10fbf3af3SJim Ingham############################################################################# 20fbf3af3SJim Ingham# This script contains two trivial examples of simple "scripted step" classes. 30fbf3af3SJim Ingham# To fully understand how the lldb "Thread Plan" architecture works, read the 40fbf3af3SJim Ingham# comments at the beginning of ThreadPlan.h in the lldb sources. The python 50fbf3af3SJim Ingham# interface is a reduced version of the full internal mechanism, but captures 60fbf3af3SJim Ingham# most of the power with a much simpler interface. 70fbf3af3SJim Ingham# 80fbf3af3SJim Ingham# But I'll attempt a brief summary here. 90fbf3af3SJim Ingham# Stepping in lldb is done independently for each thread. Moreover, the stepping 100fbf3af3SJim Ingham# operations are stackable. So for instance if you did a "step over", and in 110fbf3af3SJim Ingham# the course of stepping over you hit a breakpoint, stopped and stepped again, 120fbf3af3SJim Ingham# the first "step-over" would be suspended, and the new step operation would 130fbf3af3SJim Ingham# be enqueued. Then if that step over caused the program to hit another breakpoint, 140fbf3af3SJim Ingham# lldb would again suspend the second step and return control to the user, so 150fbf3af3SJim Ingham# now there are two pending step overs. Etc. with all the other stepping 160fbf3af3SJim Ingham# operations. Then if you hit "continue" the bottom-most step-over would complete, 170fbf3af3SJim Ingham# and another continue would complete the first "step-over". 180fbf3af3SJim Ingham# 190fbf3af3SJim Ingham# lldb represents this system with a stack of "Thread Plans". Each time a new 200fbf3af3SJim Ingham# stepping operation is requested, a new plan is pushed on the stack. When the 210fbf3af3SJim Ingham# operation completes, it is pushed off the stack. 220fbf3af3SJim Ingham# 230fbf3af3SJim Ingham# The bottom-most plan in the stack is the immediate controller of stepping, 240fbf3af3SJim Ingham# most importantly, when the process resumes, the bottom most plan will get 250fbf3af3SJim Ingham# asked whether to set the program running freely, or to instruction-single-step 260fbf3af3SJim Ingham# the current thread. In the scripted interface, you indicate this by returning 270fbf3af3SJim Ingham# False or True respectively from the should_step method. 280fbf3af3SJim Ingham# 290fbf3af3SJim Ingham# Each time the process stops the thread plan stack for each thread that stopped 300fbf3af3SJim Ingham# "for a reason", Ii.e. a single-step completed on that thread, or a breakpoint 310fbf3af3SJim Ingham# was hit), is queried to determine how to proceed, starting from the most 320fbf3af3SJim Ingham# recently pushed plan, in two stages: 330fbf3af3SJim Ingham# 340fbf3af3SJim Ingham# 1) Each plan is asked if it "explains" the stop. The first plan to claim the 350fbf3af3SJim Ingham# stop wins. In scripted Thread Plans, this is done by returning True from 360fbf3af3SJim Ingham# the "explains_stop method. This is how, for instance, control is returned 370fbf3af3SJim Ingham# to the User when the "step-over" plan hits a breakpoint. The step-over 380fbf3af3SJim Ingham# plan doesn't explain the breakpoint stop, so it returns false, and the 390fbf3af3SJim Ingham# breakpoint hit is propagated up the stack to the "base" thread plan, which 400fbf3af3SJim Ingham# is the one that handles random breakpoint hits. 410fbf3af3SJim Ingham# 420fbf3af3SJim Ingham# 2) Then the plan that won the first round is asked if the process should stop. 430fbf3af3SJim Ingham# This is done in the "should_stop" method. The scripted plans actually do 440fbf3af3SJim Ingham# three jobs in should_stop: 450fbf3af3SJim Ingham# a) They determine if they have completed their job or not. If they have 460fbf3af3SJim Ingham# they indicate that by calling SetPlanComplete on their thread plan. 470fbf3af3SJim Ingham# b) They decide whether they want to return control to the user or not. 480fbf3af3SJim Ingham# They do this by returning True or False respectively. 