1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Config.h" 11 #include "InputChunks.h" 12 #include "InputEvent.h" 13 #include "InputGlobal.h" 14 #include "SymbolTable.h" 15 #include "lld/Common/ErrorHandler.h" 16 #include "lld/Common/Memory.h" 17 #include "llvm/Object/Binary.h" 18 #include "llvm/Object/Wasm.h" 19 #include "llvm/Support/raw_ostream.h" 20 21 #define DEBUG_TYPE "lld" 22 23 using namespace lld; 24 using namespace lld::wasm; 25 26 using namespace llvm; 27 using namespace llvm::object; 28 using namespace llvm::wasm; 29 30 Optional<MemoryBufferRef> lld::wasm::readFile(StringRef Path) { 31 log("Loading: " + Path); 32 33 auto MBOrErr = MemoryBuffer::getFile(Path); 34 if (auto EC = MBOrErr.getError()) { 35 error("cannot open " + Path + ": " + EC.message()); 36 return None; 37 } 38 std::unique_ptr<MemoryBuffer> &MB = *MBOrErr; 39 MemoryBufferRef MBRef = MB->getMemBufferRef(); 40 make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership 41 42 return MBRef; 43 } 44 45 InputFile *lld::wasm::createObjectFile(MemoryBufferRef MB) { 46 file_magic Magic = identify_magic(MB.getBuffer()); 47 if (Magic == file_magic::wasm_object) { 48 std::unique_ptr<Binary> Bin = check(createBinary(MB)); 49 auto *Obj = cast<WasmObjectFile>(Bin.get()); 50 if (Obj->isSharedObject()) 51 return make<SharedFile>(MB); 52 return make<ObjFile>(MB); 53 } 54 55 if (Magic == file_magic::bitcode) 56 return make<BitcodeFile>(MB); 57 58 fatal("unknown file type: " + MB.getBufferIdentifier()); 59 } 60 61 void ObjFile::dumpInfo() const { 62 log("info for: " + getName() + 63 "\n Symbols : " + Twine(Symbols.size()) + 64 "\n Function Imports : " + Twine(WasmObj->getNumImportedFunctions()) + 65 "\n Global Imports : " + Twine(WasmObj->getNumImportedGlobals()) + 66 "\n Event Imports : " + Twine(WasmObj->getNumImportedEvents())); 67 } 68 69 // Relocations contain either symbol or type indices. This function takes a 70 // relocation and returns relocated index (i.e. translates from the input 71 // symbol/type space to the output symbol/type space). 72 uint32_t ObjFile::calcNewIndex(const WasmRelocation &Reloc) const { 73 if (Reloc.Type == R_WASM_TYPE_INDEX_LEB) { 74 assert(TypeIsUsed[Reloc.Index]); 75 return TypeMap[Reloc.Index]; 76 } 77 return Symbols[Reloc.Index]->getOutputSymbolIndex(); 78 } 79 80 // Relocations can contain addend for combined sections. This function takes a 81 // relocation and returns updated addend by offset in the output section. 82 uint32_t ObjFile::calcNewAddend(const WasmRelocation &Reloc) const { 83 switch (Reloc.Type) { 84 case R_WASM_MEMORY_ADDR_LEB: 85 case R_WASM_MEMORY_ADDR_SLEB: 86 case R_WASM_MEMORY_ADDR_I32: 87 case R_WASM_FUNCTION_OFFSET_I32: 88 return Reloc.Addend; 89 case R_WASM_SECTION_OFFSET_I32: 90 return getSectionSymbol(Reloc.Index)->Section->OutputOffset + Reloc.Addend; 91 default: 92 llvm_unreachable("unexpected relocation type"); 93 } 94 } 95 96 // Calculate the value we expect to find at the relocation location. 97 // This is used as a sanity check before applying a relocation to a given 98 // location. It is useful for catching bugs in the compiler and linker. 