1 //===- ConcatOutputSection.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "ConcatOutputSection.h"
10 #include "Config.h"
11 #include "OutputSegment.h"
12 #include "SymbolTable.h"
13 #include "Symbols.h"
14 #include "SyntheticSections.h"
15 #include "Target.h"
16 #include "lld/Common/ErrorHandler.h"
17 #include "lld/Common/Memory.h"
18 #include "llvm/BinaryFormat/MachO.h"
19 #include "llvm/Support/ScopedPrinter.h"
20 
21 #include <algorithm>
22 
23 using namespace llvm;
24 using namespace llvm::MachO;
25 using namespace lld;
26 using namespace lld::macho;
27 
28 void ConcatOutputSection::addInput(ConcatInputSection *input) {
29   if (inputs.empty()) {
30     align = input->align;
31     flags = input->flags;
32   } else {
33     align = std::max(align, input->align);
34     mergeFlags(input);
35   }
36   inputs.push_back(input);
37   input->parent = this;
38 }
39 
40 // Branch-range extension can be implemented in two ways, either through ...
41 //
42 // (1) Branch islands: Single branch instructions (also of limited range),
43 //     that might be chained in multiple hops to reach the desired
44 //     destination. On ARM64, as 16 branch islands are needed to hop between
45 //     opposite ends of a 2 GiB program. LD64 uses branch islands exclusively,
46 //     even when it needs excessive hops.
47 //
48 // (2) Thunks: Instruction(s) to load the destination address into a scratch
49 //     register, followed by a register-indirect branch. Thunks are
50 //     constructed to reach any arbitrary address, so need not be
51 //     chained. Although thunks need not be chained, a program might need
52 //     multiple thunks to the same destination distributed throughout a large
53 //     program so that all call sites can have one within range.
54 //
55 // The optimal approach is to mix islands for distinations within two hops,
56 // and use thunks for destinations at greater distance. For now, we only
57 // implement thunks. TODO: Adding support for branch islands!
58 //
59 // Internally -- as expressed in LLD's data structures -- a
60 // branch-range-extension thunk comprises ...
61 //
62 // (1) new Defined privateExtern symbol for the thunk named
63 //     <FUNCTION>.thunk.<SEQUENCE>, which references ...
64 // (2) new InputSection, which contains ...
65 // (3.1) new data for the instructions to load & branch to the far address +
66 // (3.2) new Relocs on instructions to load the far address, which reference ...
67 // (4.1) existing Defined extern symbol for the real function in __text, or
68 // (4.2) existing DylibSymbol for the real function in a dylib
69 //
70 // Nearly-optimal thunk-placement algorithm features:
71 //
72 // * Single pass: O(n) on the number of call sites.
73 //
74 // * Accounts for the exact space overhead of thunks - no heuristics
75 //
76 // * Exploits the full range of call instructions - forward & backward
77 //
78 // Data:
79 //
80 // * DenseMap<Symbol *, ThunkInfo> thunkMap: Maps the function symbol
81 //   to its thunk bookkeeper.
82 //
83 // * struct ThunkInfo (bookkeeper): Call instructions have limited range, and
84 //   distant call sites might be unable to reach the same thunk, so multiple
85 //   thunks are necessary to serve all call sites in a very large program. A
86 //   thunkInfo stores state for all thunks associated with a particular
87 //   function: (a) thunk symbol, (b) input section containing stub code, and
88 //   (c) sequence number for the active thunk incarnation. When an old thunk
89 //   goes out of range, we increment the sequence number and create a new
90 //   thunk named <FUNCTION>.thunk.<SEQUENCE>.
91 //
92 // * A thunk incarnation comprises (a) private-extern Defined symbol pointing
93 //   to (b) an InputSection holding machine instructions (similar to a MachO
94 //   stub), and (c) Reloc(s) that reference the real function for fixing-up
95 //   the stub code.
96 //
97 // * std::vector<InputSection *> MergedInputSection::thunks: A vector parallel
98 //   to the inputs vector. We store new thunks via cheap vector append, rather
99 //   than costly insertion into the inputs vector.
