 882 CompilerType m_prev_clang_ast_type; 883 }; 884 885 static constexpr OptionDefinition g_memory_find_option_table[] = { 886 // clang-format off 887 {LLDB_OPT_SET_1, true, "expression", 'e', OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeExpression, "Evaluate an expression to obtain a byte pattern."}, 888 {LLDB_OPT_SET_2, true, "string", 's', OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeName, "Use text to find a byte pattern."}, 889 {LLDB_OPT_SET_ALL, false, "count", 'c', OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeCount, "How many times to perform the search."}, 890 {LLDB_OPT_SET_ALL, false, "dump-offset", 'o', OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeOffset, "When dumping memory for a match, an offset from the match location to start dumping from."}, 891 // clang-format on 892 }; 893 894 //---------------------------------------------------------------------- 895 // Find the specified data in memory 896 //---------------------------------------------------------------------- 897 class CommandObjectMemoryFind : public CommandObjectParsed { 898 public: 899 class OptionGroupFindMemory : public OptionGroup { 900 public: 901 OptionGroupFindMemory() : OptionGroup(), m_count(1), m_offset(0) {} 902 903 ~OptionGroupFindMemory() override = default; 904 905 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 906 return llvm::makeArrayRef(g_memory_find_option_table); 907 } 908 909 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value, 910 ExecutionContext *execution_context) override { 911 Status error; 912 const int short_option = 913 g_memory_find_option_table[option_idx].short_option; 914 915 switch (short_option) { 916 case 'e': 917 m_expr.SetValueFromString(option_value); 918 break; 919 920 case 's': 921 m_string.SetValueFromString(option_value); 922 break; 923 924 case 'c': 925 if (m_count.SetValueFromString(option_value).Fail()) 926 error.SetErrorString("unrecognized value for count"); 927 break; 928 929 case 'o': 930 if (m_offset.SetValueFromString(option_value).Fail()) 931 error.SetErrorString("unrecognized value for dump-offset"); 932 break; 933 934 default: 935 error.SetErrorStringWithFormat("unrecognized short option '%c'", 936 short_option); 937 break; 938 } 939 return error; 940 } 941 942 void OptionParsingStarting(ExecutionContext *execution_context) override { 943 m_expr.Clear(); 944 m_string.Clear(); 945 m_count.Clear(); 946 } 947 948 OptionValueString m_expr; 949 OptionValueString m_string; 950 OptionValueUInt64 m_count; 951 OptionValueUInt64 m_offset; 952 }; 953 954 CommandObjectMemoryFind(CommandInterpreter &interpreter) 955 : CommandObjectParsed( 956 interpreter, "memory find", 957 "Find a value in the memory of the current target process.", 958 nullptr, eCommandRequiresProcess | eCommandProcessMustBeLaunched), 959 m_option_group(), m_memory_options() { 960 CommandArgumentEntry arg1; 961 CommandArgumentEntry arg2; 962 CommandArgumentData addr_arg; 963 CommandArgumentData value_arg; 964 965 // Define the first (and only) variant of this arg. 966 addr_arg.arg_type = eArgTypeAddressOrExpression; 967 addr_arg.arg_repetition = eArgRepeatPlain; 968 969 // There is only one variant this argument could be; put it into the 970 // argument entry. 971 arg1.push_back(addr_arg); 972 973 // Define the first (and only) variant of this arg. 974 value_arg.arg_type = eArgTypeAddressOrExpression; 975 value_arg.arg_repetition = eArgRepeatPlain; 976 977 // There is only one variant this argument could be; put it into the 978 // argument entry. 979 arg2.push_back(value_arg); 980 981 // Push the data for the first argument into the m_arguments vector. 