xref: /llvm-project-15.0.7/lld/ELF/Target.cpp (revision f8764e30)
1 //===- Target.cpp ---------------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Machine-specific things, such as applying relocations, creation of
11 // GOT or PLT entries, etc., are handled in this file.
12 //
13 // Refer the ELF spec for the single letter variables, S, A or P, used
14 // in this file.
15 //
16 // Some functions defined in this file has "relaxTls" as part of their names.
17 // They do peephole optimization for TLS variables by rewriting instructions.
18 // They are not part of the ABI but optional optimization, so you can skip
19 // them if you are not interested in how TLS variables are optimized.
20 // See the following paper for the details.
21 //
22 //   Ulrich Drepper, ELF Handling For Thread-Local Storage
23 //   http://www.akkadia.org/drepper/tls.pdf
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "Target.h"
28 #include "Error.h"
29 #include "InputFiles.h"
30 #include "Memory.h"
31 #include "OutputSections.h"
32 #include "SymbolTable.h"
33 #include "Symbols.h"
34 #include "SyntheticSections.h"
35 #include "Thunks.h"
36 #include "Writer.h"
37 #include "llvm/ADT/ArrayRef.h"
38 #include "llvm/Object/ELF.h"
39 #include "llvm/Support/ELF.h"
40 #include "llvm/Support/Endian.h"
41 
42 using namespace llvm;
43 using namespace llvm::object;
44 using namespace llvm::support::endian;
45 using namespace llvm::ELF;
46 
47 std::string lld::toString(uint32_t Type) {
48   StringRef S = getELFRelocationTypeName(elf::Config->EMachine, Type);
49   if (S == "Unknown")
50     return ("Unknown (" + Twine(Type) + ")").str();
51   return S;
52 }
53 
54 namespace lld {
55 namespace elf {
56 
57 TargetInfo *Target;
58 
59 static void or32le(uint8_t *P, int32_t V) { write32le(P, read32le(P) | V); }
60 static void or32be(uint8_t *P, int32_t V) { write32be(P, read32be(P) | V); }
61 
62 template <class ELFT> static std::string getErrorLoc(uint8_t *Loc) {
63   for (InputSectionBase *D : InputSections) {
64     auto *IS = dyn_cast_or_null<InputSection>(D);
65     if (!IS || !IS->OutSec)
66       continue;
67 
68     uint8_t *ISLoc = cast<OutputSection>(IS->OutSec)->Loc + IS->OutSecOff;
69     if (ISLoc <= Loc && Loc < ISLoc + IS->getSize())
70       return IS->template getLocation<ELFT>(Loc - ISLoc) + ": ";
71   }
72   return "";
73 }
74 
75 static std::string getErrorLocation(uint8_t *Loc) {
76   switch (Config->EKind) {
77   case ELF32LEKind:
78     return getErrorLoc<ELF32LE>(Loc);
79   case ELF32BEKind:
80     return getErrorLoc<ELF32BE>(Loc);
81   case ELF64LEKind:
82     return getErrorLoc<ELF64LE>(Loc);
83   case ELF64BEKind:
84     return getErrorLoc<ELF64BE>(Loc);
85   default:
86     llvm_unreachable("unknown ELF type");
87   }
88 }
89 
90 template <unsigned N>
91 static void checkInt(uint8_t *Loc, int64_t V, uint32_t Type) {
92   if (!isInt<N>(V))
93     error(getErrorLocation(Loc) + "relocation " + toString(Type) +
94           " out of range");
95 }
96 
97 template <unsigned N>
98 static void checkUInt(uint8_t *Loc, uint64_t V, uint32_t Type) {
99   if (!isUInt<N>(V))
100     error(getErrorLocation(Loc) + "relocation " + toString(Type) +
101           " out of range");
102 }
103 
104 template <unsigned N>
105 static void checkIntUInt(uint8_t *Loc, uint64_t V, uint32_t Type) {
106   if (!isInt<N>(V) && !isUInt<N>(V))
107     error(getErrorLocation(Loc) + "relocation " + toString(Type) +
108           " out of range");
109 }
110 
111 template <unsigned N>
112 static void checkAlignment(uint8_t *Loc, uint64_t V, uint32_t Type) {
113   if ((V & (N - 1)) != 0)
114     error(getErrorLocation(Loc) + "improper alignment for relocation " +
115           toString(Type));
116 }
117 
118 namespace {
119 class X86TargetInfo final : public TargetInfo {
120 public:
121   X86TargetInfo();
122   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
123   int64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override;
124   void writeGotPltHeader(uint8_t *Buf) const override;
125   uint32_t getDynRel(uint32_t Type) const override;
126   bool isTlsLocalDynamicRel(uint32_t Type) const override;
127   bool isTlsGlobalDynamicRel(uint32_t Type) const override;
128   bool isTlsInitialExecRel(uint32_t Type) const override;
129   void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
130   void writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const override;
131   void writePltHeader(uint8_t *Buf) const override;
132   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
133                 int32_t Index, unsigned RelOff) const override;
134   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
135 
136   RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
137                           RelExpr Expr) const override;
138   void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
139   void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
140   void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
141   void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
