1 //===- SyntheticSections.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "SyntheticSections.h" 10 #include "ConcatOutputSection.h" 11 #include "Config.h" 12 #include "ExportTrie.h" 13 #include "InputFiles.h" 14 #include "MachOStructs.h" 15 #include "OutputSegment.h" 16 #include "SymbolTable.h" 17 #include "Symbols.h" 18 19 #include "lld/Common/ErrorHandler.h" 20 #include "lld/Common/Memory.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/Config/llvm-config.h" 23 #include "llvm/Support/EndianStream.h" 24 #include "llvm/Support/FileSystem.h" 25 #include "llvm/Support/LEB128.h" 26 #include "llvm/Support/Path.h" 27 #include "llvm/Support/SHA256.h" 28 29 #if defined(__APPLE__) 30 #include <sys/mman.h> 31 #endif 32 33 #ifdef LLVM_HAVE_LIBXAR 34 #include <fcntl.h> 35 extern "C" { 36 #include <xar/xar.h> 37 } 38 #endif 39 40 using namespace llvm; 41 using namespace llvm::MachO; 42 using namespace llvm::support; 43 using namespace llvm::support::endian; 44 using namespace lld; 45 using namespace lld::macho; 46 47 InStruct macho::in; 48 std::vector<SyntheticSection *> macho::syntheticSections; 49 50 SyntheticSection::SyntheticSection(const char *segname, const char *name) 51 : OutputSection(SyntheticKind, name) { 52 std::tie(this->segname, this->name) = maybeRenameSection({segname, name}); 53 isec = make<ConcatInputSection>(segname, name); 54 isec->parent = this; 55 syntheticSections.push_back(this); 56 } 57 58 // dyld3's MachOLoaded::getSlide() assumes that the __TEXT segment starts 59 // from the beginning of the file (i.e. the header). 60 MachHeaderSection::MachHeaderSection() 61 : SyntheticSection(segment_names::text, section_names::header) { 62 // XXX: This is a hack. (See D97007) 63 // Setting the index to 1 to pretend that this section is the text 64 // section. 65 index = 1; 66 isec->isFinal = true; 67 } 68 69 void MachHeaderSection::addLoadCommand(LoadCommand *lc) { 70 loadCommands.push_back(lc); 71 sizeOfCmds += lc->getSize(); 72 } 73 74 uint64_t MachHeaderSection::getSize() const { 75 uint64_t size = target->headerSize + sizeOfCmds + config->headerPad; 76 // If we are emitting an encryptable binary, our load commands must have a 77 // separate (non-encrypted) page to themselves. 78 if (config->emitEncryptionInfo) 79 size = alignTo(size, target->getPageSize()); 80 return size; 81 } 82 83 static uint32_t cpuSubtype() { 84 uint32_t subtype = target->cpuSubtype; 85 86 if (config->outputType == MH_EXECUTE && !config->staticLink && 87 target->cpuSubtype == CPU_SUBTYPE_X86_64_ALL && 88 config->platform() == PLATFORM_MACOS && 89 config->platformInfo.minimum >= VersionTuple(10, 5)) 90 subtype |= CPU_SUBTYPE_LIB64; 91 92 return subtype; 93 } 94 95 void MachHeaderSection::writeTo(uint8_t *buf) const { 96 auto *hdr = reinterpret_cast<mach_header *>(buf); 97 hdr->magic = target->magic; 98 hdr->cputype = target->cpuType; 99 hdr->cpusubtype = cpuSubtype(); 100 hdr->filetype = config->outputType; 101 hdr->ncmds = loadCommands.size(); 102 hdr->sizeofcmds = sizeOfCmds; 103 hdr->flags = MH_DYLDLINK; 104 105 if (config->namespaceKind == NamespaceKind::twolevel) 106 hdr->flags |= MH_NOUNDEFS | MH_TWOLEVEL; 107 108 if (config->outputType == MH_DYLIB && !config->hasReexports) 109 hdr->flags |= MH_NO_REEXPORTED_DYLIBS; 110 111 if (config->markDeadStrippableDylib) 112 hdr->flags |= MH_DEAD_STRIPPABLE_DYLIB; 113 114 if (config->outputType == MH_EXECUTE && config->isPic) 115 hdr->flags |= MH_PIE; 116 117 if (config->outputType == MH_DYLIB && config->applicationExtension) 118 hdr->flags |= MH_APP_EXTENSION_SAFE; 119 120 if (in.exports->hasWeakSymbol || in.weakBinding->hasNonWeakDefinition()) 121 hdr->flags |= MH_WEAK_DEFINES; 122 123 if (in.exports->hasWeakSymbol || in.weakBinding->hasEntry()) 124 hdr->flags |= MH_BINDS_TO_WEAK; 125 126 for (const OutputSegment *seg : outputSegments) { 127 for (const OutputSection *osec : seg->getSections()) { 128 if (isThreadLocalVariables(osec->flags)) { 129 hdr->flags |= MH_HAS_TLV_DESCRIPTORS; 130 break; 131 } 132 } 133 } 134 135 uint8_t *p = reinterpret_cast<uint8_t *>(hdr) + target->headerSize; 136 for (const LoadCommand *lc : loadCommands) { 137 lc->writeTo(p); 138 p += lc->getSize(); 139 } 140 } 141 142 PageZeroSection::PageZeroSection() 143 : SyntheticSection(segment_names::pageZero, section_names::pageZero) {} 144 145 RebaseSection::RebaseSection() 146 : LinkEditSection(segment_names::linkEdit, section_names::rebase) {} 147 148 namespace { 149 struct Rebase { 150 OutputSegment *segment = nullptr; 151 uint64_t offset = 0; 152 uint64_t consecutiveCount = 0; 153 }; 154 } // namespace 155 156 // Rebase opcodes allow us to describe a contiguous sequence of rebase location 157 // using a single DO_REBASE opcode. To take advantage of it, we delay emitting 158 // `DO_REBASE` until we have reached the end of a contiguous sequence. 159 static void encodeDoRebase(Rebase &rebase, raw_svector_ostream &os) { 160 assert(rebase.consecutiveCount != 0); 161 if (rebase.consecutiveCount <= REBASE_IMMEDIATE_MASK) { 162 os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_IMM_TIMES | 163 rebase.consecutiveCount); 164 } else { 165 os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ULEB_TIMES); 166 encodeULEB128(rebase.consecutiveCount, os); 167 } 168 rebase.consecutiveCount = 0; 169 } 170 171 static void encodeRebase(const OutputSection *osec, uint64_t outSecOff, 172 Rebase &lastRebase, raw_svector_ostream &os) { 173 OutputSegment *seg = osec->parent; 174 uint64_t offset = osec->getSegmentOffset() + outSecOff; 175 if (lastRebase.segment != seg || lastRebase.offset != offset) { 176 if (lastRebase.consecutiveCount != 0) 177 encodeDoRebase(lastRebase, os); 178 179 if (lastRebase.segment != seg) { 180 os << static_cast<uint8_t>(REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | 181 seg->index); 182 encodeULEB128(offset, os); 183 lastRebase.segment = seg; 184 lastRebase.offset = offset; 185 } else { 186 assert(lastRebase.offset != offset); 187 os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_ULEB); 188 encodeULEB128(offset - lastRebase.offset, os); 189 lastRebase.offset = offset; 190 } 191 } 192 ++lastRebase.consecutiveCount; 193 // DO_REBASE causes dyld to both perform the binding and increment the offset 194 lastRebase.offset += target->wordSize; 195 } 196 197 void RebaseSection::finalizeContents() { 198 if (locations.empty()) 199 return; 200 201 raw_svector_ostream os{contents}; 202 Rebase lastRebase; 203 204 os << static_cast<uint8_t>(REBASE_OPCODE_SET_TYPE_IMM | REBASE_TYPE_POINTER); 205 206 llvm::sort(locations, [](const Location &a, const Location &b) { 207 return a.isec->getVA(a.offset) < b.isec->getVA(b.offset); 208 }); 209 for (const Location &loc : locations) 210 encodeRebase(loc.isec->parent, loc.isec->getOffset(loc.offset), lastRebase, 211 os); 212 if (lastRebase.consecutiveCount != 0) 213 encodeDoRebase(lastRebase, os); 214 215 os << static_cast<uint8_t>(REBASE_OPCODE_DONE); 