xref: /llvm-project-15.0.7/lld/ELF/Target.cpp (revision fbfd828d)
1 //===- Target.cpp ---------------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Machine-specific things, such as applying relocations, creation of
11 // GOT or PLT entries, etc., are handled in this file.
12 //
13 // Refer the ELF spec for the single letter variables, S, A or P, used
14 // in this file.
15 //
16 // Some functions defined in this file has "relaxTls" as part of their names.
17 // They do peephole optimization for TLS variables by rewriting instructions.
18 // They are not part of the ABI but optional optimization, so you can skip
19 // them if you are not interested in how TLS variables are optimized.
20 // See the following paper for the details.
21 //
22 //   Ulrich Drepper, ELF Handling For Thread-Local Storage
23 //   http://www.akkadia.org/drepper/tls.pdf
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "Target.h"
28 #include "Error.h"
29 #include "InputFiles.h"
30 #include "OutputSections.h"
31 #include "Symbols.h"
32 #include "Thunks.h"
33 
34 #include "llvm/ADT/ArrayRef.h"
35 #include "llvm/Object/ELF.h"
36 #include "llvm/Support/Endian.h"
37 #include "llvm/Support/ELF.h"
38 
39 using namespace llvm;
40 using namespace llvm::object;
41 using namespace llvm::support::endian;
42 using namespace llvm::ELF;
43 
44 namespace lld {
45 namespace elf {
46 
47 TargetInfo *Target;
48 
49 static void or32le(uint8_t *P, int32_t V) { write32le(P, read32le(P) | V); }
50 
51 StringRef getRelName(uint32_t Type) {
52   return getELFRelocationTypeName(Config->EMachine, Type);
53 }
54 
55 template <unsigned N> static void checkInt(int64_t V, uint32_t Type) {
56   if (!isInt<N>(V))
57     error("relocation " + getRelName(Type) + " out of range");
58 }
59 
60 template <unsigned N> static void checkUInt(uint64_t V, uint32_t Type) {
61   if (!isUInt<N>(V))
62     error("relocation " + getRelName(Type) + " out of range");
63 }
64 
65 template <unsigned N> static void checkIntUInt(uint64_t V, uint32_t Type) {
66   if (!isInt<N>(V) && !isUInt<N>(V))
67     error("relocation " + getRelName(Type) + " out of range");
68 }
69 
70 template <unsigned N> static void checkAlignment(uint64_t V, uint32_t Type) {
71   if ((V & (N - 1)) != 0)
72     error("improper alignment for relocation " + getRelName(Type));
73 }
74 
75 static void errorDynRel(uint32_t Type) {
76   error("relocation " + getRelName(Type) +
77         " cannot be used against shared object; recompile with -fPIC.");
78 }
79 
80 namespace {
81 class X86TargetInfo final : public TargetInfo {
82 public:
83   X86TargetInfo();
84   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
85   uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override;
86   void writeGotPltHeader(uint8_t *Buf) const override;
87   uint32_t getDynRel(uint32_t Type) const override;
88   bool isTlsLocalDynamicRel(uint32_t Type) const override;
89   bool isTlsGlobalDynamicRel(uint32_t Type) const override;
90   bool isTlsInitialExecRel(uint32_t Type) const override;
91   void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
92   void writePltHeader(uint8_t *Buf) const override;
93   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
94                 int32_t Index, unsigned RelOff) const override;
95   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
96 
97   RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
98                           RelExpr Expr) const override;
99   void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
100   void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
101   void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
102   void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
103 };
104 
105 template <class ELFT> class X86_64TargetInfo final : public TargetInfo {
106 public:
107   X86_64TargetInfo();
108   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
109   uint32_t getDynRel(uint32_t Type) const override;
110   bool isTlsLocalDynamicRel(uint32_t Type) const override;
111   bool isTlsGlobalDynamicRel(uint32_t Type) const override;
112   bool isTlsInitialExecRel(uint32_t Type) const override;
113   void writeGotPltHeader(uint8_t *Buf) const override;
114   void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
115   void writePltHeader(uint8_t *Buf) const override;
116   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
117                 int32_t Index, unsigned RelOff) const override;
118   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
119 
120   RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
121                           RelExpr Expr) const override;
122   void relaxGot(uint8_t *Loc, uint64_t Val) const override;
123   void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
124   void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
125   void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
126   void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
127 
128 private:
129   void relaxGotNoPic(uint8_t *Loc, uint64_t Val, uint8_t Op,
130                      uint8_t ModRm) const;
131 };
132 
133 class PPCTargetInfo final : public TargetInfo {
134 public:
135   PPCTargetInfo();
136   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
137   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
138 };
139 
140 class PPC64TargetInfo final : public TargetInfo {
141 public:
142   PPC64TargetInfo();
143   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
144   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
145                 int32_t Index, unsigned RelOff) const override;
146   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
147 };
148 
149 class AArch64TargetInfo final : public TargetInfo {
150 public:
151   AArch64TargetInfo();
152   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
153   uint32_t getDynRel(uint32_t Type) const override;
154   bool isTlsInitialExecRel(uint32_t Type) const override;
155   void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
156   void writePltHeader(uint8_t *Buf) const override;
157   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
158                 int32_t Index, unsigned RelOff) const override;
159   bool usesOnlyLowPageBits(uint32_t Type) const override;
160   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
161   RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
162                           RelExpr Expr) const override;
163   void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
164   void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
165   void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
166 };
167 
168 class AMDGPUTargetInfo final : public TargetInfo {
169 public:
170   AMDGPUTargetInfo();
171   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
172   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
173 };
174 
175 class ARMTargetInfo final : public TargetInfo {
176 public:
177   ARMTargetInfo();
178   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
179   uint32_t getDynRel(uint32_t Type) const override;
180   uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override;
181   bool isTlsLocalDynamicRel(uint32_t Type) const override;
182   bool isTlsGlobalDynamicRel(uint32_t Type) const override;
183   bool isTlsInitialExecRel(uint32_t Type) const override;
184   void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
185   void writePltHeader(uint8_t *Buf) const override;
186   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
187                 int32_t Index, unsigned RelOff) const override;
188   RelExpr getThunkExpr(RelExpr Expr, uint32_t RelocType,
189                        const InputFile &File,
190                        const SymbolBody &S) const override;
191   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
192 };
193 
194 template <class ELFT> class MipsTargetInfo final : public TargetInfo {
195 public:
196   MipsTargetInfo();
197   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
198   uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override;
199   uint32_t getDynRel(uint32_t Type) const override;
200   bool isTlsLocalDynamicRel(uint32_t Type) const override;
201   bool isTlsGlobalDynamicRel(uint32_t Type) const override;
202   void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
203   void writePltHeader(uint8_t *Buf) const override;
204   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
205                 int32_t Index, unsigned RelOff) const override;
206   RelExpr getThunkExpr(RelExpr Expr, uint32_t RelocType,
207                        const InputFile &File,
208                        const SymbolBody &S) const override;
209   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
210   bool usesOnlyLowPageBits(uint32_t Type) const override;
211 };
212 } // anonymous namespace
213 
214 TargetInfo *createTarget() {
215   switch (Config->EMachine) {
216   case EM_386:
217   case EM_IAMCU:
218     return new X86TargetInfo();
219   case EM_AARCH64:
220     return new AArch64TargetInfo();
221   case EM_AMDGPU:
222     return new AMDGPUTargetInfo();
223   case EM_ARM:
224     return new ARMTargetInfo();
225   case EM_MIPS:
226     switch (Config->EKind) {
227     case ELF32LEKind:
228       return new MipsTargetInfo<ELF32LE>();
229     case ELF32BEKind:
230       return new MipsTargetInfo<ELF32BE>();
231     case ELF64LEKind:
232       return new MipsTargetInfo<ELF64LE>();
233     case ELF64BEKind:
234       return new MipsTargetInfo<ELF64BE>();
235     default:
236       fatal("unsupported MIPS target");
237     }
238   case EM_PPC:
239     return new PPCTargetInfo();
240   case EM_PPC64:
241     return new PPC64TargetInfo();
242   case EM_X86_64:
243     if (Config->EKind == ELF32LEKind)
244       return new X86_64TargetInfo<ELF32LE>();
245     return new X86_64TargetInfo<ELF64LE>();
246   }
247   fatal("unknown target machine");
248 }
249 
250 TargetInfo::~TargetInfo() {}
251 
252 uint64_t TargetInfo::getImplicitAddend(const uint8_t *Buf,
253                                        uint32_t Type) const {
254   return 0;
255 }
256 
257 bool TargetInfo::usesOnlyLowPageBits(uint32_t Type) const { return false; }
258 
259 RelExpr TargetInfo::getThunkExpr(RelExpr Expr, uint32_t RelocType,
260                                  const InputFile &File,
261                                  const SymbolBody &S) const {
262   return Expr;
263 }
264 
265 bool TargetInfo::isTlsInitialExecRel(uint32_t Type) const { return false; }
266 
267 bool TargetInfo::isTlsLocalDynamicRel(uint32_t Type) const { return false; }
268 
269 bool TargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const {
270   return false;
271 }
272 
273 RelExpr TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
274                                     RelExpr Expr) const {
275   return Expr;
276 }
277 
278 void TargetInfo::relaxGot(uint8_t *Loc, uint64_t Val) const {
279   llvm_unreachable("Should not have claimed to be relaxable");
280 }
281 
282 void TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
283                                 uint64_t Val) const {
284   llvm_unreachable("Should not have claimed to be relaxable");
285 }
286 
287 void TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
288                                 uint64_t Val) const {
289   llvm_unreachable("Should not have claimed to be relaxable");
290 }
291 
292 void TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
293                                 uint64_t Val) const {
294   llvm_unreachable("Should not have claimed to be relaxable");
295 }
296 
297 void TargetInfo::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type,
298                                 uint64_t Val) const {
299   llvm_unreachable("Should not have claimed to be relaxable");
300 }
301 
302 X86TargetInfo::X86TargetInfo() {
303   CopyRel = R_386_COPY;
304   GotRel = R_386_GLOB_DAT;
305   PltRel = R_386_JUMP_SLOT;
306   IRelativeRel = R_386_IRELATIVE;
307   RelativeRel = R_386_RELATIVE;
308   TlsGotRel = R_386_TLS_TPOFF;
309   TlsModuleIndexRel = R_386_TLS_DTPMOD32;
310   TlsOffsetRel = R_386_TLS_DTPOFF32;
311   GotEntrySize = 4;
312   GotPltEntrySize = 4;
313   PltEntrySize = 16;
314   PltHeaderSize = 16;
315   TlsGdRelaxSkip = 2;
316 }
317 
318 RelExpr X86TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
319   switch (Type) {
320   default:
321     return R_ABS;
322   case R_386_TLS_GD:
323     return R_TLSGD;
324   case R_386_TLS_LDM:
325     return R_TLSLD;
326   case R_386_PLT32:
327     return R_PLT_PC;
328   case R_386_PC32:
329     return R_PC;
330   case R_386_GOTPC:
331     return R_GOTONLY_PC_FROM_END;
332   case R_386_TLS_IE:
333     return R_GOT;
334   case R_386_GOT32:
335   case R_386_GOT32X:
336   case R_386_TLS_GOTIE:
337     return R_GOT_FROM_END;
338   case R_386_GOTOFF:
339     return R_GOTREL_FROM_END;
340   case R_386_TLS_LE:
341     return R_TLS;
342   case R_386_TLS_LE_32:
343     return R_NEG_TLS;
344   }
345 }
346 
347 RelExpr X86TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
348                                        RelExpr Expr) const {
349   switch (Expr) {
350   default:
351     return Expr;
352   case R_RELAX_TLS_GD_TO_IE:
353     return R_RELAX_TLS_GD_TO_IE_END;
354   case R_RELAX_TLS_GD_TO_LE:
355     return R_RELAX_TLS_GD_TO_LE_NEG;
356   }
357 }
358 
359 void X86TargetInfo::writeGotPltHeader(uint8_t *Buf) const {
360   write32le(Buf, Out<ELF32LE>::Dynamic->getVA());
361 }
362 
363 void X86TargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &S) const {
364   // Entries in .got.plt initially points back to the corresponding
365   // PLT entries with a fixed offset to skip the first instruction.