99 uint32_t ObjFile::calcExpectedValue(const WasmRelocation &Reloc) const { 100 switch (Reloc.Type) { 101 case R_WASM_TABLE_INDEX_I32: 102 case R_WASM_TABLE_INDEX_SLEB: { 103 const WasmSymbol &Sym = WasmObj->syms()[Reloc.Index]; 104 return TableEntries[Sym.Info.ElementIndex]; 105 } 106 case R_WASM_MEMORY_ADDR_SLEB: 107 case R_WASM_MEMORY_ADDR_I32: 108 case R_WASM_MEMORY_ADDR_LEB: { 109 const WasmSymbol &Sym = WasmObj->syms()[Reloc.Index]; 110 if (Sym.isUndefined()) 111 return 0; 112 const WasmSegment &Segment = 113 WasmObj->dataSegments()[Sym.Info.DataRef.Segment]; 114 return Segment.Data.Offset.Value.Int32 + Sym.Info.DataRef.Offset + 115 Reloc.Addend; 116 } 117 case R_WASM_FUNCTION_OFFSET_I32: 118 if (auto *Sym = dyn_cast<DefinedFunction>(getFunctionSymbol(Reloc.Index))) { 119 return Sym->Function->getFunctionInputOffset() + 120 Sym->Function->getFunctionCodeOffset() + Reloc.Addend; 121 } 122 return 0; 123 case R_WASM_SECTION_OFFSET_I32: 124 return Reloc.Addend; 125 case R_WASM_TYPE_INDEX_LEB: 126 return Reloc.Index; 127 case R_WASM_FUNCTION_INDEX_LEB: 128 case R_WASM_GLOBAL_INDEX_LEB: 129 case R_WASM_EVENT_INDEX_LEB: { 130 const WasmSymbol &Sym = WasmObj->syms()[Reloc.Index]; 131 return Sym.Info.ElementIndex; 132 } 133 default: 134 llvm_unreachable("unknown relocation type"); 135 } 136 } 137 138 // Translate from the relocation's index into the final linked output value. 139 uint32_t ObjFile::calcNewValue(const WasmRelocation &Reloc) const { 140 switch (Reloc.Type) { 141 case R_WASM_TABLE_INDEX_I32: 142 case R_WASM_TABLE_INDEX_SLEB: 143 return getFunctionSymbol(Reloc.Index)->getTableIndex(); 144 case R_WASM_MEMORY_ADDR_SLEB: 145 case R_WASM_MEMORY_ADDR_I32: 146 case R_WASM_MEMORY_ADDR_LEB: 147 if (auto *Sym = dyn_cast<DefinedData>(getDataSymbol(Reloc.Index))) 148 if (Sym->isLive()) 149 return Sym->getVirtualAddress() + Reloc.Addend; 150 return 0; 151 case R_WASM_TYPE_INDEX_LEB: 152 return TypeMap[Reloc.Index]; 153 case R_WASM_FUNCTION_INDEX_LEB: 154 return getFunctionSymbol(Reloc.Index)->getFunctionIndex(); 155 case R_WASM_GLOBAL_INDEX_LEB: 156 return getGlobalSymbol(Reloc.Index)->getGlobalIndex(); 157 case R_WASM_EVENT_INDEX_LEB: 158 return getEventSymbol(Reloc.Index)->getEventIndex(); 159 case R_WASM_FUNCTION_OFFSET_I32: 160 if (auto *Sym = dyn_cast<DefinedFunction>(getFunctionSymbol(Reloc.Index))) { 161 if (Sym->isLive()) 162 return Sym->Function->OutputOffset + 163 Sym->Function->getFunctionCodeOffset() + Reloc.Addend; 164 } 165 return 0; 166 case R_WASM_SECTION_OFFSET_I32: 167 return getSectionSymbol(Reloc.Index)->Section->OutputOffset + Reloc.Addend; 168 default: 169 llvm_unreachable("unknown relocation type"); 170 } 171 } 172 173 template <class T> 174 static void setRelocs(const std::vector<T *> &Chunks, 175 const WasmSection *Section) { 176 if (!Section) 177 return; 178 179 ArrayRef<WasmRelocation> Relocs = Section->Relocations; 180 assert(std::is_sorted(Relocs.begin(), Relocs.end(), 181 [](const WasmRelocation &R1, const WasmRelocation &R2) { 182 return R1.Offset < R2.Offset; 183 })); 184 assert(std::is_sorted( 185 Chunks.begin(), Chunks.end(), [](InputChunk *C1, InputChunk *C2) { 186 return C1->getInputSectionOffset() < C2->getInputSectionOffset(); 187 })); 188 189 auto RelocsNext = Relocs.begin(); 190 auto RelocsEnd = Relocs.end(); 191 auto RelocLess = [](const WasmRelocation &R, uint32_t Val) { 192 return R.Offset < Val; 193 }; 194 for (InputChunk *C : Chunks) { 195 auto RelocsStart = std::lower_bound(RelocsNext, RelocsEnd, 196 C->getInputSectionOffset(), RelocLess); 197 RelocsNext = std::lower_bound( 198 RelocsStart, RelocsEnd, C->getInputSectionOffset() + C->getInputSize(), 