216 } 217 218 void RebaseSection::writeTo(uint8_t *buf) const { 219 memcpy(buf, contents.data(), contents.size()); 220 } 221 222 NonLazyPointerSectionBase::NonLazyPointerSectionBase(const char *segname, 223 const char *name) 224 : SyntheticSection(segname, name) { 225 align = target->wordSize; 226 } 227 228 void macho::addNonLazyBindingEntries(const Symbol *sym, 229 const InputSection *isec, uint64_t offset, 230 int64_t addend) { 231 if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) { 232 in.binding->addEntry(dysym, isec, offset, addend); 233 if (dysym->isWeakDef()) 234 in.weakBinding->addEntry(sym, isec, offset, addend); 235 } else if (const auto *defined = dyn_cast<Defined>(sym)) { 236 in.rebase->addEntry(isec, offset); 237 if (defined->isExternalWeakDef()) 238 in.weakBinding->addEntry(sym, isec, offset, addend); 239 } else { 240 // Undefined symbols are filtered out in scanRelocations(); we should never 241 // get here 242 llvm_unreachable("cannot bind to an undefined symbol"); 243 } 244 } 245 246 void NonLazyPointerSectionBase::addEntry(Symbol *sym) { 247 if (entries.insert(sym)) { 248 assert(!sym->isInGot()); 249 sym->gotIndex = entries.size() - 1; 250 251 addNonLazyBindingEntries(sym, isec, sym->gotIndex * target->wordSize); 252 } 253 } 254 255 void NonLazyPointerSectionBase::writeTo(uint8_t *buf) const { 256 for (size_t i = 0, n = entries.size(); i < n; ++i) 257 if (auto *defined = dyn_cast<Defined>(entries[i])) 258 write64le(&buf[i * target->wordSize], defined->getVA()); 259 } 260 261 GotSection::GotSection() 262 : NonLazyPointerSectionBase(segment_names::data, section_names::got) { 263 flags = S_NON_LAZY_SYMBOL_POINTERS; 264 } 265 266 TlvPointerSection::TlvPointerSection() 267 : NonLazyPointerSectionBase(segment_names::data, 268 section_names::threadPtrs) { 269 flags = S_THREAD_LOCAL_VARIABLE_POINTERS; 270 } 271 272 BindingSection::BindingSection() 273 : LinkEditSection(segment_names::linkEdit, section_names::binding) {} 274 275 namespace { 276 struct Binding { 277 OutputSegment *segment = nullptr; 278 uint64_t offset = 0; 279 int64_t addend = 0; 280 }; 281 struct BindIR { 282 // Default value of 0xF0 is not valid opcode and should make the program 283 // scream instead of accidentally writing "valid" values. 284 uint8_t opcode = 0xF0; 285 uint64_t data = 0; 286 uint64_t consecutiveCount = 0; 287 }; 288 } // namespace 289 290 // Encode a sequence of opcodes that tell dyld to write the address of symbol + 291 // addend at osec->addr + outSecOff. 292 // 293 // The bind opcode "interpreter" remembers the values of each binding field, so 294 // we only need to encode the differences between bindings. Hence the use of 295 // lastBinding. 296 static void encodeBinding(const OutputSection *osec, uint64_t outSecOff, 297 int64_t addend, Binding &lastBinding, 298 std::vector<BindIR> &opcodes) { 299 OutputSegment *seg = osec->parent; 300 uint64_t offset = osec->getSegmentOffset() + outSecOff; 301 if (lastBinding.segment != seg) { 302 opcodes.push_back( 303 {static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | 304 seg->index), 305 offset}); 306 lastBinding.segment = seg; 307 lastBinding.offset = offset; 308 } else if (lastBinding.offset != offset) { 309 opcodes.push_back({BIND_OPCODE_ADD_ADDR_ULEB, offset - lastBinding.offset}); 310 lastBinding.offset = offset; 311 } 312 313 if (lastBinding.addend != addend) { 314 opcodes.push_back( 315 {BIND_OPCODE_SET_ADDEND_SLEB, static_cast<uint64_t>(addend)}); 316 lastBinding.addend = addend; 317 } 318 319 opcodes.push_back({BIND_OPCODE_DO_BIND, 0}); 320 // DO_BIND causes dyld to both perform the binding and increment the offset 321 lastBinding.offset += target->wordSize; 322 } 323 324 static void optimizeOpcodes(std::vector<BindIR> &opcodes) { 325 // Pass 1: Combine bind/add pairs 326 size_t i; 327 int pWrite = 0; 328 for (i = 1; i < opcodes.size(); ++i, ++pWrite) { 329 if ((opcodes[i].opcode == BIND_OPCODE_ADD_ADDR_ULEB) && 330 (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND)) { 331 opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB; 332 opcodes[pWrite].data = opcodes[i].data; 333 ++i; 334 } else { 335 opcodes[pWrite] = opcodes[i - 1]; 336 } 337 } 338 if (i == opcodes.size()) 339 opcodes[pWrite] = opcodes[i - 1]; 340 opcodes.resize(pWrite + 1); 341 342 // Pass 2: Compress two or more bind_add opcodes 343 pWrite = 0; 344 for (i = 1; i < opcodes.size(); ++i, ++pWrite) { 345 if ((opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && 346 (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && 347 (opcodes[i].data == opcodes[i - 1].data)) { 348 opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB; 349 opcodes[pWrite].consecutiveCount = 2; 350 opcodes[pWrite].data = opcodes[i].data; 351 ++i; 352 while (i < opcodes.size() && 353 (opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && 354 (opcodes[i].data == opcodes[i - 1].data)) { 355 opcodes[pWrite].consecutiveCount++; 356 ++i; 357 } 358 } else { 359 opcodes[pWrite] = opcodes[i - 1]; 360 } 361 } 362 if (i == opcodes.size()) 363 opcodes[pWrite] = opcodes[i - 1]; 364 opcodes.resize(pWrite + 1); 365 366 // Pass 3: Use immediate encodings 367 // Every binding is the size of one pointer. If the next binding is a 368 // multiple of wordSize away that is within BIND_IMMEDIATE_MASK, the 369 // opcode can be scaled by wordSize into a single byte and dyld will 370 // expand it to the correct address. 371 for (auto &p : opcodes) { 372 // It's unclear why the check needs to be less than BIND_IMMEDIATE_MASK, 373 // but ld64 currently does this. This could be a potential bug, but 374 // for now, perform the same behavior to prevent mysterious bugs. 375 if ((p.opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && 376 ((p.data / target->wordSize) < BIND_IMMEDIATE_MASK) && 377 ((p.data % target->wordSize) == 0)) { 378 p.opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED; 379 p.data /= target->wordSize; 380 } 381 } 382 } 383 384 static void flushOpcodes(const BindIR &op, raw_svector_ostream &os) { 385 uint8_t opcode = op.opcode & BIND_OPCODE_MASK; 386 switch (opcode) { 387 case BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB: 388 case BIND_OPCODE_ADD_ADDR_ULEB: 389 case BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB: 390 os << op.opcode; 391 encodeULEB128(op.data, os); 392 break; 393 case BIND_OPCODE_SET_ADDEND_SLEB: 394 os << op.opcode; 395 encodeSLEB128(static_cast<int64_t>(op.data), os); 396 break; 397 case BIND_OPCODE_DO_BIND: 398 os << op.opcode; 399 break; 400 case BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB: 401 os << op.opcode; 402 encodeULEB128(op.consecutiveCount, os); 403 encodeULEB128(op.data, os); 404 break; 405 case BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED: 406 os << static_cast<uint8_t>(op.opcode | op.data); 407 break; 408 default: 409 llvm_unreachable("cannot bind to an unrecognized symbol"); 410 } 411 } 412 413 // Non-weak