366   write32le(Buf, S.getPltVA<ELF32LE>() + 6);
367 }
368 
369 uint32_t X86TargetInfo::getDynRel(uint32_t Type) const {
370   if (Type == R_386_TLS_LE)
371     return R_386_TLS_TPOFF;
372   if (Type == R_386_TLS_LE_32)
373     return R_386_TLS_TPOFF32;
374   return Type;
375 }
376 
377 bool X86TargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const {
378   return Type == R_386_TLS_GD;
379 }
380 
381 bool X86TargetInfo::isTlsLocalDynamicRel(uint32_t Type) const {
382   return Type == R_386_TLS_LDO_32 || Type == R_386_TLS_LDM;
383 }
384 
385 bool X86TargetInfo::isTlsInitialExecRel(uint32_t Type) const {
386   return Type == R_386_TLS_IE || Type == R_386_TLS_GOTIE;
387 }
388 
389 void X86TargetInfo::writePltHeader(uint8_t *Buf) const {
390   // Executable files and shared object files have
391   // separate procedure linkage tables.
392   if (Config->Pic) {
393     const uint8_t V[] = {
394         0xff, 0xb3, 0x04, 0x00, 0x00, 0x00, // pushl 4(%ebx)
395         0xff, 0xa3, 0x08, 0x00, 0x00, 0x00, // jmp   *8(%ebx)
396         0x90, 0x90, 0x90, 0x90              // nop; nop; nop; nop
397     };
398     memcpy(Buf, V, sizeof(V));
399     return;
400   }
401 
402   const uint8_t PltData[] = {
403       0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushl (GOT+4)
404       0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp   *(GOT+8)
405       0x90, 0x90, 0x90, 0x90              // nop; nop; nop; nop
406   };
407   memcpy(Buf, PltData, sizeof(PltData));
408   uint32_t Got = Out<ELF32LE>::GotPlt->getVA();
409   write32le(Buf + 2, Got + 4);
410   write32le(Buf + 8, Got + 8);
411 }
412 
413 void X86TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
414                              uint64_t PltEntryAddr, int32_t Index,
415                              unsigned RelOff) const {
416   const uint8_t Inst[] = {
417       0xff, 0x00, 0x00, 0x00, 0x00, 0x00, // jmp *foo_in_GOT|*foo@GOT(%ebx)
418       0x68, 0x00, 0x00, 0x00, 0x00,       // pushl $reloc_offset
419       0xe9, 0x00, 0x00, 0x00, 0x00        // jmp .PLT0@PC
420   };
421   memcpy(Buf, Inst, sizeof(Inst));
422 
423   // jmp *foo@GOT(%ebx) or jmp *foo_in_GOT
424   Buf[1] = Config->Pic ? 0xa3 : 0x25;
425   uint32_t Got = Out<ELF32LE>::GotPlt->getVA();
426   write32le(Buf + 2, Config->Shared ? GotEntryAddr - Got : GotEntryAddr);
427   write32le(Buf + 7, RelOff);
428   write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16);
429 }
430 
431 uint64_t X86TargetInfo::getImplicitAddend(const uint8_t *Buf,
432                                           uint32_t Type) const {
433   switch (Type) {
434   default:
435     return 0;
436   case R_386_32:
437   case R_386_GOT32:
438   case R_386_GOT32X:
439   case R_386_GOTOFF:
440   case R_386_GOTPC:
441   case R_386_PC32:
442   case R_386_PLT32:
443   case R_386_TLS_LE:
444     return read32le(Buf);
445   }
446 }
447 
448 void X86TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
449                                 uint64_t Val) const {
450   checkInt<32>(Val, Type);
451   write32le(Loc, Val);
452 }
453 
454 void X86TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
455                                    uint64_t Val) const {
456   // Convert
457   //   leal x@tlsgd(, %ebx, 1),
458   //   call __tls_get_addr@plt
459   // to
460   //   movl %gs:0,%eax
461   //   subl $x@ntpoff,%eax
462   const uint8_t Inst[] = {
463       0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
464       0x81, 0xe8, 0x00, 0x00, 0x00, 0x00  // subl 0(%ebx), %eax
465   };
466   memcpy(Loc - 3, Inst, sizeof(Inst));
467   relocateOne(Loc + 5, R_386_32, Val);
468 }
469 
470 void X86TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
471                                    uint64_t Val) const {
472   // Convert
473   //   leal x@tlsgd(, %ebx, 1),
474   //   call __tls_get_addr@plt
475   // to
476   //   movl %gs:0, %eax
477   //   addl x@gotntpoff(%ebx), %eax
478   const uint8_t Inst[] = {
479       0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
480       0x03, 0x83, 0x00, 0x00, 0x00, 0x00  // addl 0(%ebx), %eax
481   };
482   memcpy(Loc - 3, Inst, sizeof(Inst));
483   relocateOne(Loc + 5, R_386_32, Val);
484 }
485 
486 // In some conditions, relocations can be optimized to avoid using GOT.
487 // This function does that for Initial Exec to Local Exec case.
488 void X86TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
489                                    uint64_t Val) const {
490   // Ulrich's document section 6.2 says that @gotntpoff can
491   // be used with MOVL or ADDL instructions.
492   // @indntpoff is similar to @gotntpoff, but for use in
493   // position dependent code.
494   uint8_t Reg = (Loc[-1] >> 3) & 7;
495 
496   if (Type == R_386_TLS_IE) {
497     if (Loc[-1] == 0xa1) {
498       // "movl foo@indntpoff,%eax" -> "movl $foo,%eax"
499       // This case is different from the generic case below because
500       // this is a 5 byte instruction while below is 6 bytes.
501       Loc[-1] = 0xb8;
502     } else if (Loc[-2] == 0x8b) {
503       // "movl foo@indntpoff,%reg" -> "movl $foo,%reg"
504       Loc[-2] = 0xc7;
505       Loc[-1] = 0xc0 | Reg;
506     } else {
507       // "addl foo@indntpoff,%reg" -> "addl $foo,%reg"
508       Loc[-2] = 0x81;
509       Loc[-1] = 0xc0 | Reg;
510     }
511   } else {
512     assert(Type == R_386_TLS_GOTIE);
513     if (Loc[-2] == 0x8b) {
514       // "movl foo@gottpoff(%rip),%reg" -> "movl $foo,%reg"
515       Loc[-2] = 0xc7;
516       Loc[-1] = 0xc0 | Reg;
517     } else {
518       // "addl foo@gotntpoff(%rip),%reg" -> "leal foo(%reg),%reg"
519       Loc[-2] = 0x8d;
520       Loc[-1] = 0x80 | (Reg << 3) | Reg;
521     }
522   }
523   relocateOne(Loc, R_386_TLS_LE, Val);
524 }
525 
526 void X86TargetInfo::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type,
527                                    uint64_t Val) const {
528   if (Type == R_386_TLS_LDO_32) {
529     relocateOne(Loc, R_386_TLS_LE, Val);
530     return;
531   }
532 
533   // Convert
534   //   leal foo(%reg),%eax
535   //   call ___tls_get_addr
536   // to
537   //   movl %gs:0,%eax
538   //   nop
539   //   leal 0(%esi,1),%esi
540   const uint8_t Inst[] = {
541       0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0,%eax
542       0x90,                               // nop
543       0x8d, 0x74, 0x26, 0x00              // leal 0(%esi,1),%esi
544   };
545   memcpy(Loc - 2, Inst, sizeof(Inst));
546 }
547 
548 template <class ELFT> X86_64TargetInfo<ELFT>::X86_64TargetInfo() {
549   MaxPageSize = 0x200000; // 2MiB
550   CopyRel = R_X86_64_COPY;
551   GotRel = R_X86_64_GLOB_DAT;
552   PltRel = R_X86_64_JUMP_SLOT;
553   RelativeRel = R_X86_64_RELATIVE;
554   IRelativeRel = R_X86_64_IRELATIVE;
555   TlsGotRel = R_X86_64_TPOFF64;
556   TlsModuleIndexRel = R_X86_64_DTPMOD64;
557   TlsOffsetRel = R_X86_64_DTPOFF64;
558   GotEntrySize = 8;
559   GotPltEntrySize = 8;
560   PltEntrySize = 16;
561   PltHeaderSize = 16;
562   TlsGdRelaxSkip = 2;
563 }
564 
565 template <class ELFT>
566 RelExpr X86_64TargetInfo<ELFT>::getRelExpr(uint32_t Type,
567                                            const SymbolBody &S) const {
568   switch (Type) {
569   default:
570     return R_ABS;
571   case R_X86_64_TPOFF32:
572     return R_TLS;
573   case R_X86_64_TLSLD:
574     return R_TLSLD_PC;
575   case R_X86_64_TLSGD:
576     return R_TLSGD_PC;
577   case R_X86_64_SIZE32:
578   case R_X86_64_SIZE64:
579     return R_SIZE;
580   case R_X86_64_PLT32:
581     return R_PLT_PC;
582   case R_X86_64_PC32:
583   case R_X86_64_PC64:
584     return R_PC;
585   case R_X86_64_GOT32:
586     return R_GOT_FROM_END;
587   case R_X86_64_GOTPCREL:
588   case R_X86_64_GOTPCRELX:
589   case R_X86_64_REX_GOTPCRELX:
590   case R_X86_64_GOTTPOFF:
591     return R_GOT_PC;
592   }
593 }
594 
595 template <class ELFT>
596 void X86_64TargetInfo<ELFT>::writeGotPltHeader(uint8_t *Buf) const {
597   // The first entry holds the value of _DYNAMIC. It is not clear why that is
598   // required, but it is documented in the psabi and the glibc dynamic linker
599   // seems to use it (note that this is relevant for linking ld.so, not any
600   // other program).
601   write64le(Buf, Out<ELFT>::Dynamic->getVA());
602 }
603 
604 template <class ELFT>
605 void X86_64TargetInfo<ELFT>::writeGotPlt(uint8_t *Buf,
606                                          const SymbolBody &S) const {
607   // See comments in X86TargetInfo::writeGotPlt.
608   write32le(Buf, S.getPltVA<ELFT>() + 6);
609 }
610 
611 template <class ELFT>
612 void X86_64TargetInfo<ELFT>::writePltHeader(uint8_t *Buf) const {
613   const uint8_t PltData[] = {
614       0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushq GOT+8(%rip)
615       0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *GOT+16(%rip)
616       0x0f, 0x1f, 0x40, 0x00              // nopl 0x0(rax)
617   };
618   memcpy(Buf, PltData, sizeof(PltData));
619   uint64_t Got = Out<ELFT>::GotPlt->getVA();
620   uint64_t Plt = Out<ELFT>::Plt->getVA();
621   write32le(Buf + 2, Got - Plt + 2); // GOT+8
622   write32le(Buf + 8, Got - Plt + 4); // GOT+16
623 }
624 
625 template <class ELFT>
626 void X86_64TargetInfo<ELFT>::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
627                                       uint64_t PltEntryAddr, int32_t Index,
628                                       unsigned RelOff) const {
629   const uint8_t Inst[] = {
630       0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmpq *got(%rip)
631       0x68, 0x00, 0x00, 0x00, 0x00,       // pushq <relocation index>
632       0xe9, 0x00, 0x00, 0x00, 0x00        // jmpq plt[0]
633   };
634   memcpy(Buf, Inst, sizeof(Inst));
635 
636   write32le(Buf + 2, GotEntryAddr - PltEntryAddr - 6);
637   write32le(Buf + 7, Index);
638   write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16);
639 }
640 
641 template <class ELFT>
642 uint32_t X86_64TargetInfo<ELFT>::getDynRel(uint32_t Type) const {
643   if (Type == R_X86_64_PC32 || Type == R_X86_64_32)
644     errorDynRel(Type);
645   return Type;
646 }
647 
648 template <class ELFT>
649 bool X86_64TargetInfo<ELFT>::isTlsInitialExecRel(uint32_t Type) const {
650   return Type == R_X86_64_GOTTPOFF;
651 }
652 
653 template <class ELFT>
654 bool X86_64TargetInfo<ELFT>::isTlsGlobalDynamicRel(uint32_t Type) const {
655   return Type == R_X86_64_TLSGD;
656 }
657 
658 template <class ELFT>
659 bool X86_64TargetInfo<ELFT>::isTlsLocalDynamicRel(uint32_t Type) const {
660   return Type == R_X86_64_DTPOFF32 || Type == R_X86_64_DTPOFF64 ||
661          Type == R_X86_64_TLSLD;
662 }
663 
664 template <class ELFT>
665 void X86_64TargetInfo<ELFT>::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
666                                             uint64_t Val) const {
667   // Convert
668   //   .byte 0x66
669   //   leaq x@tlsgd(%rip), %rdi
670   //   .word 0x6666
671   //   rex64
672   //   call __tls_get_addr@plt
673   // to
674   //   mov %fs:0x0,%rax
675   //   lea x@tpoff,%rax
676   const uint8_t Inst[] = {
677       0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax
678       0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00              // lea x@tpoff,%rax
679   };
680   memcpy(Loc - 4, Inst, sizeof(Inst));
681   // The original code used a pc relative relocation and so we have to
682   // compensate for the -4 in had in the addend.