100 //
101 // Control Flow:
102 //
103 // * During address assignment, MergedInputSection::finalize() examines call
104 //   sites by ascending address and creates thunks.  When a function is beyond
105 //   the range of a call site, we need a thunk. Place it at the largest
106 //   available forward address from the call site. Call sites increase
107 //   monotonically and thunks are always placed as far forward as possible;
108 //   thus, we place thunks at monotonically increasing addresses. Once a thunk
109 //   is placed, it and all previous input-section addresses are final.
110 //
111 // * MergedInputSection::finalize() and MergedInputSection::writeTo() merge
112 //   the inputs and thunks vectors (both ordered by ascending address), which
113 //   is simple and cheap.
114 
115 DenseMap<Symbol *, ThunkInfo> lld::macho::thunkMap;
116 
117 // Determine whether we need thunks, which depends on the target arch -- RISC
118 // (i.e., ARM) generally does because it has limited-range branch/call
119 // instructions, whereas CISC (i.e., x86) generally doesn't. RISC only needs
120 // thunks for programs so large that branch source & destination addresses
121 // might differ more than the range of branch instruction(s).
122 bool ConcatOutputSection::needsThunks() const {
123   if (!target->usesThunks())
124     return false;
125   uint64_t isecAddr = addr;
126   for (InputSection *isec : inputs)
127     isecAddr = alignTo(isecAddr, isec->align) + isec->getSize();
128   if (isecAddr - addr + in.stubs->getSize() <= target->branchRange)
129     return false;
130   // Yes, this program is large enough to need thunks.
131   for (InputSection *isec : inputs) {
132     for (Reloc &r : isec->relocs) {
133       if (!target->hasAttr(r.type, RelocAttrBits::BRANCH))
134         continue;
135       auto *sym = r.referent.get<Symbol *>();
136       // Pre-populate the thunkMap and memoize call site counts for every
137       // InputSection and ThunkInfo. We do this for the benefit of
138       // ConcatOutputSection::estimateStubsInRangeVA()
139       ThunkInfo &thunkInfo = thunkMap[sym];
140       // Knowing ThunkInfo call site count will help us know whether or not we
141       // might need to create more for this referent at the time we are
142       // estimating distance to __stubs in .
143       ++thunkInfo.callSiteCount;
144       // Knowing InputSection call site count will help us avoid work on those
145       // that have no BRANCH relocs.
146       ++isec->callSiteCount;
147     }
148   }
149   return true;
150 }
151 
152 // Since __stubs is placed after __text, we must estimate the address
153 // beyond which stubs are within range of a simple forward branch.
154 uint64_t ConcatOutputSection::estimateStubsInRangeVA(size_t callIdx) const {
155   uint64_t branchRange = target->branchRange;
156   size_t endIdx = inputs.size();
157   ConcatInputSection *isec = inputs[callIdx];
158   uint64_t isecVA = isec->getVA();
159   // Tally the non-stub functions which still have call sites
160   // remaining to process, which yields the maximum number
161   // of thunks we might yet place.
162   size_t maxPotentialThunks = 0;
163   for (auto &tp : thunkMap) {
164     ThunkInfo &ti = tp.second;
165     maxPotentialThunks +=
166         !tp.first->isInStubs() && ti.callSitesUsed < ti.callSiteCount;
167   }
168   // Tally the total size of input sections remaining to process.
169   uint64_t isecEnd = isec->getVA();
170   for (size_t i = callIdx; i < endIdx; i++) {
171     InputSection *isec = inputs[i];
172     isecEnd = alignTo(isecEnd, isec->align) + isec->getSize();
173   }
174   // Estimate the address after which call sites can safely call stubs
175   // directly rather than through intermediary thunks.
