1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Config.h" 11 #include "InputChunks.h" 12 #include "InputElement.h" 13 #include "OutputSegment.h" 14 #include "SymbolTable.h" 15 #include "lld/Common/ErrorHandler.h" 16 #include "lld/Common/Memory.h" 17 #include "lld/Common/Reproduce.h" 18 #include "llvm/Object/Binary.h" 19 #include "llvm/Object/Wasm.h" 20 #include "llvm/Support/TarWriter.h" 21 #include "llvm/Support/raw_ostream.h" 22 23 #define DEBUG_TYPE "lld" 24 25 using namespace llvm; 26 using namespace llvm::object; 27 using namespace llvm::wasm; 28 29 namespace lld { 30 31 // Returns a string in the format of "foo.o" or "foo.a(bar.o)". 32 std::string toString(const wasm::InputFile *file) { 33 if (!file) 34 return "<internal>"; 35 36 if (file->archiveName.empty()) 37 return std::string(file->getName()); 38 39 return (file->archiveName + "(" + file->getName() + ")").str(); 40 } 41 42 namespace wasm { 43 44 void InputFile::checkArch(Triple::ArchType arch) const { 45 bool is64 = arch == Triple::wasm64; 46 if (is64 && !config->is64.hasValue()) { 47 fatal(toString(this) + 48 ": must specify -mwasm64 to process wasm64 object files"); 49 } else if (config->is64.getValueOr(false) != is64) { 50 fatal(toString(this) + 51 ": wasm32 object file can't be linked in wasm64 mode"); 52 } 53 } 54 55 std::unique_ptr<llvm::TarWriter> tar; 56 57 Optional<MemoryBufferRef> readFile(StringRef path) { 58 log("Loading: " + path); 59 60 auto mbOrErr = MemoryBuffer::getFile(path); 61 if (auto ec = mbOrErr.getError()) { 62 error("cannot open " + path + ": " + ec.message()); 63 return None; 64 } 65 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 66 MemoryBufferRef mbref = mb->getMemBufferRef(); 67 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership 68 69 if (tar) 70 tar->append(relativeToRoot(path), mbref.getBuffer()); 71 return mbref; 72 } 73 74 InputFile *createObjectFile(MemoryBufferRef mb, StringRef archiveName) { 75 file_magic magic = identify_magic(mb.getBuffer()); 76 if (magic == file_magic::wasm_object) { 77 std::unique_ptr<Binary> bin = 78 CHECK(createBinary(mb), mb.getBufferIdentifier()); 79 auto *obj = cast<WasmObjectFile>(bin.get()); 80 if (obj->isSharedObject()) 81 return make<SharedFile>(mb); 82 return make<ObjFile>(mb, archiveName); 83 } 84 85 if (magic == file_magic::bitcode) 86 return make<BitcodeFile>(mb, archiveName); 87 88 fatal("unknown file type: " + mb.getBufferIdentifier()); 89 } 90 91 void ObjFile::dumpInfo() const { 92 log("info for: " + toString(this) + 93 "\n Symbols : " + Twine(symbols.size()) + 94 "\n Function Imports : " + Twine(wasmObj->getNumImportedFunctions()) + 95 "\n Global Imports : " + Twine(wasmObj->getNumImportedGlobals()) + 96 "\n Event Imports : " + Twine(wasmObj->getNumImportedEvents()) + 97 "\n Table Imports : " + Twine(wasmObj->getNumImportedTables())); 98 } 99 100 // Relocations contain either symbol or type indices. This function takes a 101 // relocation and returns relocated index (i.e. translates from the input 102 // symbol/type space to the output symbol/type space). 103 uint32_t ObjFile::calcNewIndex(const WasmRelocation &reloc) const { 104 if (reloc.Type == R_WASM_TYPE_INDEX_LEB) { 105 assert(typeIsUsed[reloc.Index]); 106 return typeMap[reloc.Index]; 107 } 108 const Symbol *sym = symbols[reloc.Index]; 109 if (auto *ss = dyn_cast<SectionSymbol>(sym)) 110 sym = ss->getOutputSectionSymbol(); 111 return sym->getOutputSymbolIndex(); 112 } 113 114 // Relocations can contain addend for combined sections. This function takes a 115 // relocation and returns updated addend by offset in the output section. 