982 m_arguments.push_back(arg1); 983 m_arguments.push_back(arg2); 984 985 m_option_group.Append(&m_memory_options); 986 m_option_group.Finalize(); 987 } 988 989 ~CommandObjectMemoryFind() override = default; 990 991 Options *GetOptions() override { return &m_option_group; } 992 993 protected: 994 class ProcessMemoryIterator { 995 public: 996 ProcessMemoryIterator(ProcessSP process_sp, lldb::addr_t base) 997 : m_process_sp(process_sp), m_base_addr(base), m_is_valid(true) { 998 lldbassert(process_sp.get() != nullptr); 999 } 1000 1001 bool IsValid() { return m_is_valid; } 1002 1003 uint8_t operator[](lldb::addr_t offset) { 1004 if (!IsValid()) 1005 return 0; 1006 1007 uint8_t retval = 0; 1008 Status error; 1009 if (0 == 1010 m_process_sp->ReadMemory(m_base_addr + offset, &retval, 1, error)) { 1011 m_is_valid = false; 1012 return 0; 1013 } 1014 1015 return retval; 1016 } 1017 1018 private: 1019 ProcessSP m_process_sp; 1020 lldb::addr_t m_base_addr; 1021 bool m_is_valid; 1022 }; 1023 bool DoExecute(Args &command, CommandReturnObject &result) override { 1024 // No need to check "process" for validity as eCommandRequiresProcess 1025 // ensures it is valid 1026 Process *process = m_exe_ctx.GetProcessPtr(); 1027 1028 const size_t argc = command.GetArgumentCount(); 1029 1030 if (argc != 2) { 1031 result.AppendError("two addresses needed for memory find"); 1032 return false; 1033 } 1034 1035 Status error; 1036 lldb::addr_t low_addr = OptionArgParser::ToAddress( 1037 &m_exe_ctx, command[0].ref, LLDB_INVALID_ADDRESS, &error); 1038 if (low_addr == LLDB_INVALID_ADDRESS || error.Fail()) { 1039 result.AppendError("invalid low address"); 1040 return false; 1041 } 1042 lldb::addr_t high_addr = OptionArgParser::ToAddress( 1043 &m_exe_ctx, command[1].ref, LLDB_INVALID_ADDRESS, &error); 1044 if (high_addr == LLDB_INVALID_ADDRESS || error.Fail()) { 1045 result.AppendError("invalid high address"); 1046 return false; 1047 } 1048 1049 if (high_addr <= low_addr) { 1050 result.AppendError( 1051 "starting address must be smaller than ending address"); 1052 return false; 1053 } 1054 1055 lldb::addr_t found_location = LLDB_INVALID_ADDRESS; 1056 1057 DataBufferHeap buffer; 1058 1059 if (m_memory_options.m_string.OptionWasSet()) 1060 buffer.CopyData(m_memory_options.m_string.GetStringValue()); 1061 else if (m_memory_options.m_expr.OptionWasSet()) { 1062 StackFrame *frame = m_exe_ctx.GetFramePtr(); 1063 ValueObjectSP result_sp; 1064 if ((eExpressionCompleted == 1065 process->GetTarget().EvaluateExpression( 1066 m_memory_options.m_expr.GetStringValue(), frame, result_sp)) && 1067 result_sp) { 1068 uint64_t value = result_sp->GetValueAsUnsigned(0); 1069 llvm::Optional<uint64_t> size = 1070 result_sp->GetCompilerType().GetByteSize(nullptr); 1071 if (!size) 1072 return false; 1073 switch (*size) { 1074 case 1: { 1075 uint8_t byte = (uint8_t)value; 1076 buffer.CopyData(&byte, 1); 1077 } break; 1078 case 2: { 1079 uint16_t word = (uint16_t)value; 1080 buffer.CopyData(&word, 2); 1081 } break; 1082 case 4: { 1083 uint32_t lword = (uint32_t)value; 1084 buffer.CopyData(&lword, 4); 1085 } break; 1086 case 8: { 1087 buffer.CopyData(&value, 8); 1088 } break; 1089 case 3: 1090 case 5: 1091 case 6: 1092 case 7: 1093 result.AppendError("unknown type. pass a string instead"); 1094 return false; 1095 default: 1096 result.AppendError( 1097 "result size larger than 8 bytes. pass a string instead"); 1098 return false; 1099 } 1100 } else { 1101 result.AppendError( 1102 "expression evaluation failed. pass a string instead"); 1103 return false; 1104 } 1105 } else { 1106 result.AppendError( 1107 "please pass either a block of text, or an expression to evaluate."); 1108 return false; 1109 } 1110 1111 size_t count = m_memory_options.m_count.GetCurrentValue(); 1112 found_location = low_addr; 1113 bool ever_found = false; 1114 while (count) { 1115 found_location = FastSearch(found_location, high_addr, buffer.GetBytes(), 1116 buffer.GetByteSize()); 1117 if (found_location == LLDB_INVALID_ADDRESS) { 1118 if (!ever_found) { 1119 result.AppendMessage("data not found within the range.