683   relocateOne(Loc + 8, R_X86_64_TPOFF32, Val + 4);
684 }
685 
686 template <class ELFT>
687 void X86_64TargetInfo<ELFT>::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
688                                             uint64_t Val) const {
689   // Convert
690   //   .byte 0x66
691   //   leaq x@tlsgd(%rip), %rdi
692   //   .word 0x6666
693   //   rex64
694   //   call __tls_get_addr@plt
695   // to
696   //   mov %fs:0x0,%rax
697   //   addq x@tpoff,%rax
698   const uint8_t Inst[] = {
699       0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax
700       0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00              // addq x@tpoff,%rax
701   };
702   memcpy(Loc - 4, Inst, sizeof(Inst));
703   // Both code sequences are PC relatives, but since we are moving the constant
704   // forward by 8 bytes we have to subtract the value by 8.
705   relocateOne(Loc + 8, R_X86_64_PC32, Val - 8);
706 }
707 
708 // In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to
709 // R_X86_64_TPOFF32 so that it does not use GOT.
710 template <class ELFT>
711 void X86_64TargetInfo<ELFT>::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
712                                             uint64_t Val) const {
713   uint8_t *Inst = Loc - 3;
714   uint8_t Reg = Loc[-1] >> 3;
715   uint8_t *RegSlot = Loc - 1;
716 
717   // Note that ADD with RSP or R12 is converted to ADD instead of LEA
718   // because LEA with these registers needs 4 bytes to encode and thus
719   // wouldn't fit the space.
720 
721   if (memcmp(Inst, "\x48\x03\x25", 3) == 0) {
722     // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp"
723     memcpy(Inst, "\x48\x81\xc4", 3);
724   } else if (memcmp(Inst, "\x4c\x03\x25", 3) == 0) {
725     // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12"
726     memcpy(Inst, "\x49\x81\xc4", 3);
727   } else if (memcmp(Inst, "\x4c\x03", 2) == 0) {
728     // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]"
729     memcpy(Inst, "\x4d\x8d", 2);
730     *RegSlot = 0x80 | (Reg << 3) | Reg;
731   } else if (memcmp(Inst, "\x48\x03", 2) == 0) {
732     // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg"
733     memcpy(Inst, "\x48\x8d", 2);
734     *RegSlot = 0x80 | (Reg << 3) | Reg;
735   } else if (memcmp(Inst, "\x4c\x8b", 2) == 0) {
736     // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]"
737     memcpy(Inst, "\x49\xc7", 2);
738     *RegSlot = 0xc0 | Reg;
739   } else if (memcmp(Inst, "\x48\x8b", 2) == 0) {
740     // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg"
741     memcpy(Inst, "\x48\xc7", 2);
742     *RegSlot = 0xc0 | Reg;
743   } else {
744     fatal("R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only");
745   }
746 
747   // The original code used a PC relative relocation.
748   // Need to compensate for the -4 it had in the addend.
749   relocateOne(Loc, R_X86_64_TPOFF32, Val + 4);
750 }
751 
752 template <class ELFT>
753 void X86_64TargetInfo<ELFT>::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type,
754                                             uint64_t Val) const {
755   // Convert
756   //   leaq bar@tlsld(%rip), %rdi
757   //   callq __tls_get_addr@PLT
758   //   leaq bar@dtpoff(%rax), %rcx
759   // to
760   //   .word 0x6666
761   //   .byte 0x66
762   //   mov %fs:0,%rax
763   //   leaq bar@tpoff(%rax), %rcx
764   if (Type == R_X86_64_DTPOFF64) {
765     write64le(Loc, Val);
766     return;
767   }
768   if (Type == R_X86_64_DTPOFF32) {
769     relocateOne(Loc, R_X86_64_TPOFF32, Val);
770     return;
771   }
772 
773   const uint8_t Inst[] = {
774       0x66, 0x66,                                          // .word 0x6666
775       0x66,                                                // .byte 0x66
776       0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax
777   };
778   memcpy(Loc - 3, Inst, sizeof(Inst));
779 }
780 
781 template <class ELFT>
782 void X86_64TargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint32_t Type,
783                                          uint64_t Val) const {
784   switch (Type) {
785   case R_X86_64_32:
786     checkUInt<32>(Val, Type);
787     write32le(Loc, Val);
788     break;
789   case R_X86_64_32S:
790   case R_X86_64_TPOFF32:
791   case R_X86_64_GOT32:
792   case R_X86_64_GOTPCREL:
793   case R_X86_64_GOTPCRELX:
794   case R_X86_64_REX_GOTPCRELX:
795   case R_X86_64_PC32:
796   case R_X86_64_GOTTPOFF:
797   case R_X86_64_PLT32:
798   case R_X86_64_TLSGD:
799   case R_X86_64_TLSLD:
800   case R_X86_64_DTPOFF32:
801   case R_X86_64_SIZE32:
802     checkInt<32>(Val, Type);
803     write32le(Loc, Val);
804     break;
805   case R_X86_64_64:
806   case R_X86_64_DTPOFF64:
807   case R_X86_64_SIZE64:
808   case R_X86_64_PC64:
809     write64le(Loc, Val);
810     break;
811   default:
812     fatal("unrecognized reloc " + Twine(Type));
813   }
814 }
815 
816 template <class ELFT>
817 RelExpr X86_64TargetInfo<ELFT>::adjustRelaxExpr(uint32_t Type,
818                                                 const uint8_t *Data,
819                                                 RelExpr RelExpr) const {
820   if (Type != R_X86_64_GOTPCRELX && Type != R_X86_64_REX_GOTPCRELX)
821     return RelExpr;
822   const uint8_t Op = Data[-2];
823   const uint8_t ModRm = Data[-1];
824   // FIXME: When PIC is disabled and foo is defined locally in the
825   // lower 32 bit address space, memory operand in mov can be converted into
826   // immediate operand. Otherwise, mov must be changed to lea. We support only
827   // latter relaxation at this moment.
828   if (Op == 0x8b)
829     return R_RELAX_GOT_PC;
830   // Relax call and jmp.
831   if (Op == 0xff && (ModRm == 0x15 || ModRm == 0x25))
832     return R_RELAX_GOT_PC;
833 
834   // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor.
835   // If PIC then no relaxation is available.
836   // We also don't relax test/binop instructions without REX byte,
837   // they are 32bit operations and not common to have.
838   assert(Type == R_X86_64_REX_GOTPCRELX);
839   return Config->Pic ? RelExpr : R_RELAX_GOT_PC_NOPIC;
840 }
841 
842 // A subset of relaxations can only be applied for no-PIC. This method
843 // handles such relaxations. Instructions encoding information was taken from:
844 // "Intel 64 and IA-32 Architectures Software Developer's Manual V2"
845 // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
846 //    64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf)
847 template <class ELFT>
848 void X86_64TargetInfo<ELFT>::relaxGotNoPic(uint8_t *Loc, uint64_t Val,
849                                            uint8_t Op, uint8_t ModRm) const {
850   const uint8_t Rex = Loc[-3];
851   // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg".
852   if (Op == 0x85) {
853     // See "TEST-Logical Compare" (4-428 Vol. 2B),
854     // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension).
855 
856     // ModR/M byte has form XX YYY ZZZ, where
857     // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1).
858     // XX has different meanings:
859     // 00: The operand's memory address is in reg1.
860     // 01: The operand's memory address is reg1 + a byte-sized displacement.
861     // 10: The operand's memory address is reg1 + a word-sized displacement.
862     // 11: The operand is reg1 itself.
863     // If an instruction requires only one operand, the unused reg2 field
864     // holds extra opcode bits rather than a register code
865     // 0xC0 == 11 000 000 binary.
866     // 0x38 == 00 111 000 binary.
867     // We transfer reg2 to reg1 here as operand.
868     // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3).
869     Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3; // ModR/M byte.
870 
871     // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32
872     // See "TEST-Logical Compare" (4-428 Vol. 2B).
873     Loc[-2] = 0xf7;
874 
875     // Move R bit to the B bit in REX byte.
876     // REX byte is encoded as 0100WRXB, where
877     // 0100 is 4bit fixed pattern.
878     // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the
879     //   default operand size is used (which is 32-bit for most but not all
880     //   instructions).
881     // REX.R This 1-bit value is an extension to the MODRM.reg field.
882     // REX.X This 1-bit value is an extension to the SIB.index field.
883     // REX.B This 1-bit value is an extension to the MODRM.rm field or the
884     // SIB.base field.
885     // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A).
886     Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2;
887     relocateOne(Loc, R_X86_64_PC32, Val);
888     return;
889   }
890 
891   // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub
892   // or xor operations.
893 
894   // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg".
895   // Logic is close to one for test instruction above, but we also
896   // write opcode extension here, see below for details.
897   Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3 | (Op & 0x3c); // ModR/M byte.
898 
899   // Primary opcode is 0x81, opcode extension is one of:
900   // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB,
901   // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP.
902   // This value was wrote to MODRM.reg in a line above.
903   // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15),
904   // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for
905   // descriptions about each operation.
906   Loc[-2] = 0x81;
907   Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2;
908   relocateOne(Loc, R_X86_64_PC32, Val);
909 }
910 
911 template <class ELFT>
912 void X86_64TargetInfo<ELFT>::relaxGot(uint8_t *Loc, uint64_t Val) const {
913   const uint8_t Op = Loc[-2];
914   const uint8_t ModRm = Loc[-1];
915 
916   // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg".
917   if (Op == 0x8b) {
918     Loc[-2] = 0x8d;
919     relocateOne(Loc, R_X86_64_PC32, Val);
920     return;
921   }
922 
923   if (Op != 0xff) {
924     // We are relaxing a rip relative to an absolute, so compensate
925     // for the old -4 addend.
926     assert(!Config->Pic);
927     relaxGotNoPic(Loc, Val + 4, Op, ModRm);
928     return;
929   }
930 
931   // Convert call/jmp instructions.
932   if (ModRm == 0x15) {
933     // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo".
934     // Instead we convert to "addr32 call foo" where addr32 is an instruction
935     // prefix. That makes result expression to be a single instruction.
936     Loc[-2] = 0x67; // addr32 prefix
937     Loc[-1] = 0xe8; // call
938     relocateOne(Loc, R_X86_64_PC32, Val);
939     return;
940   }
941 
942   // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop".
943   // jmp doesn't return, so it is fine to use nop here, it is just a stub.
944   assert(ModRm == 0x25);
945   Loc[-2] = 0xe9; // jmp
946   Loc[3] = 0x90;  // nop
947   relocateOne(Loc - 1, R_X86_64_PC32, Val + 1);
948 }
949 
950 // Relocation masks following the #lo(value), #hi(value), #ha(value),
951 // #higher(value), #highera(value), #highest(value), and #highesta(value)
952 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
953 // document.
