1 //===- ConcatOutputSection.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "ConcatOutputSection.h"
10 #include "Config.h"
11 #include "OutputSegment.h"
12 #include "SymbolTable.h"
13 #include "Symbols.h"
14 #include "SyntheticSections.h"
15 #include "Target.h"
16 #include "lld/Common/ErrorHandler.h"
17 #include "lld/Common/Memory.h"
18 #include "llvm/BinaryFormat/MachO.h"
19 #include "llvm/Support/ScopedPrinter.h"
20 #include "llvm/Support/TimeProfiler.h"
21 
22 using namespace llvm;
23 using namespace llvm::MachO;
24 using namespace lld;
25 using namespace lld::macho;
26 
27 void ConcatOutputSection::addInput(ConcatInputSection *input) {
28   if (inputs.empty()) {
29     align = input->align;
30     flags = input->flags;
31   } else {
32     align = std::max(align, input->align);
33     finalizeFlags(input);
34   }
35   inputs.push_back(input);
36   input->parent = this;
37 }
38 
39 // Branch-range extension can be implemented in two ways, either through ...
40 //
41 // (1) Branch islands: Single branch instructions (also of limited range),
42 //     that might be chained in multiple hops to reach the desired
43 //     destination. On ARM64, as 16 branch islands are needed to hop between
44 //     opposite ends of a 2 GiB program. LD64 uses branch islands exclusively,
45 //     even when it needs excessive hops.
46 //
47 // (2) Thunks: Instruction(s) to load the destination address into a scratch
48 //     register, followed by a register-indirect branch. Thunks are
49 //     constructed to reach any arbitrary address, so need not be
50 //     chained. Although thunks need not be chained, a program might need
51 //     multiple thunks to the same destination distributed throughout a large
52 //     program so that all call sites can have one within range.
53 //
54 // The optimal approach is to mix islands for distinations within two hops,
55 // and use thunks for destinations at greater distance. For now, we only
56 // implement thunks. TODO: Adding support for branch islands!
57 //
58 // Internally -- as expressed in LLD's data structures -- a
59 // branch-range-extension thunk comprises ...
60 //
61 // (1) new Defined privateExtern symbol for the thunk named
62 //     <FUNCTION>.thunk.<SEQUENCE>, which references ...
63 // (2) new InputSection, which contains ...
64 // (3.1) new data for the instructions to load & branch to the far address +
65 // (3.2) new Relocs on instructions to load the far address, which reference ...
66 // (4.1) existing Defined extern symbol for the real function in __text, or
67 // (4.2) existing DylibSymbol for the real function in a dylib
68 //
69 // Nearly-optimal thunk-placement algorithm features:
70 //
71 // * Single pass: O(n) on the number of call sites.
72 //
73 // * Accounts for the exact space overhead of thunks - no heuristics
74 //
75 // * Exploits the full range of call instructions - forward & backward
76 //
77 // Data:
78 //
79 // * DenseMap<Symbol *, ThunkInfo> thunkMap: Maps the function symbol
80 //   to its thunk bookkeeper.
81 //
82 // * struct ThunkInfo (bookkeeper): Call instructions have limited range, and
83 //   distant call sites might be unable to reach the same thunk, so multiple
84 //   thunks are necessary to serve all call sites in a very large program. A
85 //   thunkInfo stores state for all thunks associated with a particular
86 //   function: (a) thunk symbol, (b) input section containing stub code, and
87 //   (c) sequence number for the active thunk incarnation. When an old thunk
88 //   goes out of range, we increment the sequence number and create a new
89 //   thunk named <FUNCTION>.thunk.<SEQUENCE>.
90 //
91 // * A thunk incarnation comprises (a) private-extern Defined symbol pointing
92 //   to (b) an InputSection holding machine instructions (similar to a MachO
93 //   stub), and (c) Reloc(s) that reference the real function for fixing-up
94 //   the stub code.
95 //
96 // * std::vector<InputSection *> MergedInputSection::thunks: A vector parallel
97 //   to the inputs vector. We store new thunks via cheap vector append, rather
98 //   than costly insertion into the inputs vector.