\n"); 1120 result.SetStatus(lldb::eReturnStatusSuccessFinishNoResult); 1121 } else 1122 result.AppendMessage("no more matches within the range.\n"); 1123 break; 1124 } 1125 result.AppendMessageWithFormat("data found at location: 0x%" PRIx64 "\n", 1126 found_location); 1127 1128 DataBufferHeap dumpbuffer(32, 0); 1129 process->ReadMemory( 1130 found_location + m_memory_options.m_offset.GetCurrentValue(), 1131 dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(), error); 1132 if (!error.Fail()) { 1133 DataExtractor data(dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(), 1134 process->GetByteOrder(), 1135 process->GetAddressByteSize()); 1136 DumpDataExtractor( 1137 data, &result.GetOutputStream(), 0, lldb::eFormatBytesWithASCII, 1, 1138 dumpbuffer.GetByteSize(), 16, 1139 found_location + m_memory_options.m_offset.GetCurrentValue(), 0, 0); 1140 result.GetOutputStream().EOL(); 1141 } 1142 1143 --count; 1144 found_location++; 1145 ever_found = true; 1146 } 1147 1148 result.SetStatus(lldb::eReturnStatusSuccessFinishResult); 1149 return true; 1150 } 1151 1152 lldb::addr_t FastSearch(lldb::addr_t low, lldb::addr_t high, uint8_t *buffer, 1153 size_t buffer_size) { 1154 const size_t region_size = high - low; 1155 1156 if (region_size < buffer_size) 1157 return LLDB_INVALID_ADDRESS; 1158 1159 std::vector<size_t> bad_char_heuristic(256, buffer_size); 1160 ProcessSP process_sp = m_exe_ctx.GetProcessSP(); 1161 ProcessMemoryIterator iterator(process_sp, low); 1162 1163 for (size_t idx = 0; idx < buffer_size - 1; idx++) { 1164 decltype(bad_char_heuristic)::size_type bcu_idx = buffer[idx]; 1165 bad_char_heuristic[bcu_idx] = buffer_size - idx - 1; 1166 } 1167 for (size_t s = 0; s <= (region_size - buffer_size);) { 1168 int64_t j = buffer_size - 1; 1169 while (j >= 0 && buffer[j] == iterator[s + j]) 1170 j--; 1171 if (j < 0) 1172 return low + s; 1173 else 1174 s += bad_char_heuristic[iterator[s + buffer_size - 1]]; 1175 } 1176 1177 return LLDB_INVALID_ADDRESS; 1178 } 1179 1180 OptionGroupOptions m_option_group; 1181 OptionGroupFindMemory m_memory_options; 1182 }; 1183 1184 static constexpr OptionDefinition g_memory_write_option_table[] = { 1185 // clang-format off 1186 {LLDB_OPT_SET_1, true, "infile", 'i', OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeFilename, "Write memory using the contents of a file."}, 1187 {LLDB_OPT_SET_1, false, "offset", 'o', OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeOffset, "Start writing bytes from an offset within the input file."}, 1188 // clang-format on 1189 }; 1190 1191 //---------------------------------------------------------------------- 1192 // Write memory to the inferior process 1193 //---------------------------------------------------------------------- 1194 class CommandObjectMemoryWrite : public CommandObjectParsed { 1195 public: 1196 class OptionGroupWriteMemory : public OptionGroup { 1197 public: 1198 OptionGroupWriteMemory() : OptionGroup() {} 1199 1200 ~OptionGroupWriteMemory() override = default; 1201 1202 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 1203 return llvm::makeArrayRef(g_memory_write_option_table); 1204 } 1205 1206 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value, 1207 ExecutionContext *execution_context) override { 1208 Status error; 1209 const int short_option = 1210 g_memory_write_option_table[option_idx].short_option; 1211 1212 switch (short_option) { 1213 case 'i': 1214 m_infile.SetFile(option_value, FileSpec::Style::native); 1215 FileSystem::Instance().Resolve(m_infile); 1216 if (!FileSystem::Instance().Exists(m_infile)) { 1217 m_infile.Clear(); 1218 error.SetErrorStringWithFormat("input file does not exist: '%s'", 1219 option_value.str().c_str()); 1220 } 1221 break; 1222 1223 case 'o': { 1224 if (option_value.getAsInteger(0, m_infile_offset)) { 1225 m_infile_offset = 0; 1226 error.SetErrorStringWithFormat("invalid offset string '%s'", 1227 