10fbf3af3SJim Ingham#############################################################################
20fbf3af3SJim Ingham# This script contains two trivial examples of simple "scripted step" classes.
30fbf3af3SJim Ingham# To fully understand how the lldb "Thread Plan" architecture works, read the
40fbf3af3SJim Ingham# comments at the beginning of ThreadPlan.h in the lldb sources.  The python
50fbf3af3SJim Ingham# interface is a reduced version of the full internal mechanism, but captures
60fbf3af3SJim Ingham# most of the power with a much simpler interface.
70fbf3af3SJim Ingham#
80fbf3af3SJim Ingham# But I'll attempt a brief summary here.
90fbf3af3SJim Ingham# Stepping in lldb is done independently for each thread.  Moreover, the stepping
100fbf3af3SJim Ingham# operations are stackable.  So for instance if you did a "step over", and in
110fbf3af3SJim Ingham# the course of stepping over you hit a breakpoint, stopped and stepped again,
120fbf3af3SJim Ingham# the first "step-over" would be suspended, and the new step operation would
130fbf3af3SJim Ingham# be enqueued.  Then if that step over caused the program to hit another breakpoint,
140fbf3af3SJim Ingham# lldb would again suspend the second step and return control to the user, so
150fbf3af3SJim Ingham# now there are two pending step overs.  Etc. with all the other stepping
160fbf3af3SJim Ingham# operations.  Then if you hit "continue" the bottom-most step-over would complete,
170fbf3af3SJim Ingham# and another continue would complete the first "step-over".
180fbf3af3SJim Ingham#
190fbf3af3SJim Ingham# lldb represents this system with a stack of "Thread Plans".  Each time a new
200fbf3af3SJim Ingham# stepping operation is requested, a new plan is pushed on the stack.  When the
210fbf3af3SJim Ingham# operation completes, it is pushed off the stack.
220fbf3af3SJim Ingham#
230fbf3af3SJim Ingham# The bottom-most plan in the stack is the immediate controller of stepping,
240fbf3af3SJim Ingham# most importantly, when the process resumes, the bottom most plan will get
250fbf3af3SJim Ingham# asked whether to set the program running freely, or to instruction-single-step
260fbf3af3SJim Ingham# the current thread.  In the scripted interface, you indicate this by returning
270fbf3af3SJim Ingham# False or True respectively from the should_step method.
280fbf3af3SJim Ingham#
290fbf3af3SJim Ingham# Each time the process stops the thread plan stack for each thread that stopped
300fbf3af3SJim Ingham# "for a reason", Ii.e. a single-step completed on that thread, or a breakpoint
310fbf3af3SJim Ingham# was hit), is queried to determine how to proceed, starting from the most
320fbf3af3SJim Ingham# recently pushed plan, in two stages:
330fbf3af3SJim Ingham#
340fbf3af3SJim Ingham# 1) Each plan is asked if it "explains" the stop.  The first plan to claim the
350fbf3af3SJim Ingham#    stop wins.  In scripted Thread Plans, this is done by returning True from
360fbf3af3SJim Ingham#    the "explains_stop method.  This is how, for instance, control is returned
370fbf3af3SJim Ingham#    to the User when the "step-over" plan hits a breakpoint.  The step-over
380fbf3af3SJim Ingham#    plan doesn't explain the breakpoint stop, so it returns false, and the
390fbf3af3SJim Ingham#    breakpoint hit is propagated up the stack to the "base" thread plan, which
400fbf3af3SJim Ingham#    is the one that handles random breakpoint hits.
410fbf3af3SJim Ingham#
420fbf3af3SJim Ingham# 2) Then the plan that won the first round is asked if the process should stop.
430fbf3af3SJim Ingham#    This is done in the "should_stop" method.  The scripted plans actually do
440fbf3af3SJim Ingham#    three jobs in should_stop:
450fbf3af3SJim Ingham#      a) They determine if they have completed their job or not.  If they have
460fbf3af3SJim Ingham#         they indicate that by calling SetPlanComplete on their thread plan.
470fbf3af3SJim Ingham#      b) They decide whether they want to return control to the user or not.
480fbf3af3SJim Ingham#         They do this by returning True or False respectively.
490fbf3af3SJim Ingham#      c) If they are not done, they set up whatever machinery they will use
500fbf3af3SJim Ingham#         the next time the thread continues.