99 //
100 // Control Flow:
101 //
102 // * During address assignment, MergedInputSection::finalize() examines call
103 //   sites by ascending address and creates thunks.  When a function is beyond
104 //   the range of a call site, we need a thunk. Place it at the largest
105 //   available forward address from the call site. Call sites increase
106 //   monotonically and thunks are always placed as far forward as possible;
107 //   thus, we place thunks at monotonically increasing addresses. Once a thunk
108 //   is placed, it and all previous input-section addresses are final.
109 //
110 // * MergedInputSection::finalize() and MergedInputSection::writeTo() merge
111 //   the inputs and thunks vectors (both ordered by ascending address), which
112 //   is simple and cheap.
113 
114 DenseMap<Symbol *, ThunkInfo> lld::macho::thunkMap;
115 
116 // Determine whether we need thunks, which depends on the target arch -- RISC
117 // (i.e., ARM) generally does because it has limited-range branch/call
118 // instructions, whereas CISC (i.e., x86) generally doesn't. RISC only needs
119 // thunks for programs so large that branch source & destination addresses
120 // might differ more than the range of branch instruction(s).
121 bool ConcatOutputSection::needsThunks() const {
122   if (!target->usesThunks())
123     return false;
124   uint64_t isecAddr = addr;
125   for (InputSection *isec : inputs)
126     isecAddr = alignTo(isecAddr, isec->align) + isec->getSize();
127   if (isecAddr - addr + in.stubs->getSize() <= target->branchRange)
128     return false;
129   // Yes, this program is large enough to need thunks.
130   for (InputSection *isec : inputs) {
131     for (Reloc &r : isec->relocs) {
132       if (!target->hasAttr(r.type, RelocAttrBits::BRANCH))
133         continue;
134       auto *sym = r.referent.get<Symbol *>();
135       // Pre-populate the thunkMap and memoize call site counts for every
136       // InputSection and ThunkInfo. We do this for the benefit of
137       // ConcatOutputSection::estimateStubsInRangeVA()
138       ThunkInfo &thunkInfo = thunkMap[sym];
139       // Knowing ThunkInfo call site count will help us know whether or not we
140       // might need to create more for this referent at the time we are
141       // estimating distance to __stubs in .
142       ++thunkInfo.callSiteCount;
143       // Knowing InputSection call site count will help us avoid work on those
144       // that have no BRANCH relocs.
145       ++isec->callSiteCount;
146     }
147   }
148   return true;
149 }
150 
151 // Since __stubs is placed after __text, we must estimate the address
152 // beyond which stubs are within range of a simple forward branch.
153 uint64_t ConcatOutputSection::estimateStubsInRangeVA(size_t callIdx) const {
154   uint64_t branchRange = target->branchRange;
155   size_t endIdx = inputs.size();
156   ConcatInputSection *isec = inputs[callIdx];
157   uint64_t isecVA = isec->getVA();
158   // Tally the non-stub functions which still have call sites
159   // remaining to process, which yields the maximum number
160   // of thunks we might yet place.
161   size_t maxPotentialThunks = 0;
162   for (auto &tp : thunkMap) {
163     ThunkInfo &ti = tp.second;
164     maxPotentialThunks +=
165         !tp.first->isInStubs() && ti.callSitesUsed < ti.callSiteCount;
166   }
167   // Tally the total size of input sections remaining to process.
168   uint64_t isecEnd = isec->getVA();
169   for (size_t i = callIdx; i < endIdx; i++) {
170     InputSection *isec = inputs[i];
171     isecEnd = alignTo(isecEnd, isec->align) + isec->getSize();
172   }
173   // Estimate the address after which call sites can safely call stubs
174   // directly rather than through intermediary thunks.