option_value.str().c_str()); 1228 } 1229 } break; 1230 1231 default: 1232 error.SetErrorStringWithFormat("unrecognized short option '%c'", 1233 short_option); 1234 break; 1235 } 1236 return error; 1237 } 1238 1239 void OptionParsingStarting(ExecutionContext *execution_context) override { 1240 m_infile.Clear(); 1241 m_infile_offset = 0; 1242 } 1243 1244 FileSpec m_infile; 1245 off_t m_infile_offset; 1246 }; 1247 1248 CommandObjectMemoryWrite(CommandInterpreter &interpreter) 1249 : CommandObjectParsed( 1250 interpreter, "memory write", 1251 "Write to the memory of the current target process.", nullptr, 1252 eCommandRequiresProcess | eCommandProcessMustBeLaunched), 1253 m_option_group(), m_format_options(eFormatBytes, 1, UINT64_MAX), 1254 m_memory_options() { 1255 CommandArgumentEntry arg1; 1256 CommandArgumentEntry arg2; 1257 CommandArgumentData addr_arg; 1258 CommandArgumentData value_arg; 1259 1260 // Define the first (and only) variant of this arg. 1261 addr_arg.arg_type = eArgTypeAddress; 1262 addr_arg.arg_repetition = eArgRepeatPlain; 1263 1264 // There is only one variant this argument could be; put it into the 1265 // argument entry. 1266 arg1.push_back(addr_arg); 1267 1268 // Define the first (and only) variant of this arg. 1269 value_arg.arg_type = eArgTypeValue; 1270 value_arg.arg_repetition = eArgRepeatPlus; 1271 1272 // There is only one variant this argument could be; put it into the 1273 // argument entry. 1274 arg2.push_back(value_arg); 1275 1276 // Push the data for the first argument into the m_arguments vector. 1277 m_arguments.push_back(arg1); 1278 m_arguments.push_back(arg2); 1279 1280 m_option_group.Append(&m_format_options, 1281 OptionGroupFormat::OPTION_GROUP_FORMAT, 1282 LLDB_OPT_SET_1); 1283 m_option_group.Append(&m_format_options, 1284 OptionGroupFormat::OPTION_GROUP_SIZE, 1285 LLDB_OPT_SET_1 | LLDB_OPT_SET_2); 1286 m_option_group.Append(&m_memory_options, LLDB_OPT_SET_ALL, LLDB_OPT_SET_2); 1287 m_option_group.Finalize(); 1288 } 1289 1290 ~CommandObjectMemoryWrite() override = default; 1291 1292 Options *GetOptions() override { return &m_option_group; } 1293 1294 bool UIntValueIsValidForSize(uint64_t uval64, size_t total_byte_size) { 1295 if (total_byte_size > 8) 1296 return false; 1297 1298 if (total_byte_size == 8) 1299 return true; 1300 1301 const uint64_t max = ((uint64_t)1 << (uint64_t)(total_byte_size * 8)) - 1; 1302 return uval64 <= max; 1303 } 1304 1305 bool SIntValueIsValidForSize(int64_t sval64, size_t total_byte_size) { 1306 if (total_byte_size > 8) 1307 return false; 1308 1309 if (total_byte_size == 8) 1310 return true; 1311 1312 const int64_t max = ((int64_t)1 << (uint64_t)(total_byte_size * 8 - 1)) - 1; 1313 const int64_t min = ~(max); 1314 return min <= sval64 && sval64 <= max; 1315 } 1316 1317 protected: 1318 bool DoExecute(Args &command, CommandReturnObject &result) override { 1319 // No need to check "process" for validity as eCommandRequiresProcess 1320 // ensures it is valid 1321 Process *process = m_exe_ctx.GetProcessPtr(); 1322 1323 const size_t argc = command.GetArgumentCount(); 1324 1325 if (m_memory_options.m_infile) { 1326 if (argc < 1) { 1327 result.AppendErrorWithFormat( 1328 "%s takes a destination address when writing file contents.\n", 1329 m_cmd_name.c_str()); 1330 result.SetStatus(eReturnStatusFailed); 1331 return false; 1332 } 1333 } else if (argc < 2) { 1334 result.AppendErrorWithFormat( 1335 "%s takes a destination address and at least one value.