510fbf3af3SJim Ingham#
520fbf3af3SJim Ingham#    Note that deciding to return control to the user, and deciding your plan
530fbf3af3SJim Ingham#    is done, are orthgonal operations.  You could set up the next phase of
540fbf3af3SJim Ingham#    stepping, and then return True from should_stop, and when the user next
550fbf3af3SJim Ingham#    "continued" the process your plan would resume control.  Of course, the
560fbf3af3SJim Ingham#    user might also "step-over" or some other operation that would push a
570fbf3af3SJim Ingham#    different plan, which would take control till it was done.
580fbf3af3SJim Ingham#
590fbf3af3SJim Ingham#    One other detail you should be aware of, if the plan below you on the
600fbf3af3SJim Ingham#    stack was done, then it will be popped and the next plan will take control
610fbf3af3SJim Ingham#    and its "should_stop" will be called.
620fbf3af3SJim Ingham#
630fbf3af3SJim Ingham#    Note also, there should be another method called when your plan is popped,
640fbf3af3SJim Ingham#    to allow you to do whatever cleanup is required.  I haven't gotten to that
650fbf3af3SJim Ingham#    yet.  For now you should do that at the same time you mark your plan complete.
660fbf3af3SJim Ingham#
67fd0dbab2SJim Ingham# 3) After the round of negotiation over whether to stop or not is done, all the
68fd0dbab2SJim Ingham#    plans get asked if they are "stale".  If they are say they are stale
69fd0dbab2SJim Ingham#    then they will get popped.  This question is asked with the "is_stale" method.
70fd0dbab2SJim Ingham#
71fd0dbab2SJim Ingham#    This is useful, for instance, in the FinishPrintAndContinue plan.  What might
72fd0dbab2SJim Ingham#    happen here is that after continuing but before the finish is done, the program
73fd0dbab2SJim Ingham#    could hit another breakpoint and stop.  Then the user could use the step
74fd0dbab2SJim Ingham#    command repeatedly until they leave the frame of interest by stepping.
75fd0dbab2SJim Ingham#    In that case, the step plan is the one that will be responsible for stopping,
76fd0dbab2SJim Ingham#    and the finish plan won't be asked should_stop, it will just be asked if it
77fd0dbab2SJim Ingham#    is stale.  In this case, if the step_out plan that the FinishPrintAndContinue
78fd0dbab2SJim Ingham#    plan is driving is stale, so is ours, and it is time to do our printing.
79fd0dbab2SJim Ingham#
800fbf3af3SJim Ingham# Both examples show stepping through an address range for 20 bytes from the
810fbf3af3SJim Ingham# current PC.  The first one does it by single stepping and checking a condition.
820fbf3af3SJim Ingham# It doesn't, however handle the case where you step into another frame while
830fbf3af3SJim Ingham# still in the current range in the starting frame.
840fbf3af3SJim Ingham#
850fbf3af3SJim Ingham# That is better handled in the second example by using the built-in StepOverRange
860fbf3af3SJim Ingham# thread plan.
870fbf3af3SJim Ingham#
880fbf3af3SJim Ingham# To use these stepping modes, you would do:
890fbf3af3SJim Ingham#
900fbf3af3SJim Ingham#     (lldb) command script import scripted_step.py
910fbf3af3SJim Ingham#     (lldb) thread step-scripted -C scripted_step.SimpleStep
920fbf3af3SJim Ingham# or
930fbf3af3SJim Ingham#
940fbf3af3SJim Ingham#     (lldb) thread step-scripted -C scripted_step.StepWithPlan
950fbf3af3SJim Ingham
96*525cd59fSSerge Gueltonfrom __future__ import print_function
97*525cd59fSSerge Guelton
980fbf3af3SJim Inghamimport lldb
990fbf3af3SJim Ingham
100b9c1b51eSKate Stone
1010fbf3af3SJim Inghamclass SimpleStep:
102b9c1b51eSKate Stone
1030fbf3af3SJim Ingham    def __init__(self, thread_plan, dict):
1040fbf3af3SJim Ingham        self.thread_plan = thread_plan
1050fbf3af3SJim Ingham        self.start_address = thread_plan.GetThread().GetFrameAtIndex(0).GetPC()
1060fbf3af3SJim Ingham
1070fbf3af3SJim Ingham    def explains_stop(self, event):
1080fbf3af3SJim Ingham        # We are stepping, so if we stop for any other reason, it isn't
1090fbf3af3SJim Ingham        # because of us.