116 uint64_t ObjFile::calcNewAddend(const WasmRelocation &reloc) const { 117 switch (reloc.Type) { 118 case R_WASM_MEMORY_ADDR_LEB: 119 case R_WASM_MEMORY_ADDR_LEB64: 120 case R_WASM_MEMORY_ADDR_SLEB64: 121 case R_WASM_MEMORY_ADDR_SLEB: 122 case R_WASM_MEMORY_ADDR_REL_SLEB: 123 case R_WASM_MEMORY_ADDR_REL_SLEB64: 124 case R_WASM_MEMORY_ADDR_I32: 125 case R_WASM_MEMORY_ADDR_I64: 126 case R_WASM_MEMORY_ADDR_TLS_SLEB: 127 case R_WASM_FUNCTION_OFFSET_I32: 128 case R_WASM_FUNCTION_OFFSET_I64: 129 case R_WASM_MEMORY_ADDR_LOCREL_I32: 130 return reloc.Addend; 131 case R_WASM_SECTION_OFFSET_I32: 132 return getSectionSymbol(reloc.Index)->section->getOffset(reloc.Addend); 133 default: 134 llvm_unreachable("unexpected relocation type"); 135 } 136 } 137 138 // Translate from the relocation's index into the final linked output value. 139 uint64_t ObjFile::calcNewValue(const WasmRelocation &reloc, uint64_t tombstone, 140 const InputChunk *chunk) const { 141 const Symbol* sym = nullptr; 142 if (reloc.Type != R_WASM_TYPE_INDEX_LEB) { 143 sym = symbols[reloc.Index]; 144 145 // We can end up with relocations against non-live symbols. For example 146 // in debug sections. We return a tombstone value in debug symbol sections 147 // so this will not produce a valid range conflicting with ranges of actual 148 // code. In other sections we return reloc.Addend. 149 150 if (!isa<SectionSymbol>(sym) && !sym->isLive()) 151 return tombstone ? tombstone : reloc.Addend; 152 } 153 154 switch (reloc.Type) { 155 case R_WASM_TABLE_INDEX_I32: 156 case R_WASM_TABLE_INDEX_I64: 157 case R_WASM_TABLE_INDEX_SLEB: 158 case R_WASM_TABLE_INDEX_SLEB64: 159 case R_WASM_TABLE_INDEX_REL_SLEB: 160 case R_WASM_TABLE_INDEX_REL_SLEB64: { 161 if (!getFunctionSymbol(reloc.Index)->hasTableIndex()) 162 return 0; 163 uint32_t index = getFunctionSymbol(reloc.Index)->getTableIndex(); 164 if (reloc.Type == R_WASM_TABLE_INDEX_REL_SLEB || 165 reloc.Type == R_WASM_TABLE_INDEX_REL_SLEB64) 166 index -= config->tableBase; 167 return index; 168 } 169 case R_WASM_MEMORY_ADDR_LEB: 170 case R_WASM_MEMORY_ADDR_LEB64: 171 case R_WASM_MEMORY_ADDR_SLEB: 172 case R_WASM_MEMORY_ADDR_SLEB64: 173 case R_WASM_MEMORY_ADDR_REL_SLEB: 174 case R_WASM_MEMORY_ADDR_REL_SLEB64: 175 case R_WASM_MEMORY_ADDR_I32: 176 case R_WASM_MEMORY_ADDR_I64: 177 case R_WASM_MEMORY_ADDR_LOCREL_I32: { 178 if (isa<UndefinedData>(sym) || sym->isUndefWeak()) 179 return 0; 180 auto D = cast<DefinedData>(sym); 181 // Treat non-TLS relocation against symbols that live in the TLS segment 182 // like TLS relocations. This beaviour exists to support older object 183 // files created before we introduced TLS relocations. 184 // TODO(sbc): Remove this legacy behaviour one day. This will break 185 // backward compat with old object files built with `-fPIC`. 186 if (D->segment && D->segment->outputSeg->isTLS()) 187 return D->getOutputSegmentOffset() + reloc.Addend; 188 189 uint64_t value = D->getVA() + reloc.Addend; 190 if (reloc.Type == R_WASM_MEMORY_ADDR_LOCREL_I32) { 191 const auto *segment = cast<InputSegment>(chunk); 192 uint64_t p = segment->outputSeg->startVA + segment->outputSegmentOffset + 193 reloc.Offset - segment->getInputSectionOffset(); 194 value -= p; 195 } 196 return value; 197 } 198 case R_WASM_MEMORY_ADDR_TLS_SLEB: 199 if (isa<UndefinedData>(sym) || sym->isUndefWeak()) 200 return 0; 201 // TLS relocations are relative to the start of the TLS output segment 202 return