1 //===- ConcatOutputSection.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "ConcatOutputSection.h"
10 #include "Config.h"
11 #include "OutputSegment.h"
12 #include "SymbolTable.h"
13 #include "Symbols.h"
14 #include "SyntheticSections.h"
15 #include "Target.h"
16 #include "lld/Common/ErrorHandler.h"
17 #include "lld/Common/Memory.h"
18 #include "llvm/BinaryFormat/MachO.h"
19 #include "llvm/Support/ScopedPrinter.h"
20 #include "llvm/Support/TimeProfiler.h"
21 
22 using namespace llvm;
23 using namespace llvm::MachO;
24 using namespace lld;
25 using namespace lld::macho;
26 
27 MapVector<NamePair, ConcatOutputSection *> macho::concatOutputSections;
28 
29 void ConcatOutputSection::addInput(ConcatInputSection *input) {
30   assert(input->parent == this);
31   if (inputs.empty()) {
32     align = input->align;
33     flags = input->getFlags();
34   } else {
35     align = std::max(align, input->align);
36     finalizeFlags(input);
37   }
38   inputs.push_back(input);
39 }
40 
41 // Branch-range extension can be implemented in two ways, either through ...
42 //
43 // (1) Branch islands: Single branch instructions (also of limited range),
44 //     that might be chained in multiple hops to reach the desired
45 //     destination. On ARM64, as 16 branch islands are needed to hop between
46 //     opposite ends of a 2 GiB program. LD64 uses branch islands exclusively,
47 //     even when it needs excessive hops.
48 //
49 // (2) Thunks: Instruction(s) to load the destination address into a scratch
50 //     register, followed by a register-indirect branch. Thunks are
51 //     constructed to reach any arbitrary address, so need not be
52 //     chained. Although thunks need not be chained, a program might need
53 //     multiple thunks to the same destination distributed throughout a large
54 //     program so that all call sites can have one within range.
55 //
56 // The optimal approach is to mix islands for destinations within two hops,
57 // and use thunks for destinations at greater distance. For now, we only
58 // implement thunks. TODO: Adding support for branch islands!
59 //
60 // Internally -- as expressed in LLD's data structures -- a
61 // branch-range-extension thunk comprises ...
62 //
63 // (1) new Defined privateExtern symbol for the thunk named
64 //     <FUNCTION>.thunk.<SEQUENCE>, which references ...
65 // (2) new InputSection, which contains ...
66 // (3.1) new data for the instructions to load & branch to the far address +
67 // (3.2) new Relocs on instructions to load the far address, which reference ...
68 // (4.1) existing Defined extern symbol for the real function in __text, or
69 // (4.2) existing DylibSymbol for the real function in a dylib
70 //
71 // Nearly-optimal thunk-placement algorithm features:
72 //
73 // * Single pass: O(n) on the number of call sites.
74 //
75 // * Accounts for the exact space overhead of thunks - no heuristics
76 //
77 // * Exploits the full range of call instructions - forward & backward
78 //
79 // Data:
80 //
81 // * DenseMap<Symbol *, ThunkInfo> thunkMap: Maps the function symbol
82 //   to its thunk bookkeeper.
83 //
84 // * struct ThunkInfo (bookkeeper): Call instructions have limited range, and
85 //   distant call sites might be unable to reach the same thunk, so multiple
86 //   thunks are necessary to serve all call sites in a very large program. A
87 //   thunkInfo stores state for all thunks associated with a particular
88 //   function: (a) thunk symbol, (b) input section containing stub code, and
89 //   (c) sequence number for the active thunk incarnation. When an old thunk
90 //   goes out of range, we increment the sequence number and create a new
91 //   thunk named <FUNCTION>.thunk.<SEQUENCE>.
92 //
93 // * A thunk incarnation comprises (a) private-extern Defined symbol pointing
94 //   to (b) an InputSection holding machine instructions (similar to a MachO
95 //   stub), and (c) Reloc(s) that reference the real function for fixing-up
96 //   the stub code.
97 //
98 // * std::vector<InputSection *> MergedInputSection::thunks: A vector parallel
99 //   to the inputs vector. We store new thunks via cheap vector append, rather
100 //   than costly insertion into the inputs vector.
101 //
102 // Control Flow:
103 //
104 // * During address assignment, MergedInputSection::finalize() examines call
105 //   sites by ascending address and creates thunks.  When a function is beyond
106 //   the range of a call site, we need a thunk. Place it at the largest
107 //   available forward address from the call site. Call sites increase
108 //   monotonically and thunks are always placed as far forward as possible;
109 //   thus, we place thunks at monotonically increasing addresses. Once a thunk
110 //   is placed, it and all previous input-section addresses are final.
