1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Config.h" 11 #include "InputChunks.h" 12 #include "InputEvent.h" 13 #include "InputGlobal.h" 14 #include "SymbolTable.h" 15 #include "lld/Common/ErrorHandler.h" 16 #include "lld/Common/Memory.h" 17 #include "llvm/Object/Binary.h" 18 #include "llvm/Object/Wasm.h" 19 #include "llvm/Support/raw_ostream.h" 20 21 #define DEBUG_TYPE "lld" 22 23 using namespace lld; 24 using namespace lld::wasm; 25 26 using namespace llvm; 27 using namespace llvm::object; 28 using namespace llvm::wasm; 29 30 Optional<MemoryBufferRef> lld::wasm::readFile(StringRef Path) { 31 log("Loading: " + Path); 32 33 auto MBOrErr = MemoryBuffer::getFile(Path); 34 if (auto EC = MBOrErr.getError()) { 35 error("cannot open " + Path + ": " + EC.message()); 36 return None; 37 } 38 std::unique_ptr<MemoryBuffer> &MB = *MBOrErr; 39 MemoryBufferRef MBRef = MB->getMemBufferRef(); 40 make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership 41 42 return MBRef; 43 } 44 45 InputFile *lld::wasm::createObjectFile(MemoryBufferRef MB) { 46 file_magic Magic = identify_magic(MB.getBuffer()); 47 if (Magic == file_magic::wasm_object) { 48 std::unique_ptr<Binary> Bin = check(createBinary(MB)); 49 auto *Obj = cast<WasmObjectFile>(Bin.get()); 50 if (Obj->isSharedObject()) 51 return make<SharedFile>(MB); 52 return make<ObjFile>(MB); 53 } 54 55 if (Magic == file_magic::bitcode) 56 return make<BitcodeFile>(MB); 57 58 fatal("unknown file type: " + MB.getBufferIdentifier()); 59 } 60 61 void ObjFile::dumpInfo() const { 62 log("info for: " + getName() + 63 "\n Symbols : " + Twine(Symbols.size()) + 64 "\n Function Imports : " + Twine(WasmObj->getNumImportedFunctions()) + 65 "\n Global Imports : " + Twine(WasmObj->getNumImportedGlobals()) + 66 "\n Event Imports : " + Twine(WasmObj->getNumImportedEvents())); 67 } 68 69 // Relocations contain either symbol or type indices. This function takes a 70 // relocation and returns relocated index (i.e. translates from the input 71 // symbol/type space to the output symbol/type space). 72 uint32_t ObjFile::calcNewIndex(const WasmRelocation &Reloc) const { 73 if (Reloc.Type == R_WASM_TYPE_INDEX_LEB) { 74 assert(TypeIsUsed[Reloc.Index]); 75 return TypeMap[Reloc.Index]; 76 } 77 return Symbols[Reloc.Index]->getOutputSymbolIndex(); 78 } 79 80 // Relocations can contain addend for combined sections. This function takes a 81 // relocation and returns updated addend by offset in the output section. 82 uint32_t ObjFile::calcNewAddend(const WasmRelocation &Reloc) const { 83 switch (Reloc.Type) { 84 case R_WASM_MEMORY_ADDR_LEB: 85 case R_WASM_MEMORY_ADDR_SLEB: 86 case R_WASM_MEMORY_ADDR_I32: 87 case R_WASM_FUNCTION_OFFSET_I32: 88 return Reloc.Addend; 89 case R_WASM_SECTION_OFFSET_I32: 90 return getSectionSymbol(Reloc.Index)->Section->OutputOffset + Reloc.Addend; 91 default: 92 llvm_unreachable("unexpected relocation type"); 93 } 94 } 95 96 // Calculate the value we expect to find at the relocation location. 97 // This is used as a sanity check before applying a relocation to a given 98 // location. It is useful for catching bugs in the compiler and linker. 