1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputFiles.h" 11 #include "Config.h" 12 #include "InputChunks.h" 13 #include "InputGlobal.h" 14 #include "SymbolTable.h" 15 #include "lld/Common/ErrorHandler.h" 16 #include "lld/Common/Memory.h" 17 #include "llvm/Object/Binary.h" 18 #include "llvm/Object/Wasm.h" 19 #include "llvm/Support/raw_ostream.h" 20 21 #define DEBUG_TYPE "lld" 22 23 using namespace lld; 24 using namespace lld::wasm; 25 26 using namespace llvm; 27 using namespace llvm::object; 28 using namespace llvm::wasm; 29 30 Optional<MemoryBufferRef> lld::wasm::readFile(StringRef Path) { 31 log("Loading: " + Path); 32 33 auto MBOrErr = MemoryBuffer::getFile(Path); 34 if (auto EC = MBOrErr.getError()) { 35 error("cannot open " + Path + ": " + EC.message()); 36 return None; 37 } 38 std::unique_ptr<MemoryBuffer> &MB = *MBOrErr; 39 MemoryBufferRef MBRef = MB->getMemBufferRef(); 40 make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership 41 42 return MBRef; 43 } 44 45 void ObjFile::dumpInfo() const { 46 log("info for: " + getName() + 47 "\n Symbols : " + Twine(Symbols.size()) + 48 "\n Function Imports : " + Twine(WasmObj->getNumImportedFunctions()) + 49 "\n Global Imports : " + Twine(WasmObj->getNumImportedGlobals())); 50 } 51 52 // Relocations contain either symbol or type indices. This function takes a 53 // relocation and returns relocated index (i.e. translates from the input 54 // sybmol/type space to the output symbol/type space). 55 uint32_t ObjFile::calcNewIndex(const WasmRelocation &Reloc) const { 56 if (Reloc.Type == R_WEBASSEMBLY_TYPE_INDEX_LEB) { 57 assert(TypeIsUsed[Reloc.Index]); 58 return TypeMap[Reloc.Index]; 59 } 60 return Symbols[Reloc.Index]->getOutputSymbolIndex(); 61 } 62 63 // Calculate the value we expect to find at the relocation location. 64 // This is used as a sanity check before applying a relocation to a given 65 // location. It is useful for catching bugs in the compiler and linker. 66 uint32_t ObjFile::calcExpectedValue(const WasmRelocation &Reloc) const { 67 switch (Reloc.Type) { 68 case R_WEBASSEMBLY_TABLE_INDEX_I32: 69 case R_WEBASSEMBLY_TABLE_INDEX_SLEB: { 70 const WasmSymbol& Sym = WasmObj->syms()[Reloc.Index]; 71 return TableEntries[Sym.Info.ElementIndex]; 72 } 73 case R_WEBASSEMBLY_MEMORY_ADDR_SLEB: 74 case R_WEBASSEMBLY_MEMORY_ADDR_I32: 75 case R_WEBASSEMBLY_MEMORY_ADDR_LEB: { 76 const WasmSymbol& Sym = WasmObj->syms()[Reloc.Index]; 77 if (Sym.isUndefined()) 78 return 0; 79 const WasmSegment& Segment = WasmObj->dataSegments()[Sym.Info.DataRef.Segment]; 80 return Segment.Data.Offset.Value.Int32 + Sym.Info.DataRef.Offset + 81 Reloc.Addend; 82 } 83 case R_WEBASSEMBLY_TYPE_INDEX_LEB: 84 return Reloc.Index; 85 case R_WEBASSEMBLY_FUNCTION_INDEX_LEB: 86 case R_WEBASSEMBLY_GLOBAL_INDEX_LEB: { 87 const WasmSymbol& Sym = WasmObj->syms()[Reloc.Index]; 88 return Sym.Info.ElementIndex; 89 } 90 default: 91 llvm_unreachable("unknown relocation type"); 92 } 93 } 94 95 // Translate from the relocation's index into the final linked output value. 96 uint32_t ObjFile::calcNewValue(const WasmRelocation &Reloc) const { 97 switch (Reloc.Type) { 98 case R_WEBASSEMBLY_TABLE_INDEX_I32: 99 case R_WEBASSEMBLY_TABLE_INDEX_SLEB: 100 return getFunctionSymbol(Reloc.Index)->getTableIndex(); 101 case R_WEBASSEMBLY_MEMORY_ADDR_SLEB: 102 case R_WEBASSEMBLY_MEMORY_ADDR_I32: 103 case R_WEBASSEMBLY_MEMORY_ADDR_LEB: 104 if (auto *Sym = dyn_cast<DefinedData>(getDataSymbol(Reloc.Index))) 105 return Sym->getVirtualAddress() + Reloc.Addend; 106 return 0; 107 case R_WEBASSEMBLY_TYPE_INDEX_LEB: 108 return TypeMap[Reloc.Index]; 109 case R_WEBASSEMBLY_FUNCTION_INDEX_LEB: 110 return getFunctionSymbol(Reloc.Index)->getFunctionIndex(); 111 case R_WEBASSEMBLY_GLOBAL_INDEX_LEB: 112 