bindings need to have their dylib ordinal encoded as well. 414 static int16_t ordinalForDylibSymbol(const DylibSymbol &dysym) { 415 if (config->namespaceKind == NamespaceKind::flat || dysym.isDynamicLookup()) 416 return static_cast<int16_t>(BIND_SPECIAL_DYLIB_FLAT_LOOKUP); 417 assert(dysym.getFile()->isReferenced()); 418 return dysym.getFile()->ordinal; 419 } 420 421 static void encodeDylibOrdinal(int16_t ordinal, raw_svector_ostream &os) { 422 if (ordinal <= 0) { 423 os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_SPECIAL_IMM | 424 (ordinal & BIND_IMMEDIATE_MASK)); 425 } else if (ordinal <= BIND_IMMEDIATE_MASK) { 426 os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_IMM | ordinal); 427 } else { 428 os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB); 429 encodeULEB128(ordinal, os); 430 } 431 } 432 433 static void encodeWeakOverride(const Defined *defined, 434 raw_svector_ostream &os) { 435 os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM | 436 BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION) 437 << defined->getName() << '\0'; 438 } 439 440 // Organize the bindings so we can encoded them with fewer opcodes. 441 // 442 // First, all bindings for a given symbol should be grouped together. 443 // BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM is the largest opcode (since it 444 // has an associated symbol string), so we only want to emit it once per symbol. 445 // 446 // Within each group, we sort the bindings by address. Since bindings are 447 // delta-encoded, sorting them allows for a more compact result. Note that 448 // sorting by address alone ensures that bindings for the same segment / section 449 // are located together, minimizing the number of times we have to emit 450 // BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB. 451 // 452 // Finally, we sort the symbols by the address of their first binding, again 453 // to facilitate the delta-encoding process. 454 template <class Sym> 455 std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> 456 sortBindings(const BindingsMap<const Sym *> &bindingsMap) { 457 std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> bindingsVec( 458 bindingsMap.begin(), bindingsMap.end()); 459 for (auto &p : bindingsVec) { 460 std::vector<BindingEntry> &bindings = p.second; 461 llvm::sort(bindings, [](const BindingEntry &a, const BindingEntry &b) { 462 return a.target.getVA() < b.target.getVA(); 463 }); 464 } 465 llvm::sort(bindingsVec, [](const auto &a, const auto &b) { 466 return a.second[0].target.getVA() < b.second[0].target.getVA(); 467 }); 468 return bindingsVec; 469 } 470 471 // Emit bind opcodes, which are a stream of byte-sized opcodes that dyld 472 // interprets to update a record with the following fields: 473 // * segment index (of the segment to write the symbol addresses to, typically 474 // the __DATA_CONST segment which contains the GOT) 475 // * offset within the segment, indicating the next location to write a binding 476 // * symbol type 477 // * symbol library ordinal (the index of its library's LC_LOAD_DYLIB command) 478 // * symbol name 479 // * addend 480 // When dyld sees BIND_OPCODE_DO_BIND, it uses the current record state to bind 481 // a symbol in the GOT, and increments the segment offset to point to the next 482 // entry. It does *not* clear the record state after doing the bind, so 483 // subsequent opcodes only need to encode the differences between bindings. 484 void BindingSection::finalizeContents() { 485 raw_svector_ostream os{contents}; 486 Binding lastBinding; 487 int16_t lastOrdinal = 0; 488 489 for (auto &p : sortBindings(bindingsMap)) { 490 const DylibSymbol *sym = p.first; 491 std::vector<BindingEntry> &bindings = p.second; 492 uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM; 493 if (sym->isWeakRef()) 494 flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT; 495 os << flags << sym->getName() << '\0' 496 << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER); 497 int16_t ordinal = ordinalForDylibSymbol(*sym); 498 if (ordinal != lastOrdinal) { 499 encodeDylibOrdinal(ordinal, os); 500 lastOrdinal = ordinal; 501 } 502 std::vector<BindIR> opcodes; 503 for (const BindingEntry &b : bindings) 504 encodeBinding(b.target.isec->parent, 505 b.target.isec->getOffset(b.target.offset), b.addend, 506 lastBinding, opcodes); 507 if (config->optimize > 1) 508 optimizeOpcodes(opcodes); 509 for (const auto &op : opcodes) 510 flushOpcodes(op, os); 511 } 512 if (!bindingsMap.empty()) 513 os << static_cast<uint8_t>(BIND_OPCODE_DONE); 514 } 515 516 void BindingSection::writeTo(uint8_t *buf) const { 517 memcpy(buf, contents.data(), contents.size()); 518 } 519 520 WeakBindingSection::WeakBindingSection() 521 : LinkEditSection(segment_names::linkEdit, section_names::weakBinding) {} 522 523 void WeakBindingSection::finalizeContents() { 524 raw_svector_ostream os{contents}; 525 Binding lastBinding; 526 527 for (const Defined *defined : definitions) 528 encodeWeakOverride(defined, os); 529 530 for (auto &p : sortBindings(bindingsMap)) { 531 const Symbol *sym = p.first; 532 std::vector<BindingEntry> &bindings = p.second; 533 os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM) 534 << sym->getName() << '\0' 535 << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER); 536 std::vector<BindIR> opcodes; 537 for (const BindingEntry &b : bindings) 538 encodeBinding(b.target.isec->parent, 539 b.target.isec->getOffset(b.target.offset), b.addend, 540 lastBinding, opcodes); 541 if (config->optimize > 1) 542 optimizeOpcodes(opcodes); 543 for (const auto &op : opcodes) 544 flushOpcodes(op, os); 545 } 546 if (!bindingsMap.empty() || !definitions.empty()) 547 os << static_cast<uint8_t>(BIND_OPCODE_DONE); 548 } 549 550 void WeakBindingSection::writeTo(uint8_t *buf) const { 551 memcpy(buf, contents.data(), contents.size()); 552 } 553 554 StubsSection::StubsSection() 555 : SyntheticSection(segment_names::text, section_names::stubs) { 556 flags = S_SYMBOL_STUBS | S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS; 557 // The stubs section comprises machine instructions, which are aligned to 558 // 4 bytes on the archs we care about. 