111 //
112 // * ConcatInputSection::finalize() and ConcatInputSection::writeTo() merge
113 //   the inputs and thunks vectors (both ordered by ascending address), which
114 //   is simple and cheap.
115 
116 DenseMap<Symbol *, ThunkInfo> lld::macho::thunkMap;
117 
118 // Determine whether we need thunks, which depends on the target arch -- RISC
119 // (i.e., ARM) generally does because it has limited-range branch/call
120 // instructions, whereas CISC (i.e., x86) generally doesn't. RISC only needs
121 // thunks for programs so large that branch source & destination addresses
122 // might differ more than the range of branch instruction(s).
123 bool ConcatOutputSection::needsThunks() const {
124   if (!target->usesThunks())
125     return false;
126   uint64_t isecAddr = addr;
127   for (InputSection *isec : inputs)
128     isecAddr = alignTo(isecAddr, isec->align) + isec->getSize();
129   if (isecAddr - addr + in.stubs->getSize() <=
130       std::min(target->backwardBranchRange, target->forwardBranchRange))
131     return false;
132   // Yes, this program is large enough to need thunks.
133   for (InputSection *isec : inputs) {
134     for (Reloc &r : isec->relocs) {
135       if (!target->hasAttr(r.type, RelocAttrBits::BRANCH))
136         continue;
137       auto *sym = r.referent.get<Symbol *>();
138       // Pre-populate the thunkMap and memoize call site counts for every
139       // InputSection and ThunkInfo. We do this for the benefit of
140       // ConcatOutputSection::estimateStubsInRangeVA()
141       ThunkInfo &thunkInfo = thunkMap[sym];
142       // Knowing ThunkInfo call site count will help us know whether or not we
143       // might need to create more for this referent at the time we are
144       // estimating distance to __stubs in estimateStubsInRangeVA().
145       ++thunkInfo.callSiteCount;
146       // Knowing InputSection call site count will help us avoid work on those
147       // that have no BRANCH relocs.
148       ++isec->callSiteCount;
149     }
150   }
151   return true;
152 }
153 
154 // Since __stubs is placed after __text, we must estimate the address
155 // beyond which stubs are within range of a simple forward branch.
156 // This is called exactly once, when the last input section has been finalized.
157 uint64_t ConcatOutputSection::estimateStubsInRangeVA(size_t callIdx) const {
158   // Tally the functions which still have call sites remaining to process,
159   // which yields the maximum number of thunks we might yet place.
160   size_t maxPotentialThunks = 0;
161   for (auto &tp : thunkMap) {
162     ThunkInfo &ti = tp.second;
163     // This overcounts: Only sections that are in forward jump range from the
164     // currently-active section get finalized, and all input sections are
165     // finalized when estimateStubsInRangeVA() is called. So only backward
166     // jumps will need thunks, but we count all jumps.
167     if (ti.callSitesUsed < ti.callSiteCount)
168       maxPotentialThunks += 1;
169   }
170   // Tally the total size of input sections remaining to process.
171   uint64_t isecVA = inputs[callIdx]->getVA();
172   uint64_t isecEnd = isecVA;
173   for (size_t i = callIdx; i < inputs.size(); i++) {
174     InputSection *isec = inputs[i];
175     isecEnd = alignTo(isecEnd, isec->align) + isec->getSize();
176   }
177   // Estimate the address after which call sites can safely call stubs
178   // directly rather than through intermediary thunks.
179   uint64_t forwardBranchRange = target->forwardBranchRange;
180   assert(isecEnd > forwardBranchRange &&
181          "should not run thunk insertion if all code fits in jump range");
182   assert(isecEnd - isecVA <= forwardBranchRange &&
183          "should only finalize sections in jump range");
184   uint64_t stubsInRangeVA = isecEnd + maxPotentialThunks * target->thunkSize +
185                             in.stubs->getSize() - forwardBranchRange;
186   log("thunks = " + std::to_string(thunkMap.size()) +
187       ", potential = " + std::to_string(maxPotentialThunks) +
188       ", stubs = " + std::to_string(in.stubs->getSize()) + ", isecVA = " +
189       to_hexString(isecVA) + ", threshold = " + to_hexString(stubsInRangeVA) +
190       ", isecEnd = " + to_hexString(isecEnd) +
191       ", tail = " + to_hexString(isecEnd - isecVA) +
192       ", slop = " + to_hexString(forwardBranchRange - (isecEnd - isecVA)));
193   return stubsInRangeVA;
194 }
195 
196 void ConcatOutputSection::finalize() {
197   uint64_t isecAddr = addr;
198   uint64_t isecFileOff = fileOff;
199   auto finalizeOne = [&](ConcatInputSection *isec) {
200     isecAddr = alignTo(isecAddr, isec->align);
201     isecFileOff = alignTo(isecFileOff, isec->align);
202     isec->outSecOff = isecAddr - addr;
203     isec->isFinal = true;
204     isecAddr += isec->getSize();
205     isecFileOff += isec->getFileSize();
206   };
207 
208   if (!needsThunks()) {
209     for (ConcatInputSection *isec : inputs)
210       finalizeOne(isec);
211     size = isecAddr - addr;
212     fileSize = isecFileOff - fileOff;
213     return;
214   }
215 
216   uint64_t forwardBranchRange = target->forwardBranchRange;
217   uint64_t backwardBranchRange = target->backwardBranchRange;
218   uint64_t stubsInRangeVA = TargetInfo::outOfRangeVA;
219   size_t thunkSize = target->thunkSize;
220   size_t relocCount = 0;
221   size_t callSiteCount = 0;
222   size_t thunkCallCount = 0;
223   size_t thunkCount = 0;
224 
225   // Walk all sections in order. Finalize all sections that are less than
226   // forwardBranchRange in front of it.