99 uint32_t ObjFile::calcExpectedValue(const WasmRelocation &Reloc) const { 100 switch (Reloc.Type) { 101 case R_WASM_TABLE_INDEX_I32: 102 case R_WASM_TABLE_INDEX_SLEB: { 103 const WasmSymbol &Sym = WasmObj->syms()[Reloc.Index]; 104 return TableEntries[Sym.Info.ElementIndex]; 105 } 106 case R_WASM_MEMORY_ADDR_SLEB: 107 case R_WASM_MEMORY_ADDR_I32: 108 case R_WASM_MEMORY_ADDR_LEB: { 109 const WasmSymbol &Sym = WasmObj->syms()[Reloc.Index]; 110 if (Sym.isUndefined()) 111 return 0; 112 const WasmSegment &Segment = 113 WasmObj->dataSegments()[Sym.Info.DataRef.Segment]; 114 return Segment.Data.Offset.Value.Int32 + Sym.Info.DataRef.Offset + 115 Reloc.Addend; 116 } 117 case R_WASM_FUNCTION_OFFSET_I32: 118 if (auto *Sym = dyn_cast<DefinedFunction>(getFunctionSymbol(Reloc.Index))) { 119 return Sym->Function->getFunctionInputOffset() + 120 Sym->Function->getFunctionCodeOffset() + Reloc.Addend; 121 } 122 return 0; 123 case R_WASM_SECTION_OFFSET_I32: 124 return Reloc.Addend; 125 case R_WASM_TYPE_INDEX_LEB: 126 return Reloc.Index; 127 case R_WASM_FUNCTION_INDEX_LEB: 128 case R_WASM_GLOBAL_INDEX_LEB: 129 case R_WASM_EVENT_INDEX_LEB: { 130 const WasmSymbol &Sym = WasmObj->syms()[Reloc.Index]; 131 return Sym.Info.ElementIndex; 132 } 133 default: 134 llvm_unreachable("unknown relocation type"); 135 } 136 } 137 138 // Translate from the relocation's index into the final linked output value. 139 uint32_t ObjFile::calcNewValue(const WasmRelocation &Reloc) const { 140 switch (Reloc.Type) { 141 case R_WASM_TABLE_INDEX_I32: 142 case R_WASM_TABLE_INDEX_SLEB: 143 return getFunctionSymbol(Reloc.Index)->getTableIndex(); 144 case R_WASM_MEMORY_ADDR_SLEB: 145 case R_WASM_MEMORY_ADDR_I32: 146 case R_WASM_MEMORY_ADDR_LEB: 147 if (auto *Sym = dyn_cast<DefinedData>(getDataSymbol(Reloc.Index))) 148 if (Sym->isLive()) 149 return Sym->getVirtualAddress() + Reloc.Addend; 150 return 0; 151 case R_WASM_TYPE_INDEX_LEB: 152 return TypeMap[Reloc.Index]; 153 case R_WASM_FUNCTION_INDEX_LEB: 154 return getFunctionSymbol(Reloc.Index)->getFunctionIndex(); 155 case R_WASM_GLOBAL_INDEX_LEB: 156 return getGlobalSymbol(Reloc.Index)->getGlobalIndex(); 157 case R_WASM_EVENT_INDEX_LEB: 158 return getEventSymbol(Reloc.Index)->getEventIndex(); 159 case R_WASM_FUNCTION_OFFSET_I32: 160 if (auto *Sym = dyn_cast<DefinedFunction>(getFunctionSymbol(Reloc.Index))) { 161 if (Sym->isLive()) 162 return Sym->Function->OutputOffset + 163 Sym->Function->getFunctionCodeOffset() + Reloc.Addend; 164 } 165 return 0; 166 case R_WASM_SECTION_OFFSET_I32: 167 return getSectionSymbol(Reloc.Index)->Section->OutputOffset + Reloc.Addend; 168 default: 169 llvm_unreachable("unknown relocation type"); 170 } 171 } 172 173 template <class T> 174 static void setRelocs(const std::vector<T *> &Chunks, 175 const WasmSection *Section) { 176 if (!Section) 177 return; 178 179 ArrayRef<WasmRelocation> Relocs = Section->Relocations; 180 assert(std::is_sorted(Relocs.begin(), Relocs.end(), 181 [](const WasmRelocation &R1, const WasmRelocation &R2) { 182 return R1.Offset < R2.Offset; 183 })); 184 assert(std::is_sorted( 185 Chunks.begin(), Chunks.end(), [](InputChunk *C1, InputChunk *C2) { 186 return C1->getInputSectionOffset() < C2->getInputSectionOffset(); 187 })); 188 189 auto RelocsNext = Relocs.begin(); 190 auto RelocsEnd = Relocs.end(); 191 auto RelocLess = [](const WasmRelocation &R, uint32_t Val) { 192 return R.Offset < Val; 193 }; 194 for (InputChunk *C : Chunks) { 195 auto RelocsStart = std::lower_bound(RelocsNext, RelocsEnd, 196 C->getInputSectionOffset(), RelocLess); 197 RelocsNext = std::lower_bound( 198 