559 align = 4; 560 reserved2 = target->stubSize; 561 } 562 563 uint64_t StubsSection::getSize() const { 564 return entries.size() * target->stubSize; 565 } 566 567 void StubsSection::writeTo(uint8_t *buf) const { 568 size_t off = 0; 569 for (const Symbol *sym : entries) { 570 target->writeStub(buf + off, *sym); 571 off += target->stubSize; 572 } 573 } 574 575 void StubsSection::finalize() { isFinal = true; } 576 577 bool StubsSection::addEntry(Symbol *sym) { 578 bool inserted = entries.insert(sym); 579 if (inserted) 580 sym->stubsIndex = entries.size() - 1; 581 return inserted; 582 } 583 584 StubHelperSection::StubHelperSection() 585 : SyntheticSection(segment_names::text, section_names::stubHelper) { 586 flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS; 587 align = 4; // This section comprises machine instructions 588 } 589 590 uint64_t StubHelperSection::getSize() const { 591 return target->stubHelperHeaderSize + 592 in.lazyBinding->getEntries().size() * target->stubHelperEntrySize; 593 } 594 595 bool StubHelperSection::isNeeded() const { return in.lazyBinding->isNeeded(); } 596 597 void StubHelperSection::writeTo(uint8_t *buf) const { 598 target->writeStubHelperHeader(buf); 599 size_t off = target->stubHelperHeaderSize; 600 for (const DylibSymbol *sym : in.lazyBinding->getEntries()) { 601 target->writeStubHelperEntry(buf + off, *sym, addr + off); 602 off += target->stubHelperEntrySize; 603 } 604 } 605 606 void StubHelperSection::setup() { 607 Symbol *binder = symtab->addUndefined("dyld_stub_binder", /*file=*/nullptr, 608 /*isWeakRef=*/false); 609 if (auto *undefined = dyn_cast<Undefined>(binder)) 610 treatUndefinedSymbol(*undefined, 611 "lazy binding (normally in libSystem.dylib)"); 612 613 // treatUndefinedSymbol() can replace binder with a DylibSymbol; re-check. 614 stubBinder = dyn_cast_or_null<DylibSymbol>(binder); 615 if (stubBinder == nullptr) 616 return; 617 618 in.got->addEntry(stubBinder); 619 620 in.imageLoaderCache->parent = 621 ConcatOutputSection::getOrCreateForInput(in.imageLoaderCache); 622 inputSections.push_back(in.imageLoaderCache); 623 // Since this isn't in the symbol table or in any input file, the noDeadStrip 624 // argument doesn't matter. 625 dyldPrivate = 626 make<Defined>("__dyld_private", nullptr, in.imageLoaderCache, 0, 0, 627 /*isWeakDef=*/false, 628 /*isExternal=*/false, /*isPrivateExtern=*/false, 629 /*isThumb=*/false, /*isReferencedDynamically=*/false, 630 /*noDeadStrip=*/false); 631 dyldPrivate->used = true; 632 } 633 634 LazyPointerSection::LazyPointerSection() 635 : SyntheticSection(segment_names::data, section_names::lazySymbolPtr) { 636 align = target->wordSize; 637 flags = S_LAZY_SYMBOL_POINTERS; 638 } 639 640 uint64_t LazyPointerSection::getSize() const { 641 return in.stubs->getEntries().size() * target->wordSize; 642 } 643 644 bool LazyPointerSection::isNeeded() const { 645 return !in.stubs->getEntries().empty(); 646 } 647 648 void LazyPointerSection::writeTo(uint8_t *buf) const { 649 size_t off = 0; 650 for (const Symbol *sym : in.stubs->getEntries()) { 651 if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) { 652 if (dysym->hasStubsHelper()) { 653 uint64_t stubHelperOffset = 654 target->stubHelperHeaderSize + 655 dysym->stubsHelperIndex * target->stubHelperEntrySize; 656 write64le(buf + off, in.stubHelper->addr + stubHelperOffset); 657 } 658 } else { 659 write64le(buf + off, sym->getVA()); 660 } 661 off += target->wordSize; 662 } 663 } 664 665 LazyBindingSection::LazyBindingSection() 666 : LinkEditSection(segment_names::linkEdit, section_names::lazyBinding) {} 667 668 void LazyBindingSection::finalizeContents() { 669 // TODO: Just precompute output size here instead of writing to a temporary 670 // buffer 671 for (DylibSymbol *sym : entries) 672 sym->lazyBindOffset = encode(*sym); 673 } 674 675 void LazyBindingSection::writeTo(uint8_t *buf) const { 676 memcpy(buf, contents.data(), contents.size()); 677 } 678 679 void LazyBindingSection::addEntry(DylibSymbol *dysym) { 680 if (entries.insert(dysym)) { 681 dysym->stubsHelperIndex = entries.size() - 1; 682 in.rebase->addEntry(in.lazyPointers->isec, 683 dysym->stubsIndex * target->wordSize); 684 } 685 } 686 687 // Unlike the non-lazy binding section, the bind opcodes in this section aren't 688 // interpreted all at once. Rather, dyld will start interpreting opcodes at a 689 // given offset, typically only binding a single symbol before it finds a 690 // BIND_OPCODE_DONE terminator. As such, unlike in the non-lazy-binding case, 691 // we cannot encode just the differences between symbols; we have to emit the 692 // complete bind information for each symbol. 693 uint32_t LazyBindingSection::encode(const DylibSymbol &sym) { 694 uint32_t opstreamOffset = contents.size(); 695 OutputSegment *dataSeg = in.lazyPointers->parent; 696 os << static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | 697 dataSeg->index); 698 uint64_t offset = in.lazyPointers->addr - dataSeg->addr + 699 sym.stubsIndex * target->wordSize; 700 encodeULEB128(offset, os); 701 encodeDylibOrdinal(ordinalForDylibSymbol(sym), os); 702 703 uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM; 704 if (sym.isWeakRef()) 705 flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT; 706 707 os << flags << sym.getName() << '\0' 708 << static_cast<uint8_t>(BIND_OPCODE_DO_BIND) 709 << static_cast<uint8_t>(BIND_OPCODE_DONE); 710 return opstreamOffset; 711 } 712 713 ExportSection::ExportSection() 714 : LinkEditSection(segment_names::linkEdit, section_names::export_) {} 715 716 void ExportSection::finalizeContents() { 717 trieBuilder.setImageBase(in.header->addr); 718 for (const Symbol *sym : symtab->getSymbols()) { 719 if (const auto *defined = dyn_cast<Defined>(sym)) { 720 if (defined->privateExtern || !defined->isLive()) 721 continue; 722 trieBuilder.addSymbol(*defined); 723 hasWeakSymbol = hasWeakSymbol || sym->isWeakDef(); 724 } 725 } 726 size = trieBuilder.build(); 727 } 728 729 void ExportSection::writeTo(uint8_t *buf) const { trieBuilder.writeTo(buf); } 730 731 DataInCodeSection::DataInCodeSection() 732 : LinkEditSection(segment_names::linkEdit, section_names::dataInCode) {} 733 734 template <class LP> 735 static std::vector<MachO::data_in_code_entry> collectDataInCodeEntries() { 736 std::vector<MachO::data_in_code_entry> dataInCodeEntries; 737 for (const InputFile *inputFile : inputFiles) { 738 if (!isa<ObjFile>(inputFile)) 739 continue; 740 const ObjFile *objFile = cast<ObjFile>(inputFile); 741 ArrayRef<MachO::data_in_code_entry> entries = objFile->getDataInCode(); 742 if (entries.empty()) 743 continue; 744 745 assert(is_sorted(dataInCodeEntries, [](const data_in_code_entry &lhs, 746 const data_in_code_entry &rhs) { 747 return lhs.offset < rhs.offset; 748 })); 749 // For each code subsection find 'data in code' entries residing in it. 750 // Compute the new offset values as 751 // <offset within subsection> + <subsection address> - <__TEXT address>. 