1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Config.h" 11 #include "InputChunks.h" 12 #include "InputEvent.h" 13 #include "InputGlobal.h" 14 #include "SymbolTable.h" 15 #include "lld/Common/ErrorHandler.h" 16 #include "lld/Common/Memory.h" 17 #include "llvm/Object/Binary.h" 18 #include "llvm/Object/Wasm.h" 19 #include "llvm/Support/raw_ostream.h" 20 21 #define DEBUG_TYPE "lld" 22 23 using namespace lld; 24 using namespace lld::wasm; 25 26 using namespace llvm; 27 using namespace llvm::object; 28 using namespace llvm::wasm; 29 30 Optional<MemoryBufferRef> lld::wasm::readFile(StringRef Path) { 31 log("Loading: " + Path); 32 33 auto MBOrErr = MemoryBuffer::getFile(Path); 34 if (auto EC = MBOrErr.getError()) { 35 error("cannot open " + Path + ": " + EC.message()); 36 return None; 37 } 38 std::unique_ptr<MemoryBuffer> &MB = *MBOrErr; 39 MemoryBufferRef MBRef = MB->getMemBufferRef(); 40 make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership 41 42 return MBRef; 43 } 44 45 InputFile *lld::wasm::createObjectFile(MemoryBufferRef MB, 46 StringRef ArchiveName) { 47 file_magic Magic = identify_magic(MB.getBuffer()); 48 if (Magic == file_magic::wasm_object) { 49 std::unique_ptr<Binary> Bin = check(createBinary(MB)); 50 auto *Obj = cast<WasmObjectFile>(Bin.get()); 51 if (Obj->isSharedObject()) 52 return make<SharedFile>(MB); 53 return make<ObjFile>(MB, ArchiveName); 54 } 55 56 if (Magic == file_magic::bitcode) 57 return make<BitcodeFile>(MB, ArchiveName); 58 59 fatal("unknown file type: " + MB.getBufferIdentifier()); 60 } 61 62 void ObjFile::dumpInfo() const { 63 log("info for: " + getName() + 64 "\n Symbols : " + Twine(Symbols.size()) + 65 "\n Function Imports : " + Twine(WasmObj->getNumImportedFunctions()) + 66 "\n Global Imports : " + Twine(WasmObj->getNumImportedGlobals()) + 67 "\n Event Imports : " + Twine(WasmObj->getNumImportedEvents())); 68 } 69 70 // Relocations contain either symbol or type indices. This function takes a 71 // relocation and returns relocated index (i.e. translates from the input 72 // symbol/type space to the output symbol/type space). 73 uint32_t ObjFile::calcNewIndex(const WasmRelocation &Reloc) const { 74 if (Reloc.Type == R_WASM_TYPE_INDEX_LEB) { 75 assert(TypeIsUsed[Reloc.Index]); 76 return TypeMap[Reloc.Index]; 77 } 78 return Symbols[Reloc.Index]->getOutputSymbolIndex(); 79 } 80 81 // Relocations can contain addend for combined sections. This function takes a 82 // relocation and returns updated addend by offset in the output section. 83 uint32_t ObjFile::calcNewAddend(const WasmRelocation &Reloc) const { 84 switch (Reloc.Type) { 85 case R_WASM_MEMORY_ADDR_LEB: 86 case R_WASM_MEMORY_ADDR_SLEB: 87 case R_WASM_MEMORY_ADDR_I32: 88 case R_WASM_FUNCTION_OFFSET_I32: 89 return Reloc.Addend; 90 case R_WASM_SECTION_OFFSET_I32: 91 return getSectionSymbol(Reloc.Index)->Section->OutputOffset + Reloc.Addend; 92 default: 93 llvm_unreachable("unexpected relocation type"); 94 } 95 } 96 97 // Calculate the value we expect to find at the relocation location. 98 // This is used as a sanity check before applying a relocation to a given 99 // location. It is useful for catching bugs in the compiler and linker. 