\n", 1336 m_cmd_name.c_str()); 1337 result.SetStatus(eReturnStatusFailed); 1338 return false; 1339 } 1340 1341 StreamString buffer( 1342 Stream::eBinary, 1343 process->GetTarget().GetArchitecture().GetAddressByteSize(), 1344 process->GetTarget().GetArchitecture().GetByteOrder()); 1345 1346 OptionValueUInt64 &byte_size_value = m_format_options.GetByteSizeValue(); 1347 size_t item_byte_size = byte_size_value.GetCurrentValue(); 1348 1349 Status error; 1350 lldb::addr_t addr = OptionArgParser::ToAddress( 1351 &m_exe_ctx, command[0].ref, LLDB_INVALID_ADDRESS, &error); 1352 1353 if (addr == LLDB_INVALID_ADDRESS) { 1354 result.AppendError("invalid address expression\n"); 1355 result.AppendError(error.AsCString()); 1356 result.SetStatus(eReturnStatusFailed); 1357 return false; 1358 } 1359 1360 if (m_memory_options.m_infile) { 1361 size_t length = SIZE_MAX; 1362 if (item_byte_size > 1) 1363 length = item_byte_size; 1364 auto data_sp = FileSystem::Instance().CreateDataBuffer( 1365 m_memory_options.m_infile.GetPath(), length, 1366 m_memory_options.m_infile_offset); 1367 if (data_sp) { 1368 length = data_sp->GetByteSize(); 1369 if (length > 0) { 1370 Status error; 1371 size_t bytes_written = 1372 process->WriteMemory(addr, data_sp->GetBytes(), length, error); 1373 1374 if (bytes_written == length) { 1375 // All bytes written 1376 result.GetOutputStream().Printf( 1377 "%" PRIu64 " bytes were written to 0x%" PRIx64 "\n", 1378 (uint64_t)bytes_written, addr); 1379 result.SetStatus(eReturnStatusSuccessFinishResult); 1380 } else if (bytes_written > 0) { 1381 // Some byte written 1382 result.GetOutputStream().Printf( 1383 "%" PRIu64 " bytes of %" PRIu64 1384 " requested were written to 0x%" PRIx64 "\n", 1385 (uint64_t)bytes_written, (uint64_t)length, addr); 1386 result.SetStatus(eReturnStatusSuccessFinishResult); 1387 } else { 1388 result.AppendErrorWithFormat("Memory write to 0x%" PRIx64 1389 " failed: %s.\n", 1390 addr, error.AsCString()); 1391 result.SetStatus(eReturnStatusFailed); 1392 } 1393 } 1394 } else { 1395 result.AppendErrorWithFormat("Unable to read contents of file.\n"); 1396 result.SetStatus(eReturnStatusFailed); 1397 } 1398 return result.Succeeded(); 1399 } else if (item_byte_size == 0) { 1400 if (m_format_options.GetFormat() == eFormatPointer) 1401 item_byte_size = buffer.GetAddressByteSize(); 1402 else 1403 item_byte_size = 1; 1404 } 1405 1406 command.Shift(); // shift off the address argument 1407 uint64_t uval64; 1408 int64_t sval64; 1409 bool success = false; 1410 for (auto &entry : command) { 1411 switch (m_format_options.GetFormat()) { 1412 case kNumFormats: 1413 case eFormatFloat: // TODO: add support for floats soon 1414 case eFormatCharPrintable: 1415 case eFormatBytesWithASCII: 1416 case eFormatComplex: 1417 case eFormatEnum: 1418 case eFormatUnicode16: 1419 case eFormatUnicode32: 1420 case eFormatVectorOfChar: 1421 case eFormatVectorOfSInt8: 1422 case eFormatVectorOfUInt8: 1423 case eFormatVectorOfSInt16: 1424 case eFormatVectorOfUInt16: 1425 case eFormatVectorOfSInt32: 1426 case eFormatVectorOfUInt32: 1427 case eFormatVectorOfSInt64: 1428 case eFormatVectorOfUInt64: 1429 case eFormatVectorOfFloat16: 1430 case eFormatVectorOfFloat32: 1431 case eFormatVectorOfFloat64: 1432 case eFormatVectorOfUInt128: 1433 case eFormatOSType: 1434 case eFormatComplexInteger: 1435 case eFormatAddressInfo: 1436 case eFormatHexFloat: 1437 case eFormatInstruction: 1438 case eFormatVoid: 1439 result.AppendError("unsupported format for writing memory"); 1440 result.SetStatus(eReturnStatusFailed); 1441 return false; 1442 1443 case eFormatDefault: 1444 case eFormatBytes: 1445 case eFormatHex: 1446 case eFormatHexUppercase: 1447 case eFormatPointer: 1448 { 1449 // Decode hex bytes 1450 // Be careful, getAsInteger with a radix of 16 rejects "0xab" so we 1451 // have to special case that: 1452 bool success = false; 1453 if (entry.ref.startswith("0x")) 1454 success = !entry.ref.getAsInteger(0, uval64); 1455 if (!success) 1456 success = !entry.ref.getAsInteger(16, uval64); 1457 if (!success) { 1458 result.AppendErrorWithFormat( 1459 "'%s' is not a valid hex string value.\n", entry.c_str()); 1460 result.SetStatus(eReturnStatusFailed); 1461 return false; 1462 } else if (!UIntValueIsValidForSize(uval64, item_byte_size)) { 1463 result.AppendErrorWithFormat("Value 0x%" PRIx64 1464 " is too large to fit in a %" PRIu64 1465 " byte unsigned integer value.