752 for (const Section §ion : objFile->sections) { 753 for (const Subsection &subsec : section.subsections) { 754 const InputSection *isec = subsec.isec; 755 if (!isCodeSection(isec)) 756 continue; 757 if (cast<ConcatInputSection>(isec)->shouldOmitFromOutput()) 758 continue; 759 const uint64_t beginAddr = section.address + subsec.offset; 760 auto it = llvm::lower_bound( 761 entries, beginAddr, 762 [](const MachO::data_in_code_entry &entry, uint64_t addr) { 763 return entry.offset < addr; 764 }); 765 const uint64_t endAddr = beginAddr + isec->getFileSize(); 766 for (const auto end = entries.end(); 767 it != end && it->offset + it->length <= endAddr; ++it) 768 dataInCodeEntries.push_back( 769 {static_cast<uint32_t>(isec->getVA(it->offset - beginAddr) - 770 in.header->addr), 771 it->length, it->kind}); 772 } 773 } 774 } 775 return dataInCodeEntries; 776 } 777 778 void DataInCodeSection::finalizeContents() { 779 entries = target->wordSize == 8 ? collectDataInCodeEntries<LP64>() 780 : collectDataInCodeEntries<ILP32>(); 781 } 782 783 void DataInCodeSection::writeTo(uint8_t *buf) const { 784 if (!entries.empty()) 785 memcpy(buf, entries.data(), getRawSize()); 786 } 787 788 FunctionStartsSection::FunctionStartsSection() 789 : LinkEditSection(segment_names::linkEdit, section_names::functionStarts) {} 790 791 void FunctionStartsSection::finalizeContents() { 792 raw_svector_ostream os{contents}; 793 std::vector<uint64_t> addrs; 794 for (const InputFile *file : inputFiles) { 795 if (auto *objFile = dyn_cast<ObjFile>(file)) { 796 for (const Symbol *sym : objFile->symbols) { 797 if (const auto *defined = dyn_cast_or_null<Defined>(sym)) { 798 if (!defined->isec || !isCodeSection(defined->isec) || 799 !defined->isLive()) 800 continue; 801 // TODO: Add support for thumbs, in that case 802 // the lowest bit of nextAddr needs to be set to 1. 803 addrs.push_back(defined->getVA()); 804 } 805 } 806 } 807 } 808 llvm::sort(addrs); 809 uint64_t addr = in.header->addr; 810 for (uint64_t nextAddr : addrs) { 811 uint64_t delta = nextAddr - addr; 812 if (delta == 0) 813 continue; 814 encodeULEB128(delta, os); 815 addr = nextAddr; 816 } 817 os << '\0'; 818 } 819 820 void FunctionStartsSection::writeTo(uint8_t *buf) const { 821 memcpy(buf, contents.data(), contents.size()); 822 } 823 824 SymtabSection::SymtabSection(StringTableSection &stringTableSection) 825 : LinkEditSection(segment_names::linkEdit, section_names::symbolTable), 826 stringTableSection(stringTableSection) {} 827 828 void SymtabSection::emitBeginSourceStab(DWARFUnit *compileUnit) { 829 StabsEntry stab(N_SO); 830 SmallString<261> dir(compileUnit->getCompilationDir()); 831 StringRef sep = sys::path::get_separator(); 832 // We don't use `path::append` here because we want an empty `dir` to result 833 // in an absolute path. `append` would give us a relative path for that case. 834 if (!dir.endswith(sep)) 835 dir += sep; 836 stab.strx = stringTableSection.addString( 837 saver.save(dir + compileUnit->getUnitDIE().getShortName())); 838 stabs.emplace_back(std::move(stab)); 839 } 840 841 void SymtabSection::emitEndSourceStab() { 842 StabsEntry stab(N_SO); 843 stab.sect = 1; 844 stabs.emplace_back(std::move(stab)); 845 } 846 847 void SymtabSection::emitObjectFileStab(ObjFile *file) { 848 StabsEntry stab(N_OSO); 849 stab.sect = target->cpuSubtype; 850 SmallString<261> path(!file->archiveName.empty() ? file->archiveName 851 : file->getName()); 852 std::error_code ec = sys::fs::make_absolute(path); 853 if (ec) 854 fatal("failed to get absolute path for " + path); 855 856 if (!file->archiveName.empty()) 857 path.append({"(", file->getName(), ")"}); 858 859 StringRef adjustedPath = saver.save(path.str()); 860 adjustedPath.consume_front(config->osoPrefix); 861 862 stab.strx = stringTableSection.addString(adjustedPath); 863 stab.desc = 1; 864 stab.value = file->modTime; 865 stabs.emplace_back(std::move(stab)); 866 } 867 868 void SymtabSection::emitEndFunStab(Defined *defined) { 869 StabsEntry stab(N_FUN); 870 stab.value = defined->size; 871 stabs.emplace_back(std::move(stab)); 872 } 873 874 void SymtabSection::emitStabs() { 875 if (config->omitDebugInfo) 876 return; 877 878 for (const std::string &s : config->astPaths) { 879 StabsEntry astStab(N_AST); 880 astStab.strx = stringTableSection.addString(s); 881 stabs.emplace_back(std::move(astStab)); 882 } 883 884 std::vector<Defined *> symbolsNeedingStabs; 885 for (const SymtabEntry &entry : 886 concat<SymtabEntry>(localSymbols, externalSymbols)) { 887 Symbol *sym = entry.sym; 888 assert(sym->isLive() && 889 "dead symbols should not be in localSymbols, externalSymbols"); 890 if (auto *defined = dyn_cast<Defined>(sym)) { 891 if (defined->isAbsolute()) 892 continue; 893 InputSection *isec = defined->isec; 894 ObjFile *file = dyn_cast_or_null<ObjFile>(isec->getFile()); 895 if (!file || !file->compileUnit) 896 continue; 897 symbolsNeedingStabs.push_back(defined); 898 } 899 } 900 901 llvm::stable_sort(symbolsNeedingStabs, [&](Defined *a, Defined *b) { 902 return a->isec->getFile()->id < b->isec->getFile()->id; 903 }); 904 905 // Emit STABS symbols so that dsymutil and/or the debugger can map address 906 // regions in the final binary to the source and object files from which they 907 // originated. 908 InputFile *lastFile = nullptr; 909 for (Defined *defined : symbolsNeedingStabs) { 910 InputSection *isec = defined->isec; 911 ObjFile *file = cast<ObjFile>(isec->getFile()); 912 913 if (lastFile == nullptr || lastFile != file) { 914 if (lastFile != nullptr) 915 emitEndSourceStab(); 916 lastFile = file; 917 918 emitBeginSourceStab(file->compileUnit); 919 emitObjectFileStab(file); 920 } 921 922 StabsEntry symStab; 923 symStab.sect = defined->isec->parent->index; 924 symStab.strx = stringTableSection.addString(defined->getName()); 925 symStab.value = defined->getVA(); 926 927 if (isCodeSection(isec)) { 928 symStab.type = N_FUN; 929 stabs.emplace_back(std::move(symStab)); 930 emitEndFunStab(defined); 931 } else { 932 symStab.type = defined->isExternal() ? N_GSYM : N_STSYM; 933 stabs.emplace_back(std::move(symStab)); 934 } 935 } 936 937 if (!stabs.empty()) 938 emitEndSourceStab(); 939 } 940 941 void SymtabSection::finalizeContents() { 942 auto addSymbol = [&](std::vector<SymtabEntry> &symbols, Symbol *sym) { 943 uint32_t strx = stringTableSection.addString(sym->getName()); 944 symbols.push_back({sym, strx}); 945 }; 946 947 // Local symbols aren't in the SymbolTable, so we walk the list of object 948 // files to gather them. 949 for (const InputFile *file : inputFiles) { 950 if (auto *objFile = dyn_cast<ObjFile>(file)) { 951 for (Symbol *sym : objFile->symbols) { 952 if (auto *defined = dyn_cast_or_null<Defined>(sym)) { 953 if (!defined->isExternal() && defined->isLive()) { 954 StringRef name = defined->getName(); 955 if (!name.startswith("l") && !name.startswith("L")) 956 addSymbol(localSymbols, sym); 957 } 958 } 959 } 960 } 961 } 962 963 // __dyld_private is a local symbol too. It's linker-created and doesn't 964 // exist in any object file. 965 if (Defined *dyldPrivate = in.stubHelper->dyldPrivate) 966 addSymbol(localSymbols, dyldPrivate); 967 968 for (Symbol *sym : symtab->getSymbols()) { 969 if (!sym->isLive()) 970 continue; 971 if (auto *defined = dyn_cast<Defined>(sym)) { 972 if (!defined->includeInSymtab) 973 continue; 974 assert(defined->isExternal()); 975 if (defined->privateExtern) 976 addSymbol(localSymbols, defined); 977 else 978 addSymbol(externalSymbols, defined); 979 } else if (auto *dysym = dyn_cast<DylibSymbol>(sym)) { 980 if (dysym->isReferenced()) 981 addSymbol(undefinedSymbols, sym); 982 } 983 } 984 985 emitStabs(); 986 uint32_t symtabIndex = stabs.size(); 987 for (const SymtabEntry &entry : 988 concat<SymtabEntry>(localSymbols, externalSymbols, undefinedSymbols)) { 989 entry.sym->symtabIndex = symtabIndex++; 990 } 991 } 992 993 uint32_t SymtabSection::getNumSymbols() const { 994 return stabs.size() + localSymbols.size() + externalSymbols.size() + 995 undefinedSymbols.size(); 996 } 997 998 // This serves to hide (type-erase) the template parameter from SymtabSection. 