cast<DefinedData>(sym)->getOutputSegmentOffset() + reloc.Addend; 203 case R_WASM_TYPE_INDEX_LEB: 204 return typeMap[reloc.Index]; 205 case R_WASM_FUNCTION_INDEX_LEB: 206 return getFunctionSymbol(reloc.Index)->getFunctionIndex(); 207 case R_WASM_GLOBAL_INDEX_LEB: 208 case R_WASM_GLOBAL_INDEX_I32: 209 if (auto gs = dyn_cast<GlobalSymbol>(sym)) 210 return gs->getGlobalIndex(); 211 return sym->getGOTIndex(); 212 case R_WASM_EVENT_INDEX_LEB: 213 return getEventSymbol(reloc.Index)->getEventIndex(); 214 case R_WASM_FUNCTION_OFFSET_I32: 215 case R_WASM_FUNCTION_OFFSET_I64: { 216 auto *f = cast<DefinedFunction>(sym); 217 return f->function->getOffset(f->function->getFunctionCodeOffset() + 218 reloc.Addend); 219 } 220 case R_WASM_SECTION_OFFSET_I32: 221 return getSectionSymbol(reloc.Index)->section->getOffset(reloc.Addend); 222 case R_WASM_TABLE_NUMBER_LEB: 223 return getTableSymbol(reloc.Index)->getTableNumber(); 224 default: 225 llvm_unreachable("unknown relocation type"); 226 } 227 } 228 229 template <class T> 230 static void setRelocs(const std::vector<T *> &chunks, 231 const WasmSection *section) { 232 if (!section) 233 return; 234 235 ArrayRef<WasmRelocation> relocs = section->Relocations; 236 assert(llvm::is_sorted( 237 relocs, [](const WasmRelocation &r1, const WasmRelocation &r2) { 238 return r1.Offset < r2.Offset; 239 })); 240 assert(llvm::is_sorted(chunks, [](InputChunk *c1, InputChunk *c2) { 241 return c1->getInputSectionOffset() < c2->getInputSectionOffset(); 242 })); 243 244 auto relocsNext = relocs.begin(); 245 auto relocsEnd = relocs.end(); 246 auto relocLess = [](const WasmRelocation &r, uint32_t val) { 247 return r.Offset < val; 248 }; 249 for (InputChunk *c : chunks) { 250 auto relocsStart = std::lower_bound(relocsNext, relocsEnd, 251 c->getInputSectionOffset(), relocLess); 252 relocsNext = std::lower_bound( 253 relocsStart, relocsEnd, c->getInputSectionOffset() + c->getInputSize(), 254 relocLess); 255 c->setRelocations(ArrayRef<WasmRelocation>(relocsStart, relocsNext)); 256 } 257 } 258 259 // An object file can have two approaches to tables. With the reference-types 260 // feature enabled, input files that define or use tables declare the tables 261 // using symbols, and record each use with a relocation. This way when the 262 // linker combines inputs, it can collate the tables used by the inputs, 263 // assigning them distinct table numbers, and renumber all the uses as 264 // appropriate. At the same time, the linker has special logic to build the 265 // indirect function table if it is needed. 266 // 267 // However, MVP object files (those that target WebAssembly 1.0, the "minimum 268 // viable product" version of WebAssembly) neither write table symbols nor 269 // record relocations. These files can have at most one table, the indirect 270 // function table used by call_indirect and which is the address space for 271 // function pointers. If this table is present, it is always an import. If we 272 // have a file with a table import but no table symbols, it is an MVP object 273 // file. synthesizeMVPIndirectFunctionTableSymbolIfNeeded serves as a shim when 274 // loading these input files, defining the missing symbol to allow the indirect 275 // function table to be built. 