RelocsStart, RelocsEnd, C->getInputSectionOffset() + C->getInputSize(), 199 RelocLess); 200 C->setRelocations(ArrayRef<WasmRelocation>(RelocsStart, RelocsNext)); 201 } 202 } 203 204 void ObjFile::parse() { 205 // Parse a memory buffer as a wasm file. 206 LLVM_DEBUG(dbgs() << "Parsing object: " << toString(this) << "\n"); 207 std::unique_ptr<Binary> Bin = CHECK(createBinary(MB), toString(this)); 208 209 auto *Obj = dyn_cast<WasmObjectFile>(Bin.get()); 210 if (!Obj) 211 fatal(toString(this) + ": not a wasm file"); 212 if (!Obj->isRelocatableObject()) 213 fatal(toString(this) + ": not a relocatable wasm file"); 214 215 Bin.release(); 216 WasmObj.reset(Obj); 217 218 // Build up a map of function indices to table indices for use when 219 // verifying the existing table index relocations 220 uint32_t TotalFunctions = 221 WasmObj->getNumImportedFunctions() + WasmObj->functions().size(); 222 TableEntries.resize(TotalFunctions); 223 for (const WasmElemSegment &Seg : WasmObj->elements()) { 224 if (Seg.Offset.Opcode != WASM_OPCODE_I32_CONST) 225 fatal(toString(this) + ": invalid table elements"); 226 uint32_t Offset = Seg.Offset.Value.Int32; 227 for (uint32_t Index = 0; Index < Seg.Functions.size(); Index++) { 228 229 uint32_t FunctionIndex = Seg.Functions[Index]; 230 TableEntries[FunctionIndex] = Offset + Index; 231 } 232 } 233 234 // Find the code and data sections. Wasm objects can have at most one code 235 // and one data section. 236 uint32_t SectionIndex = 0; 237 for (const SectionRef &Sec : WasmObj->sections()) { 238 const WasmSection &Section = WasmObj->getWasmSection(Sec); 239 if (Section.Type == WASM_SEC_CODE) { 240 CodeSection = &Section; 241 } else if (Section.Type == WASM_SEC_DATA) { 242 DataSection = &Section; 243 } else if (Section.Type == WASM_SEC_CUSTOM) { 244 CustomSections.emplace_back(make<InputSection>(Section, this)); 245 CustomSections.back()->setRelocations(Section.Relocations); 246 CustomSectionsByIndex[SectionIndex] = CustomSections.back(); 247 } 248 SectionIndex++; 249 } 250 251 TypeMap.resize(getWasmObj()->types().size()); 252 TypeIsUsed.resize(getWasmObj()->types().size(), false); 253 254 ArrayRef<StringRef> Comdats = WasmObj->linkingData().Comdats; 255 UsedComdats.resize(Comdats.size()); 256 for (unsigned I = 0; I < Comdats.size(); ++I) 257 UsedComdats[I] = Symtab->addComdat(Comdats[I]); 258 259 // Populate `Segments`. 260 for (const WasmSegment &S : WasmObj->dataSegments()) 261 Segments.emplace_back(make<InputSegment>(S, this)); 262 setRelocs(Segments, DataSection); 263 264 // Populate `Functions`. 265 ArrayRef<WasmFunction> Funcs = WasmObj->functions(); 266 ArrayRef<uint32_t> FuncTypes = WasmObj->functionTypes(); 267 ArrayRef<WasmSignature> Types = WasmObj->types(); 268 Functions.reserve(Funcs.size()); 269 270 for (size_t I = 0, E = Funcs.size(); I != E; ++I) 271 Functions.emplace_back( 272 make<InputFunction>(Types[FuncTypes[I]], &Funcs[I], this)); 273 setRelocs(Functions, CodeSection); 274 275 // Populate `Globals`. 276 for (const WasmGlobal &G : WasmObj->globals()) 277 Globals.emplace_back(make<InputGlobal>(G, this)); 278 279 // Populate `Events`. 280 for (const WasmEvent &E : WasmObj->events()) 281 Events.emplace_back(make<InputEvent>(Types[E.Type.SigIndex], E, this)); 282 283 // Populate `Symbols` based on the WasmSymbols in the object. 