999 template <class LP> class SymtabSectionImpl final : public SymtabSection { 1000 public: 1001 SymtabSectionImpl(StringTableSection &stringTableSection) 1002 : SymtabSection(stringTableSection) {} 1003 uint64_t getRawSize() const override; 1004 void writeTo(uint8_t *buf) const override; 1005 }; 1006 1007 template <class LP> uint64_t SymtabSectionImpl<LP>::getRawSize() const { 1008 return getNumSymbols() * sizeof(typename LP::nlist); 1009 } 1010 1011 template <class LP> void SymtabSectionImpl<LP>::writeTo(uint8_t *buf) const { 1012 auto *nList = reinterpret_cast<typename LP::nlist *>(buf); 1013 // Emit the stabs entries before the "real" symbols. We cannot emit them 1014 // after as that would render Symbol::symtabIndex inaccurate. 1015 for (const StabsEntry &entry : stabs) { 1016 nList->n_strx = entry.strx; 1017 nList->n_type = entry.type; 1018 nList->n_sect = entry.sect; 1019 nList->n_desc = entry.desc; 1020 nList->n_value = entry.value; 1021 ++nList; 1022 } 1023 1024 for (const SymtabEntry &entry : concat<const SymtabEntry>( 1025 localSymbols, externalSymbols, undefinedSymbols)) { 1026 nList->n_strx = entry.strx; 1027 // TODO populate n_desc with more flags 1028 if (auto *defined = dyn_cast<Defined>(entry.sym)) { 1029 uint8_t scope = 0; 1030 if (defined->privateExtern) { 1031 // Private external -- dylib scoped symbol. 1032 // Promote to non-external at link time. 1033 scope = N_PEXT; 1034 } else if (defined->isExternal()) { 1035 // Normal global symbol. 1036 scope = N_EXT; 1037 } else { 1038 // TU-local symbol from localSymbols. 1039 scope = 0; 1040 } 1041 1042 if (defined->isAbsolute()) { 1043 nList->n_type = scope | N_ABS; 1044 nList->n_sect = NO_SECT; 1045 nList->n_value = defined->value; 1046 } else { 1047 nList->n_type = scope | N_SECT; 1048 nList->n_sect = defined->isec->parent->index; 1049 // For the N_SECT symbol type, n_value is the address of the symbol 1050 nList->n_value = defined->getVA(); 1051 } 1052 nList->n_desc |= defined->thumb ? N_ARM_THUMB_DEF : 0; 1053 nList->n_desc |= defined->isExternalWeakDef() ? N_WEAK_DEF : 0; 1054 nList->n_desc |= 1055 defined->referencedDynamically ? REFERENCED_DYNAMICALLY : 0; 1056 } else if (auto *dysym = dyn_cast<DylibSymbol>(entry.sym)) { 1057 uint16_t n_desc = nList->n_desc; 1058 int16_t ordinal = ordinalForDylibSymbol(*dysym); 1059 if (ordinal == BIND_SPECIAL_DYLIB_FLAT_LOOKUP) 1060 SET_LIBRARY_ORDINAL(n_desc, DYNAMIC_LOOKUP_ORDINAL); 1061 else if (ordinal == BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE) 1062 SET_LIBRARY_ORDINAL(n_desc, EXECUTABLE_ORDINAL); 1063 else { 1064 assert(ordinal > 0); 1065 SET_LIBRARY_ORDINAL(n_desc, static_cast<uint8_t>(ordinal)); 1066 } 1067 1068 nList->n_type = N_EXT; 1069 n_desc |= dysym->isWeakDef() ? N_WEAK_DEF : 0; 1070 n_desc |= dysym->isWeakRef() ? N_WEAK_REF : 0; 1071 nList->n_desc = n_desc; 1072 } 1073 ++nList; 1074 } 1075 } 1076 1077 template <class LP> 1078 SymtabSection * 1079 macho::makeSymtabSection(StringTableSection &stringTableSection) { 1080 return make<SymtabSectionImpl<LP>>(stringTableSection); 1081 } 1082 1083 IndirectSymtabSection::IndirectSymtabSection() 1084 : LinkEditSection(segment_names::linkEdit, 1085 section_names::indirectSymbolTable) {} 1086 1087 uint32_t IndirectSymtabSection::getNumSymbols() const { 1088 return in.got->getEntries().size() + in.tlvPointers->getEntries().size() + 1089 2 * in.stubs->getEntries().size(); 1090 } 1091 1092 bool IndirectSymtabSection::isNeeded() const { 1093 return in.got->isNeeded() || in.tlvPointers->isNeeded() || 1094 in.stubs->isNeeded(); 1095 } 1096 1097 void IndirectSymtabSection::finalizeContents() { 1098 uint32_t off = 0; 1099 in.got->reserved1 = off; 1100 off += in.got->getEntries().size(); 1101 in.tlvPointers->reserved1 = off; 1102 off += in.tlvPointers->getEntries().size(); 1103 in.stubs->reserved1 = off; 1104 off += in.stubs->getEntries().size(); 1105 in.lazyPointers->reserved1 = off; 1106 } 1107 1108 static uint32_t indirectValue(const Symbol *sym) { 1109 if (sym->symtabIndex == UINT32_MAX) 1110 return INDIRECT_SYMBOL_LOCAL; 1111 if (auto *defined = dyn_cast<Defined>(sym)) 1112 if (defined->privateExtern) 1113 return INDIRECT_SYMBOL_LOCAL; 1114 return sym->symtabIndex; 1115 } 1116 1117 void IndirectSymtabSection::writeTo(uint8_t *buf) const { 1118 uint32_t off = 0; 1119 for (const Symbol *sym : in.got->getEntries()) { 1120 write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); 1121 ++off; 1122 } 1123 for (const Symbol *sym : in.tlvPointers->getEntries()) { 1124 write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); 1125 ++off; 1126 } 1127 for (const Symbol *sym : in.stubs->getEntries()) { 1128 write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); 1129 ++off; 1130 } 1131 // There is a 1:1 correspondence between stubs and LazyPointerSection 1132 // entries. But giving __stubs and __la_symbol_ptr the same reserved1 1133 // (the offset into the indirect symbol table) so that they both refer 1134 // to the same range of offsets confuses `strip`, so write the stubs 1135 // symbol table offsets a second time. 1136 for (const Symbol *sym : in.stubs->getEntries()) { 1137 write32le(buf + off * sizeof(uint32_t), indirectValue(sym)); 1138 ++off; 1139 } 1140 } 1141 1142 StringTableSection::StringTableSection() 1143 : LinkEditSection(segment_names::linkEdit, section_names::stringTable) {} 1144 1145 uint32_t StringTableSection::addString(StringRef str) { 1146 uint32_t strx = size; 1147 strings.push_back(str); // TODO: consider deduplicating strings 1148 size += str.size() + 1; // account for null terminator 1149 return strx; 1150 } 1151 1152 void StringTableSection::writeTo(uint8_t *buf) const { 1153 uint32_t off = 0; 1154 for (StringRef str : strings) { 1155 memcpy(buf + off, str.data(), str.size()); 1156 off += str.size() + 1; // account for null terminator 1157 } 1158 } 1159 1160 static_assert((CodeSignatureSection::blobHeadersSize % 8) == 0, ""); 1161 static_assert((CodeSignatureSection::fixedHeadersSize % 8) == 0, ""); 1162 1163 CodeSignatureSection::CodeSignatureSection() 1164 : LinkEditSection(segment_names::linkEdit, section_names::codeSignature) { 1165 align = 16; // required by libstuff 1166 // FIXME: Consider using finalOutput instead of outputFile. 1167 fileName = config->outputFile; 1168 size_t slashIndex = fileName.rfind("/"); 1169 if (slashIndex != std::string::npos) 1170 fileName = fileName.drop_front(slashIndex + 1); 1171 1172 // NOTE: Any changes to these calculations should be repeated 1173 // in llvm-objcopy's MachOLayoutBuilder::layoutTail. 