return getGlobalSymbol(Reloc.Index)->getGlobalIndex(); 113 default: 114 llvm_unreachable("unknown relocation type"); 115 } 116 } 117 118 void ObjFile::parse() { 119 // Parse a memory buffer as a wasm file. 120 DEBUG(dbgs() << "Parsing object: " << toString(this) << "\n"); 121 std::unique_ptr<Binary> Bin = CHECK(createBinary(MB), toString(this)); 122 123 auto *Obj = dyn_cast<WasmObjectFile>(Bin.get()); 124 if (!Obj) 125 fatal(toString(this) + ": not a wasm file"); 126 if (!Obj->isRelocatableObject()) 127 fatal(toString(this) + ": not a relocatable wasm file"); 128 129 Bin.release(); 130 WasmObj.reset(Obj); 131 132 // Build up a map of function indices to table indices for use when 133 // verifying the existing table index relocations 134 uint32_t TotalFunctions = 135 WasmObj->getNumImportedFunctions() + WasmObj->functions().size(); 136 TableEntries.resize(TotalFunctions); 137 for (const WasmElemSegment &Seg : WasmObj->elements()) { 138 if (Seg.Offset.Opcode != WASM_OPCODE_I32_CONST) 139 fatal(toString(this) + ": invalid table elements"); 140 uint32_t Offset = Seg.Offset.Value.Int32; 141 for (uint32_t Index = 0; Index < Seg.Functions.size(); Index++) { 142 143 uint32_t FunctionIndex = Seg.Functions[Index]; 144 TableEntries[FunctionIndex] = Offset + Index; 145 } 146 } 147 148 // Find the code and data sections. Wasm objects can have at most one code 149 // and one data section. 150 for (const SectionRef &Sec : WasmObj->sections()) { 151 const WasmSection &Section = WasmObj->getWasmSection(Sec); 152 if (Section.Type == WASM_SEC_CODE) 153 CodeSection = &Section; 154 else if (Section.Type == WASM_SEC_DATA) 155 DataSection = &Section; 156 else if (Section.Type == WASM_SEC_CUSTOM) 157 CustomSections.emplace_back(make<InputSection>(Section, this)); 158 } 159 160 TypeMap.resize(getWasmObj()->types().size()); 161 TypeIsUsed.resize(getWasmObj()->types().size(), false); 162 163 ArrayRef<StringRef> Comdats = WasmObj->linkingData().Comdats; 164 UsedComdats.resize(Comdats.size()); 165 for (unsigned I = 0; I < Comdats.size(); ++I) 166 UsedComdats[I] = Symtab->addComdat(Comdats[I]); 167 168 // Populate `Segments`. 169 for (const WasmSegment &S : WasmObj->dataSegments()) { 170 InputSegment *Seg = make<InputSegment>(S, this); 171 Seg->copyRelocations(*DataSection); 172 Segments.emplace_back(Seg); 173 } 174 175 // Populate `Functions`. 176 ArrayRef<WasmFunction> Funcs = WasmObj->functions(); 177 ArrayRef<uint32_t> FuncTypes = WasmObj->functionTypes(); 178 ArrayRef<WasmSignature> Types = WasmObj->types(); 179 Functions.reserve(Funcs.size()); 180 181 for (size_t I = 0, E = Funcs.size(); I != E; ++I) { 182 InputFunction *F = 183 make<InputFunction>(Types[FuncTypes[I]], &Funcs[I], this); 184 F->copyRelocations(*CodeSection); 185 Functions.emplace_back(F); 186 } 187 188 // Populate `Globals`. 189 for (const WasmGlobal &G : WasmObj->globals()) 190 Globals.emplace_back(make<InputGlobal>(G)); 191 192 // Populate `Symbols` based on the WasmSymbols in the object. 193 Symbols.reserve(WasmObj->getNumberOfSymbols()); 194 for (const SymbolRef &Sym : WasmObj->symbols()) { 195 const WasmSymbol &WasmSym = WasmObj->getWasmSymbol(Sym.getRawDataRefImpl()); 196 if (Symbol *Sym = createDefined(WasmSym)) 197 Symbols.push_back(Sym); 198 else 199 Symbols.push_back(createUndefined(WasmSym)); 200 } 201 } 202 203 bool ObjFile::isExcludedByComdat(InputChunk *Chunk) const { 204 uint32_t C = Chunk->getComdat(); 205 if (C == UINT32_MAX) 206 return false; 207 return !UsedComdats[C]; 208 } 209 210 FunctionSymbol *ObjFile::getFunctionSymbol(uint32_t Index) const { 211 return cast<FunctionSymbol>(Symbols[Index]); 212 } 213 214 GlobalSymbol *ObjFile::getGlobalSymbol(uint32_t Index) const { 215 return cast<GlobalSymbol>(Symbols[Index]); 216 } 217 218 DataSymbol *ObjFile::getDataSymbol(uint32_t Index) const { 219 return cast<DataSymbol>(Symbols[Index]); 220 } 221 222 Symbol *ObjFile::createDefined(const WasmSymbol &Sym) { 223 if (!Sym.isDefined()) 224 return nullptr; 225 226 StringRef Name = Sym.Info.Name; 227 uint32_t Flags = Sym.Info.Flags; 228 229 switch (Sym.Info.Kind) { 230 case WASM_SYMBOL_TYPE_FUNCTION: { 231 InputFunction *Func = 232 Functions[Sym.Info.ElementIndex - WasmObj->getNumImportedFunctions()]; 233 if (isExcludedByComdat(Func)) { 234 Func->Live = false; 235 return nullptr; 236 } 237 238 if (Sym.isBindingLocal()) 239 return make<DefinedFunction>(Name, Flags, this, Func); 240 return Symtab->addDefinedFunction(Name, Flags, this, Func); 241 } 242 case WASM_SYMBOL_TYPE_DATA: { 243 InputSegment *Seg = Segments[Sym.Info.DataRef.Segment]; 244 if (isExcludedByComdat(Seg)) { 245 Seg->Live = false; 246 return nullptr; 247 } 248 249 uint32_t Offset = Sym.Info.DataRef.Offset; 250 uint32_t Size = Sym.Info.DataRef.Size; 251 252 if (Sym.isBindingLocal()) 253 return make<DefinedData>(Name, Flags, this, Seg, Offset, Size); 254 return Symtab->addDefinedData(Name, Flags, this, Seg, Offset, Size); 255 } 256 case WASM_SYMBOL_TYPE_GLOBAL: 257 InputGlobal *Global = 258 Globals[Sym.Info.ElementIndex - WasmObj->getNumImportedGlobals()]; 259 if (Sym.isBindingLocal()) 260 return make<DefinedGlobal>(Name, Flags, this, Global); 261 return Symtab->addDefinedGlobal(Name, Flags, this, Global); 262 } 263 llvm_unreachable("unkown symbol kind"); 264 } 265 266 Symbol *ObjFile::createUndefined(const WasmSymbol &Sym) { 267 StringRef Name = Sym.Info.Name; 268 uint32_t Flags = Sym.Info.Flags; 269 270 switch (Sym.Info.Kind) { 271 case WASM_SYMBOL_TYPE_FUNCTION: 272 return Symtab->addUndefinedFunction(Name, Flags, this, Sym.FunctionType); 273 case WASM_SYMBOL_TYPE_DATA: 274 return Symtab->addUndefinedData(Name, Flags, this); 275 case WASM_SYMBOL_TYPE_GLOBAL: 276 return Symtab->addUndefinedGlobal(Name, Flags, this, Sym.GlobalType); 277 } 278 llvm_unreachable("unkown symbol kind"); 279 } 280 281 void ArchiveFile::parse() { 282 // Parse a MemoryBufferRef as an archive file. 283 DEBUG(dbgs() << "Parsing library: " << toString(this) << "\n"); 284 File = CHECK(Archive::create(MB), toString(this)); 285 286 // Read the symbol table to construct Lazy symbols. 287 int Count = 0; 288 for (const Archive::Symbol &Sym : File->symbols()) { 289 Symtab->addLazy(this, &Sym); 290 ++Count; 291 } 292 DEBUG(dbgs() << "Read " << Count << " symbols\n"); 293 } 294 295 void ArchiveFile::addMember(const Archive::Symbol *Sym) { 296 const Archive::Child &C = 297 CHECK(Sym->getMember(), 298 "could not get the member for symbol " + Sym->getName()); 299 300 // Don't try to load the same member twice (this can happen when members 301 // mutually reference each other). 302 if (!Seen.insert(C.getChildOffset()).second) 303 return; 304 305 DEBUG(dbgs() << "loading lazy: " << Sym->getName() << "\n"); 306 DEBUG(dbgs() << "from archive: " << toString(this) << "\n"); 307 308 MemoryBufferRef MB = 309 CHECK(C.getMemoryBufferRef(), 310 "could not get the buffer for the member defining symbol " + 311 Sym->getName()); 312 313 if (identify_magic(MB.getBuffer()) != file_magic::wasm_object) { 314 error("unknown file type: " + MB.getBufferIdentifier()); 315 return; 316 } 317 318 InputFile *Obj = make<ObjFile>(MB); 319 Obj->ParentName = ParentName; 320 Symtab->addFile(Obj); 321 } 322 323 // Returns a string in the format of "foo.o" or "foo.a(bar.o)". 324 std::string lld::toString(const wasm::InputFile *File) { 325 if (!File) 326 return "<internal>"; 327 328 if (File->ParentName.empty()) 329 return File->getName(); 330 331 return (File->ParentName + "(" + File->getName() + ")").str(); 332 } 333