276 // 277 // As indirect function table table usage in MVP objects cannot be relocated, 278 // the linker must ensure that this table gets assigned index zero. 279 void ObjFile::addLegacyIndirectFunctionTableIfNeeded( 280 uint32_t tableSymbolCount) { 281 uint32_t tableCount = wasmObj->getNumImportedTables() + tables.size(); 282 283 // If there are symbols for all tables, then all is good. 284 if (tableCount == tableSymbolCount) 285 return; 286 287 // It's possible for an input to define tables and also use the indirect 288 // function table, but forget to compile with -mattr=+reference-types. 289 // For these newer files, we require symbols for all tables, and 290 // relocations for all of their uses. 291 if (tableSymbolCount != 0) { 292 error(toString(this) + 293 ": expected one symbol table entry for each of the " + 294 Twine(tableCount) + " table(s) present, but got " + 295 Twine(tableSymbolCount) + " symbol(s) instead."); 296 return; 297 } 298 299 // An MVP object file can have up to one table import, for the indirect 300 // function table, but will have no table definitions. 301 if (tables.size()) { 302 error(toString(this) + 303 ": unexpected table definition(s) without corresponding " 304 "symbol-table entries."); 305 return; 306 } 307 308 // An MVP object file can have only one table import. 309 if (tableCount != 1) { 310 error(toString(this) + 311 ": multiple table imports, but no corresponding symbol-table " 312 "entries."); 313 return; 314 } 315 316 const WasmImport *tableImport = nullptr; 317 for (const auto &import : wasmObj->imports()) { 318 if (import.Kind == WASM_EXTERNAL_TABLE) { 319 assert(!tableImport); 320 tableImport = &import; 321 } 322 } 323 assert(tableImport); 324 325 // We can only synthesize a symtab entry for the indirect function table; if 326 // it has an unexpected name or type, assume that it's not actually the 327 // indirect function table. 328 if (tableImport->Field != functionTableName || 329 tableImport->Table.ElemType != uint8_t(ValType::FUNCREF)) { 330 error(toString(this) + ": table import " + Twine(tableImport->Field) + 331 " is missing a symbol table entry."); 332 return; 333 } 334 335 auto *info = make<WasmSymbolInfo>(); 336 info->Name = tableImport->Field; 337 info->Kind = WASM_SYMBOL_TYPE_TABLE; 338 info->ImportModule = tableImport->Module; 339 info->ImportName = tableImport->Field; 340 info->Flags = WASM_SYMBOL_UNDEFINED; 341 info->Flags |= WASM_SYMBOL_NO_STRIP; 342 info->ElementIndex = 0; 343 LLVM_DEBUG(dbgs() << "Synthesizing symbol for table import: " << info->Name 344 << "\n"); 345 const WasmGlobalType *globalType = nullptr; 346 const WasmEventType *eventType = nullptr; 347 const WasmSignature *signature = nullptr; 348 auto *wasmSym = make<WasmSymbol>(*info, globalType, &tableImport->Table, 349 eventType, signature); 350 Symbol *sym = createUndefined(*wasmSym, false); 351 // We're only sure it's a TableSymbol if the createUndefined succeeded. 352 if (errorCount()) 353 return; 354 symbols.push_back(sym); 355 // Because there are no TABLE_NUMBER relocs, we can't compute accurate 356 // liveness info; instead, just mark the symbol as always live. 357 sym->markLive(); 358 359 // We assume that this compilation unit has unrelocatable references to 360 // this table. 361 config->legacyFunctionTable = true; 362 } 363 364 static bool shouldMerge(const WasmSection &sec) { 365 if (config->optimize == 0) 366 return false; 367 // Sadly we don't have section attributes yet for custom sections, so we 368 // currently go by the name alone. 369 // TODO(sbc): Add ability for wasm sections to carry flags so we don't 370 // need to use names here. 371 return sec.Name.startswith(".debug_str") || 372 sec.Name.startswith(".debug_line_str"); 373 } 374 375 static bool shouldMerge(const WasmSegment &seg) { 376 // As of now we only support merging strings, and only with single byte 377 // alignment (2^0). 