1174 allHeadersSize = alignTo<16>(fixedHeadersSize + fileName.size() + 1); 1175 fileNamePad = allHeadersSize - fixedHeadersSize - fileName.size(); 1176 } 1177 1178 uint32_t CodeSignatureSection::getBlockCount() const { 1179 return (fileOff + blockSize - 1) / blockSize; 1180 } 1181 1182 uint64_t CodeSignatureSection::getRawSize() const { 1183 return allHeadersSize + getBlockCount() * hashSize; 1184 } 1185 1186 void CodeSignatureSection::writeHashes(uint8_t *buf) const { 1187 // NOTE: Changes to this functionality should be repeated in llvm-objcopy's 1188 // MachOWriter::writeSignatureData. 1189 uint8_t *code = buf; 1190 uint8_t *codeEnd = buf + fileOff; 1191 uint8_t *hashes = codeEnd + allHeadersSize; 1192 while (code < codeEnd) { 1193 StringRef block(reinterpret_cast<char *>(code), 1194 std::min(codeEnd - code, static_cast<ssize_t>(blockSize))); 1195 SHA256 hasher; 1196 hasher.update(block); 1197 StringRef hash = hasher.final(); 1198 assert(hash.size() == hashSize); 1199 memcpy(hashes, hash.data(), hashSize); 1200 code += blockSize; 1201 hashes += hashSize; 1202 } 1203 #if defined(__APPLE__) 1204 // This is macOS-specific work-around and makes no sense for any 1205 // other host OS. See https://openradar.appspot.com/FB8914231 1206 // 1207 // The macOS kernel maintains a signature-verification cache to 1208 // quickly validate applications at time of execve(2). The trouble 1209 // is that for the kernel creates the cache entry at the time of the 1210 // mmap(2) call, before we have a chance to write either the code to 1211 // sign or the signature header+hashes. The fix is to invalidate 1212 // all cached data associated with the output file, thus discarding 1213 // the bogus prematurely-cached signature. 1214 msync(buf, fileOff + getSize(), MS_INVALIDATE); 1215 #endif 1216 } 1217 1218 void CodeSignatureSection::writeTo(uint8_t *buf) const { 1219 // NOTE: Changes to this functionality should be repeated in llvm-objcopy's 1220 // MachOWriter::writeSignatureData. 1221 uint32_t signatureSize = static_cast<uint32_t>(getSize()); 1222 auto *superBlob = reinterpret_cast<CS_SuperBlob *>(buf); 1223 write32be(&superBlob->magic, CSMAGIC_EMBEDDED_SIGNATURE); 1224 write32be(&superBlob->length, signatureSize); 1225 write32be(&superBlob->count, 1); 1226 auto *blobIndex = reinterpret_cast<CS_BlobIndex *>(&superBlob[1]); 1227 write32be(&blobIndex->type, CSSLOT_CODEDIRECTORY); 1228 write32be(&blobIndex->offset, blobHeadersSize); 1229 auto *codeDirectory = 1230 reinterpret_cast<CS_CodeDirectory *>(buf + blobHeadersSize); 1231 write32be(&codeDirectory->magic, CSMAGIC_CODEDIRECTORY); 1232 write32be(&codeDirectory->length, signatureSize - blobHeadersSize); 1233 write32be(&codeDirectory->version, CS_SUPPORTSEXECSEG); 1234 write32be(&codeDirectory->flags, CS_ADHOC | CS_LINKER_SIGNED); 1235 write32be(&codeDirectory->hashOffset, 1236 sizeof(CS_CodeDirectory) + fileName.size() + fileNamePad); 1237 write32be(&codeDirectory->identOffset, sizeof(CS_CodeDirectory)); 1238 codeDirectory->nSpecialSlots = 0; 1239 write32be(&codeDirectory->nCodeSlots, getBlockCount()); 1240 write32be(&codeDirectory->codeLimit, fileOff); 1241 codeDirectory->hashSize = static_cast<uint8_t>(hashSize); 1242 codeDirectory->hashType = kSecCodeSignatureHashSHA256; 1243 codeDirectory->platform = 0; 1244 codeDirectory->pageSize = blockSizeShift; 1245 codeDirectory->spare2 = 0; 1246 codeDirectory->scatterOffset = 0; 1247 codeDirectory->teamOffset = 0; 1248 codeDirectory->spare3 = 0; 1249 codeDirectory->codeLimit64 = 0; 1250 OutputSegment *textSeg = getOrCreateOutputSegment(segment_names::text); 1251 write64be(&codeDirectory->execSegBase, textSeg->fileOff); 1252 write64be(&codeDirectory->execSegLimit, textSeg->fileSize); 1253 write64be(&codeDirectory->execSegFlags, 1254 config->outputType == MH_EXECUTE ? CS_EXECSEG_MAIN_BINARY : 0); 1255 auto *id = reinterpret_cast<char *>(&codeDirectory[1]); 1256 memcpy(id, fileName.begin(), fileName.size()); 1257 memset(id + fileName.size(), 0, fileNamePad); 1258 } 1259 1260 BitcodeBundleSection::BitcodeBundleSection() 1261 : SyntheticSection(segment_names::llvm, section_names::bitcodeBundle) {} 1262 1263 class ErrorCodeWrapper { 1264 public: 1265 explicit ErrorCodeWrapper(std::error_code ec) : errorCode(ec.value()) {} 1266 explicit ErrorCodeWrapper(int ec) : errorCode(ec) {} 1267 operator int() const { return errorCode; } 1268 1269 private: 1270 int errorCode; 1271 }; 1272 1273 #define CHECK_EC(exp) \ 1274 do { \ 1275 ErrorCodeWrapper ec(exp); \ 1276 if (ec) \ 1277 fatal(Twine("operation failed with error code ") + Twine(ec) + ": " + \ 1278 #exp); \ 1279 } while (0); 1280 1281 void BitcodeBundleSection::finalize() { 1282 #ifdef LLVM_HAVE_LIBXAR 1283 using namespace llvm::sys::fs; 1284 CHECK_EC(createTemporaryFile("bitcode-bundle", "xar", xarPath)); 1285 1286 xar_t xar(xar_open(xarPath.data(), O_RDWR)); 1287 if (!xar) 1288 fatal("failed to open XAR temporary file at " + xarPath); 1289 CHECK_EC(xar_opt_set(xar, XAR_OPT_COMPRESSION, XAR_OPT_VAL_NONE)); 1290 // FIXME: add more data to XAR 1291 CHECK_EC(xar_close(xar)); 1292 1293 file_size(xarPath, xarSize); 1294 #endif // defined(LLVM_HAVE_LIBXAR) 1295 } 1296 1297 void BitcodeBundleSection::writeTo(uint8_t *buf) const { 1298 using namespace llvm::sys::fs; 1299 file_t handle = 1300 CHECK(openNativeFile(xarPath, CD_OpenExisting, FA_Read, OF_None), 1301 "failed to open XAR file"); 1302 std::error_code ec; 1303 mapped_file_region xarMap(handle, mapped_file_region::mapmode::readonly, 1304 xarSize, 0, ec); 1305 if (ec) 1306 fatal("failed to map XAR file"); 1307 memcpy(buf, xarMap.const_data(), xarSize); 1308 1309 closeFile(handle); 1310 remove(xarPath); 1311 } 1312 1313 CStringSection::CStringSection() 1314 : SyntheticSection(segment_names::text, section_names::cString) { 1315 flags = S_CSTRING_LITERALS; 1316 } 1317 1318 void CStringSection::addInput(CStringInputSection *isec) { 1319 isec->parent = this; 1320 inputs.push_back(isec); 1321 if (isec->align > align) 1322 align = isec->align; 1323 } 1324 1325 void CStringSection::writeTo(uint8_t *buf) const { 1326 for (const CStringInputSection *isec : inputs) { 1327 for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) { 1328 if (!isec->pieces[i].live) 1329 continue; 1330 StringRef string = isec->getStringRef(i); 1331 memcpy(buf + isec->pieces[i].outSecOff, string.data(), string.size()); 1332 } 1333 } 1334 } 1335 1336 void CStringSection::finalizeContents() { 1337 uint64_t offset = 0; 1338 for (CStringInputSection *isec : inputs) { 1339 for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) { 1340 if (!isec->pieces[i].live) 1341 continue; 1342 uint32_t pieceAlign = MinAlign(isec->pieces[i].inSecOff, align); 1343 offset = alignTo(offset, pieceAlign); 1344 isec->pieces[i].outSecOff = offset; 1345 isec->isFinal = true; 1346 StringRef string = isec->getStringRef(i); 1347 offset += string.size(); 1348 } 1349 } 1350 size = offset; 1351 } 1352 // Mergeable cstring literals are found under the __TEXT,__cstring section. In 1353 // contrast to ELF, which puts strings that need different alignments into 1354 // different sections, clang's Mach-O backend puts them all in one section. 