176   uint64_t stubsInRangeVA = isecEnd + maxPotentialThunks * target->thunkSize +
177                             in.stubs->getSize() - branchRange;
178   log("thunks = " + std::to_string(thunkMap.size()) +
179       ", potential = " + std::to_string(maxPotentialThunks) +
180       ", stubs = " + std::to_string(in.stubs->getSize()) + ", isecVA = " +
181       to_hexString(isecVA) + ", threshold = " + to_hexString(stubsInRangeVA) +
182       ", isecEnd = " + to_hexString(isecEnd) +
183       ", tail = " + to_hexString(isecEnd - isecVA) +
184       ", slop = " + to_hexString(branchRange - (isecEnd - isecVA)));
185   return stubsInRangeVA;
186 }
187 
188 void ConcatOutputSection::finalize() {
189   uint64_t isecAddr = addr;
190   uint64_t isecFileOff = fileOff;
191   auto finalizeOne = [&](ConcatInputSection *isec) {
192     isecAddr = alignTo(isecAddr, isec->align);
193     isecFileOff = alignTo(isecFileOff, isec->align);
194     isec->outSecOff = isecAddr - addr;
195     isec->outSecFileOff = isecFileOff - fileOff;
196     isec->isFinal = true;
197     isecAddr += isec->getSize();
198     isecFileOff += isec->getFileSize();
199   };
200 
201   if (!needsThunks()) {
202     for (ConcatInputSection *isec : inputs)
203       finalizeOne(isec);
204     size = isecAddr - addr;
205     fileSize = isecFileOff - fileOff;
206     return;
207   }
208 
209   uint64_t branchRange = target->branchRange;
210   uint64_t stubsInRangeVA = TargetInfo::outOfRangeVA;
211   size_t thunkSize = target->thunkSize;
212   size_t relocCount = 0;
213   size_t callSiteCount = 0;
214   size_t thunkCallCount = 0;
215   size_t thunkCount = 0;
216 
217   // inputs[finalIdx] is for finalization (address-assignment)
218   size_t finalIdx = 0;
219   // Kick-off by ensuring that the first input section has an address
220   for (size_t callIdx = 0, endIdx = inputs.size(); callIdx < endIdx;
221        ++callIdx) {
222     if (finalIdx == callIdx)
223       finalizeOne(inputs[finalIdx++]);
224     ConcatInputSection *isec = inputs[callIdx];
225     assert(isec->isFinal);
226     uint64_t isecVA = isec->getVA();
227     // Assign addresses up-to the forward branch-range limit
228     while (finalIdx < endIdx &&
229            isecAddr + inputs[finalIdx]->getSize() < isecVA + branchRange)
230       finalizeOne(inputs[finalIdx++]);
231     if (isec->callSiteCount == 0)
232       continue;
233     if (finalIdx == endIdx && stubsInRangeVA == TargetInfo::outOfRangeVA) {
234       // When we have finalized all input sections, __stubs (destined
235       // to follow __text) comes within range of forward branches and
236       // we can estimate the threshold address after which we can
237       // reach any stub with a forward branch. Note that although it
238       // sits in the middle of a loop, this code executes only once.
239       // It is in the loop because we need to call it at the proper
240       // time: the earliest call site from which the end of __text
241       // (and start of __stubs) comes within range of a forward branch.
242       stubsInRangeVA = estimateStubsInRangeVA(callIdx);
243     }
244     // Process relocs by ascending address, i.e., ascending offset within isec
245     std::vector<Reloc> &relocs = isec->relocs;
246     assert(is_sorted(relocs,
247                      [](Reloc &a, Reloc &b) { return a.offset > b.offset; }));
248     for (Reloc &r : reverse(relocs)) {
249       ++relocCount;
250       if (!target->hasAttr(r.type, RelocAttrBits::BRANCH))
251         continue;
252       ++callSiteCount;
253       // Calculate branch reachability boundaries
254       uint64_t callVA = isecVA + r.offset;
255       uint64_t lowVA = branchRange < callVA ? callVA - branchRange : 0;
256       uint64_t highVA = callVA + branchRange;
257       // Calculate our call referent address
258       auto *funcSym = r.referent.get<Symbol *>();
259       ThunkInfo &thunkInfo = thunkMap[funcSym];
260       // The referent is not reachable, so we need to use a thunk ...
261       if (funcSym->isInStubs() && callVA >= stubsInRangeVA) {
262         // ... Oh, wait! We are close enough to the end that __stubs
263         // are now within range of a simple forward branch.
264         continue;
265       }
266       uint64_t funcVA = funcSym->resolveBranchVA();
267       ++thunkInfo.callSitesUsed;
268       if (lowVA < funcVA && funcVA < highVA) {
269         // The referent is reachable with a simple call instruction.
270         continue;
271       }
272       ++thunkInfo.thunkCallCount;
273       ++thunkCallCount;
274       // If an existing thunk is reachable, use it ...