378 if (!(seg.Data.LinkingFlags & WASM_SEG_FLAG_STRINGS) || 379 (seg.Data.Alignment != 0)) 380 return false; 381 382 // On a regular link we don't merge sections if -O0 (default is -O1). This 383 // sometimes makes the linker significantly faster, although the output will 384 // be bigger. 385 if (config->optimize == 0) 386 return false; 387 388 // A mergeable section with size 0 is useless because they don't have 389 // any data to merge. A mergeable string section with size 0 can be 390 // argued as invalid because it doesn't end with a null character. 391 // We'll avoid a mess by handling them as if they were non-mergeable. 392 if (seg.Data.Content.size() == 0) 393 return false; 394 395 return true; 396 } 397 398 void ObjFile::parse(bool ignoreComdats) { 399 // Parse a memory buffer as a wasm file. 400 LLVM_DEBUG(dbgs() << "Parsing object: " << toString(this) << "\n"); 401 std::unique_ptr<Binary> bin = CHECK(createBinary(mb), toString(this)); 402 403 auto *obj = dyn_cast<WasmObjectFile>(bin.get()); 404 if (!obj) 405 fatal(toString(this) + ": not a wasm file"); 406 if (!obj->isRelocatableObject()) 407 fatal(toString(this) + ": not a relocatable wasm file"); 408 409 bin.release(); 410 wasmObj.reset(obj); 411 412 checkArch(obj->getArch()); 413 414 // Build up a map of function indices to table indices for use when 415 // verifying the existing table index relocations 416 uint32_t totalFunctions = 417 wasmObj->getNumImportedFunctions() + wasmObj->functions().size(); 418 tableEntriesRel.resize(totalFunctions); 419 tableEntries.resize(totalFunctions); 420 for (const WasmElemSegment &seg : wasmObj->elements()) { 421 int64_t offset; 422 if (seg.Offset.Opcode == WASM_OPCODE_I32_CONST) 423 offset = seg.Offset.Value.Int32; 424 else if (seg.Offset.Opcode == WASM_OPCODE_I64_CONST) 425 offset = seg.Offset.Value.Int64; 426 else 427 fatal(toString(this) + ": invalid table elements"); 428 for (size_t index = 0; index < seg.Functions.size(); index++) { 429 auto functionIndex = seg.Functions[index]; 430 tableEntriesRel[functionIndex] = index; 431 tableEntries[functionIndex] = offset + index; 432 } 433 } 434 435 ArrayRef<StringRef> comdats = wasmObj->linkingData().Comdats; 436 for (StringRef comdat : comdats) { 437 bool isNew = ignoreComdats || symtab->addComdat(comdat); 438 keptComdats.push_back(isNew); 439 } 440 441 uint32_t sectionIndex = 0; 442 443 // Bool for each symbol, true if called directly. This allows us to implement 444 // a weaker form of signature checking where undefined functions that are not 445 // called directly (i.e. only address taken) don't have to match the defined 446 // function's signature. We cannot do this for directly called functions 447 // because those signatures are checked at validation times. 448 // See https://bugs.llvm.org/show_bug.cgi?id=40412 449 std::vector<bool> isCalledDirectly(wasmObj->getNumberOfSymbols(), false); 450 for (const SectionRef &sec : wasmObj->sections()) { 451 const WasmSection §ion = wasmObj->getWasmSection(sec); 452 // Wasm objects can have at most one code and one data section. 453 if (section.Type == WASM_SEC_CODE) { 454 assert(!codeSection); 455 codeSection = §ion; 456 } else if (section.Type == WASM_SEC_DATA) { 457 assert(!dataSection); 458 dataSection = §ion; 459 } else if (section.Type == WASM_SEC_CUSTOM) { 460 InputChunk *customSec; 461 if (shouldMerge(section)) 462 customSec = make<MergeInputChunk>(section, this); 463 else 464 customSec = make<InputSection>(section, this); 465 customSec->discarded = isExcludedByComdat(customSec); 466 customSections.emplace_back(customSec); 467 customSections.back()->setRelocations(section.Relocations); 468 customSectionsByIndex[sectionIndex] = customSections.back(); 469 } 470 sectionIndex++; 471 // Scans relocations to determine if a function symbol is called directly. 