100 uint32_t ObjFile::calcExpectedValue(const WasmRelocation &Reloc) const { 101 switch (Reloc.Type) { 102 case R_WASM_TABLE_INDEX_I32: 103 case R_WASM_TABLE_INDEX_SLEB: 104 case R_WASM_TABLE_INDEX_REL_SLEB: { 105 const WasmSymbol &Sym = WasmObj->syms()[Reloc.Index]; 106 return TableEntries[Sym.Info.ElementIndex]; 107 } 108 case R_WASM_MEMORY_ADDR_SLEB: 109 case R_WASM_MEMORY_ADDR_I32: 110 case R_WASM_MEMORY_ADDR_LEB: 111 case R_WASM_MEMORY_ADDR_REL_SLEB: { 112 const WasmSymbol &Sym = WasmObj->syms()[Reloc.Index]; 113 if (Sym.isUndefined()) 114 return 0; 115 const WasmSegment &Segment = 116 WasmObj->dataSegments()[Sym.Info.DataRef.Segment]; 117 return Segment.Data.Offset.Value.Int32 + Sym.Info.DataRef.Offset + 118 Reloc.Addend; 119 } 120 case R_WASM_FUNCTION_OFFSET_I32: 121 if (auto *Sym = dyn_cast<DefinedFunction>(getFunctionSymbol(Reloc.Index))) { 122 return Sym->Function->getFunctionInputOffset() + 123 Sym->Function->getFunctionCodeOffset() + Reloc.Addend; 124 } 125 return 0; 126 case R_WASM_SECTION_OFFSET_I32: 127 return Reloc.Addend; 128 case R_WASM_TYPE_INDEX_LEB: 129 return Reloc.Index; 130 case R_WASM_FUNCTION_INDEX_LEB: 131 case R_WASM_GLOBAL_INDEX_LEB: 132 case R_WASM_EVENT_INDEX_LEB: { 133 const WasmSymbol &Sym = WasmObj->syms()[Reloc.Index]; 134 return Sym.Info.ElementIndex; 135 } 136 default: 137 llvm_unreachable("unknown relocation type"); 138 } 139 } 140 141 // Translate from the relocation's index into the final linked output value. 142 uint32_t ObjFile::calcNewValue(const WasmRelocation &Reloc) const { 143 switch (Reloc.Type) { 144 case R_WASM_TABLE_INDEX_I32: 145 case R_WASM_TABLE_INDEX_SLEB: 146 case R_WASM_TABLE_INDEX_REL_SLEB: 147 return getFunctionSymbol(Reloc.Index)->getTableIndex(); 148 case R_WASM_MEMORY_ADDR_SLEB: 149 case R_WASM_MEMORY_ADDR_I32: 150 case R_WASM_MEMORY_ADDR_LEB: 151 case R_WASM_MEMORY_ADDR_REL_SLEB: 152 if (auto *Sym = dyn_cast<DefinedData>(getDataSymbol(Reloc.Index))) 153 if (Sym->isLive()) 154 return Sym->getVirtualAddress() + Reloc.Addend; 155 return 0; 156 case R_WASM_TYPE_INDEX_LEB: 157 return TypeMap[Reloc.Index]; 158 case R_WASM_FUNCTION_INDEX_LEB: 159 return getFunctionSymbol(Reloc.Index)->getFunctionIndex(); 160 case R_WASM_GLOBAL_INDEX_LEB: { 161 const Symbol* Sym = Symbols[Reloc.Index]; 162 if (auto GS = dyn_cast<GlobalSymbol>(Sym)) 163 return GS->getGlobalIndex(); 164 return Sym->getGOTIndex(); 165 } case R_WASM_EVENT_INDEX_LEB: 166 return getEventSymbol(Reloc.Index)->getEventIndex(); 167 case R_WASM_FUNCTION_OFFSET_I32: 168 if (auto *Sym = dyn_cast<DefinedFunction>(getFunctionSymbol(Reloc.Index))) { 169 if (Sym->isLive()) 170 return Sym->Function->OutputOffset + 171 Sym->Function->getFunctionCodeOffset() + Reloc.Addend; 172 } 173 return 0; 174 case R_WASM_SECTION_OFFSET_I32: 175 return getSectionSymbol(Reloc.Index)->Section->OutputOffset + Reloc.Addend; 176 default: 177 llvm_unreachable("unknown relocation type"); 178 } 179 } 180 181 template <class T> 182 static void setRelocs(const std::vector<T *> &Chunks, 183 const WasmSection *Section) { 184 if (!Section) 185 return; 186 187 ArrayRef<WasmRelocation> Relocs = Section->Relocations; 188 assert(std::is_sorted(Relocs.begin(), Relocs.end(), 189 [](const WasmRelocation &R1, const WasmRelocation &R2) { 190 return R1.Offset < R2.Offset; 191 })); 192 assert(std::is_sorted( 193 Chunks.begin(), Chunks.end(), [](InputChunk *C1, InputChunk *C2) { 194 return C1->getInputSectionOffset() < C2->getInputSectionOffset(); 195 })); 196 197 auto RelocsNext = Relocs.begin(); 198 auto RelocsEnd = Relocs.end(); 199 auto RelocLess = [](const WasmRelocation &R, uint32_t Val) { 200 return R.Offset < Val; 201 }; 202 for (InputChunk *C : Chunks) { 203 auto RelocsStart = std::lower_bound(RelocsNext, RelocsEnd, 204 C->getInputSectionOffset(), RelocLess); 205 RelocsNext = std::lower_bound( 206 RelocsStart, RelocsEnd, C->getInputSectionOffset() + C->getInputSize(), 207 RelocLess); 208 C->setRelocations(ArrayRef<WasmRelocation>(RelocsStart, RelocsNext)); 209 } 210 } 211 212 void ObjFile::parse() { 213 // Parse a memory buffer as a wasm file. 214 LLVM_DEBUG(dbgs() << "Parsing object: " << toString(this) << "\n"); 215 std::unique_ptr<Binary> Bin = CHECK(createBinary(MB), toString(this)); 216 217 auto *Obj = dyn_cast<WasmObjectFile>(Bin.get()); 218 if (!Obj) 219 fatal(toString(this) + ": not a wasm file"); 220 if (!Obj->isRelocatableObject()) 221 fatal(toString(this) + ": not a relocatable wasm file"); 222 223 Bin.release(); 224 WasmObj.reset(Obj); 225 226 // Build up a map of function indices to table indices for use when 227 // verifying the existing table index relocations 228 uint32_t TotalFunctions = 229 WasmObj->getNumImportedFunctions() + WasmObj->functions().size(); 230 TableEntries.resize(TotalFunctions); 231 for (const WasmElemSegment &Seg : WasmObj->elements()) { 232 if (Seg.Offset.Opcode != WASM_OPCODE_I32_CONST) 233 fatal(toString(this) + ": invalid table elements"); 234 uint32_t Offset = Seg.Offset.Value.Int32; 235 for (uint32_t Index = 0; Index < Seg.Functions.size(); Index++) { 236 237 uint32_t FunctionIndex = Seg.Functions[Index]; 238 TableEntries[FunctionIndex] = Offset + Index; 239 } 240 } 241 242 // Find the code and data sections. Wasm objects can have at most one code 243 // and one data section. 244 uint32_t SectionIndex = 0; 245 for (const SectionRef &Sec : WasmObj->sections()) { 246 const WasmSection &Section = WasmObj->getWasmSection(Sec); 247 if (Section.Type == WASM_SEC_CODE) { 248 CodeSection = &Section; 249 } else if (Section.Type == WASM_SEC_DATA) { 250 DataSection = &Section; 251 } else if (Section.Type == WASM_SEC_CUSTOM) { 252 CustomSections.emplace_back(make<InputSection>(Section, this)); 253 CustomSections.back()->setRelocations(Section.Relocations); 254 CustomSectionsByIndex[SectionIndex] = CustomSections.back(); 255 } 256 SectionIndex++; 257 } 258 259 TypeMap.resize(getWasmObj()->types().size()); 260 TypeIsUsed.resize(getWasmObj()->types().size(), false); 261 262 ArrayRef<StringRef> Comdats = WasmObj->linkingData().Comdats; 263 UsedComdats.resize(Comdats.size()); 264 for (unsigned I = 0; I < Comdats.size(); ++I) 265 UsedComdats[I] = Symtab->addComdat(Comdats[I]); 266 267 // Populate `Segments`. 268 for (const WasmSegment &S : WasmObj->dataSegments()) 269 Segments.emplace_back(make<InputSegment>(S, this)); 270 setRelocs(Segments, DataSection); 271 272 // Populate `Functions`. 273 ArrayRef<WasmFunction> Funcs = WasmObj->functions(); 274 ArrayRef<uint32_t> FuncTypes = WasmObj->functionTypes(); 275 ArrayRef<WasmSignature> Types = WasmObj->types(); 276 Functions.reserve(Funcs.size()); 277 278 for (size_t I = 0, E = Funcs.size(); I != E; ++I) 279 Functions.emplace_back( 280 make<InputFunction>(Types[FuncTypes[I]], &Funcs[I], this)); 281 setRelocs(Functions, CodeSection); 282 283 // Populate `Globals`. 284 for (const WasmGlobal &G : WasmObj->globals()) 285 Globals.emplace_back(make<InputGlobal>(G, this)); 286 287 // Populate `Events`. 288 for (const WasmEvent &E : WasmObj->events()) 289 Events.emplace_back(make<InputEvent>(Types[E.Type.SigIndex], E, this)); 290 291 // Populate `Symbols` based on the WasmSymbols in the object. 