275       if (thunkInfo.sym) {
276         uint64_t thunkVA = thunkInfo.isec->getVA();
277         if (lowVA < thunkVA && thunkVA < highVA) {
278           r.referent = thunkInfo.sym;
279           continue;
280         }
281       }
282       // ... otherwise, create a new thunk
283       if (isecAddr > highVA) {
284         // When there is small-to-no margin between highVA and
285         // isecAddr and the distance between subsequent call sites is
286         // smaller than thunkSize, then a new thunk can go out of
287         // range.  Fix by unfinalizing inputs[finalIdx] to reduce the
288         // distance between callVA and highVA, then shift some thunks
289         // to occupy address-space formerly occupied by the
290         // unfinalized inputs[finalIdx].
291         fatal(Twine(__FUNCTION__) + ": FIXME: thunk range overrun");
292       }
293       thunkInfo.isec = make<ConcatInputSection>();
294       thunkInfo.isec->name = isec->name;
295       thunkInfo.isec->segname = isec->segname;
296       thunkInfo.isec->parent = this;
297       StringRef thunkName = saver.save(funcSym->getName() + ".thunk." +
298                                        std::to_string(thunkInfo.sequence++));
299       r.referent = thunkInfo.sym = symtab->addDefined(
300           thunkName, /*file=*/nullptr, thunkInfo.isec, /*value=*/0,
301           /*size=*/thunkSize, /*isWeakDef=*/false, /*isPrivateExtern=*/true,
302           /*isThumb=*/false, /*isReferencedDynamically=*/false,
303           /*noDeadStrip=*/false);
304       target->populateThunk(thunkInfo.isec, funcSym);
305       finalizeOne(thunkInfo.isec);
306       thunks.push_back(thunkInfo.isec);
307       ++thunkCount;
308     }
309   }
310   size = isecAddr - addr;
311   fileSize = isecFileOff - fileOff;
312 
313   log("thunks for " + parent->name + "," + name +
314       ": funcs = " + std::to_string(thunkMap.size()) +
315       ", relocs = " + std::to_string(relocCount) +
316       ", all calls = " + std::to_string(callSiteCount) +
317       ", thunk calls = " + std::to_string(thunkCallCount) +
318       ", thunks = " + std::to_string(thunkCount));
319 }
320 
321 void ConcatOutputSection::writeTo(uint8_t *buf) const {
322   // Merge input sections from thunk & ordinary vectors
323   size_t i = 0, ie = inputs.size();
324   size_t t = 0, te = thunks.size();
325   while (i < ie || t < te) {
326     while (i < ie && (t == te || inputs[i]->getSize() == 0 ||
327                       inputs[i]->outSecOff < thunks[t]->outSecOff)) {
328       inputs[i]->writeTo(buf + inputs[i]->outSecFileOff);
329       ++i;
330     }
331     while (t < te && (i == ie || thunks[t]->outSecOff < inputs[i]->outSecOff)) {
332       thunks[t]->writeTo(buf + thunks[t]->outSecFileOff);
333       ++t;
334     }
335   }
336 }
337 
338 // TODO: this is most likely wrong; reconsider how section flags
339 // are actually merged. The logic presented here was written without
340 // any form of informed research.
341 void ConcatOutputSection::mergeFlags(InputSection *input) {
342   uint8_t baseType = sectionType(flags);
343   uint8_t inputType = sectionType(input->flags);
344   if (baseType != inputType)
345     error("Cannot merge section " + input->name + " (type=0x" +
346           to_hexString(inputType) + ") into " + name + " (type=0x" +
347           to_hexString(baseType) + "): inconsistent types");
348 
349   constexpr uint32_t strictFlags = S_ATTR_DEBUG | S_ATTR_STRIP_STATIC_SYMS |
350                                    S_ATTR_NO_DEAD_STRIP | S_ATTR_LIVE_SUPPORT;
351   if ((input->flags ^ flags) & strictFlags)
352     error("Cannot merge section " + input->name + " (flags=0x" +
353           to_hexString(input->flags) + ") into " + name + " (flags=0x" +
354           to_hexString(flags) + "): strict flags differ");
355 
356   // Negate pure instruction presence if any section isn't pure.
357   uint32_t pureMask = ~S_ATTR_PURE_INSTRUCTIONS | (input->flags & flags);
358 
359   // Merge the rest
360   flags |= input->flags;
361   flags &= pureMask;
362 }
363