284 Symbols.reserve(WasmObj->getNumberOfSymbols()); 285 for (const SymbolRef &Sym : WasmObj->symbols()) { 286 const WasmSymbol &WasmSym = WasmObj->getWasmSymbol(Sym.getRawDataRefImpl()); 287 if (Symbol *Sym = createDefined(WasmSym)) 288 Symbols.push_back(Sym); 289 else 290 Symbols.push_back(createUndefined(WasmSym)); 291 } 292 } 293 294 bool ObjFile::isExcludedByComdat(InputChunk *Chunk) const { 295 uint32_t C = Chunk->getComdat(); 296 if (C == UINT32_MAX) 297 return false; 298 return !UsedComdats[C]; 299 } 300 301 FunctionSymbol *ObjFile::getFunctionSymbol(uint32_t Index) const { 302 return cast<FunctionSymbol>(Symbols[Index]); 303 } 304 305 GlobalSymbol *ObjFile::getGlobalSymbol(uint32_t Index) const { 306 return cast<GlobalSymbol>(Symbols[Index]); 307 } 308 309 EventSymbol *ObjFile::getEventSymbol(uint32_t Index) const { 310 return cast<EventSymbol>(Symbols[Index]); 311 } 312 313 SectionSymbol *ObjFile::getSectionSymbol(uint32_t Index) const { 314 return cast<SectionSymbol>(Symbols[Index]); 315 } 316 317 DataSymbol *ObjFile::getDataSymbol(uint32_t Index) const { 318 return cast<DataSymbol>(Symbols[Index]); 319 } 320 321 Symbol *ObjFile::createDefined(const WasmSymbol &Sym) { 322 if (!Sym.isDefined()) 323 return nullptr; 324 325 StringRef Name = Sym.Info.Name; 326 uint32_t Flags = Sym.Info.Flags; 327 328 switch (Sym.Info.Kind) { 329 case WASM_SYMBOL_TYPE_FUNCTION: { 330 InputFunction *Func = 331 Functions[Sym.Info.ElementIndex - WasmObj->getNumImportedFunctions()]; 332 if (isExcludedByComdat(Func)) { 333 Func->Live = false; 334 return nullptr; 335 } 336 337 if (Sym.isBindingLocal()) 338 return make<DefinedFunction>(Name, Flags, this, Func); 339 return Symtab->addDefinedFunction(Name, Flags, this, Func); 340 } 341 case WASM_SYMBOL_TYPE_DATA: { 342 InputSegment *Seg = Segments[Sym.Info.DataRef.Segment]; 343 if (isExcludedByComdat(Seg)) { 344 Seg->Live = false; 345 return nullptr; 346 } 347 348 uint32_t Offset = Sym.Info.DataRef.Offset; 349 uint32_t Size = Sym.Info.DataRef.Size; 350 351 if (Sym.isBindingLocal()) 352 return make<DefinedData>(Name, Flags, this, Seg, Offset, Size); 353 return Symtab->addDefinedData(Name, Flags, this, Seg, Offset, Size); 354 } 355 case WASM_SYMBOL_TYPE_GLOBAL: { 356 InputGlobal *Global = 357 Globals[Sym.Info.ElementIndex - WasmObj->getNumImportedGlobals()]; 358 if (Sym.isBindingLocal()) 359 return make<DefinedGlobal>(Name, Flags, this, Global); 360 return Symtab->addDefinedGlobal(Name, Flags, this, Global); 361 } 362 case WASM_SYMBOL_TYPE_SECTION: { 363 InputSection *Section = CustomSectionsByIndex[Sym.Info.ElementIndex]; 364 assert(Sym.isBindingLocal()); 365 return make<SectionSymbol>(Name, Flags, Section, this); 366 } 367 case WASM_SYMBOL_TYPE_EVENT: { 368 InputEvent *Event = 369 Events[Sym.Info.ElementIndex - WasmObj->getNumImportedEvents()]; 370 if (Sym.isBindingLocal()) 371 return make<DefinedEvent>(Name, Flags, this, Event); 372 return Symtab->addDefinedEvent(Name, Flags, this, Event); 373 } 374 } 375 llvm_unreachable("unknown symbol kind"); 376 } 377 378 Symbol *ObjFile::createUndefined(const WasmSymbol &Sym) { 379 StringRef Name = Sym.Info.Name; 380 uint32_t Flags = Sym.Info.Flags; 381 382 switch (Sym.Info.Kind) { 383 case WASM_SYMBOL_TYPE_FUNCTION: 384 return Symtab->addUndefinedFunction(Name, Sym.Info.ImportName, 385 Sym.Info.ImportModule, Flags, this, 386 Sym.Signature); 387 case WASM_SYMBOL_TYPE_DATA: 388 return Symtab->addUndefinedData(Name, Flags, this); 389 