\n", 1466 uval64, (uint64_t)item_byte_size); 1467 result.SetStatus(eReturnStatusFailed); 1468 return false; 1469 } 1470 buffer.PutMaxHex64(uval64, item_byte_size); 1471 break; 1472 } 1473 case eFormatBoolean: 1474 uval64 = OptionArgParser::ToBoolean(entry.ref, false, &success); 1475 if (!success) { 1476 result.AppendErrorWithFormat( 1477 "'%s' is not a valid boolean string value.\n", entry.c_str()); 1478 result.SetStatus(eReturnStatusFailed); 1479 return false; 1480 } 1481 buffer.PutMaxHex64(uval64, item_byte_size); 1482 break; 1483 1484 case eFormatBinary: 1485 if (entry.ref.getAsInteger(2, uval64)) { 1486 result.AppendErrorWithFormat( 1487 "'%s' is not a valid binary string value.\n", entry.c_str()); 1488 result.SetStatus(eReturnStatusFailed); 1489 return false; 1490 } else if (!UIntValueIsValidForSize(uval64, item_byte_size)) { 1491 result.AppendErrorWithFormat("Value 0x%" PRIx64 1492 " is too large to fit in a %" PRIu64 1493 " byte unsigned integer value.\n", 1494 uval64, (uint64_t)item_byte_size); 1495 result.SetStatus(eReturnStatusFailed); 1496 return false; 1497 } 1498 buffer.PutMaxHex64(uval64, item_byte_size); 1499 break; 1500 1501 case eFormatCharArray: 1502 case eFormatChar: 1503 case eFormatCString: { 1504 if (entry.ref.empty()) 1505 break; 1506 1507 size_t len = entry.ref.size(); 1508 // Include the NULL for C strings... 1509 if (m_format_options.GetFormat() == eFormatCString) 1510 ++len; 1511 Status error; 1512 if (process->WriteMemory(addr, entry.c_str(), len, error) == len) { 1513 addr += len; 1514 } else { 1515 result.AppendErrorWithFormat("Memory write to 0x%" PRIx64 1516 " failed: %s.\n", 1517 addr, error.AsCString()); 1518 result.SetStatus(eReturnStatusFailed); 1519 return false; 1520 } 1521 break; 1522 } 1523 case eFormatDecimal: 1524 if (entry.ref.getAsInteger(0, sval64)) { 1525 result.AppendErrorWithFormat( 1526 "'%s' is not a valid signed decimal value.\n", entry.c_str()); 1527 result.SetStatus(eReturnStatusFailed); 1528 return false; 1529 } else if (!SIntValueIsValidForSize(sval64, item_byte_size)) { 1530 result.AppendErrorWithFormat( 1531 "Value %" PRIi64 " is too large or small to fit in a %" PRIu64 1532 " byte signed integer value.\n", 1533 sval64, (uint64_t)item_byte_size); 1534 result.SetStatus(eReturnStatusFailed); 1535 return false; 1536 } 1537 buffer.PutMaxHex64(sval64, item_byte_size); 1538 break; 1539 1540 case eFormatUnsigned: 1541 1542 if (!entry.ref.getAsInteger(0, uval64)) { 1543 result.AppendErrorWithFormat( 1544 "'%s' is not a valid unsigned decimal string value.\n", 1545 entry.c_str()); 1546 result.SetStatus(eReturnStatusFailed); 1547 return false; 1548 } else if (!UIntValueIsValidForSize(uval64, item_byte_size)) { 1549 result.AppendErrorWithFormat("Value %" PRIu64 1550 " is too large to fit in a %" PRIu64 1551 " byte unsigned integer value.\n", 1552 uval64, (uint64_t)item_byte_size); 1553 result.SetStatus(eReturnStatusFailed); 1554 return false; 1555 } 1556 buffer.PutMaxHex64(uval64, item_byte_size); 1557 break; 1558 1559 case eFormatOctal: 1560 if (entry.ref.getAsInteger(8, uval64)) { 1561 result.AppendErrorWithFormat( 1562 "'%s' is not a valid octal string value.\n", entry.c_str()); 1563 result.SetStatus(eReturnStatusFailed); 1564 return false; 1565 } else if (!UIntValueIsValidForSize(uval64, item_byte_size)) { 1566 result.AppendErrorWithFormat("Value %" PRIo64 1567 " is too large to fit in a %" PRIu64 1568 " byte unsigned integer value.\n", 1569 uval64, (uint64_t)item_byte_size); 1570 result.SetStatus(eReturnStatusFailed); 1571 return false; 1572 } 1573 buffer.PutMaxHex64(uval64, item_byte_size); 1574 break; 1575 } 1576 } 1577 1578 if (!buffer.GetString().empty()) { 1579 Status error; 1580 if (process->WriteMemory(addr, buffer.GetString().data(), 1581 buffer.GetString().size(), 1582 error) == buffer.GetString().size()) 1583 return true; 1584 else { 1585 result.AppendErrorWithFormat("Memory write to 0x%" PRIx64 1586 " failed: %s.