490fbf3af3SJim Ingham# c) If they are not done, they set up whatever machinery they will use 500fbf3af3SJim Ingham# the next time the thread continues. 510fbf3af3SJim Ingham# 520fbf3af3SJim Ingham# Note that deciding to return control to the user, and deciding your plan 530fbf3af3SJim Ingham# is done, are orthgonal operations. You could set up the next phase of 540fbf3af3SJim Ingham# stepping, and then return True from should_stop, and when the user next 550fbf3af3SJim Ingham# "continued" the process your plan would resume control. Of course, the 560fbf3af3SJim Ingham# user might also "step-over" or some other operation that would push a 570fbf3af3SJim Ingham# different plan, which would take control till it was done. 580fbf3af3SJim Ingham# 590fbf3af3SJim Ingham# One other detail you should be aware of, if the plan below you on the 600fbf3af3SJim Ingham# stack was done, then it will be popped and the next plan will take control 610fbf3af3SJim Ingham# and its "should_stop" will be called. 620fbf3af3SJim Ingham# 630fbf3af3SJim Ingham# Note also, there should be another method called when your plan is popped, 640fbf3af3SJim Ingham# to allow you to do whatever cleanup is required. I haven't gotten to that 650fbf3af3SJim Ingham# yet. For now you should do that at the same time you mark your plan complete. 660fbf3af3SJim Ingham# 670fbf3af3SJim Ingham# Both examples show stepping through an address range for 20 bytes from the 680fbf3af3SJim Ingham# current PC. The first one does it by single stepping and checking a condition. 690fbf3af3SJim Ingham# It doesn't, however handle the case where you step into another frame while 700fbf3af3SJim Ingham# still in the current range in the starting frame. 710fbf3af3SJim Ingham# 720fbf3af3SJim Ingham# That is better handled in the second example by using the built-in StepOverRange 730fbf3af3SJim Ingham# thread plan. 740fbf3af3SJim Ingham# 750fbf3af3SJim Ingham# To use these stepping modes, you would do: 760fbf3af3SJim Ingham# 770fbf3af3SJim Ingham# (lldb) command script import scripted_step.py 780fbf3af3SJim Ingham# (lldb) thread step-scripted -C scripted_step.SimpleStep 790fbf3af3SJim Ingham# or 800fbf3af3SJim Ingham# 810fbf3af3SJim Ingham# (lldb) thread step-scripted -C scripted_step.StepWithPlan 820fbf3af3SJim Ingham 830fbf3af3SJim Inghamimport lldb 840fbf3af3SJim Ingham 850fbf3af3SJim Inghamclass SimpleStep: 860fbf3af3SJim Ingham def __init__ (self, thread_plan, dict): 870fbf3af3SJim Ingham self.thread_plan = thread_plan 880fbf3af3SJim Ingham self.start_address = thread_plan.GetThread().GetFrameAtIndex(0).GetPC() 890fbf3af3SJim Ingham 900fbf3af3SJim Ingham def explains_stop (self, event): 910fbf3af3SJim Ingham # We are stepping, so if we stop for any other reason, it isn't 920fbf3af3SJim Ingham # because of us. 930fbf3af3SJim Ingham if self.thread_plan.GetThread().GetStopReason()== lldb.eStopReasonTrace: 940fbf3af3SJim Ingham return True 950fbf3af3SJim Ingham else: 960fbf3af3SJim Ingham return False 970fbf3af3SJim Ingham 980fbf3af3SJim Ingham def should_stop (self, event): 990fbf3af3SJim Ingham cur_pc = self.thread_plan.GetThread().GetFrameAtIndex(0).GetPC() 1000fbf3af3SJim Ingham 1010fbf3af3SJim Ingham if cur_pc < self.start_address or cur_pc >= self.start_address + 20: 1020fbf3af3SJim Ingham self.thread_plan.SetPlanComplete(True) 1030fbf3af3SJim Ingham return True 1040fbf3af3SJim Ingham else: 1050fbf3af3SJim Ingham return False 1060fbf3af3SJim Ingham 1070fbf3af3SJim Ingham def should_step (self): 1080fbf3af3SJim Ingham return True 1090fbf3af3SJim Ingham 1100fbf3af3SJim Inghamclass StepWithPlan: 1110fbf3af3SJim Ingham def __init__ (self, thread_plan, dict): 1120fbf3af3SJim Ingham self.thread_plan = thread_plan 1130fbf3af3SJim Ingham self.start_address = thread_plan.GetThread().GetFrameAtIndex(0).GetPCAddress() 1140fbf3af3SJim Ingham self.step_thread_plan =thread_plan.QueueThreadPlanForStepOverRange(self.start_address, 20); 1150fbf3af3SJim Ingham 1160fbf3af3SJim Ingham def explains_stop (self, event): 1170fbf3af3SJim Ingham # Since all I'm doing is running a plan, I will only ever get askedthis 1180fbf3af3SJim Ingham # if myplan doesn't explain the stop, and in that caseI don'teither. 