227   // isecVA is the address of the current section.
228   // isecAddr is the start address of the first non-finalized section.
229 
230   // inputs[finalIdx] is for finalization (address-assignment)
231   size_t finalIdx = 0;
232   // Kick-off by ensuring that the first input section has an address
233   for (size_t callIdx = 0, endIdx = inputs.size(); callIdx < endIdx;
234        ++callIdx) {
235     if (finalIdx == callIdx)
236       finalizeOne(inputs[finalIdx++]);
237     ConcatInputSection *isec = inputs[callIdx];
238     assert(isec->isFinal);
239     uint64_t isecVA = isec->getVA();
240 
241     // Assign addresses up-to the forward branch-range limit.
242     // Every call instruction needs a small number of bytes (on Arm64: 4),
243     // and each inserted thunk needs a slightly larger number of bytes
244     // (on Arm64: 12). If a section starts with a branch instruction and
245     // contains several branch instructions in succession, then the distance
246     // from the current position to the position where the thunks are inserted
247     // grows. So leave room for a bunch of thunks.
248     unsigned slop = 100 * thunkSize;
249     while (finalIdx < endIdx && isecAddr + inputs[finalIdx]->getSize() <
250                                     isecVA + forwardBranchRange - slop)
251       finalizeOne(inputs[finalIdx++]);
252 
253     if (isec->callSiteCount == 0)
254       continue;
255 
256     if (finalIdx == endIdx && stubsInRangeVA == TargetInfo::outOfRangeVA) {
257       // When we have finalized all input sections, __stubs (destined
258       // to follow __text) comes within range of forward branches and
259       // we can estimate the threshold address after which we can
260       // reach any stub with a forward branch. Note that although it
261       // sits in the middle of a loop, this code executes only once.
262       // It is in the loop because we need to call it at the proper
263       // time: the earliest call site from which the end of __text
264       // (and start of __stubs) comes within range of a forward branch.
265       stubsInRangeVA = estimateStubsInRangeVA(callIdx);
266     }
267     // Process relocs by ascending address, i.e., ascending offset within isec
268     std::vector<Reloc> &relocs = isec->relocs;
269     // FIXME: This property does not hold for object files produced by ld64's
270     // `-r` mode.
271     assert(is_sorted(relocs,
272                      [](Reloc &a, Reloc &b) { return a.offset > b.offset; }));
273     for (Reloc &r : reverse(relocs)) {
274       ++relocCount;
275       if (!target->hasAttr(r.type, RelocAttrBits::BRANCH))
276         continue;
277       ++callSiteCount;
278       // Calculate branch reachability boundaries
279       uint64_t callVA = isecVA + r.offset;
280       uint64_t lowVA =
281           backwardBranchRange < callVA ? callVA - backwardBranchRange : 0;
282       uint64_t highVA = callVA + forwardBranchRange;
283       // Calculate our call referent address
284       auto *funcSym = r.referent.get<Symbol *>();
285       ThunkInfo &thunkInfo = thunkMap[funcSym];
286       // The referent is not reachable, so we need to use a thunk ...
287       if (funcSym->isInStubs() && callVA >= stubsInRangeVA) {
288         assert(callVA != TargetInfo::outOfRangeVA);
289         // ... Oh, wait! We are close enough to the end that __stubs
290         // are now within range of a simple forward branch.
291         continue;
292       }
293       uint64_t funcVA = funcSym->resolveBranchVA();
294       ++thunkInfo.callSitesUsed;
295       if (lowVA <= funcVA && funcVA <= highVA) {
296         // The referent is reachable with a simple call instruction.
297         continue;
298       }
299       ++thunkInfo.thunkCallCount;
300       ++thunkCallCount;
301       // If an existing thunk is reachable, use it ...