\n", 1587 addr, error.AsCString()); 1588 result.SetStatus(eReturnStatusFailed); 1589 return false; 1590 } 1591 } 1592 return true; 1593 } 1594 1595 OptionGroupOptions m_option_group; 1596 OptionGroupFormat m_format_options; 1597 OptionGroupWriteMemory m_memory_options; 1598 }; 1599 1600 //---------------------------------------------------------------------- 1601 // Get malloc/free history of a memory address. 1602 //---------------------------------------------------------------------- 1603 class CommandObjectMemoryHistory : public CommandObjectParsed { 1604 public: 1605 CommandObjectMemoryHistory(CommandInterpreter &interpreter) 1606 : CommandObjectParsed( 1607 interpreter, "memory history", "Print recorded stack traces for " 1608 "allocation/deallocation events " 1609 "associated with an address.", 1610 nullptr, 1611 eCommandRequiresTarget | eCommandRequiresProcess | 1612 eCommandProcessMustBePaused | eCommandProcessMustBeLaunched) { 1613 CommandArgumentEntry arg1; 1614 CommandArgumentData addr_arg; 1615 1616 // Define the first (and only) variant of this arg. 1617 addr_arg.arg_type = eArgTypeAddress; 1618 addr_arg.arg_repetition = eArgRepeatPlain; 1619 1620 // There is only one variant this argument could be; put it into the 1621 // argument entry. 1622 arg1.push_back(addr_arg); 1623 1624 // Push the data for the first argument into the m_arguments vector. 1625 m_arguments.push_back(arg1); 1626 } 1627 1628 ~CommandObjectMemoryHistory() override = default; 1629 1630 const char *GetRepeatCommand(Args ¤t_command_args, 1631 uint32_t index) override { 1632 return m_cmd_name.c_str(); 1633 } 1634 1635 protected: 1636 bool DoExecute(Args &command, CommandReturnObject &result) override { 1637 const size_t argc = command.GetArgumentCount(); 1638 1639 if (argc == 0 || argc > 1) { 1640 result.AppendErrorWithFormat("%s takes an address expression", 1641 m_cmd_name.c_str()); 1642 result.SetStatus(eReturnStatusFailed); 1643 return false; 1644 } 1645 1646 Status error; 1647 lldb::addr_t addr = OptionArgParser::ToAddress( 1648 &m_exe_ctx, command[0].ref, LLDB_INVALID_ADDRESS, &error); 1649 1650 if (addr == LLDB_INVALID_ADDRESS) { 1651 result.AppendError("invalid address expression"); 1652 result.AppendError(error.AsCString()); 1653 result.SetStatus(eReturnStatusFailed); 1654 return false; 1655 } 1656 1657 Stream *output_stream = &result.GetOutputStream(); 1658 1659 const ProcessSP &process_sp = m_exe_ctx.GetProcessSP(); 1660 const MemoryHistorySP &memory_history = 1661 MemoryHistory::FindPlugin(process_sp); 1662 1663 if (!memory_history) { 1664 result.AppendError("no available memory history provider"); 1665 result.SetStatus(eReturnStatusFailed); 1666 return false; 1667 } 1668 1669 HistoryThreads thread_list = memory_history->GetHistoryThreads(addr); 1670 1671 const bool stop_format = false; 1672 for (auto thread : thread_list) { 1673 thread->GetStatus(*output_stream, 0, UINT32_MAX, 0, stop_format); 1674 } 1675 1676 result.SetStatus(eReturnStatusSuccessFinishResult); 1677 1678 return true; 1679 } 1680 }; 1681 1682 //------------------------------------------------------------------------- 1683 // CommandObjectMemoryRegion 1684 //------------------------------------------------------------------------- 1685 #pragma mark CommandObjectMemoryRegion 1686 1687 class CommandObjectMemoryRegion : public CommandObjectParsed { 1688 public: 1689 CommandObjectMemoryRegion(CommandInterpreter &interpreter) 1690 : CommandObjectParsed(interpreter, "memory region", 1691 "Get information on the memory region containing " 1692 "an address in the current target process.", 1693 "memory region ADDR", 1694 eCommandRequiresProcess | eCommandTryTargetAPILock | 1695 eCommandProcessMustBeLaunched), 1696 