472 for (const WasmRelocation &reloc : section.Relocations) 473 if (reloc.Type == R_WASM_FUNCTION_INDEX_LEB) 474 isCalledDirectly[reloc.Index] = true; 475 } 476 477 typeMap.resize(getWasmObj()->types().size()); 478 typeIsUsed.resize(getWasmObj()->types().size(), false); 479 480 481 // Populate `Segments`. 482 for (const WasmSegment &s : wasmObj->dataSegments()) { 483 InputChunk *seg; 484 if (shouldMerge(s)) { 485 seg = make<MergeInputChunk>(s, this); 486 } else 487 seg = make<InputSegment>(s, this); 488 seg->discarded = isExcludedByComdat(seg); 489 490 segments.emplace_back(seg); 491 } 492 setRelocs(segments, dataSection); 493 494 // Populate `Functions`. 495 ArrayRef<WasmFunction> funcs = wasmObj->functions(); 496 ArrayRef<uint32_t> funcTypes = wasmObj->functionTypes(); 497 ArrayRef<WasmSignature> types = wasmObj->types(); 498 functions.reserve(funcs.size()); 499 500 for (size_t i = 0, e = funcs.size(); i != e; ++i) { 501 auto* func = make<InputFunction>(types[funcTypes[i]], &funcs[i], this); 502 func->discarded = isExcludedByComdat(func); 503 functions.emplace_back(func); 504 } 505 setRelocs(functions, codeSection); 506 507 // Populate `Tables`. 508 for (const WasmTable &t : wasmObj->tables()) 509 tables.emplace_back(make<InputTable>(t, this)); 510 511 // Populate `Globals`. 512 for (const WasmGlobal &g : wasmObj->globals()) 513 globals.emplace_back(make<InputGlobal>(g, this)); 514 515 // Populate `Events`. 516 for (const WasmEvent &e : wasmObj->events()) 517 events.emplace_back(make<InputEvent>(types[e.Type.SigIndex], e, this)); 518 519 // Populate `Symbols` based on the symbols in the object. 520 symbols.reserve(wasmObj->getNumberOfSymbols()); 521 uint32_t tableSymbolCount = 0; 522 for (const SymbolRef &sym : wasmObj->symbols()) { 523 const WasmSymbol &wasmSym = wasmObj->getWasmSymbol(sym.getRawDataRefImpl()); 524 if (wasmSym.isTypeTable()) 525 tableSymbolCount++; 526 if (wasmSym.isDefined()) { 527 // createDefined may fail if the symbol is comdat excluded in which case 528 // we fall back to creating an undefined symbol 529 if (Symbol *d = createDefined(wasmSym)) { 530 symbols.push_back(d); 531 continue; 532 } 533 } 534 size_t idx = symbols.size(); 535 symbols.push_back(createUndefined(wasmSym, isCalledDirectly[idx])); 536 } 537 538 addLegacyIndirectFunctionTableIfNeeded(tableSymbolCount); 539 } 540 541 bool ObjFile::isExcludedByComdat(InputChunk *chunk) const { 542 uint32_t c = chunk->getComdat(); 543 if (c == UINT32_MAX) 544 return false; 545 return !keptComdats[c]; 546 } 547 548 FunctionSymbol *ObjFile::getFunctionSymbol(uint32_t index) const { 549 return cast<FunctionSymbol>(symbols[index]); 550 } 551 552 GlobalSymbol *ObjFile::getGlobalSymbol(uint32_t index) const { 553 return cast<GlobalSymbol>(symbols[index]); 554 } 555 556 EventSymbol *ObjFile::getEventSymbol(uint32_t index) const { 557 return cast<EventSymbol>(symbols[index]); 558 } 559 560 TableSymbol *ObjFile::getTableSymbol(uint32_t index) const { 561 return cast<TableSymbol>(symbols[index]); 562 } 563 564 SectionSymbol *ObjFile::getSectionSymbol(uint32_t index) const { 565 return cast<SectionSymbol>(symbols[index]); 566 } 567 568 