199 RelocLess); 200 C->setRelocations(ArrayRef<WasmRelocation>(RelocsStart, RelocsNext)); 201 } 202 } 203 204 void ObjFile::parse() { 205 // Parse a memory buffer as a wasm file. 206 LLVM_DEBUG(dbgs() << "Parsing object: " << toString(this) << "\n"); 207 std::unique_ptr<Binary> Bin = CHECK(createBinary(MB), toString(this)); 208 209 auto *Obj = dyn_cast<WasmObjectFile>(Bin.get()); 210 if (!Obj) 211 fatal(toString(this) + ": not a wasm file"); 212 if (!Obj->isRelocatableObject()) 213 fatal(toString(this) + ": not a relocatable wasm file"); 214 215 Bin.release(); 216 WasmObj.reset(Obj); 217 218 // Build up a map of function indices to table indices for use when 219 // verifying the existing table index relocations 220 uint32_t TotalFunctions = 221 WasmObj->getNumImportedFunctions() + WasmObj->functions().size(); 222 TableEntries.resize(TotalFunctions); 223 for (const WasmElemSegment &Seg : WasmObj->elements()) { 224 if (Seg.Offset.Opcode != WASM_OPCODE_I32_CONST) 225 fatal(toString(this) + ": invalid table elements"); 226 uint32_t Offset = Seg.Offset.Value.Int32; 227 for (uint32_t Index = 0; Index < Seg.Functions.size(); Index++) { 228 229 uint32_t FunctionIndex = Seg.Functions[Index]; 230 TableEntries[FunctionIndex] = Offset + Index; 231 } 232 } 233 234 // Find the code and data sections. Wasm objects can have at most one code 235 // and one data section. 236 uint32_t SectionIndex = 0; 237 for (const SectionRef &Sec : WasmObj->sections()) { 238 const WasmSection &Section = WasmObj->getWasmSection(Sec); 239 if (Section.Type == WASM_SEC_CODE) { 240 CodeSection = &Section; 241 } else if (Section.Type == WASM_SEC_DATA) { 242 DataSection = &Section; 243 } else if (Section.Type == WASM_SEC_CUSTOM) { 244 CustomSections.emplace_back(make<InputSection>(Section, this)); 245 CustomSections.back()->setRelocations(Section.Relocations); 246 CustomSectionsByIndex[SectionIndex] = CustomSections.back(); 247 if (Section.Name == "producers") 248 ProducersSection = &Section; 249 } 250 SectionIndex++; 251 } 252 253 TypeMap.resize(getWasmObj()->types().size()); 254 TypeIsUsed.resize(getWasmObj()->types().size(), false); 255 256 ArrayRef<StringRef> Comdats = WasmObj->linkingData().Comdats; 257 UsedComdats.resize(Comdats.size()); 258 for (unsigned I = 0; I < Comdats.size(); ++I) 259 UsedComdats[I] = Symtab->addComdat(Comdats[I]); 260 261 // Populate `Segments`. 262 for (const WasmSegment &S : WasmObj->dataSegments()) 263 Segments.emplace_back(make<InputSegment>(S, this)); 264 setRelocs(Segments, DataSection); 265 266 // Populate `Functions`. 267 ArrayRef<WasmFunction> Funcs = WasmObj->functions(); 268 ArrayRef<uint32_t> FuncTypes = WasmObj->functionTypes(); 269 ArrayRef<WasmSignature> Types = WasmObj->types(); 270 Functions.reserve(Funcs.size()); 271 272 for (size_t I = 0, E = Funcs.size(); I != E; ++I) 273 Functions.emplace_back( 274 make<InputFunction>(Types[FuncTypes[I]], &Funcs[I], this)); 275 setRelocs(Functions, CodeSection); 276 277 // Populate `Globals`. 278 for (const WasmGlobal &G : WasmObj->globals()) 279 Globals.emplace_back(make<InputGlobal>(G, this)); 280 281 // Populate `Events`. 282 for (const WasmEvent &E : WasmObj->events()) 283 Events.emplace_back(make<InputEvent>(Types[E.Type.SigIndex], E, this)); 284 285 // Populate `Symbols` based on the WasmSymbols in the object. 