954 static uint16_t applyPPCLo(uint64_t V) { return V; }
955 static uint16_t applyPPCHi(uint64_t V) { return V >> 16; }
956 static uint16_t applyPPCHa(uint64_t V) { return (V + 0x8000) >> 16; }
957 static uint16_t applyPPCHigher(uint64_t V) { return V >> 32; }
958 static uint16_t applyPPCHighera(uint64_t V) { return (V + 0x8000) >> 32; }
959 static uint16_t applyPPCHighest(uint64_t V) { return V >> 48; }
960 static uint16_t applyPPCHighesta(uint64_t V) { return (V + 0x8000) >> 48; }
961 
962 PPCTargetInfo::PPCTargetInfo() {}
963 
964 void PPCTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
965                                 uint64_t Val) const {
966   switch (Type) {
967   case R_PPC_ADDR16_HA:
968     write16be(Loc, applyPPCHa(Val));
969     break;
970   case R_PPC_ADDR16_LO:
971     write16be(Loc, applyPPCLo(Val));
972     break;
973   default:
974     fatal("unrecognized reloc " + Twine(Type));
975   }
976 }
977 
978 RelExpr PPCTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
979   return R_ABS;
980 }
981 
982 PPC64TargetInfo::PPC64TargetInfo() {
983   PltRel = GotRel = R_PPC64_GLOB_DAT;
984   RelativeRel = R_PPC64_RELATIVE;
985   GotEntrySize = 8;
986   GotPltEntrySize = 8;
987   PltEntrySize = 32;
988   PltHeaderSize = 0;
989 
990   // We need 64K pages (at least under glibc/Linux, the loader won't
991   // set different permissions on a finer granularity than that).
992   PageSize = 65536;
993 
994   // The PPC64 ELF ABI v1 spec, says:
995   //
996   //   It is normally desirable to put segments with different characteristics
997   //   in separate 256 Mbyte portions of the address space, to give the
998   //   operating system full paging flexibility in the 64-bit address space.
999   //
1000   // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
1001   // use 0x10000000 as the starting address.
1002   DefaultImageBase = 0x10000000;
1003 }
1004 
1005 static uint64_t PPC64TocOffset = 0x8000;
1006 
1007 uint64_t getPPC64TocBase() {
1008   // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The
1009   // TOC starts where the first of these sections starts. We always create a
1010   // .got when we see a relocation that uses it, so for us the start is always
1011   // the .got.
1012   uint64_t TocVA = Out<ELF64BE>::Got->getVA();
1013 
1014   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
1015   // thus permitting a full 64 Kbytes segment. Note that the glibc startup
1016   // code (crt1.o) assumes that you can get from the TOC base to the
1017   // start of the .toc section with only a single (signed) 16-bit relocation.
1018   return TocVA + PPC64TocOffset;
1019 }
1020 
1021 RelExpr PPC64TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
1022   switch (Type) {
1023   default:
1024     return R_ABS;
1025   case R_PPC64_TOC16:
1026   case R_PPC64_TOC16_DS:
1027   case R_PPC64_TOC16_HA:
1028   case R_PPC64_TOC16_HI:
1029   case R_PPC64_TOC16_LO:
1030   case R_PPC64_TOC16_LO_DS:
1031     return R_GOTREL;
1032   case R_PPC64_TOC:
1033     return R_PPC_TOC;
1034   case R_PPC64_REL24:
1035     return R_PPC_PLT_OPD;
1036   }
1037 }
1038 
1039 void PPC64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
1040                                uint64_t PltEntryAddr, int32_t Index,
1041                                unsigned RelOff) const {
1042   uint64_t Off = GotEntryAddr - getPPC64TocBase();
1043 
1044   // FIXME: What we should do, in theory, is get the offset of the function
1045   // descriptor in the .opd section, and use that as the offset from %r2 (the
1046   // TOC-base pointer). Instead, we have the GOT-entry offset, and that will
1047   // be a pointer to the function descriptor in the .opd section. Using
1048   // this scheme is simpler, but requires an extra indirection per PLT dispatch.
1049 
1050   write32be(Buf,      0xf8410028);                   // std %r2, 40(%r1)
1051   write32be(Buf + 4,  0x3d620000 | applyPPCHa(Off)); // addis %r11, %r2, X@ha
1052   write32be(Buf + 8,  0xe98b0000 | applyPPCLo(Off)); // ld %r12, X@l(%r11)
1053   write32be(Buf + 12, 0xe96c0000);                   // ld %r11,0(%r12)
1054   write32be(Buf + 16, 0x7d6903a6);                   // mtctr %r11
1055   write32be(Buf + 20, 0xe84c0008);                   // ld %r2,8(%r12)
1056   write32be(Buf + 24, 0xe96c0010);                   // ld %r11,16(%r12)
1057   write32be(Buf + 28, 0x4e800420);                   // bctr
1058 }
1059 
1060 static std::pair<uint32_t, uint64_t> toAddr16Rel(uint32_t Type, uint64_t Val) {
1061   uint64_t V = Val - PPC64TocOffset;
1062   switch (Type) {
1063   case R_PPC64_TOC16: return {R_PPC64_ADDR16, V};
1064   case R_PPC64_TOC16_DS: return {R_PPC64_ADDR16_DS, V};
1065   case R_PPC64_TOC16_HA: return {R_PPC64_ADDR16_HA, V};
1066   case R_PPC64_TOC16_HI: return {R_PPC64_ADDR16_HI, V};
1067   case R_PPC64_TOC16_LO: return {R_PPC64_ADDR16_LO, V};
1068   case R_PPC64_TOC16_LO_DS: return {R_PPC64_ADDR16_LO_DS, V};
1069   default: return {Type, Val};
1070   }
1071 }
1072 
1073 void PPC64TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
1074                                   uint64_t Val) const {
1075   // For a TOC-relative relocation, proceed in terms of the corresponding
1076   // ADDR16 relocation type.
1077   std::tie(Type, Val) = toAddr16Rel(Type, Val);
1078 
1079   switch (Type) {
1080   case R_PPC64_ADDR14: {
1081     checkAlignment<4>(Val, Type);
1082     // Preserve the AA/LK bits in the branch instruction
1083     uint8_t AALK = Loc[3];
1084     write16be(Loc + 2, (AALK & 3) | (Val & 0xfffc));
1085     break;
1086   }
1087   case R_PPC64_ADDR16:
1088     checkInt<16>(Val, Type);
1089     write16be(Loc, Val);
1090     break;
1091   case R_PPC64_ADDR16_DS:
1092     checkInt<16>(Val, Type);
1093     write16be(Loc, (read16be(Loc) & 3) | (Val & ~3));
1094     break;
1095   case R_PPC64_ADDR16_HA:
1096   case R_PPC64_REL16_HA:
1097     write16be(Loc, applyPPCHa(Val));
1098     break;
1099   case R_PPC64_ADDR16_HI:
1100   case R_PPC64_REL16_HI:
1101     write16be(Loc, applyPPCHi(Val));
1102     break;
1103   case R_PPC64_ADDR16_HIGHER:
1104     write16be(Loc, applyPPCHigher(Val));
1105     break;
1106   case R_PPC64_ADDR16_HIGHERA:
1107     write16be(Loc, applyPPCHighera(Val));
1108     break;
1109   case R_PPC64_ADDR16_HIGHEST:
1110     write16be(Loc, applyPPCHighest(Val));
1111     break;
1112   case R_PPC64_ADDR16_HIGHESTA:
1113     write16be(Loc, applyPPCHighesta(Val));
1114     break;
1115   case R_PPC64_ADDR16_LO:
1116     write16be(Loc, applyPPCLo(Val));
1117     break;
1118   case R_PPC64_ADDR16_LO_DS:
1119   case R_PPC64_REL16_LO:
1120     write16be(Loc, (read16be(Loc) & 3) | (applyPPCLo(Val) & ~3));
1121     break;
1122   case R_PPC64_ADDR32:
1123   case R_PPC64_REL32:
1124     checkInt<32>(Val, Type);
1125     write32be(Loc, Val);
1126     break;
1127   case R_PPC64_ADDR64:
1128   case R_PPC64_REL64:
1129   case R_PPC64_TOC:
1130     write64be(Loc, Val);
1131     break;
1132   case R_PPC64_REL24: {
1133     uint32_t Mask = 0x03FFFFFC;
1134     checkInt<24>(Val, Type);
1135     write32be(Loc, (read32be(Loc) & ~Mask) | (Val & Mask));
1136     break;
1137   }
1138   default:
1139     fatal("unrecognized reloc " + Twine(Type));
1140   }
1141 }
1142 
1143 AArch64TargetInfo::AArch64TargetInfo() {
1144   CopyRel = R_AARCH64_COPY;
1145   RelativeRel = R_AARCH64_RELATIVE;
1146   IRelativeRel = R_AARCH64_IRELATIVE;
1147   GotRel = R_AARCH64_GLOB_DAT;
1148   PltRel = R_AARCH64_JUMP_SLOT;
1149   TlsDescRel = R_AARCH64_TLSDESC;
1150   TlsGotRel = R_AARCH64_TLS_TPREL64;
1151   GotEntrySize = 8;
1152   GotPltEntrySize = 8;
1153   PltEntrySize = 16;
1154   PltHeaderSize = 32;
1155 
1156   // It doesn't seem to be documented anywhere, but tls on aarch64 uses variant
1157   // 1 of the tls structures and the tcb size is 16.
1158   TcbSize = 16;
1159 }
1160 
1161 RelExpr AArch64TargetInfo::getRelExpr(uint32_t Type,
1162                                       const SymbolBody &S) const {
1163   switch (Type) {
1164   default:
1165     return R_ABS;
1166   case R_AARCH64_TLSDESC_ADR_PAGE21:
1167     return R_TLSDESC_PAGE;
1168   case R_AARCH64_TLSDESC_LD64_LO12_NC:
1169   case R_AARCH64_TLSDESC_ADD_LO12_NC:
1170     return R_TLSDESC;
1171   case R_AARCH64_TLSDESC_CALL:
1172     return R_HINT;
1173   case R_AARCH64_TLSLE_ADD_TPREL_HI12:
1174   case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
1175     return R_TLS;
1176   case R_AARCH64_CALL26:
1177   case R_AARCH64_CONDBR19:
1178   case R_AARCH64_JUMP26:
1179   case R_AARCH64_TSTBR14:
1180     return R_PLT_PC;
1181   case R_AARCH64_PREL16:
1182   case R_AARCH64_PREL32:
1183   case R_AARCH64_PREL64:
1184   case R_AARCH64_ADR_PREL_LO21:
1185     return R_PC;
1186   case R_AARCH64_ADR_PREL_PG_HI21:
1187     return R_PAGE_PC;
1188   case R_AARCH64_LD64_GOT_LO12_NC:
1189   case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
1190     return R_GOT;
1191   case R_AARCH64_ADR_GOT_PAGE:
1192   case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
1193     return R_GOT_PAGE_PC;
1194   }
1195 }
1196 
1197 RelExpr AArch64TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
1198                                            RelExpr Expr) const {
1199   if (Expr == R_RELAX_TLS_GD_TO_IE) {
1200     if (Type == R_AARCH64_TLSDESC_ADR_PAGE21)
1201       return R_RELAX_TLS_GD_TO_IE_PAGE_PC;
1202     return R_RELAX_TLS_GD_TO_IE_ABS;
1203   }
1204   return Expr;
1205 }
1206 
1207 bool AArch64TargetInfo::usesOnlyLowPageBits(uint32_t Type) const {
1208   switch (Type) {
1209   default:
1210     return false;
1211   case R_AARCH64_ADD_ABS_LO12_NC:
1212   case R_AARCH64_LD64_GOT_LO12_NC:
1213   case R_AARCH64_LDST128_ABS_LO12_NC:
1214   case R_AARCH64_LDST16_ABS_LO12_NC:
1215   case R_AARCH64_LDST32_ABS_LO12_NC:
1216   case R_AARCH64_LDST64_ABS_LO12_NC:
1217   case R_AARCH64_LDST8_ABS_LO12_NC:
1218   case R_AARCH64_TLSDESC_ADD_LO12_NC:
1219   case R_AARCH64_TLSDESC_LD64_LO12_NC:
1220   case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
1221     return true;
1222   }
1223 }
1224 
1225 bool AArch64TargetInfo::isTlsInitialExecRel(uint32_t Type) const {
1226   return Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 ||
1227          Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC;
1228 }
1229 
1230 uint32_t AArch64TargetInfo::getDynRel(uint32_t Type) const {
1231   if (Type == R_AARCH64_ABS32 || Type == R_AARCH64_ABS64)
1232     return Type;
1233   // Keep it going with a dummy value so that we can find more reloc errors.