302       if (thunkInfo.sym) {
303         uint64_t thunkVA = thunkInfo.isec->getVA();
304         if (lowVA <= thunkVA && thunkVA <= highVA) {
305           r.referent = thunkInfo.sym;
306           continue;
307         }
308       }
309       // ... otherwise, create a new thunk.
310       if (isecAddr > highVA) {
311         // There were too many consecutive branch instructions for `slop`
312         // above. If you hit this: For the current algorithm, just bumping up
313         // slop above and trying again is probably simplest. (See also PR51578
314         // comment 5).
315         fatal(Twine(__FUNCTION__) + ": FIXME: thunk range overrun");
316       }
317       thunkInfo.isec =
318           make<ConcatInputSection>(isec->getSegName(), isec->getName());
319       thunkInfo.isec->parent = this;
320 
321       // This code runs after dead code removal. Need to set the `live` bit
322       // on the thunk isec so that asserts that check that only live sections
323       // get written are happy.
324       thunkInfo.isec->live = true;
325 
326       StringRef thunkName = saver.save(funcSym->getName() + ".thunk." +
327                                        std::to_string(thunkInfo.sequence++));
328       r.referent = thunkInfo.sym = symtab->addDefined(
329           thunkName, /*file=*/nullptr, thunkInfo.isec, /*value=*/0,
330           /*size=*/thunkSize, /*isWeakDef=*/false, /*isPrivateExtern=*/true,
331           /*isThumb=*/false, /*isReferencedDynamically=*/false,
332           /*noDeadStrip=*/false);
333       thunkInfo.sym->used = true;
334       target->populateThunk(thunkInfo.isec, funcSym);
335       finalizeOne(thunkInfo.isec);
336       thunks.push_back(thunkInfo.isec);
337       ++thunkCount;
338     }
339   }
340   size = isecAddr - addr;
341   fileSize = isecFileOff - fileOff;
342 
343   log("thunks for " + parent->name + "," + name +
344       ": funcs = " + std::to_string(thunkMap.size()) +
345       ", relocs = " + std::to_string(relocCount) +
346       ", all calls = " + std::to_string(callSiteCount) +
347       ", thunk calls = " + std::to_string(thunkCallCount) +
348       ", thunks = " + std::to_string(thunkCount));
349 }
350 
351 void ConcatOutputSection::writeTo(uint8_t *buf) const {
352   // Merge input sections from thunk & ordinary vectors
353   size_t i = 0, ie = inputs.size();
354   size_t t = 0, te = thunks.size();
355   while (i < ie || t < te) {
356     while (i < ie && (t == te || inputs[i]->empty() ||
357                       inputs[i]->outSecOff < thunks[t]->outSecOff)) {
358       inputs[i]->writeTo(buf + inputs[i]->outSecOff);
359       ++i;
360     }
361     while (t < te && (i == ie || thunks[t]->outSecOff < inputs[i]->outSecOff)) {
362       thunks[t]->writeTo(buf + thunks[t]->outSecOff);
363       ++t;
364     }
365   }
366 }
367 
368 void ConcatOutputSection::finalizeFlags(InputSection *input) {
369   switch (sectionType(input->getFlags())) {
370   default /*type-unspec'ed*/:
371     // FIXME: Add additional logic here when supporting emitting obj files.
372     break;
373   case S_4BYTE_LITERALS:
374   case S_8BYTE_LITERALS:
375   case S_16BYTE_LITERALS:
376   case S_CSTRING_LITERALS:
377   case S_ZEROFILL:
378   case S_LAZY_SYMBOL_POINTERS:
379   case S_MOD_TERM_FUNC_POINTERS:
380   case S_THREAD_LOCAL_REGULAR:
381   case S_THREAD_LOCAL_ZEROFILL:
382   case S_THREAD_LOCAL_VARIABLES:
383   case S_THREAD_LOCAL_INIT_FUNCTION_POINTERS:
384   case S_THREAD_LOCAL_VARIABLE_POINTERS:
385   case S_NON_LAZY_SYMBOL_POINTERS:
386   case S_SYMBOL_STUBS:
387     flags |= input->getFlags();
388     break;
389   }
390 }
391 
392 ConcatOutputSection *
393 ConcatOutputSection::getOrCreateForInput(const InputSection *isec) {
394   NamePair names = maybeRenameSection({isec->getSegName(), isec->getName()});
395   ConcatOutputSection *&osec = concatOutputSections[names];
396   if (!osec)
397     osec = make<ConcatOutputSection>(names.second);
398   return osec;
399 }
400 
401 NamePair macho::maybeRenameSection(NamePair key) {
402   auto newNames = config->sectionRenameMap.find(key);
403   if (newNames != config->sectionRenameMap.end())
404     return newNames->second;
405   return key;
406 }
407