1100fbf3af3SJim Ingham        if self.thread_plan.GetThread().GetStopReason() == lldb.eStopReasonTrace:
1110fbf3af3SJim Ingham            return True
1120fbf3af3SJim Ingham        else:
1130fbf3af3SJim Ingham            return False
1140fbf3af3SJim Ingham
1150fbf3af3SJim Ingham    def should_stop(self, event):
1160fbf3af3SJim Ingham        cur_pc = self.thread_plan.GetThread().GetFrameAtIndex(0).GetPC()
1170fbf3af3SJim Ingham
1180fbf3af3SJim Ingham        if cur_pc < self.start_address or cur_pc >= self.start_address + 20:
1190fbf3af3SJim Ingham            self.thread_plan.SetPlanComplete(True)
1200fbf3af3SJim Ingham            return True
1210fbf3af3SJim Ingham        else:
1220fbf3af3SJim Ingham            return False
1230fbf3af3SJim Ingham
1240fbf3af3SJim Ingham    def should_step(self):
1250fbf3af3SJim Ingham        return True
1260fbf3af3SJim Ingham
127b9c1b51eSKate Stone
1280fbf3af3SJim Inghamclass StepWithPlan:
129b9c1b51eSKate Stone
1300fbf3af3SJim Ingham    def __init__(self, thread_plan, dict):
1310fbf3af3SJim Ingham        self.thread_plan = thread_plan
1320fbf3af3SJim Ingham        self.start_address = thread_plan.GetThread().GetFrameAtIndex(0).GetPCAddress()
133b9c1b51eSKate Stone        self.step_thread_plan = thread_plan.QueueThreadPlanForStepOverRange(
134b9c1b51eSKate Stone            self.start_address, 20)
1350fbf3af3SJim Ingham
1360fbf3af3SJim Ingham    def explains_stop(self, event):
1370fbf3af3SJim Ingham        # Since all I'm doing is running a plan, I will only ever get askedthis
1380fbf3af3SJim Ingham        # if myplan doesn't explain the stop, and in that caseI don'teither.
1390fbf3af3SJim Ingham        return False
1400fbf3af3SJim Ingham
1410fbf3af3SJim Ingham    def should_stop(self, event):
1420fbf3af3SJim Ingham        if self.step_thread_plan.IsPlanComplete():
1430fbf3af3SJim Ingham            self.thread_plan.SetPlanComplete(True)
1440fbf3af3SJim Ingham            return True
1450fbf3af3SJim Ingham        else:
1460fbf3af3SJim Ingham            return False
1470fbf3af3SJim Ingham
1480fbf3af3SJim Ingham    def should_step(self):
1490fbf3af3SJim Ingham        return False
1500fbf3af3SJim Ingham
151a2baa0d9SJim Ingham# Here's another example which does "step over" through the current function,
152a2baa0d9SJim Ingham# and when it stops at each line, it checks some condition (in this example the
153a2baa0d9SJim Ingham# value of a variable) and stops if that condition is true.
154a2baa0d9SJim Ingham
155b9c1b51eSKate Stone
156a2baa0d9SJim Inghamclass StepCheckingCondition:
157b9c1b51eSKate Stone
158a2baa0d9SJim Ingham    def __init__(self, thread_plan, dict):
159a2baa0d9SJim Ingham        self.thread_plan = thread_plan
160a2baa0d9SJim Ingham        self.start_frame = thread_plan.GetThread().GetFrameAtIndex(0)
161a2baa0d9SJim Ingham        self.queue_next_plan()
162a2baa0d9SJim Ingham
163a2baa0d9SJim Ingham    def queue_next_plan(self):
164a2baa0d9SJim Ingham        cur_frame = self.thread_plan.GetThread().GetFrameAtIndex(0)
165a2baa0d9SJim Ingham        cur_line_entry = cur_frame.GetLineEntry()
166a2baa0d9SJim Ingham        start_address = cur_line_entry.GetStartAddress()
167a2baa0d9SJim Ingham        end_address = cur_line_entry.GetEndAddress()
168a2baa0d9SJim Ingham        line_range = end_address.GetFileAddress() - start_address.GetFileAddress()
169b9c1b51eSKate Stone        self.step_thread_plan = self.thread_plan.QueueThreadPlanForStepOverRange(
170b9c1b51eSKate Stone            start_address, line_range)
171a2baa0d9SJim Ingham
172a2baa0d9SJim Ingham    def explains_stop(self, event):
173a2baa0d9SJim Ingham        # We are stepping, so if we stop for any other reason, it isn't
174a2baa0d9SJim Ingham        # because of us.