286 Symbols.reserve(WasmObj->getNumberOfSymbols()); 287 for (const SymbolRef &Sym : WasmObj->symbols()) { 288 const WasmSymbol &WasmSym = WasmObj->getWasmSymbol(Sym.getRawDataRefImpl()); 289 if (Symbol *Sym = createDefined(WasmSym)) 290 Symbols.push_back(Sym); 291 else 292 Symbols.push_back(createUndefined(WasmSym)); 293 } 294 } 295 296 bool ObjFile::isExcludedByComdat(InputChunk *Chunk) const { 297 uint32_t C = Chunk->getComdat(); 298 if (C == UINT32_MAX) 299 return false; 300 return !UsedComdats[C]; 301 } 302 303 FunctionSymbol *ObjFile::getFunctionSymbol(uint32_t Index) const { 304 return cast<FunctionSymbol>(Symbols[Index]); 305 } 306 307 GlobalSymbol *ObjFile::getGlobalSymbol(uint32_t Index) const { 308 return cast<GlobalSymbol>(Symbols[Index]); 309 } 310 311 EventSymbol *ObjFile::getEventSymbol(uint32_t Index) const { 312 return cast<EventSymbol>(Symbols[Index]); 313 } 314 315 SectionSymbol *ObjFile::getSectionSymbol(uint32_t Index) const { 316 return cast<SectionSymbol>(Symbols[Index]); 317 } 318 319 DataSymbol *ObjFile::getDataSymbol(uint32_t Index) const { 320 return cast<DataSymbol>(Symbols[Index]); 321 } 322 323 Symbol *ObjFile::createDefined(const WasmSymbol &Sym) { 324 if (!Sym.isDefined()) 325 return nullptr; 326 327 StringRef Name = Sym.Info.Name; 328 uint32_t Flags = Sym.Info.Flags; 329 330 switch (Sym.Info.Kind) { 331 case WASM_SYMBOL_TYPE_FUNCTION: { 332 InputFunction *Func = 333 Functions[Sym.Info.ElementIndex - WasmObj->getNumImportedFunctions()]; 334 if (isExcludedByComdat(Func)) { 335 Func->Live = false; 336 return nullptr; 337 } 338 339 if (Sym.isBindingLocal()) 340 return make<DefinedFunction>(Name, Flags, this, Func); 341 return Symtab->addDefinedFunction(Name, Flags, this, Func); 342 } 343 case WASM_SYMBOL_TYPE_DATA: { 344 InputSegment *Seg = Segments[Sym.Info.DataRef.Segment]; 345 if (isExcludedByComdat(Seg)) { 346 Seg->Live = false; 347 return nullptr; 348 } 349 350 uint32_t Offset = Sym.Info.DataRef.Offset; 351 uint32_t Size = Sym.Info.DataRef.Size; 352 353 if (Sym.isBindingLocal()) 354 return make<DefinedData>(Name, Flags, this, Seg, Offset, Size); 355 return Symtab->addDefinedData(Name, Flags, this, Seg, Offset, Size); 356 } 357 case WASM_SYMBOL_TYPE_GLOBAL: { 358 InputGlobal *Global = 359 Globals[Sym.Info.ElementIndex - WasmObj->getNumImportedGlobals()]; 360 if (Sym.isBindingLocal()) 361 return make<DefinedGlobal>(Name, Flags, this, Global); 362 return Symtab->addDefinedGlobal(Name, Flags, this, Global); 363 } 364 case WASM_SYMBOL_TYPE_SECTION: { 365 InputSection *Section = CustomSectionsByIndex[Sym.Info.ElementIndex]; 366 assert(Sym.isBindingLocal()); 367 return make<SectionSymbol>(Name, Flags, Section, this); 368 } 369 case WASM_SYMBOL_TYPE_EVENT: { 370 InputEvent *Event = 371 Events[Sym.Info.ElementIndex - WasmObj->getNumImportedEvents()]; 372 if (Sym.isBindingLocal()) 373 return make<DefinedEvent>(Name, Flags, this, Event); 374 return Symtab->addDefinedEvent(Name, Flags, this, Event); 375 } 376 } 377 llvm_unreachable("unknown symbol kind"); 378 } 379 380 Symbol *ObjFile::createUndefined(const WasmSymbol &Sym) { 381 StringRef Name = Sym.Info.Name; 382 uint32_t Flags = Sym.Info.Flags; 383 384 switch (Sym.Info.Kind) { 385 case WASM_SYMBOL_TYPE_FUNCTION: 386 return Symtab->addUndefinedFunction(Name, Sym.Info.ImportName, 387 Sym.Info.ImportModule, Flags, this, 388 Sym.Signature); 389 case WASM_SYMBOL_TYPE_DATA: 390 return Symtab->addUndefinedData(Name, Flags, this); 