1234   errorDynRel(Type);
1235   return R_AARCH64_ABS32;
1236 }
1237 
1238 void AArch64TargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &) const {
1239   write64le(Buf, Out<ELF64LE>::Plt->getVA());
1240 }
1241 
1242 static uint64_t getAArch64Page(uint64_t Expr) {
1243   return Expr & (~static_cast<uint64_t>(0xFFF));
1244 }
1245 
1246 void AArch64TargetInfo::writePltHeader(uint8_t *Buf) const {
1247   const uint8_t PltData[] = {
1248       0xf0, 0x7b, 0xbf, 0xa9, // stp	x16, x30, [sp,#-16]!
1249       0x10, 0x00, 0x00, 0x90, // adrp	x16, Page(&(.plt.got[2]))
1250       0x11, 0x02, 0x40, 0xf9, // ldr	x17, [x16, Offset(&(.plt.got[2]))]
1251       0x10, 0x02, 0x00, 0x91, // add	x16, x16, Offset(&(.plt.got[2]))
1252       0x20, 0x02, 0x1f, 0xd6, // br	x17
1253       0x1f, 0x20, 0x03, 0xd5, // nop
1254       0x1f, 0x20, 0x03, 0xd5, // nop
1255       0x1f, 0x20, 0x03, 0xd5  // nop
1256   };
1257   memcpy(Buf, PltData, sizeof(PltData));
1258 
1259   uint64_t Got = Out<ELF64LE>::GotPlt->getVA();
1260   uint64_t Plt = Out<ELF64LE>::Plt->getVA();
1261   relocateOne(Buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
1262               getAArch64Page(Got + 16) - getAArch64Page(Plt + 4));
1263   relocateOne(Buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, Got + 16);
1264   relocateOne(Buf + 12, R_AARCH64_ADD_ABS_LO12_NC, Got + 16);
1265 }
1266 
1267 void AArch64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
1268                                  uint64_t PltEntryAddr, int32_t Index,
1269                                  unsigned RelOff) const {
1270   const uint8_t Inst[] = {
1271       0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[n]))
1272       0x11, 0x02, 0x40, 0xf9, // ldr  x17, [x16, Offset(&(.plt.got[n]))]
1273       0x10, 0x02, 0x00, 0x91, // add  x16, x16, Offset(&(.plt.got[n]))
1274       0x20, 0x02, 0x1f, 0xd6  // br   x17
1275   };
1276   memcpy(Buf, Inst, sizeof(Inst));
1277 
1278   relocateOne(Buf, R_AARCH64_ADR_PREL_PG_HI21,
1279               getAArch64Page(GotEntryAddr) - getAArch64Page(PltEntryAddr));
1280   relocateOne(Buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, GotEntryAddr);
1281   relocateOne(Buf + 8, R_AARCH64_ADD_ABS_LO12_NC, GotEntryAddr);
1282 }
1283 
1284 static void updateAArch64Addr(uint8_t *L, uint64_t Imm) {
1285   uint32_t ImmLo = (Imm & 0x3) << 29;
1286   uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
1287   uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
1288   write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
1289 }
1290 
1291 static inline void updateAArch64Add(uint8_t *L, uint64_t Imm) {
1292   or32le(L, (Imm & 0xFFF) << 10);
1293 }
1294 
1295 void AArch64TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
1296                                     uint64_t Val) const {
1297   switch (Type) {
1298   case R_AARCH64_ABS16:
1299   case R_AARCH64_PREL16:
1300     checkIntUInt<16>(Val, Type);
1301     write16le(Loc, Val);
1302     break;
1303   case R_AARCH64_ABS32:
1304   case R_AARCH64_PREL32:
1305     checkIntUInt<32>(Val, Type);
1306     write32le(Loc, Val);
1307     break;
1308   case R_AARCH64_ABS64:
1309   case R_AARCH64_PREL64:
1310     write64le(Loc, Val);
1311     break;
1312   case R_AARCH64_ADD_ABS_LO12_NC:
1313     // This relocation stores 12 bits and there's no instruction
1314     // to do it. Instead, we do a 32 bits store of the value
1315     // of r_addend bitwise-or'ed Loc. This assumes that the addend
1316     // bits in Loc are zero.
1317     or32le(Loc, (Val & 0xFFF) << 10);
1318     break;
1319   case R_AARCH64_ADR_GOT_PAGE:
1320   case R_AARCH64_ADR_PREL_PG_HI21:
1321   case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
1322   case R_AARCH64_TLSDESC_ADR_PAGE21:
1323     checkInt<33>(Val, Type);
1324     updateAArch64Addr(Loc, Val >> 12);
1325     break;
1326   case R_AARCH64_ADR_PREL_LO21:
1327     checkInt<21>(Val, Type);
1328     updateAArch64Addr(Loc, Val);
1329     break;
1330   case R_AARCH64_CALL26:
1331   case R_AARCH64_JUMP26:
1332     checkInt<28>(Val, Type);
1333     or32le(Loc, (Val & 0x0FFFFFFC) >> 2);
1334     break;
1335   case R_AARCH64_CONDBR19:
1336     checkInt<21>(Val, Type);
1337     or32le(Loc, (Val & 0x1FFFFC) << 3);
1338     break;
1339   case R_AARCH64_LD64_GOT_LO12_NC:
1340   case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
1341   case R_AARCH64_TLSDESC_LD64_LO12_NC:
1342     checkAlignment<8>(Val, Type);
1343     or32le(Loc, (Val & 0xFF8) << 7);
1344     break;
1345   case R_AARCH64_LDST128_ABS_LO12_NC:
1346     or32le(Loc, (Val & 0x0FF8) << 6);
1347     break;
1348   case R_AARCH64_LDST16_ABS_LO12_NC:
1349     or32le(Loc, (Val & 0x0FFC) << 9);
1350     break;
1351   case R_AARCH64_LDST8_ABS_LO12_NC:
1352     or32le(Loc, (Val & 0xFFF) << 10);
1353     break;
1354   case R_AARCH64_LDST32_ABS_LO12_NC:
1355     or32le(Loc, (Val & 0xFFC) << 8);
1356     break;
1357   case R_AARCH64_LDST64_ABS_LO12_NC:
1358     or32le(Loc, (Val & 0xFF8) << 7);
1359     break;
1360   case R_AARCH64_TSTBR14:
1361     checkInt<16>(Val, Type);
1362     or32le(Loc, (Val & 0xFFFC) << 3);
1363     break;
1364   case R_AARCH64_TLSLE_ADD_TPREL_HI12:
1365     checkInt<24>(Val, Type);
1366     updateAArch64Add(Loc, Val >> 12);
1367     break;
1368   case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
1369   case R_AARCH64_TLSDESC_ADD_LO12_NC:
1370     updateAArch64Add(Loc, Val);
1371     break;
1372   default:
1373     fatal("unrecognized reloc " + Twine(Type));
1374   }
1375 }
1376 
1377 void AArch64TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
1378                                        uint64_t Val) const {
1379   // TLSDESC Global-Dynamic relocation are in the form:
1380   //   adrp    x0, :tlsdesc:v             [R_AARCH64_TLSDESC_ADR_PAGE21]
1381   //   ldr     x1, [x0, #:tlsdesc_lo12:v  [R_AARCH64_TLSDESC_LD64_LO12_NC]
1382   //   add     x0, x0, :tlsdesc_los:v     [_AARCH64_TLSDESC_ADD_LO12_NC]
1383   //   .tlsdesccall                       [R_AARCH64_TLSDESC_CALL]
1384   //   blr     x1
1385   // And it can optimized to:
1386   //   movz    x0, #0x0, lsl #16
1387   //   movk    x0, #0x10
1388   //   nop
1389   //   nop
1390   checkUInt<32>(Val, Type);
1391 
1392   switch (Type) {
1393   case R_AARCH64_TLSDESC_ADD_LO12_NC:
1394   case R_AARCH64_TLSDESC_CALL:
1395     write32le(Loc, 0xd503201f); // nop
1396     return;
1397   case R_AARCH64_TLSDESC_ADR_PAGE21:
1398     write32le(Loc, 0xd2a00000 | (((Val >> 16) & 0xffff) << 5)); // movz
1399     return;
1400   case R_AARCH64_TLSDESC_LD64_LO12_NC:
1401     write32le(Loc, 0xf2800000 | ((Val & 0xffff) << 5)); // movk
1402     return;
1403   default:
1404     llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
1405   }
1406 }
1407 
1408 void AArch64TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
1409                                        uint64_t Val) const {
1410   // TLSDESC Global-Dynamic relocation are in the form:
1411   //   adrp    x0, :tlsdesc:v             [R_AARCH64_TLSDESC_ADR_PAGE21]
1412   //   ldr     x1, [x0, #:tlsdesc_lo12:v  [R_AARCH64_TLSDESC_LD64_LO12_NC]
1413   //   add     x0, x0, :tlsdesc_los:v     [_AARCH64_TLSDESC_ADD_LO12_NC]
1414   //   .tlsdesccall                       [R_AARCH64_TLSDESC_CALL]
1415   //   blr     x1
1416   // And it can optimized to:
1417   //   adrp    x0, :gottprel:v
1418   //   ldr     x0, [x0, :gottprel_lo12:v]
1419   //   nop
1420   //   nop
1421 
1422   switch (Type) {
1423   case R_AARCH64_TLSDESC_ADD_LO12_NC:
1424   case R_AARCH64_TLSDESC_CALL:
1425     write32le(Loc, 0xd503201f); // nop
1426     break;
1427   case R_AARCH64_TLSDESC_ADR_PAGE21:
1428     write32le(Loc, 0x90000000); // adrp
1429     relocateOne(Loc, R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, Val);
1430     break;
1431   case R_AARCH64_TLSDESC_LD64_LO12_NC:
1432     write32le(Loc, 0xf9400000); // ldr
1433     relocateOne(Loc, R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, Val);
1434     break;
1435   default:
1436     llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
1437   }
1438 }
1439 
1440 void AArch64TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
1441                                        uint64_t Val) const {
1442   checkUInt<32>(Val, Type);
1443 
1444   if (Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) {
1445     // Generate MOVZ.
1446     uint32_t RegNo = read32le(Loc) & 0x1f;
1447     write32le(Loc, (0xd2a00000 | RegNo) | (((Val >> 16) & 0xffff) << 5));
1448     return;
1449   }
1450   if (Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) {
1451     // Generate MOVK.