case WASM_SYMBOL_TYPE_GLOBAL: 390 return Symtab->addUndefinedGlobal(Name, Sym.Info.ImportName, 391 Sym.Info.ImportModule, Flags, this, 392 Sym.GlobalType); 393 case WASM_SYMBOL_TYPE_SECTION: 394 llvm_unreachable("section symbols cannot be undefined"); 395 } 396 llvm_unreachable("unknown symbol kind"); 397 } 398 399 void ArchiveFile::parse() { 400 // Parse a MemoryBufferRef as an archive file. 401 LLVM_DEBUG(dbgs() << "Parsing library: " << toString(this) << "\n"); 402 File = CHECK(Archive::create(MB), toString(this)); 403 404 // Read the symbol table to construct Lazy symbols. 405 int Count = 0; 406 for (const Archive::Symbol &Sym : File->symbols()) { 407 Symtab->addLazy(this, &Sym); 408 ++Count; 409 } 410 LLVM_DEBUG(dbgs() << "Read " << Count << " symbols\n"); 411 } 412 413 void ArchiveFile::addMember(const Archive::Symbol *Sym) { 414 const Archive::Child &C = 415 CHECK(Sym->getMember(), 416 "could not get the member for symbol " + Sym->getName()); 417 418 // Don't try to load the same member twice (this can happen when members 419 // mutually reference each other). 420 if (!Seen.insert(C.getChildOffset()).second) 421 return; 422 423 LLVM_DEBUG(dbgs() << "loading lazy: " << Sym->getName() << "\n"); 424 LLVM_DEBUG(dbgs() << "from archive: " << toString(this) << "\n"); 425 426 MemoryBufferRef MB = 427 CHECK(C.getMemoryBufferRef(), 428 "could not get the buffer for the member defining symbol " + 429 Sym->getName()); 430 431 InputFile *Obj = createObjectFile(MB); 432 Obj->ArchiveName = getName(); 433 Symtab->addFile(Obj); 434 } 435 436 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) { 437 switch (GvVisibility) { 438 case GlobalValue::DefaultVisibility: 439 return WASM_SYMBOL_VISIBILITY_DEFAULT; 440 case GlobalValue::HiddenVisibility: 441 case GlobalValue::ProtectedVisibility: 442 return WASM_SYMBOL_VISIBILITY_HIDDEN; 443 } 444 llvm_unreachable("unknown visibility"); 445 } 446 447 static Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &ObjSym, 448 BitcodeFile &F) { 449 StringRef Name = Saver.save(ObjSym.getName()); 450 451 uint32_t Flags = ObjSym.isWeak() ? WASM_SYMBOL_BINDING_WEAK : 0; 452 Flags |= mapVisibility(ObjSym.getVisibility()); 453 454 if (ObjSym.isUndefined()) { 455 if (ObjSym.isExecutable()) 456 return Symtab->addUndefinedFunction(Name, Name, DefaultModule, Flags, &F, 457 nullptr); 458 return Symtab->addUndefinedData(Name, Flags, &F); 459 } 460 461 if (ObjSym.isExecutable()) 462 return Symtab->addDefinedFunction(Name, Flags, &F, nullptr); 463 return Symtab->addDefinedData(Name, Flags, &F, nullptr, 0, 0); 464 } 465 466 void BitcodeFile::parse() { 467 Obj = check(lto::InputFile::create(MemoryBufferRef( 468 MB.getBuffer(), Saver.save(ArchiveName + MB.getBufferIdentifier())))); 469 Triple T(Obj->getTargetTriple()); 470 if (T.getArch() != Triple::wasm32) { 471 error(toString(MB.getBufferIdentifier()) + ": machine type must be wasm32"); 472 return; 473 } 474 475 for (const lto::InputFile::Symbol &ObjSym : Obj->symbols()) 476 Symbols.push_back(createBitcodeSymbol(ObjSym, *this)); 477 } 478 479 // Returns a string in the format of "foo.o" or "foo.a(bar.o)". 480 std::string lld::toString(const wasm::InputFile *File) { 481 if (!File) 482 return "<internal>"; 483 484 if (File->ArchiveName.empty()) 485 return File->getName(); 486 487 return (File->ArchiveName + "(" + File->getName() + ")").str(); 488 } 489