175   uint64_t stubsInRangeVA = isecEnd + maxPotentialThunks * target->thunkSize +
176                             in.stubs->getSize() - branchRange;
177   log("thunks = " + std::to_string(thunkMap.size()) +
178       ", potential = " + std::to_string(maxPotentialThunks) +
179       ", stubs = " + std::to_string(in.stubs->getSize()) + ", isecVA = " +
180       to_hexString(isecVA) + ", threshold = " + to_hexString(stubsInRangeVA) +
181       ", isecEnd = " + to_hexString(isecEnd) +
182       ", tail = " + to_hexString(isecEnd - isecVA) +
183       ", slop = " + to_hexString(branchRange - (isecEnd - isecVA)));
184   return stubsInRangeVA;
185 }
186 
187 void ConcatOutputSection::finalize() {
188   uint64_t isecAddr = addr;
189   uint64_t isecFileOff = fileOff;
190   auto finalizeOne = [&](ConcatInputSection *isec) {
191     isecAddr = alignTo(isecAddr, isec->align);
192     isecFileOff = alignTo(isecFileOff, isec->align);
193     isec->outSecOff = isecAddr - addr;
194     isec->isFinal = true;
195     isecAddr += isec->getSize();
196     isecFileOff += isec->getFileSize();
197   };
198 
199   if (!needsThunks()) {
200     for (ConcatInputSection *isec : inputs)
201       finalizeOne(isec);
202     size = isecAddr - addr;
203     fileSize = isecFileOff - fileOff;
204     return;
205   }
206 
207   uint64_t branchRange = target->branchRange;
208   uint64_t stubsInRangeVA = TargetInfo::outOfRangeVA;
209   size_t thunkSize = target->thunkSize;
210   size_t relocCount = 0;
211   size_t callSiteCount = 0;
212   size_t thunkCallCount = 0;
213   size_t thunkCount = 0;
214 
215   // inputs[finalIdx] is for finalization (address-assignment)
216   size_t finalIdx = 0;
217   // Kick-off by ensuring that the first input section has an address
218   for (size_t callIdx = 0, endIdx = inputs.size(); callIdx < endIdx;
219        ++callIdx) {
220     if (finalIdx == callIdx)
221       finalizeOne(inputs[finalIdx++]);
222     ConcatInputSection *isec = inputs[callIdx];
223     assert(isec->isFinal);
224     uint64_t isecVA = isec->getVA();
225     // Assign addresses up-to the forward branch-range limit
226     while (finalIdx < endIdx &&
227            isecAddr + inputs[finalIdx]->getSize() < isecVA + branchRange)
228       finalizeOne(inputs[finalIdx++]);
229     if (isec->callSiteCount == 0)
230       continue;
231     if (finalIdx == endIdx && stubsInRangeVA == TargetInfo::outOfRangeVA) {
232       // When we have finalized all input sections, __stubs (destined
233       // to follow __text) comes within range of forward branches and
234       // we can estimate the threshold address after which we can
235       // reach any stub with a forward branch. Note that although it
236       // sits in the middle of a loop, this code executes only once.
237       // It is in the loop because we need to call it at the proper
238       // time: the earliest call site from which the end of __text
239       // (and start of __stubs) comes within range of a forward branch.
240       stubsInRangeVA = estimateStubsInRangeVA(callIdx);
241     }
242     // Process relocs by ascending address, i.e., ascending offset within isec
243     std::vector<Reloc> &relocs = isec->relocs;
244     assert(is_sorted(relocs,
245                      [](Reloc &a, Reloc &b) { return a.offset > b.offset; }));
246     for (Reloc &r : reverse(relocs)) {
247       ++relocCount;
248       if (!target->hasAttr(r.type, RelocAttrBits::BRANCH))
249         continue;
250       ++callSiteCount;
251       // Calculate branch reachability boundaries
252       uint64_t callVA = isecVA + r.offset;
253       uint64_t lowVA = branchRange < callVA ? callVA - branchRange : 0;
254       uint64_t highVA = callVA + branchRange;
255       // Calculate our call referent address
256       auto *funcSym = r.referent.get<Symbol *>();
257       ThunkInfo &thunkInfo = thunkMap[funcSym];
258       // The referent is not reachable, so we need to use a thunk ...
259       if (funcSym->isInStubs() && callVA >= stubsInRangeVA) {
260         // ... Oh, wait! We are close enough to the end that __stubs
261         // are now within range of a simple forward branch.
262         continue;
263       }
264       uint64_t funcVA = funcSym->resolveBranchVA();
265       ++thunkInfo.callSitesUsed;
266       if (lowVA < funcVA && funcVA < highVA) {
267         // The referent is reachable with a simple call instruction.
268         continue;
269       }
270       ++thunkInfo.thunkCallCount;
271       ++thunkCallCount;
272       // If an existing thunk is reachable, use it ...