1452     uint32_t RegNo = read32le(Loc) & 0x1f;
1453     write32le(Loc, (0xf2800000 | RegNo) | ((Val & 0xffff) << 5));
1454     return;
1455   }
1456   llvm_unreachable("invalid relocation for TLS IE to LE relaxation");
1457 }
1458 
1459 AMDGPUTargetInfo::AMDGPUTargetInfo() {
1460   RelativeRel = R_AMDGPU_REL64;
1461   GotRel = R_AMDGPU_ABS64;
1462   GotEntrySize = 8;
1463 }
1464 
1465 void AMDGPUTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
1466                                    uint64_t Val) const {
1467   switch (Type) {
1468   case R_AMDGPU_ABS32:
1469   case R_AMDGPU_GOTPCREL:
1470   case R_AMDGPU_REL32:
1471     write32le(Loc, Val);
1472     break;
1473   default:
1474     fatal("unrecognized reloc " + Twine(Type));
1475   }
1476 }
1477 
1478 RelExpr AMDGPUTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
1479   switch (Type) {
1480   case R_AMDGPU_ABS32:
1481     return R_ABS;
1482   case R_AMDGPU_REL32:
1483     return R_PC;
1484   case R_AMDGPU_GOTPCREL:
1485     return R_GOT_PC;
1486   default:
1487     fatal("do not know how to handle relocation " + Twine(Type));
1488   }
1489 }
1490 
1491 ARMTargetInfo::ARMTargetInfo() {
1492   CopyRel = R_ARM_COPY;
1493   RelativeRel = R_ARM_RELATIVE;
1494   IRelativeRel = R_ARM_IRELATIVE;
1495   GotRel = R_ARM_GLOB_DAT;
1496   PltRel = R_ARM_JUMP_SLOT;
1497   TlsGotRel = R_ARM_TLS_TPOFF32;
1498   TlsModuleIndexRel = R_ARM_TLS_DTPMOD32;
1499   TlsOffsetRel = R_ARM_TLS_DTPOFF32;
1500   GotEntrySize = 4;
1501   GotPltEntrySize = 4;
1502   PltEntrySize = 16;
1503   PltHeaderSize = 20;
1504   // ARM uses Variant 1 TLS
1505   TcbSize = 8;
1506   NeedsThunks = true;
1507 }
1508 
1509 RelExpr ARMTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
1510   switch (Type) {
1511   default:
1512     return R_ABS;
1513   case R_ARM_THM_JUMP11:
1514     return R_PC;
1515   case R_ARM_CALL:
1516   case R_ARM_JUMP24:
1517   case R_ARM_PC24:
1518   case R_ARM_PLT32:
1519   case R_ARM_THM_JUMP19:
1520   case R_ARM_THM_JUMP24:
1521   case R_ARM_THM_CALL:
1522     return R_PLT_PC;
1523   case R_ARM_GOTOFF32:
1524     // (S + A) - GOT_ORG
1525     return R_GOTREL;
1526   case R_ARM_GOT_BREL:
1527     // GOT(S) + A - GOT_ORG
1528     return R_GOT_OFF;
1529   case R_ARM_GOT_PREL:
1530   case R_ARM_TLS_IE32:
1531     // GOT(S) + A - P
1532     return R_GOT_PC;
1533   case R_ARM_TARGET1:
1534     return Config->Target1Rel ? R_PC : R_ABS;
1535   case R_ARM_TLS_GD32:
1536     return R_TLSGD_PC;
1537   case R_ARM_TLS_LDM32:
1538     return R_TLSLD_PC;
1539   case R_ARM_BASE_PREL:
1540     // B(S) + A - P
1541     // FIXME: currently B(S) assumed to be .got, this may not hold for all
1542     // platforms.
1543     return R_GOTONLY_PC;
1544   case R_ARM_MOVW_PREL_NC:
1545   case R_ARM_MOVT_PREL:
1546   case R_ARM_PREL31:
1547   case R_ARM_REL32:
1548   case R_ARM_THM_MOVW_PREL_NC:
1549   case R_ARM_THM_MOVT_PREL:
1550     return R_PC;
1551   case R_ARM_TLS_LE32:
1552     return R_TLS;
1553   }
1554 }
1555 
1556 uint32_t ARMTargetInfo::getDynRel(uint32_t Type) const {
1557   if (Type == R_ARM_TARGET1 && !Config->Target1Rel)
1558     return R_ARM_ABS32;
1559   if (Type == R_ARM_ABS32)
1560     return Type;
1561   // Keep it going with a dummy value so that we can find more reloc errors.
1562   errorDynRel(Type);
1563   return R_ARM_ABS32;
1564 }
1565 
1566 void ARMTargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &) const {
1567   write32le(Buf, Out<ELF32LE>::Plt->getVA());
1568 }
1569 
1570 void ARMTargetInfo::writePltHeader(uint8_t *Buf) const {
1571   const uint8_t PltData[] = {
1572       0x04, 0xe0, 0x2d, 0xe5, //     str lr, [sp,#-4]!
1573       0x04, 0xe0, 0x9f, 0xe5, //     ldr lr, L2
1574       0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr
1575       0x08, 0xf0, 0xbe, 0xe5, //     ldr pc, [lr, #8]
1576       0x00, 0x00, 0x00, 0x00, // L2: .word   &(.got.plt) - L1 - 8
1577   };
1578   memcpy(Buf, PltData, sizeof(PltData));
1579   uint64_t GotPlt = Out<ELF32LE>::GotPlt->getVA();
1580   uint64_t L1 = Out<ELF32LE>::Plt->getVA() + 8;
1581   write32le(Buf + 16, GotPlt - L1 - 8);
1582 }
1583 
1584 void ARMTargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
1585                              uint64_t PltEntryAddr, int32_t Index,
1586                              unsigned RelOff) const {
1587   // FIXME: Using simple code sequence with simple relocations.
1588   // There is a more optimal sequence but it requires support for the group
1589   // relocations. See ELF for the ARM Architecture Appendix A.3
1590   const uint8_t PltData[] = {
1591       0x04, 0xc0, 0x9f, 0xe5, //     ldr ip, L2
1592       0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc
1593       0x00, 0xf0, 0x9c, 0xe5, //     ldr pc, [ip]
1594       0x00, 0x00, 0x00, 0x00, // L2: .word   Offset(&(.plt.got) - L1 - 8
1595   };
1596   memcpy(Buf, PltData, sizeof(PltData));
1597   uint64_t L1 = PltEntryAddr + 4;
1598   write32le(Buf + 12, GotEntryAddr - L1 - 8);
1599 }
1600 
1601 RelExpr ARMTargetInfo::getThunkExpr(RelExpr Expr, uint32_t RelocType,
1602                                     const InputFile &File,
1603                                     const SymbolBody &S) const {
1604   // A state change from ARM to Thumb and vice versa must go through an
1605   // interworking thunk if the relocation type is not R_ARM_CALL or
1606   // R_ARM_THM_CALL.
1607   switch (RelocType) {
1608   case R_ARM_PC24:
1609   case R_ARM_PLT32:
1610   case R_ARM_JUMP24:
1611     // Source is ARM, all PLT entries are ARM so no interworking required.
1612     // Otherwise we need to interwork if Symbol has bit 0 set (Thumb).
1613     if (Expr == R_PC && ((S.getVA<ELF32LE>() & 1) == 1))
1614       return R_THUNK_PC;
1615     break;
1616   case R_ARM_THM_JUMP19:
1617   case R_ARM_THM_JUMP24:
1618     // Source is Thumb, all PLT entries are ARM so interworking is required.
1619     // Otherwise we need to interwork if Symbol has bit 0 clear (ARM).
1620     if (Expr == R_PLT_PC)
1621       return R_THUNK_PLT_PC;
1622     if ((S.getVA<ELF32LE>() & 1) == 0)
1623       return R_THUNK_PC;
1624     break;
1625   }
1626   return Expr;
1627 }
1628 
1629 void ARMTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
1630                                 uint64_t Val) const {
1631   switch (Type) {
1632   case R_ARM_NONE:
1633     break;
1634   case R_ARM_ABS32:
1635   case R_ARM_BASE_PREL:
1636   case R_ARM_GOTOFF32:
1637   case R_ARM_GOT_BREL:
1638   case R_ARM_GOT_PREL:
1639   case R_ARM_REL32:
1640   case R_ARM_TARGET1:
1641   case R_ARM_TLS_GD32:
1642   case R_ARM_TLS_IE32:
1643   case R_ARM_TLS_LDM32:
1644   case R_ARM_TLS_LDO32:
1645   case R_ARM_TLS_LE32:
1646     write32le(Loc, Val);
1647     break;
1648   case R_ARM_PREL31:
1649     checkInt<31>(Val, Type);
1650     write32le(Loc, (read32le(Loc) & 0x80000000) | (Val & ~0x80000000));
1651     break;
1652   case R_ARM_CALL:
1653     // R_ARM_CALL is used for BL and BLX instructions, depending on the
1654     // value of bit 0 of Val, we must select a BL or BLX instruction
1655     if (Val & 1) {
1656       // If bit 0 of Val is 1 the target is Thumb, we must select a BLX.
1657       // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1'
1658       checkInt<26>(Val, Type);
1659       write32le(Loc, 0xfa000000 |                    // opcode
1660                          ((Val & 2) << 23) |         // H
1661                          ((Val >> 2) & 0x00ffffff)); // imm24
1662       break;
1663     }
1664     if ((read32le(Loc) & 0xfe000000) == 0xfa000000)
1665       // BLX (always unconditional) instruction to an ARM Target, select an
1666       // unconditional BL.
1667       write32le(Loc, 0xeb000000 | (read32le(Loc) & 0x00ffffff));
1668     // fall through as BL encoding is shared with B
1669   case R_ARM_JUMP24:
1670   case R_ARM_PC24:
1671   case R_ARM_PLT32:
1672     checkInt<26>(Val, Type);
1673     write32le(Loc, (read32le(Loc) & ~0x00ffffff) | ((Val >> 2) & 0x00ffffff));
1674     break;
1675   case R_ARM_THM_JUMP11:
1676     checkInt<12>(Val, Type);
1677     write16le(Loc, (read32le(Loc) & 0xf800) | ((Val >> 1) & 0x07ff));
1678     break;
1679   case R_ARM_THM_JUMP19:
1680     // Encoding T3: Val = S:J2:J1:imm6:imm11:0
1681     checkInt<21>(Val, Type);
1682     write16le(Loc,
1683               (read16le(Loc) & 0xfbc0) |   // opcode cond
1684                   ((Val >> 10) & 0x0400) | // S
1685                   ((Val >> 12) & 0x003f)); // imm6
1686     write16le(Loc + 2,
1687               0x8000 |                    // opcode
1688                   ((Val >> 8) & 0x0800) | // J2
1689                   ((Val >> 5) & 0x2000) | // J1
1690                   ((Val >> 1) & 0x07ff)); // imm11
1691     break;
1692   case R_ARM_THM_CALL:
1693     // R_ARM_THM_CALL is used for BL and BLX instructions, depending on the
1694     // value of bit 0 of Val, we must select a BL or BLX instruction
1695     if ((Val & 1) == 0) {
1696       // Ensure BLX destination is 4-byte aligned. As BLX instruction may
1697       // only be two byte aligned. This must be done before overflow check
1698       Val = alignTo(Val, 4);
1699     }
1700     // Bit 12 is 0 for BLX, 1 for BL
1701     write16le(Loc + 2, (read16le(Loc + 2) & ~0x1000) | (Val & 1) << 12);
1702     // Fall through as rest of encoding is the same as B.W
1703   case R_ARM_THM_JUMP24:
1704     // Encoding B  T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0
1705     // FIXME: Use of I1 and I2 require v6T2ops
1706     checkInt<25>(Val, Type);
1707     write16le(Loc,
1708               0xf000 |                     // opcode
1709                   ((Val >> 14) & 0x0400) | // S
1710                   ((Val >> 12) & 0x03ff)); // imm10
1711     write16le(Loc + 2,
1712               (read16le(Loc + 2) & 0xd000) |                  // opcode
1713                   (((~(Val >> 10)) ^ (Val >> 11)) & 0x2000) | // J1
1714                   (((~(Val >> 11)) ^ (Val >> 13)) & 0x0800) | // J2
1715                   ((Val >> 1) & 0x07ff));                     // imm11
1716     break;
1717   case R_ARM_MOVW_ABS_NC:
1718   case R_ARM_MOVW_PREL_NC:
1719     write32le(Loc, (read32le(Loc) & ~0x000f0fff) | ((Val & 0xf000) << 4) |
1720                        (Val & 0x0fff));
1721     break;
1722   case R_ARM_MOVT_ABS:
1723   case R_ARM_MOVT_PREL:
1724     checkInt<32>(Val, Type);
1725     write32le(Loc, (read32le(Loc) & ~0x000f0fff) |
1726                        (((Val >> 16) & 0xf000) << 4) | ((Val >> 16) & 0xfff));
1727     break;
1728   case R_ARM_THM_MOVT_ABS:
1729   case R_ARM_THM_MOVT_PREL:
1730     // Encoding T1: A = imm4:i:imm3:imm8
1731     checkInt<32>(Val, Type);
1732     write16le(Loc,
1733               0xf2c0 |                     // opcode
1734                   ((Val >> 17) & 0x0400) | // i
1735                   ((Val >> 28) & 0x000f)); // imm4
1736     write16le(Loc + 2,
1737               (read16le(Loc + 2) & 0x8f00) | // opcode
1738                   ((Val >> 12) & 0x7000) |   // imm3
1739                   ((Val >> 16) & 0x00ff));   // imm8
1740     break;
1741   case R_ARM_THM_MOVW_ABS_NC:
1742   case R_ARM_THM_MOVW_PREL_NC:
1743     // Encoding T3: A = imm4:i:imm3:imm8
1744     write16le(Loc,