142 };
143 
144 template <class ELFT> class X86_64TargetInfo final : public TargetInfo {
145 public:
146   X86_64TargetInfo();
147   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
148   bool isPicRel(uint32_t Type) const override;
149   bool isTlsLocalDynamicRel(uint32_t Type) const override;
150   bool isTlsGlobalDynamicRel(uint32_t Type) const override;
151   bool isTlsInitialExecRel(uint32_t Type) const override;
152   void writeGotPltHeader(uint8_t *Buf) const override;
153   void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
154   void writePltHeader(uint8_t *Buf) const override;
155   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
156                 int32_t Index, unsigned RelOff) const override;
157   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
158 
159   RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
160                           RelExpr Expr) const override;
161   void relaxGot(uint8_t *Loc, uint64_t Val) const override;
162   void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
163   void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
164   void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
165   void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
166 
167 private:
168   void relaxGotNoPic(uint8_t *Loc, uint64_t Val, uint8_t Op,
169                      uint8_t ModRm) const;
170 };
171 
172 class PPCTargetInfo final : public TargetInfo {
173 public:
174   PPCTargetInfo();
175   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
176   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
177 };
178 
179 class PPC64TargetInfo final : public TargetInfo {
180 public:
181   PPC64TargetInfo();
182   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
183   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
184                 int32_t Index, unsigned RelOff) const override;
185   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
186 };
187 
188 class AArch64TargetInfo final : public TargetInfo {
189 public:
190   AArch64TargetInfo();
191   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
192   bool isPicRel(uint32_t Type) const override;
193   bool isTlsInitialExecRel(uint32_t Type) const override;
194   void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
195   void writePltHeader(uint8_t *Buf) const override;
196   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
197                 int32_t Index, unsigned RelOff) const override;
198   bool usesOnlyLowPageBits(uint32_t Type) const override;
199   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
200   RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
201                           RelExpr Expr) const override;
202   void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
203   void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
204   void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
205 };
206 
207 class AMDGPUTargetInfo final : public TargetInfo {
208 public:
209   AMDGPUTargetInfo();
210   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
211   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
212 };
213 
214 class ARMTargetInfo final : public TargetInfo {
215 public:
216   ARMTargetInfo();
217   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
218   bool isPicRel(uint32_t Type) const override;
219   uint32_t getDynRel(uint32_t Type) const override;
220   int64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override;
221   bool isTlsLocalDynamicRel(uint32_t Type) const override;
222   bool isTlsGlobalDynamicRel(uint32_t Type) const override;
223   bool isTlsInitialExecRel(uint32_t Type) const override;
224   void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
225   void writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const override;
226   void writePltHeader(uint8_t *Buf) const override;
227   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
228                 int32_t Index, unsigned RelOff) const override;
229   void addPltSymbols(InputSectionBase *IS, uint64_t Off) const override;
230   void addPltHeaderSymbols(InputSectionBase *ISD) const override;
231   bool needsThunk(RelExpr Expr, uint32_t RelocType, const InputFile *File,
232                   const SymbolBody &S) const override;
233   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
234 };
235 
236 template <class ELFT> class MipsTargetInfo final : public TargetInfo {
237 public:
238   MipsTargetInfo();
239   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
240   int64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override;
241   bool isPicRel(uint32_t Type) const override;
242   uint32_t getDynRel(uint32_t Type) const override;
243   bool isTlsLocalDynamicRel(uint32_t Type) const override;
244   bool isTlsGlobalDynamicRel(uint32_t Type) const override;
245   void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
246   void writePltHeader(uint8_t *Buf) const override;
247   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