391 case WASM_SYMBOL_TYPE_GLOBAL: 392 return Symtab->addUndefinedGlobal(Name, Sym.Info.ImportName, 393 Sym.Info.ImportModule, Flags, this, 394 Sym.GlobalType); 395 case WASM_SYMBOL_TYPE_SECTION: 396 llvm_unreachable("section symbols cannot be undefined"); 397 } 398 llvm_unreachable("unknown symbol kind"); 399 } 400 401 void ArchiveFile::parse() { 402 // Parse a MemoryBufferRef as an archive file. 403 LLVM_DEBUG(dbgs() << "Parsing library: " << toString(this) << "\n"); 404 File = CHECK(Archive::create(MB), toString(this)); 405 406 // Read the symbol table to construct Lazy symbols. 407 int Count = 0; 408 for (const Archive::Symbol &Sym : File->symbols()) { 409 Symtab->addLazy(this, &Sym); 410 ++Count; 411 } 412 LLVM_DEBUG(dbgs() << "Read " << Count << " symbols\n"); 413 } 414 415 void ArchiveFile::addMember(const Archive::Symbol *Sym) { 416 const Archive::Child &C = 417 CHECK(Sym->getMember(), 418 "could not get the member for symbol " + Sym->getName()); 419 420 // Don't try to load the same member twice (this can happen when members 421 // mutually reference each other). 422 if (!Seen.insert(C.getChildOffset()).second) 423 return; 424 425 LLVM_DEBUG(dbgs() << "loading lazy: " << Sym->getName() << "\n"); 426 LLVM_DEBUG(dbgs() << "from archive: " << toString(this) << "\n"); 427 428 MemoryBufferRef MB = 429 CHECK(C.getMemoryBufferRef(), 430 "could not get the buffer for the member defining symbol " + 431 Sym->getName()); 432 433 InputFile *Obj = createObjectFile(MB); 434 Obj->ArchiveName = getName(); 435 Symtab->addFile(Obj); 436 } 437 438 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) { 439 switch (GvVisibility) { 440 case GlobalValue::DefaultVisibility: 441 return WASM_SYMBOL_VISIBILITY_DEFAULT; 442 case GlobalValue::HiddenVisibility: 443 case GlobalValue::ProtectedVisibility: 444 return WASM_SYMBOL_VISIBILITY_HIDDEN; 445 } 446 llvm_unreachable("unknown visibility"); 447 } 448 449 static Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &ObjSym, 450 BitcodeFile &F) { 451 StringRef Name = Saver.save(ObjSym.getName()); 452 453 uint32_t Flags = ObjSym.isWeak() ? WASM_SYMBOL_BINDING_WEAK : 0; 454 Flags |= mapVisibility(ObjSym.getVisibility()); 455 456 if (ObjSym.isUndefined()) { 457 if (ObjSym.isExecutable()) 458 return Symtab->addUndefinedFunction(Name, Name, DefaultModule, Flags, &F, 459 nullptr); 460 return Symtab->addUndefinedData(Name, Flags, &F); 461 } 462 463 if (ObjSym.isExecutable()) 464 return Symtab->addDefinedFunction(Name, Flags, &F, nullptr); 465 return Symtab->addDefinedData(Name, Flags, &F, nullptr, 0, 0); 466 } 467 468 void BitcodeFile::parse() { 469 Obj = check(lto::InputFile::create(MemoryBufferRef( 470 MB.getBuffer(), Saver.save(ArchiveName + MB.getBufferIdentifier())))); 471 Triple T(Obj->getTargetTriple()); 472 if (T.getArch() != Triple::wasm32) { 473 error(toString(MB.getBufferIdentifier()) + ": machine type must be wasm32"); 474 return; 475 } 476 477 for (const lto::InputFile::Symbol &ObjSym : Obj->symbols()) 478 Symbols.push_back(createBitcodeSymbol(ObjSym, *this)); 479 } 480 481 // Returns a string in the format of "foo.o" or "foo.a(bar.o)". 482 std::string lld::toString(const wasm::InputFile *File) { 483 if (!File) 484 return "<internal>"; 485 486 if (File->ArchiveName.empty()) 487 return File->getName(); 488 489 return (File->ArchiveName + "(" + File->getName() + ")").str(); 490 } 491