1745               0xf240 |                     // opcode
1746                   ((Val >> 1) & 0x0400) |  // i
1747                   ((Val >> 12) & 0x000f)); // imm4
1748     write16le(Loc + 2,
1749               (read16le(Loc + 2) & 0x8f00) | // opcode
1750                   ((Val << 4) & 0x7000) |    // imm3
1751                   (Val & 0x00ff));           // imm8
1752     break;
1753   default:
1754     fatal("unrecognized reloc " + Twine(Type));
1755   }
1756 }
1757 
1758 uint64_t ARMTargetInfo::getImplicitAddend(const uint8_t *Buf,
1759                                           uint32_t Type) const {
1760   switch (Type) {
1761   default:
1762     return 0;
1763   case R_ARM_ABS32:
1764   case R_ARM_BASE_PREL:
1765   case R_ARM_GOTOFF32:
1766   case R_ARM_GOT_BREL:
1767   case R_ARM_GOT_PREL:
1768   case R_ARM_REL32:
1769   case R_ARM_TARGET1:
1770   case R_ARM_TLS_GD32:
1771   case R_ARM_TLS_LDM32:
1772   case R_ARM_TLS_LDO32:
1773   case R_ARM_TLS_IE32:
1774   case R_ARM_TLS_LE32:
1775     return SignExtend64<32>(read32le(Buf));
1776   case R_ARM_PREL31:
1777     return SignExtend64<31>(read32le(Buf));
1778   case R_ARM_CALL:
1779   case R_ARM_JUMP24:
1780   case R_ARM_PC24:
1781   case R_ARM_PLT32:
1782     return SignExtend64<26>(read32le(Buf) << 2);
1783   case R_ARM_THM_JUMP11:
1784     return SignExtend64<12>(read16le(Buf) << 1);
1785   case R_ARM_THM_JUMP19: {
1786     // Encoding T3: A = S:J2:J1:imm10:imm6:0
1787     uint16_t Hi = read16le(Buf);
1788     uint16_t Lo = read16le(Buf + 2);
1789     return SignExtend64<20>(((Hi & 0x0400) << 10) | // S
1790                             ((Lo & 0x0800) << 8) |  // J2
1791                             ((Lo & 0x2000) << 5) |  // J1
1792                             ((Hi & 0x003f) << 12) | // imm6
1793                             ((Lo & 0x07ff) << 1));  // imm11:0
1794   }
1795   case R_ARM_THM_CALL:
1796   case R_ARM_THM_JUMP24: {
1797     // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0
1798     // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S)
1799     // FIXME: I1 and I2 require v6T2ops
1800     uint16_t Hi = read16le(Buf);
1801     uint16_t Lo = read16le(Buf + 2);
1802     return SignExtend64<24>(((Hi & 0x0400) << 14) |                    // S
1803                             (~((Lo ^ (Hi << 3)) << 10) & 0x00800000) | // I1
1804                             (~((Lo ^ (Hi << 1)) << 11) & 0x00400000) | // I2
1805                             ((Hi & 0x003ff) << 12) |                   // imm0
1806                             ((Lo & 0x007ff) << 1)); // imm11:0
1807   }
1808   // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and
1809   // MOVT is in the range -32768 <= A < 32768
1810   case R_ARM_MOVW_ABS_NC:
1811   case R_ARM_MOVT_ABS:
1812   case R_ARM_MOVW_PREL_NC:
1813   case R_ARM_MOVT_PREL: {
1814     uint64_t Val = read32le(Buf) & 0x000f0fff;
1815     return SignExtend64<16>(((Val & 0x000f0000) >> 4) | (Val & 0x00fff));
1816   }
1817   case R_ARM_THM_MOVW_ABS_NC:
1818   case R_ARM_THM_MOVT_ABS:
1819   case R_ARM_THM_MOVW_PREL_NC:
1820   case R_ARM_THM_MOVT_PREL: {
1821     // Encoding T3: A = imm4:i:imm3:imm8
1822     uint16_t Hi = read16le(Buf);
1823     uint16_t Lo = read16le(Buf + 2);
1824     return SignExtend64<16>(((Hi & 0x000f) << 12) | // imm4
1825                             ((Hi & 0x0400) << 1) |  // i
1826                             ((Lo & 0x7000) >> 4) |  // imm3
1827                             (Lo & 0x00ff));         // imm8
1828   }
1829   }
1830 }
1831 
1832 bool ARMTargetInfo::isTlsLocalDynamicRel(uint32_t Type) const {
1833   return Type == R_ARM_TLS_LDO32 || Type == R_ARM_TLS_LDM32;
1834 }
1835 
1836 bool ARMTargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const {
1837   return Type == R_ARM_TLS_GD32;
1838 }
1839 
1840 bool ARMTargetInfo::isTlsInitialExecRel(uint32_t Type) const {
1841   return Type == R_ARM_TLS_IE32;
1842 }
1843 
1844 template <class ELFT> MipsTargetInfo<ELFT>::MipsTargetInfo() {
1845   GotPltHeaderEntriesNum = 2;
1846   PageSize = 65536;
1847   GotEntrySize = sizeof(typename ELFT::uint);
1848   GotPltEntrySize = sizeof(typename ELFT::uint);
1849   PltEntrySize = 16;
1850   PltHeaderSize = 32;
1851   CopyRel = R_MIPS_COPY;
1852   PltRel = R_MIPS_JUMP_SLOT;
1853   NeedsThunks = true;
1854   if (ELFT::Is64Bits) {
1855     RelativeRel = (R_MIPS_64 << 8) | R_MIPS_REL32;
1856     TlsGotRel = R_MIPS_TLS_TPREL64;
1857     TlsModuleIndexRel = R_MIPS_TLS_DTPMOD64;
1858     TlsOffsetRel = R_MIPS_TLS_DTPREL64;
1859   } else {
1860     RelativeRel = R_MIPS_REL32;
1861     TlsGotRel = R_MIPS_TLS_TPREL32;
1862     TlsModuleIndexRel = R_MIPS_TLS_DTPMOD32;
1863     TlsOffsetRel = R_MIPS_TLS_DTPREL32;
1864   }
1865 }
1866 
1867 template <class ELFT>
1868 RelExpr MipsTargetInfo<ELFT>::getRelExpr(uint32_t Type,
1869                                          const SymbolBody &S) const {
1870   if (ELFT::Is64Bits)
1871     // See comment in the calculateMips64RelChain.
1872     Type &= 0xff;
1873   switch (Type) {
1874   default:
1875     return R_ABS;
1876   case R_MIPS_JALR:
1877     return R_HINT;
1878   case R_MIPS_GPREL16:
1879   case R_MIPS_GPREL32:
1880     return R_GOTREL;
1881   case R_MIPS_26:
1882     return R_PLT;
1883   case R_MIPS_HI16:
1884   case R_MIPS_LO16:
1885   case R_MIPS_GOT_OFST:
1886     // MIPS _gp_disp designates offset between start of function and 'gp'
1887     // pointer into GOT. __gnu_local_gp is equal to the current value of
1888     // the 'gp'. Therefore any relocations against them do not require
1889     // dynamic relocation.
1890     if (&S == ElfSym<ELFT>::MipsGpDisp)
1891       return R_PC;
1892     return R_ABS;
1893   case R_MIPS_PC32:
1894   case R_MIPS_PC16:
1895   case R_MIPS_PC19_S2:
1896   case R_MIPS_PC21_S2:
1897   case R_MIPS_PC26_S2:
1898   case R_MIPS_PCHI16:
1899   case R_MIPS_PCLO16:
1900     return R_PC;
1901   case R_MIPS_GOT16:
1902     if (S.isLocal())
1903       return R_MIPS_GOT_LOCAL_PAGE;
1904   // fallthrough
1905   case R_MIPS_CALL16:
1906   case R_MIPS_CALL_HI16:
1907   case R_MIPS_CALL_LO16:
1908   case R_MIPS_GOT_DISP:
1909   case R_MIPS_GOT_HI16:
1910   case R_MIPS_GOT_LO16:
1911   case R_MIPS_TLS_GOTTPREL:
1912     return R_MIPS_GOT_OFF;
1913   case R_MIPS_GOT_PAGE:
1914     return R_MIPS_GOT_LOCAL_PAGE;
1915   case R_MIPS_TLS_GD:
1916     return R_MIPS_TLSGD;
1917   case R_MIPS_TLS_LDM:
1918     return R_MIPS_TLSLD;
1919   }
1920 }
1921 
1922 template <class ELFT>
1923 uint32_t MipsTargetInfo<ELFT>::getDynRel(uint32_t Type) const {
1924   if (Type == R_MIPS_32 || Type == R_MIPS_64)
1925     return RelativeRel;
1926   // Keep it going with a dummy value so that we can find more reloc errors.
1927   errorDynRel(Type);
1928   return R_MIPS_32;
1929 }
1930 
1931 template <class ELFT>
1932 bool MipsTargetInfo<ELFT>::isTlsLocalDynamicRel(uint32_t Type) const {
1933   return Type == R_MIPS_TLS_LDM;
1934 }
1935 
1936 template <class ELFT>
1937 bool MipsTargetInfo<ELFT>::isTlsGlobalDynamicRel(uint32_t Type) const {
1938   return Type == R_MIPS_TLS_GD;
1939 }
1940 
1941 template <class ELFT>
1942 void MipsTargetInfo<ELFT>::writeGotPlt(uint8_t *Buf, const SymbolBody &) const {
1943   write32<ELFT::TargetEndianness>(Buf, Out<ELFT>::Plt->getVA());
1944 }
1945 
1946 template <endianness E, uint8_t BSIZE, uint8_t SHIFT>
1947 static int64_t getPcRelocAddend(const uint8_t *Loc) {
1948   uint32_t Instr = read32<E>(Loc);
1949   uint32_t Mask = 0xffffffff >> (32 - BSIZE);
1950   return SignExtend64<BSIZE + SHIFT>((Instr & Mask) << SHIFT);
1951 }
1952 
1953 template <endianness E, uint8_t BSIZE, uint8_t SHIFT>
1954 static void applyMipsPcReloc(uint8_t *Loc, uint32_t Type, uint64_t V) {
1955   uint32_t Mask = 0xffffffff >> (32 - BSIZE);
1956   uint32_t Instr = read32<E>(Loc);
1957   if (SHIFT > 0)
1958     checkAlignment<(1 << SHIFT)>(V, Type);
1959   checkInt<BSIZE + SHIFT>(V, Type);
1960   write32<E>(Loc, (Instr & ~Mask) | ((V >> SHIFT) & Mask));
1961 }
1962 
1963 template <endianness E>
1964 static void writeMipsHi16(uint8_t *Loc, uint64_t V) {
1965   uint32_t Instr = read32<E>(Loc);
1966   uint16_t Res = ((V + 0x8000) >> 16) & 0xffff;
1967   write32<E>(Loc, (Instr & 0xffff0000) | Res);
1968 }
1969 
1970 template <endianness E>
1971 static void writeMipsHigher(uint8_t *Loc, uint64_t V) {
1972   uint32_t Instr = read32<E>(Loc);
1973   uint16_t Res = ((V + 0x80008000) >> 32) & 0xffff;
1974   write32<E>(Loc, (Instr & 0xffff0000) | Res);
1975 }
1976 
1977 template <endianness E>
1978 static void writeMipsHighest(uint8_t *Loc, uint64_t V) {
1979   uint32_t Instr = read32<E>(Loc);
1980   uint16_t Res = ((V + 0x800080008000) >> 48) & 0xffff;
1981   write32<E>(Loc, (Instr & 0xffff0000) | Res);
1982 }
1983 
1984 template <endianness E>
1985 static void writeMipsLo16(uint8_t *Loc, uint64_t V) {
1986   uint32_t Instr = read32<E>(Loc);
1987   write32<E>(Loc, (Instr & 0xffff0000) | (V & 0xffff));
1988 }
1989 
1990 template <class ELFT> static bool isMipsR6() {
1991   const auto &FirstObj = cast<ELFFileBase<ELFT>>(*Config->FirstElf);
1992   uint32_t Arch = FirstObj.getObj().getHeader()->e_flags & EF_MIPS_ARCH;
1993   return Arch == EF_MIPS_ARCH_32R6 || Arch == EF_MIPS_ARCH_64R6;
1994 }
1995 
1996 template <class ELFT>
1997 void MipsTargetInfo<ELFT>::writePltHeader(uint8_t *Buf) const {
1998   const endianness E = ELFT::TargetEndianness;
1999   write32<E>(Buf, 0x3c1c0000);      // lui   $28, %hi(&GOTPLT[0])
2000   write32<E>(Buf + 4, 0x8f990000);  // lw    $25, %lo(&GOTPLT[0])($28)
2001   write32<E>(Buf + 8, 0x279c0000);  // addiu $28, $28, %lo(&GOTPLT[0])
2002   write32<E>(Buf + 12, 0x031cc023); // subu  $24, $24, $28
2003   write32<E>(Buf + 16, 0x03e07825); // move  $15, $31
2004   write32<E>(Buf + 20, 0x0018c082); // srl   $24, $24, 2
2005   write32<E>(Buf + 24, 0x0320f809); // jalr  $25
2006   write32<E>(Buf + 28, 0x2718fffe); // subu  $24, $24, 2
2007   uint64_t Got = Out<ELFT>::GotPlt->getVA();
2008   writeMipsHi16<E>(Buf, Got);
2009   writeMipsLo16<E>(Buf + 4, Got);
2010   writeMipsLo16<E>(Buf + 8, Got);
2011 }
2012 
2013 template <class ELFT>
2014 void MipsTargetInfo<ELFT>::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
2015                                     uint64_t PltEntryAddr, int32_t Index,
2016                                     unsigned RelOff) const {
2017   const endianness E = ELFT::TargetEndianness;
2018   write32<E>(Buf, 0x3c0f0000);      // lui   $15, %hi(.got.plt entry)
2019   write32<E>(Buf + 4, 0x8df90000);  // l[wd] $25, %lo(.got.plt entry)($15)
2020                                     // jr    $25
2021   write32<E>(Buf + 8, isMipsR6<ELFT>() ? 0x03200009 : 0x03200008);
2022   write32<E>(Buf + 12, 0x25f80000); // addiu $24, $15, %lo(.got.plt entry)
2023   writeMipsHi16<E>(Buf, GotEntryAddr);
2024   writeMipsLo16<E>(Buf + 4, GotEntryAddr);
2025   writeMipsLo16<E>(Buf + 12, GotEntryAddr);
2026 }
2027 
2028 template <class ELFT>
2029 RelExpr MipsTargetInfo<ELFT>::getThunkExpr(RelExpr Expr, uint32_t Type,
2030                                            const InputFile &File,
2031                                            const SymbolBody &S) const {
2032   // Any MIPS PIC code function is invoked with its address in register $t9.