175a2baa0d9SJim Ingham        return False
176a2baa0d9SJim Ingham
177a2baa0d9SJim Ingham    def should_stop(self, event):
178a2baa0d9SJim Ingham        if not self.step_thread_plan.IsPlanComplete():
179a2baa0d9SJim Ingham            return False
180a2baa0d9SJim Ingham
181a2baa0d9SJim Ingham        frame = self.thread_plan.GetThread().GetFrameAtIndex(0)
182a2baa0d9SJim Ingham        if not self.start_frame.IsEqual(frame):
183a2baa0d9SJim Ingham            self.thread_plan.SetPlanComplete(True)
184a2baa0d9SJim Ingham            return True
185a2baa0d9SJim Ingham
186a2baa0d9SJim Ingham        # This part checks the condition.  In this case we are expecting
187a2baa0d9SJim Ingham        # some integer variable called "a", and will stop when it is 20.
188a2baa0d9SJim Ingham        a_var = frame.FindVariable("a")
189a2baa0d9SJim Ingham
190a2baa0d9SJim Ingham        if not a_var.IsValid():
191*525cd59fSSerge Guelton            print("A was not valid.")
192a2baa0d9SJim Ingham            return True
193a2baa0d9SJim Ingham
194a2baa0d9SJim Ingham        error = lldb.SBError()
195a2baa0d9SJim Ingham        a_value = a_var.GetValueAsSigned(error)
196a2baa0d9SJim Ingham        if not error.Success():
197*525cd59fSSerge Guelton            print("A value was not good.")
198a2baa0d9SJim Ingham            return True
199a2baa0d9SJim Ingham
200a2baa0d9SJim Ingham        if a_value == 20:
201a2baa0d9SJim Ingham            self.thread_plan.SetPlanComplete(True)
202a2baa0d9SJim Ingham            return True
203a2baa0d9SJim Ingham        else:
204a2baa0d9SJim Ingham            self.queue_next_plan()
205a2baa0d9SJim Ingham            return False
206a2baa0d9SJim Ingham
207a2baa0d9SJim Ingham    def should_step(self):
208a2baa0d9SJim Ingham        return True
209a2baa0d9SJim Ingham
210c7468b7bSJim Ingham# Here's an example that steps out of the current frame, gathers some information
211c7468b7bSJim Ingham# and then continues.  The information in this case is rax.  Currently the thread
212c7468b7bSJim Ingham# plans are not a safe place to call lldb command-line commands, so the information
213c7468b7bSJim Ingham# is gathered through SB API calls.
214c7468b7bSJim Ingham
215b9c1b51eSKate Stone
216c7468b7bSJim Inghamclass FinishPrintAndContinue:
217b9c1b51eSKate Stone
218c7468b7bSJim Ingham    def __init__(self, thread_plan, dict):
219c7468b7bSJim Ingham        self.thread_plan = thread_plan
220b9c1b51eSKate Stone        self.step_out_thread_plan = thread_plan.QueueThreadPlanForStepOut(
221b9c1b51eSKate Stone            0, True)
222c7468b7bSJim Ingham        self.thread = self.thread_plan.GetThread()
223c7468b7bSJim Ingham
224fd0dbab2SJim Ingham    def is_stale(self):
225fd0dbab2SJim Ingham        if self.step_out_thread_plan.IsPlanStale():
226fd0dbab2SJim Ingham            self.do_print()
227fd0dbab2SJim Ingham            return True
228fd0dbab2SJim Ingham        else:
229fd0dbab2SJim Ingham            return False
230fd0dbab2SJim Ingham
231c7468b7bSJim Ingham    def explains_stop(self, event):
232c7468b7bSJim Ingham        return False
233c7468b7bSJim Ingham
234c7468b7bSJim Ingham    def should_stop(self, event):
235c7468b7bSJim Ingham        if self.step_out_thread_plan.IsPlanComplete():
236fd0dbab2SJim Ingham            self.do_print()
237fd0dbab2SJim Ingham            self.thread_plan.SetPlanComplete(True)
238fd0dbab2SJim Ingham        return False
239fd0dbab2SJim Ingham
240fd0dbab2SJim Ingham    def do_print(self):
241c7468b7bSJim Ingham        frame_0 = self.thread.frames[0]
242c7468b7bSJim Ingham        rax_value = frame_0.FindRegister("rax")
243c7468b7bSJim Ingham        if rax_value.GetError().Success():
244*525cd59fSSerge Guelton            print("RAX on exit: ", rax_value.GetValue())
245c7468b7bSJim Ingham        else:
246*525cd59fSSerge Guelton            print("Couldn't get rax value:", rax_value.GetError().GetCString())
247