m_prev_end_addr(LLDB_INVALID_ADDRESS) {} 1697 1698 ~CommandObjectMemoryRegion() override = default; 1699 1700 protected: 1701 bool DoExecute(Args &command, CommandReturnObject &result) override { 1702 ProcessSP process_sp = m_exe_ctx.GetProcessSP(); 1703 if (process_sp) { 1704 Status error; 1705 lldb::addr_t load_addr = m_prev_end_addr; 1706 m_prev_end_addr = LLDB_INVALID_ADDRESS; 1707 1708 const size_t argc = command.GetArgumentCount(); 1709 if (argc > 1 || (argc == 0 && load_addr == LLDB_INVALID_ADDRESS)) { 1710 result.AppendErrorWithFormat("'%s' takes one argument:\nUsage: %s\n", 1711 m_cmd_name.c_str(), m_cmd_syntax.c_str()); 1712 result.SetStatus(eReturnStatusFailed); 1713 } else { 1714 if (command.GetArgumentCount() == 1) { 1715 auto load_addr_str = command[0].ref; 1716 load_addr = OptionArgParser::ToAddress(&m_exe_ctx, load_addr_str, 1717 LLDB_INVALID_ADDRESS, &error); 1718 if (error.Fail() || load_addr == LLDB_INVALID_ADDRESS) { 1719 result.AppendErrorWithFormat( 1720 "invalid address argument \"%s\": %s\n", command[0].c_str(), 1721 error.AsCString()); 1722 result.SetStatus(eReturnStatusFailed); 1723 } 1724 } 1725 1726 lldb_private::MemoryRegionInfo range_info; 1727 error = process_sp->GetMemoryRegionInfo(load_addr, range_info); 1728 if (error.Success()) { 1729 lldb_private::Address addr; 1730 ConstString name = range_info.GetName(); 1731 ConstString section_name; 1732 if (process_sp->GetTarget().ResolveLoadAddress(load_addr, addr)) { 1733 SectionSP section_sp(addr.GetSection()); 1734 if (section_sp) { 1735 // Got the top most section, not the deepest section 1736 while (section_sp->GetParent()) 1737 section_sp = section_sp->GetParent(); 1738 section_name = section_sp->GetName(); 1739 } 1740 } 1741 result.AppendMessageWithFormat( 1742 "[0x%16.16" PRIx64 "-0x%16.16" PRIx64 ") %c%c%c%s%s%s%s\n", 1743 range_info.GetRange().GetRangeBase(), 1744 range_info.GetRange().GetRangeEnd(), 1745 range_info.GetReadable() ? 'r' : '-', 1746 range_info.GetWritable() ? 'w' : '-', 1747 range_info.GetExecutable() ? 'x' : '-', 1748 name ? " " : "", name.AsCString(""), 1749 section_name ? " " : "", section_name.AsCString("")); 1750 m_prev_end_addr = range_info.GetRange().GetRangeEnd(); 1751 result.SetStatus(eReturnStatusSuccessFinishResult); 1752 } else { 1753 result.SetStatus(eReturnStatusFailed); 1754 result.AppendErrorWithFormat("%s\n", error.AsCString()); 1755 } 1756 } 1757 } else { 1758 m_prev_end_addr = LLDB_INVALID_ADDRESS; 1759 result.AppendError("invalid process"); 1760 result.SetStatus(eReturnStatusFailed); 1761 } 1762 return result.Succeeded(); 1763 } 1764 1765 const char *GetRepeatCommand(Args ¤t_command_args, 1766 uint32_t index) override { 1767 // If we repeat this command, repeat it without any arguments so we can 1768 // show the next memory range 1769 return m_cmd_name.c_str(); 1770 } 1771 1772 lldb::addr_t m_prev_end_addr; 1773 }; 1774 1775 //------------------------------------------------------------------------- 1776 // CommandObjectMemory 1777 //------------------------------------------------------------------------- 1778 1779 CommandObjectMemory::CommandObjectMemory(CommandInterpreter &interpreter) 1780 : CommandObjectMultiword( 1781 interpreter, "memory", 1782 "Commands for operating on memory in the current target process.", 1783 "memory <subcommand> [<subcommand-options>]") { 1784 LoadSubCommand("find", 1785 CommandObjectSP(new CommandObjectMemoryFind(interpreter))); 1786 LoadSubCommand("read", 1787 CommandObjectSP(new CommandObjectMemoryRead(interpreter))); 1788 LoadSubCommand("write", 1789 CommandObjectSP(new CommandObjectMemoryWrite(interpreter))); 1790 LoadSubCommand("history", 1791 CommandObjectSP(new CommandObjectMemoryHistory(interpreter))); 1792 LoadSubCommand("region", 1793 CommandObjectSP(new CommandObjectMemoryRegion(interpreter))); 1794 } 1795 1796 CommandObjectMemory::~CommandObjectMemory() = default; 1797