1190fbf3af3SJim Ingham return False 1200fbf3af3SJim Ingham 1210fbf3af3SJim Ingham def should_stop (self, event): 1220fbf3af3SJim Ingham if self.step_thread_plan.IsPlanComplete(): 1230fbf3af3SJim Ingham self.thread_plan.SetPlanComplete(True) 1240fbf3af3SJim Ingham return True 1250fbf3af3SJim Ingham else: 1260fbf3af3SJim Ingham return False 1270fbf3af3SJim Ingham 1280fbf3af3SJim Ingham def should_step (self): 1290fbf3af3SJim Ingham return False 1300fbf3af3SJim Ingham 131*a2baa0d9SJim Ingham# Here's another example which does "step over" through the current function, 132*a2baa0d9SJim Ingham# and when it stops at each line, it checks some condition (in this example the 133*a2baa0d9SJim Ingham# value of a variable) and stops if that condition is true. 134*a2baa0d9SJim Ingham 135*a2baa0d9SJim Inghamclass StepCheckingCondition: 136*a2baa0d9SJim Ingham def __init__ (self, thread_plan, dict): 137*a2baa0d9SJim Ingham self.thread_plan = thread_plan 138*a2baa0d9SJim Ingham self.start_frame = thread_plan.GetThread().GetFrameAtIndex(0) 139*a2baa0d9SJim Ingham self.queue_next_plan() 140*a2baa0d9SJim Ingham 141*a2baa0d9SJim Ingham def queue_next_plan (self): 142*a2baa0d9SJim Ingham cur_frame = self.thread_plan.GetThread().GetFrameAtIndex(0) 143*a2baa0d9SJim Ingham cur_line_entry = cur_frame.GetLineEntry() 144*a2baa0d9SJim Ingham start_address = cur_line_entry.GetStartAddress() 145*a2baa0d9SJim Ingham end_address = cur_line_entry.GetEndAddress() 146*a2baa0d9SJim Ingham line_range = end_address.GetFileAddress() - start_address.GetFileAddress() 147*a2baa0d9SJim Ingham self.step_thread_plan = self.thread_plan.QueueThreadPlanForStepOverRange(start_address, line_range) 148*a2baa0d9SJim Ingham 149*a2baa0d9SJim Ingham def explains_stop (self, event): 150*a2baa0d9SJim Ingham # We are stepping, so if we stop for any other reason, it isn't 151*a2baa0d9SJim Ingham # because of us. 152*a2baa0d9SJim Ingham return False 153*a2baa0d9SJim Ingham 154*a2baa0d9SJim Ingham def should_stop (self, event): 155*a2baa0d9SJim Ingham if not self.step_thread_plan.IsPlanComplete(): 156*a2baa0d9SJim Ingham return False 157*a2baa0d9SJim Ingham 158*a2baa0d9SJim Ingham frame = self.thread_plan.GetThread().GetFrameAtIndex(0) 159*a2baa0d9SJim Ingham if not self.start_frame.IsEqual(frame): 160*a2baa0d9SJim Ingham self.thread_plan.SetPlanComplete(True) 161*a2baa0d9SJim Ingham return True 162*a2baa0d9SJim Ingham 163*a2baa0d9SJim Ingham # This part checks the condition. In this case we are expecting 164*a2baa0d9SJim Ingham # some integer variable called "a", and will stop when it is 20. 165*a2baa0d9SJim Ingham a_var = frame.FindVariable("a") 166*a2baa0d9SJim Ingham 167*a2baa0d9SJim Ingham if not a_var.IsValid(): 168*a2baa0d9SJim Ingham print "A was not valid." 169*a2baa0d9SJim Ingham return True 170*a2baa0d9SJim Ingham 171*a2baa0d9SJim Ingham error = lldb.SBError() 172*a2baa0d9SJim Ingham a_value = a_var.GetValueAsSigned (error) 173*a2baa0d9SJim Ingham if not error.Success(): 174*a2baa0d9SJim Ingham print "A value was not good." 175*a2baa0d9SJim Ingham return True 176*a2baa0d9SJim Ingham 177*a2baa0d9SJim Ingham if a_value == 20: 178*a2baa0d9SJim Ingham self.thread_plan.SetPlanComplete(True) 179*a2baa0d9SJim Ingham return True 180*a2baa0d9SJim Ingham else: 181*a2baa0d9SJim Ingham self.queue_next_plan() 182*a2baa0d9SJim Ingham return False 183*a2baa0d9SJim Ingham 184*a2baa0d9SJim Ingham def should_step (self): 185*a2baa0d9SJim Ingham return True 186*a2baa0d9SJim Ingham 187