292 Symbols.reserve(WasmObj->getNumberOfSymbols()); 293 for (const SymbolRef &Sym : WasmObj->symbols()) { 294 const WasmSymbol &WasmSym = WasmObj->getWasmSymbol(Sym.getRawDataRefImpl()); 295 if (Symbol *Sym = createDefined(WasmSym)) 296 Symbols.push_back(Sym); 297 else 298 Symbols.push_back(createUndefined(WasmSym)); 299 } 300 } 301 302 bool ObjFile::isExcludedByComdat(InputChunk *Chunk) const { 303 uint32_t C = Chunk->getComdat(); 304 if (C == UINT32_MAX) 305 return false; 306 return !UsedComdats[C]; 307 } 308 309 FunctionSymbol *ObjFile::getFunctionSymbol(uint32_t Index) const { 310 return cast<FunctionSymbol>(Symbols[Index]); 311 } 312 313 GlobalSymbol *ObjFile::getGlobalSymbol(uint32_t Index) const { 314 return cast<GlobalSymbol>(Symbols[Index]); 315 } 316 317 EventSymbol *ObjFile::getEventSymbol(uint32_t Index) const { 318 return cast<EventSymbol>(Symbols[Index]); 319 } 320 321 SectionSymbol *ObjFile::getSectionSymbol(uint32_t Index) const { 322 return cast<SectionSymbol>(Symbols[Index]); 323 } 324 325 DataSymbol *ObjFile::getDataSymbol(uint32_t Index) const { 326 return cast<DataSymbol>(Symbols[Index]); 327 } 328 329 Symbol *ObjFile::createDefined(const WasmSymbol &Sym) { 330 if (!Sym.isDefined()) 331 return nullptr; 332 333 StringRef Name = Sym.Info.Name; 334 uint32_t Flags = Sym.Info.Flags; 335 336 switch (Sym.Info.Kind) { 337 case WASM_SYMBOL_TYPE_FUNCTION: { 338 InputFunction *Func = 339 Functions[Sym.Info.ElementIndex - WasmObj->getNumImportedFunctions()]; 340 if (isExcludedByComdat(Func)) { 341 Func->Live = false; 342 return nullptr; 343 } 344 345 if (Sym.isBindingLocal()) 346 return make<DefinedFunction>(Name, Flags, this, Func); 347 return Symtab->addDefinedFunction(Name, Flags, this, Func); 348 } 349 case WASM_SYMBOL_TYPE_DATA: { 350 InputSegment *Seg = Segments[Sym.Info.DataRef.Segment]; 351 if (isExcludedByComdat(Seg)) { 352 Seg->Live = false; 353 return nullptr; 354 } 355 356 uint32_t Offset = Sym.Info.DataRef.Offset; 357 uint32_t Size = Sym.Info.DataRef.Size; 358 359 if (Sym.isBindingLocal()) 360 return make<DefinedData>(Name, Flags, this, Seg, Offset, Size); 361 return Symtab->addDefinedData(Name, Flags, this, Seg, Offset, Size); 362 } 363 case WASM_SYMBOL_TYPE_GLOBAL: { 364 InputGlobal *Global = 365 Globals[Sym.Info.ElementIndex - WasmObj->getNumImportedGlobals()]; 366 if (Sym.isBindingLocal()) 367 return make<DefinedGlobal>(Name, Flags, this, Global); 368 return Symtab->addDefinedGlobal(Name, Flags, this, Global); 369 } 370 case WASM_SYMBOL_TYPE_SECTION: { 371 InputSection *Section = CustomSectionsByIndex[Sym.Info.ElementIndex]; 372 assert(Sym.isBindingLocal()); 373 return make<SectionSymbol>(Name, Flags, Section, this); 374 } 375 case WASM_SYMBOL_TYPE_EVENT: { 376 InputEvent *Event = 377 Events[Sym.Info.ElementIndex - WasmObj->getNumImportedEvents()]; 378 if (Sym.isBindingLocal()) 379 return make<DefinedEvent>(Name, Flags, this, Event); 380 return Symtab->addDefinedEvent(Name, Flags, this, Event); 381 } 382 } 383 llvm_unreachable("unknown symbol kind"); 384 } 385 386 Symbol *ObjFile::createUndefined(const WasmSymbol &Sym) { 387 StringRef Name = Sym.Info.Name; 388 uint32_t Flags = Sym.Info.Flags; 389 390 switch (Sym.Info.Kind) { 391 case WASM_SYMBOL_TYPE_FUNCTION: 392 return Symtab->addUndefinedFunction(Name, Sym.Info.ImportName, 393 Sym.Info.ImportModule, Flags, this, 394 Sym.Signature); 395 case