DataSymbol *ObjFile::getDataSymbol(uint32_t index) const { 569 return cast<DataSymbol>(symbols[index]); 570 } 571 572 Symbol *ObjFile::createDefined(const WasmSymbol &sym) { 573 StringRef name = sym.Info.Name; 574 uint32_t flags = sym.Info.Flags; 575 576 switch (sym.Info.Kind) { 577 case WASM_SYMBOL_TYPE_FUNCTION: { 578 InputFunction *func = 579 functions[sym.Info.ElementIndex - wasmObj->getNumImportedFunctions()]; 580 if (sym.isBindingLocal()) 581 return make<DefinedFunction>(name, flags, this, func); 582 if (func->discarded) 583 return nullptr; 584 return symtab->addDefinedFunction(name, flags, this, func); 585 } 586 case WASM_SYMBOL_TYPE_DATA: { 587 InputChunk *seg = segments[sym.Info.DataRef.Segment]; 588 auto offset = sym.Info.DataRef.Offset; 589 auto size = sym.Info.DataRef.Size; 590 if (sym.isBindingLocal()) 591 return make<DefinedData>(name, flags, this, seg, offset, size); 592 if (seg->discarded) 593 return nullptr; 594 return symtab->addDefinedData(name, flags, this, seg, offset, size); 595 } 596 case WASM_SYMBOL_TYPE_GLOBAL: { 597 InputGlobal *global = 598 globals[sym.Info.ElementIndex - wasmObj->getNumImportedGlobals()]; 599 if (sym.isBindingLocal()) 600 return make<DefinedGlobal>(name, flags, this, global); 601 return symtab->addDefinedGlobal(name, flags, this, global); 602 } 603 case WASM_SYMBOL_TYPE_SECTION: { 604 InputChunk *section = customSectionsByIndex[sym.Info.ElementIndex]; 605 assert(sym.isBindingLocal()); 606 // Need to return null if discarded here? data and func only do that when 607 // binding is not local. 608 if (section->discarded) 609 return nullptr; 610 return make<SectionSymbol>(flags, section, this); 611 } 612 case WASM_SYMBOL_TYPE_EVENT: { 613 InputEvent *event = 614 events[sym.Info.ElementIndex - wasmObj->getNumImportedEvents()]; 615 if (sym.isBindingLocal()) 616 return make<DefinedEvent>(name, flags, this, event); 617 return symtab->addDefinedEvent(name, flags, this, event); 618 } 619 case WASM_SYMBOL_TYPE_TABLE: { 620 InputTable *table = 621 tables[sym.Info.ElementIndex - wasmObj->getNumImportedTables()]; 622 if (sym.isBindingLocal()) 623 return make<DefinedTable>(name, flags, this, table); 624 return symtab->addDefinedTable(name, flags, this, table); 625 } 626 } 627 llvm_unreachable("unknown symbol kind"); 628 } 629 630 Symbol *ObjFile::createUndefined(const WasmSymbol &sym, bool isCalledDirectly) { 631 StringRef name = sym.Info.Name; 632 uint32_t flags = sym.Info.Flags | WASM_SYMBOL_UNDEFINED; 633 634 switch (sym.Info.Kind) { 635 case WASM_SYMBOL_TYPE_FUNCTION: 636 if (sym.isBindingLocal()) 637 return make<UndefinedFunction>(name, sym.Info.ImportName, 638 sym.Info.ImportModule, flags, this, 639 sym.Signature, isCalledDirectly); 640 return symtab->addUndefinedFunction(name, sym.Info.ImportName, 641 sym.Info.ImportModule, flags, this, 642 sym.Signature, isCalledDirectly); 643 case WASM_SYMBOL_TYPE_DATA: 644 if (sym.isBindingLocal()) 645 return make<UndefinedData>(name, flags, this); 646 return symtab->addUndefinedData(name, flags, this); 647 case WASM_SYMBOL_TYPE_GLOBAL: 648 if (sym.isBindingLocal()) 649 return make<UndefinedGlobal>(name, sym.Info.ImportName, 650 sym.Info.ImportModule, flags, this, 651 sym.GlobalType); 652 return symtab->addUndefinedGlobal(name, sym.Info.ImportName, 653 sym.Info.ImportModule, flags, this, 654 sym.GlobalType); 655 case WASM_SYMBOL_TYPE_TABLE: 656 if (sym.isBindingLocal()) 657 return make<UndefinedTable>(name, sym.Info.ImportName, 658 sym.Info.ImportModule, flags, this, 659 sym.TableType); 660 