273       if (thunkInfo.sym) {
274         uint64_t thunkVA = thunkInfo.isec->getVA();
275         if (lowVA < thunkVA && thunkVA < highVA) {
276           r.referent = thunkInfo.sym;
277           continue;
278         }
279       }
280       // ... otherwise, create a new thunk
281       if (isecAddr > highVA) {
282         // When there is small-to-no margin between highVA and
283         // isecAddr and the distance between subsequent call sites is
284         // smaller than thunkSize, then a new thunk can go out of
285         // range.  Fix by unfinalizing inputs[finalIdx] to reduce the
286         // distance between callVA and highVA, then shift some thunks
287         // to occupy address-space formerly occupied by the
288         // unfinalized inputs[finalIdx].
289         fatal(Twine(__FUNCTION__) + ": FIXME: thunk range overrun");
290       }
291       thunkInfo.isec = make<ConcatInputSection>(isec->segname, isec->name);
292       thunkInfo.isec->parent = this;
293       StringRef thunkName = saver.save(funcSym->getName() + ".thunk." +
294                                        std::to_string(thunkInfo.sequence++));
295       r.referent = thunkInfo.sym = symtab->addDefined(
296           thunkName, /*file=*/nullptr, thunkInfo.isec, /*value=*/0,
297           /*size=*/thunkSize, /*isWeakDef=*/false, /*isPrivateExtern=*/true,
298           /*isThumb=*/false, /*isReferencedDynamically=*/false,
299           /*noDeadStrip=*/false);
300       target->populateThunk(thunkInfo.isec, funcSym);
301       finalizeOne(thunkInfo.isec);
302       thunks.push_back(thunkInfo.isec);
303       ++thunkCount;
304     }
305   }
306   size = isecAddr - addr;
307   fileSize = isecFileOff - fileOff;
308 
309   log("thunks for " + parent->name + "," + name +
310       ": funcs = " + std::to_string(thunkMap.size()) +
311       ", relocs = " + std::to_string(relocCount) +
312       ", all calls = " + std::to_string(callSiteCount) +
313       ", thunk calls = " + std::to_string(thunkCallCount) +
314       ", thunks = " + std::to_string(thunkCount));
315 }
316 
317 void ConcatOutputSection::writeTo(uint8_t *buf) const {
318   // Merge input sections from thunk & ordinary vectors
319   size_t i = 0, ie = inputs.size();
320   size_t t = 0, te = thunks.size();
321   while (i < ie || t < te) {
322     while (i < ie && (t == te || inputs[i]->getSize() == 0 ||
323                       inputs[i]->outSecOff < thunks[t]->outSecOff)) {
324       inputs[i]->writeTo(buf + inputs[i]->outSecOff);
325       ++i;
326     }
327     while (t < te && (i == ie || thunks[t]->outSecOff < inputs[i]->outSecOff)) {
328       thunks[t]->writeTo(buf + thunks[t]->outSecOff);
329       ++t;
330     }
331   }
332 }
333 
334 void ConcatOutputSection::finalizeFlags(InputSection *input) {
335   uint8_t inputType = input->flags & SECTION_TYPE;
336   switch (inputType) {
337   default /*type-unspec'ed*/:
338     // FIXME: Add additional logics here when supporting emitting obj files.
339     break;
340   case S_4BYTE_LITERALS:
341   case S_8BYTE_LITERALS:
342   case S_16BYTE_LITERALS:
343   case S_CSTRING_LITERALS:
344   case S_ZEROFILL:
345   case S_LAZY_SYMBOL_POINTERS:
346   case S_MOD_TERM_FUNC_POINTERS:
347   case S_THREAD_LOCAL_REGULAR:
348   case S_THREAD_LOCAL_ZEROFILL:
349   case S_THREAD_LOCAL_VARIABLES:
350   case S_THREAD_LOCAL_INIT_FUNCTION_POINTERS:
351   case S_THREAD_LOCAL_VARIABLE_POINTERS:
352   case S_NON_LAZY_SYMBOL_POINTERS:
353   case S_SYMBOL_STUBS:
354     flags |= input->flags;
355     break;
356   }
357 }
358 
359 void ConcatOutputSection::eraseOmittedInputSections() {
360   // Remove the duplicates from inputs
361   inputs.erase(std::remove_if(inputs.begin(), inputs.end(),
362                               [](const ConcatInputSection *isec) -> bool {
363                                 return isec->shouldOmitFromOutput();
364                               }),
365                inputs.end());
366 }
367