1355 // Strings that need to be aligned have the .p2align directive emitted before 1356 // them, which simply translates into zero padding in the object file. 1357 // 1358 // I *think* ld64 extracts the desired per-string alignment from this data by 1359 // preserving each string's offset from the last section-aligned address. I'm 1360 // not entirely certain since it doesn't seem consistent about doing this, and 1361 // in fact doesn't seem to be correct in general: we can in fact can induce ld64 1362 // to produce a crashing binary just by linking in an additional object file 1363 // that only contains a duplicate cstring at a different alignment. See PR50563 1364 // for details. 1365 // 1366 // On x86_64, the cstrings we've seen so far that require special alignment are 1367 // all accessed by SIMD operations -- x86_64 requires SIMD accesses to be 1368 // 16-byte-aligned. arm64 also seems to require 16-byte-alignment in some cases 1369 // (PR50791), but I haven't tracked down the root cause. So for now, I'm just 1370 // aligning all strings to 16 bytes. This is indeed wasteful, but 1371 // implementation-wise it's simpler than preserving per-string 1372 // alignment+offsets. It also avoids the aforementioned crash after 1373 // deduplication of differently-aligned strings. Finally, the overhead is not 1374 // huge: using 16-byte alignment (vs no alignment) is only a 0.5% size overhead 1375 // when linking chromium_framework on x86_64. 1376 DeduplicatedCStringSection::DeduplicatedCStringSection() 1377 : builder(StringTableBuilder::RAW, /*Alignment=*/16) {} 1378 1379 void DeduplicatedCStringSection::finalizeContents() { 1380 // Add all string pieces to the string table builder to create section 1381 // contents. 1382 for (CStringInputSection *isec : inputs) { 1383 for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) 1384 if (isec->pieces[i].live) 1385 isec->pieces[i].outSecOff = 1386 builder.add(isec->getCachedHashStringRef(i)); 1387 isec->isFinal = true; 1388 } 1389 1390 builder.finalizeInOrder(); 1391 } 1392 1393 // This section is actually emitted as __TEXT,__const by ld64, but clang may 1394 // emit input sections of that name, and LLD doesn't currently support mixing 1395 // synthetic and concat-type OutputSections. To work around this, I've given 1396 // our merged-literals section a different name. 1397 WordLiteralSection::WordLiteralSection() 1398 : SyntheticSection(segment_names::text, section_names::literals) { 1399 align = 16; 1400 } 1401 1402 void WordLiteralSection::addInput(WordLiteralInputSection *isec) { 1403 isec->parent = this; 1404 inputs.push_back(isec); 1405 } 1406 1407 void WordLiteralSection::finalizeContents() { 1408 for (WordLiteralInputSection *isec : inputs) { 1409 // We do all processing of the InputSection here, so it will be effectively 1410 // finalized. 1411 isec->isFinal = true; 1412 const uint8_t *buf = isec->data.data(); 1413 switch (sectionType(isec->getFlags())) { 1414 case S_4BYTE_LITERALS: { 1415 for (size_t off = 0, e = isec->data.size(); off < e; off += 4) { 1416 if (!isec->isLive(off)) 1417 continue; 1418 uint32_t value = *reinterpret_cast<const uint32_t *>(buf + off); 1419 literal4Map.emplace(value, literal4Map.size()); 1420 } 1421 break; 1422 } 1423 case S_8BYTE_LITERALS: { 1424 for (size_t off = 0, e = isec->data.size(); off < e; off += 8) { 1425 if (!isec->isLive(off)) 1426 continue; 1427 uint64_t value = *reinterpret_cast<const uint64_t *>(buf + off); 1428 literal8Map.emplace(value, literal8Map.size()); 1429 } 1430 break; 1431 } 1432 case S_16BYTE_LITERALS: { 1433 for (size_t off = 0, e = isec->data.size(); off < e; off += 16) { 1434 if (!isec->isLive(off)) 1435 continue; 1436 UInt128 value = *reinterpret_cast<const UInt128 *>(buf + off); 1437 literal16Map.emplace(value, literal16Map.size()); 1438 } 1439 break; 1440 } 1441 default: 1442 llvm_unreachable("invalid literal section type"); 1443 } 1444 } 1445 } 1446 1447 void WordLiteralSection::writeTo(uint8_t *buf) const { 1448 // Note that we don't attempt to do any endianness conversion in addInput(), 1449 // so we don't do it here either -- just write out the original value, 1450 // byte-for-byte. 1451 for (const auto &p : literal16Map) 1452 memcpy(buf + p.second * 16, &p.first, 16); 1453 buf += literal16Map.size() * 16; 1454 1455 for (const auto &p : literal8Map) 1456 memcpy(buf + p.second * 8, &p.first, 8); 1457 buf += literal8Map.size() * 8; 1458 1459 for (const auto &p : literal4Map) 1460 memcpy(buf + p.second * 4, &p.first, 4); 1461 } 1462 1463 void macho::createSyntheticSymbols() { 1464 auto addHeaderSymbol = [](const char *name) { 1465 symtab->addSynthetic(name, in.header->isec, /*value=*/0, 1466 /*isPrivateExtern=*/true, /*includeInSymtab=*/false, 1467 /*referencedDynamically=*/false); 1468 }; 1469 1470 switch (config->outputType) { 1471 // FIXME: Assign the right address value for these symbols 1472 // (rather than 0). But we need to do that after assignAddresses(). 1473 case MH_EXECUTE: 1474 // If linking PIE, __mh_execute_header is a defined symbol in 1475 // __TEXT, __text) 1476 // Otherwise, it's an absolute symbol. 1477 if (config->isPic) 1478 symtab->addSynthetic("__mh_execute_header", in.header->isec, /*value=*/0, 1479 /*isPrivateExtern=*/false, /*includeInSymtab=*/true, 1480 /*referencedDynamically=*/true); 1481 else 1482 symtab->addSynthetic("__mh_execute_header", /*isec=*/nullptr, /*value=*/0, 1483 /*isPrivateExtern=*/false, /*includeInSymtab=*/true, 1484 /*referencedDynamically=*/true); 1485 break; 1486 1487 // The following symbols are N_SECT symbols, even though the header is not 1488 // part of any section and that they are private to the bundle/dylib/object 1489 // they are part of. 1490 case MH_BUNDLE: 1491 addHeaderSymbol("__mh_bundle_header"); 1492 break; 1493 case MH_DYLIB: 1494 addHeaderSymbol("__mh_dylib_header"); 1495 break; 1496 case MH_DYLINKER: 1497 addHeaderSymbol("__mh_dylinker_header"); 1498 break; 1499 case MH_OBJECT: 1500 addHeaderSymbol("__mh_object_header"); 1501 break; 1502 default: 1503 llvm_unreachable("unexpected outputType"); 1504 break; 1505 } 1506 1507 // The Itanium C++ ABI requires dylibs to pass a pointer to __cxa_atexit 1508 // which does e.g. cleanup of static global variables. The ABI document 1509 // says that the pointer can point to any address in one of the dylib's 1510 // segments, but in practice ld64 seems to set it to point to the header, 1511 // so that's what's implemented here. 1512 addHeaderSymbol("___dso_handle"); 1513 } 1514 1515 template SymtabSection *macho::makeSymtabSection<LP64>(StringTableSection &); 1516 template SymtabSection *macho::makeSymtabSection<ILP32>(StringTableSection &); 1517