2033   // So if we have a branch instruction from non-PIC code to the PIC one
2034   // we cannot make the jump directly and need to create a small stubs
2035   // to save the target function address.
2036   // See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2037   if (Type != R_MIPS_26)
2038     return Expr;
2039   auto *F = dyn_cast<ELFFileBase<ELFT>>(&File);
2040   if (!F)
2041     return Expr;
2042   // If current file has PIC code, LA25 stub is not required.
2043   if (F->getObj().getHeader()->e_flags & EF_MIPS_PIC)
2044     return Expr;
2045   auto *D = dyn_cast<DefinedRegular<ELFT>>(&S);
2046   if (!D || !D->Section)
2047     return Expr;
2048   // LA25 is required if target file has PIC code
2049   // or target symbol is a PIC symbol.
2050   const ELFFile<ELFT> &DefFile = D->Section->getFile()->getObj();
2051   bool PicFile = DefFile.getHeader()->e_flags & EF_MIPS_PIC;
2052   bool PicSym = (D->StOther & STO_MIPS_MIPS16) == STO_MIPS_PIC;
2053   return (PicFile || PicSym) ? R_THUNK_ABS : Expr;
2054 }
2055 
2056 template <class ELFT>
2057 uint64_t MipsTargetInfo<ELFT>::getImplicitAddend(const uint8_t *Buf,
2058                                                  uint32_t Type) const {
2059   const endianness E = ELFT::TargetEndianness;
2060   switch (Type) {
2061   default:
2062     return 0;
2063   case R_MIPS_32:
2064   case R_MIPS_GPREL32:
2065   case R_MIPS_TLS_DTPREL32:
2066   case R_MIPS_TLS_TPREL32:
2067     return read32<E>(Buf);
2068   case R_MIPS_26:
2069     // FIXME (simon): If the relocation target symbol is not a PLT entry
2070     // we should use another expression for calculation:
2071     // ((A << 2) | (P & 0xf0000000)) >> 2
2072     return SignExtend64<28>((read32<E>(Buf) & 0x3ffffff) << 2);
2073   case R_MIPS_GPREL16:
2074   case R_MIPS_LO16:
2075   case R_MIPS_PCLO16:
2076   case R_MIPS_TLS_DTPREL_HI16:
2077   case R_MIPS_TLS_DTPREL_LO16:
2078   case R_MIPS_TLS_TPREL_HI16:
2079   case R_MIPS_TLS_TPREL_LO16:
2080     return SignExtend64<16>(read32<E>(Buf));
2081   case R_MIPS_PC16:
2082     return getPcRelocAddend<E, 16, 2>(Buf);
2083   case R_MIPS_PC19_S2:
2084     return getPcRelocAddend<E, 19, 2>(Buf);
2085   case R_MIPS_PC21_S2:
2086     return getPcRelocAddend<E, 21, 2>(Buf);
2087   case R_MIPS_PC26_S2:
2088     return getPcRelocAddend<E, 26, 2>(Buf);
2089   case R_MIPS_PC32:
2090     return getPcRelocAddend<E, 32, 0>(Buf);
2091   }
2092 }
2093 
2094 static std::pair<uint32_t, uint64_t> calculateMips64RelChain(uint32_t Type,
2095                                                              uint64_t Val) {
2096   // MIPS N64 ABI packs multiple relocations into the single relocation
2097   // record. In general, all up to three relocations can have arbitrary
2098   // types. In fact, Clang and GCC uses only a few combinations. For now,
2099   // we support two of them. That is allow to pass at least all LLVM
2100   // test suite cases.
2101   // <any relocation> / R_MIPS_SUB / R_MIPS_HI16 | R_MIPS_LO16
2102   // <any relocation> / R_MIPS_64 / R_MIPS_NONE
2103   // The first relocation is a 'real' relocation which is calculated
2104   // using the corresponding symbol's value. The second and the third
2105   // relocations used to modify result of the first one: extend it to
2106   // 64-bit, extract high or low part etc. For details, see part 2.9 Relocation
2107   // at the https://dmz-portal.mips.com/mw/images/8/82/007-4658-001.pdf
2108   uint32_t Type2 = (Type >> 8) & 0xff;
2109   uint32_t Type3 = (Type >> 16) & 0xff;
2110   if (Type2 == R_MIPS_NONE && Type3 == R_MIPS_NONE)
2111     return std::make_pair(Type, Val);
2112   if (Type2 == R_MIPS_64 && Type3 == R_MIPS_NONE)
2113     return std::make_pair(Type2, Val);
2114   if (Type2 == R_MIPS_SUB && (Type3 == R_MIPS_HI16 || Type3 == R_MIPS_LO16))
2115     return std::make_pair(Type3, -Val);
2116   error("unsupported relocations combination " + Twine(Type));
2117   return std::make_pair(Type & 0xff, Val);
2118 }
2119 
2120 template <class ELFT>
2121 void MipsTargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint32_t Type,
2122                                        uint64_t Val) const {
2123   const endianness E = ELFT::TargetEndianness;
2124   // Thread pointer and DRP offsets from the start of TLS data area.
2125   // https://www.linux-mips.org/wiki/NPTL
2126   if (Type == R_MIPS_TLS_DTPREL_HI16 || Type == R_MIPS_TLS_DTPREL_LO16 ||
2127       Type == R_MIPS_TLS_DTPREL32 || Type == R_MIPS_TLS_DTPREL64)
2128     Val -= 0x8000;
2129   else if (Type == R_MIPS_TLS_TPREL_HI16 || Type == R_MIPS_TLS_TPREL_LO16 ||
2130            Type == R_MIPS_TLS_TPREL32 || Type == R_MIPS_TLS_TPREL64)
2131     Val -= 0x7000;
2132   if (ELFT::Is64Bits)
2133     std::tie(Type, Val) = calculateMips64RelChain(Type, Val);
2134   switch (Type) {
2135   case R_MIPS_32:
2136   case R_MIPS_GPREL32:
2137   case R_MIPS_TLS_DTPREL32:
2138   case R_MIPS_TLS_TPREL32:
2139     write32<E>(Loc, Val);
2140     break;
2141   case R_MIPS_64:
2142   case R_MIPS_TLS_DTPREL64:
2143   case R_MIPS_TLS_TPREL64:
2144     write64<E>(Loc, Val);
2145     break;
2146   case R_MIPS_26:
2147     write32<E>(Loc, (read32<E>(Loc) & ~0x3ffffff) | ((Val >> 2) & 0x3ffffff));
2148     break;
2149   case R_MIPS_GOT_DISP:
2150   case R_MIPS_GOT_PAGE:
2151   case R_MIPS_GOT16:
2152   case R_MIPS_GPREL16:
2153   case R_MIPS_TLS_GD:
2154   case R_MIPS_TLS_LDM:
2155     checkInt<16>(Val, Type);
2156   // fallthrough
2157   case R_MIPS_CALL16:
2158   case R_MIPS_CALL_LO16:
2159   case R_MIPS_GOT_LO16:
2160   case R_MIPS_GOT_OFST:
2161   case R_MIPS_LO16:
2162   case R_MIPS_PCLO16:
2163   case R_MIPS_TLS_DTPREL_LO16:
2164   case R_MIPS_TLS_GOTTPREL:
2165   case R_MIPS_TLS_TPREL_LO16:
2166     writeMipsLo16<E>(Loc, Val);
2167     break;
2168   case R_MIPS_CALL_HI16:
2169   case R_MIPS_GOT_HI16:
2170   case R_MIPS_HI16:
2171   case R_MIPS_PCHI16:
2172   case R_MIPS_TLS_DTPREL_HI16:
2173   case R_MIPS_TLS_TPREL_HI16:
2174     writeMipsHi16<E>(Loc, Val);
2175     break;
2176   case R_MIPS_HIGHER:
2177     writeMipsHigher<E>(Loc, Val);
2178     break;
2179   case R_MIPS_HIGHEST:
2180     writeMipsHighest<E>(Loc, Val);
2181     break;
2182   case R_MIPS_JALR:
2183     // Ignore this optimization relocation for now
2184     break;
2185   case R_MIPS_PC16:
2186     applyMipsPcReloc<E, 16, 2>(Loc, Type, Val);
2187     break;
2188   case R_MIPS_PC19_S2:
2189     applyMipsPcReloc<E, 19, 2>(Loc, Type, Val);
2190     break;
2191   case R_MIPS_PC21_S2:
2192     applyMipsPcReloc<E, 21, 2>(Loc, Type, Val);
2193     break;
2194   case R_MIPS_PC26_S2:
2195     applyMipsPcReloc<E, 26, 2>(Loc, Type, Val);
2196     break;
2197   case R_MIPS_PC32:
2198     applyMipsPcReloc<E, 32, 0>(Loc, Type, Val);
2199     break;
2200   default:
2201     fatal("unrecognized reloc " + Twine(Type));
2202   }
2203 }
2204 
2205 template <class ELFT>
2206 bool MipsTargetInfo<ELFT>::usesOnlyLowPageBits(uint32_t Type) const {
2207   return Type == R_MIPS_LO16 || Type == R_MIPS_GOT_OFST;
2208 }
2209 }
2210 }
2211