WASM_SYMBOL_TYPE_DATA: 396 return Symtab->addUndefinedData(Name, Flags, this); 397 case WASM_SYMBOL_TYPE_GLOBAL: 398 return Symtab->addUndefinedGlobal(Name, Sym.Info.ImportName, 399 Sym.Info.ImportModule, Flags, this, 400 Sym.GlobalType); 401 case WASM_SYMBOL_TYPE_SECTION: 402 llvm_unreachable("section symbols cannot be undefined"); 403 } 404 llvm_unreachable("unknown symbol kind"); 405 } 406 407 void ArchiveFile::parse() { 408 // Parse a MemoryBufferRef as an archive file. 409 LLVM_DEBUG(dbgs() << "Parsing library: " << toString(this) << "\n"); 410 File = CHECK(Archive::create(MB), toString(this)); 411 412 // Read the symbol table to construct Lazy symbols. 413 int Count = 0; 414 for (const Archive::Symbol &Sym : File->symbols()) { 415 Symtab->addLazy(this, &Sym); 416 ++Count; 417 } 418 LLVM_DEBUG(dbgs() << "Read " << Count << " symbols\n"); 419 } 420 421 void ArchiveFile::addMember(const Archive::Symbol *Sym) { 422 const Archive::Child &C = 423 CHECK(Sym->getMember(), 424 "could not get the member for symbol " + Sym->getName()); 425 426 // Don't try to load the same member twice (this can happen when members 427 // mutually reference each other). 428 if (!Seen.insert(C.getChildOffset()).second) 429 return; 430 431 LLVM_DEBUG(dbgs() << "loading lazy: " << Sym->getName() << "\n"); 432 LLVM_DEBUG(dbgs() << "from archive: " << toString(this) << "\n"); 433 434 MemoryBufferRef MB = 435 CHECK(C.getMemoryBufferRef(), 436 "could not get the buffer for the member defining symbol " + 437 Sym->getName()); 438 439 InputFile *Obj = createObjectFile(MB, getName()); 440 Symtab->addFile(Obj); 441 } 442 443 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) { 444 switch (GvVisibility) { 445 case GlobalValue::DefaultVisibility: 446 return WASM_SYMBOL_VISIBILITY_DEFAULT; 447 case GlobalValue::HiddenVisibility: 448 case GlobalValue::ProtectedVisibility: 449 return WASM_SYMBOL_VISIBILITY_HIDDEN; 450 } 451 llvm_unreachable("unknown visibility"); 452 } 453 454 static Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &ObjSym, 455 BitcodeFile &F) { 456 StringRef Name = Saver.save(ObjSym.getName()); 457 458 uint32_t Flags = ObjSym.isWeak() ? WASM_SYMBOL_BINDING_WEAK : 0; 459 Flags |= mapVisibility(ObjSym.getVisibility()); 460 461 if (ObjSym.isUndefined()) { 462 if (ObjSym.isExecutable()) 463 return Symtab->addUndefinedFunction(Name, Name, DefaultModule, Flags, &F, 464 nullptr); 465 return Symtab->addUndefinedData(Name, Flags, &F); 466 } 467 468 if (ObjSym.isExecutable()) 469 return Symtab->addDefinedFunction(Name, Flags, &F, nullptr); 470 return Symtab->addDefinedData(Name, Flags, &F, nullptr, 0, 0); 471 } 472 473 void BitcodeFile::parse() { 474 Obj = check(lto::InputFile::create(MemoryBufferRef( 475 MB.getBuffer(), Saver.save(ArchiveName + MB.getBufferIdentifier())))); 476 Triple T(Obj->getTargetTriple()); 477 if (T.getArch() != Triple::wasm32) { 478 error(toString(MB.getBufferIdentifier()) + ": machine type must be wasm32"); 479 return; 480 } 481 482 for (const lto::InputFile::Symbol &ObjSym : Obj->symbols()) 483 Symbols.push_back(createBitcodeSymbol(ObjSym, *this)); 484 } 485 486 // Returns a string in the format of "foo.o" or "foo.a(bar.o)". 487 std::string lld::toString(const wasm::InputFile *File) { 488 if (!File) 489 return "<internal>"; 490 491 if (File->ArchiveName.empty()) 492 return File->getName(); 493 494 return (File->ArchiveName + "(" + File->getName() + ")").str(); 495 } 496