return symtab->addUndefinedTable(name, sym.Info.ImportName, 661 sym.Info.ImportModule, flags, this, 662 sym.TableType); 663 case WASM_SYMBOL_TYPE_SECTION: 664 llvm_unreachable("section symbols cannot be undefined"); 665 } 666 llvm_unreachable("unknown symbol kind"); 667 } 668 669 void ArchiveFile::parse() { 670 // Parse a MemoryBufferRef as an archive file. 671 LLVM_DEBUG(dbgs() << "Parsing library: " << toString(this) << "\n"); 672 file = CHECK(Archive::create(mb), toString(this)); 673 674 // Read the symbol table to construct Lazy symbols. 675 int count = 0; 676 for (const Archive::Symbol &sym : file->symbols()) { 677 symtab->addLazy(this, &sym); 678 ++count; 679 } 680 LLVM_DEBUG(dbgs() << "Read " << count << " symbols\n"); 681 } 682 683 void ArchiveFile::addMember(const Archive::Symbol *sym) { 684 const Archive::Child &c = 685 CHECK(sym->getMember(), 686 "could not get the member for symbol " + sym->getName()); 687 688 // Don't try to load the same member twice (this can happen when members 689 // mutually reference each other). 690 if (!seen.insert(c.getChildOffset()).second) 691 return; 692 693 LLVM_DEBUG(dbgs() << "loading lazy: " << sym->getName() << "\n"); 694 LLVM_DEBUG(dbgs() << "from archive: " << toString(this) << "\n"); 695 696 MemoryBufferRef mb = 697 CHECK(c.getMemoryBufferRef(), 698 "could not get the buffer for the member defining symbol " + 699 sym->getName()); 700 701 InputFile *obj = createObjectFile(mb, getName()); 702 symtab->addFile(obj); 703 } 704 705 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) { 706 switch (gvVisibility) { 707 case GlobalValue::DefaultVisibility: 708 return WASM_SYMBOL_VISIBILITY_DEFAULT; 709 case GlobalValue::HiddenVisibility: 710 case GlobalValue::ProtectedVisibility: 711 return WASM_SYMBOL_VISIBILITY_HIDDEN; 712 } 713 llvm_unreachable("unknown visibility"); 714 } 715 716 static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats, 717 const lto::InputFile::Symbol &objSym, 718 BitcodeFile &f) { 719 StringRef name = saver.save(objSym.getName()); 720 721 uint32_t flags = objSym.isWeak() ? WASM_SYMBOL_BINDING_WEAK : 0; 722 flags |= mapVisibility(objSym.getVisibility()); 723 724 int c = objSym.getComdatIndex(); 725 bool excludedByComdat = c != -1 && !keptComdats[c]; 726 727 if (objSym.isUndefined() || excludedByComdat) { 728 flags |= WASM_SYMBOL_UNDEFINED; 729 if (objSym.isExecutable()) 730 return symtab->addUndefinedFunction(name, None, None, flags, &f, nullptr, 731 true); 732 return symtab->addUndefinedData(name, flags, &f); 733 } 734 735 if (objSym.isExecutable()) 736 return symtab->addDefinedFunction(name, flags, &f, nullptr); 737 return symtab->addDefinedData(name, flags, &f, nullptr, 0, 0); 738 } 739 740 bool BitcodeFile::doneLTO = false; 741 742 void BitcodeFile::parse() { 743 if (doneLTO) { 744 error(toString(this) + ": attempt to add bitcode file after LTO."); 745 return; 746 } 747 748 obj = check(lto::InputFile::create(MemoryBufferRef( 749 mb.getBuffer(), saver.save(archiveName + mb.getBufferIdentifier())))); 750 Triple t(obj->getTargetTriple()); 751 if (!t.isWasm()) { 752 error(toString(this) + ": machine type must be wasm32 or wasm64"); 753 return; 754 } 755 checkArch(t.getArch()); 756 std::vector<bool> keptComdats; 757 for (StringRef s : obj->getComdatTable()) 758 keptComdats.push_back(symtab->addComdat(s)); 759 760 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 761 symbols.push_back(createBitcodeSymbol(keptComdats, objSym, *this)); 762 } 763 764 } // namespace wasm 765 } // namespace lld 766