248                 int32_t Index, unsigned RelOff) const override;
249   bool needsThunk(RelExpr Expr, uint32_t RelocType, const InputFile *File,
250                   const SymbolBody &S) const override;
251   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
252   bool usesOnlyLowPageBits(uint32_t Type) const override;
253 };
254 } // anonymous namespace
255 
256 TargetInfo *createTarget() {
257   switch (Config->EMachine) {
258   case EM_386:
259   case EM_IAMCU:
260     return make<X86TargetInfo>();
261   case EM_AARCH64:
262     return make<AArch64TargetInfo>();
263   case EM_AMDGPU:
264     return make<AMDGPUTargetInfo>();
265   case EM_ARM:
266     return make<ARMTargetInfo>();
267   case EM_MIPS:
268     switch (Config->EKind) {
269     case ELF32LEKind:
270       return make<MipsTargetInfo<ELF32LE>>();
271     case ELF32BEKind:
272       return make<MipsTargetInfo<ELF32BE>>();
273     case ELF64LEKind:
274       return make<MipsTargetInfo<ELF64LE>>();
275     case ELF64BEKind:
276       return make<MipsTargetInfo<ELF64BE>>();
277     default:
278       fatal("unsupported MIPS target");
279     }
280   case EM_PPC:
281     return make<PPCTargetInfo>();
282   case EM_PPC64:
283     return make<PPC64TargetInfo>();
284   case EM_X86_64:
285     if (Config->EKind == ELF32LEKind)
286       return make<X86_64TargetInfo<ELF32LE>>();
287     return make<X86_64TargetInfo<ELF64LE>>();
288   }
289   fatal("unknown target machine");
290 }
291 
292 TargetInfo::~TargetInfo() {}
293 
294 int64_t TargetInfo::getImplicitAddend(const uint8_t *Buf, uint32_t Type) const {
295   return 0;
296 }
297 
298 bool TargetInfo::usesOnlyLowPageBits(uint32_t Type) const { return false; }
299 
300 bool TargetInfo::needsThunk(RelExpr Expr, uint32_t RelocType,
301                             const InputFile *File, const SymbolBody &S) const {
302   return false;
303 }
304 
305 bool TargetInfo::isTlsInitialExecRel(uint32_t Type) const { return false; }
306 
307 bool TargetInfo::isTlsLocalDynamicRel(uint32_t Type) const { return false; }
308 
309 bool TargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const { return false; }
310 
311 void TargetInfo::writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const {
312   writeGotPlt(Buf, S);
313 }
314 
315 RelExpr TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
316                                     RelExpr Expr) const {
317   return Expr;
318 }
319 
320 void TargetInfo::relaxGot(uint8_t *Loc, uint64_t Val) const {
321   llvm_unreachable("Should not have claimed to be relaxable");
322 }
323 
324 void TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
325                                 uint64_t Val) const {
326   llvm_unreachable("Should not have claimed to be relaxable");
327 }
328 
329 void TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
330                                 uint64_t Val) const {
331   llvm_unreachable("Should not have claimed to be relaxable");
332 }
333 
334 void TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
335                                 uint64_t Val) const {
336   llvm_unreachable("Should not have claimed to be relaxable");
337 }
338 
339 void TargetInfo::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type,
340                                 uint64_t Val) const {
341   llvm_unreachable("Should not have claimed to be relaxable");
342 }
343 
344 X86TargetInfo::X86TargetInfo() {
345   CopyRel = R_386_COPY;
346   GotRel = R_386_GLOB_DAT;
347   PltRel = R_386_JUMP_SLOT;
348   IRelativeRel = R_386_IRELATIVE;
349   RelativeRel = R_386_RELATIVE;
350   TlsGotRel = R_386_TLS_TPOFF;
351   TlsModuleIndexRel = R_386_TLS_DTPMOD32;
352   TlsOffsetRel = R_386_TLS_DTPOFF32;
353   GotEntrySize = 4;
354   GotPltEntrySize = 4;
355   PltEntrySize = 16;
356   PltHeaderSize = 16;
357   TlsGdRelaxSkip = 2;
358 }
359 
360 RelExpr X86TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
361   switch (Type) {
362   case R_386_8:
363   case R_386_16:
364   case R_386_32:
365   case R_386_TLS_LDO_32:
366     return R_ABS;
367   case R_386_TLS_GD:
368     return R_TLSGD;
369   case R_386_TLS_LDM:
370     return R_TLSLD;
371   case R_386_PLT32:
372     return R_PLT_PC;
373   case R_386_PC8:
374   case R_386_PC16:
375   case R_386_PC32:
376     return R_PC;
377   case R_386_GOTPC:
378     return R_GOTONLY_PC_FROM_END;
379   case R_386_TLS_IE:
380     return R_GOT;
381   case R_386_GOT32:
382   case R_386_GOT32X:
383   case R_386_TLS_GOTIE:
384     return R_GOT_FROM_END;
385   case R_386_GOTOFF:
386     return R_GOTREL_FROM_END;
387   case R_386_TLS_LE:
388     return R_TLS;
389   case R_386_TLS_LE_32:
390     return R_NEG_TLS;
391   case R_386_NONE:
392     return R_NONE;
393   default:
394     error(toString(S.File) + ": unknown relocation type: " + toString(Type));
395     return R_HINT;
396   }
397 }
398 
399 RelExpr X86TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
400                                        RelExpr Expr) const {
401   switch (Expr) {
402   default:
403     return Expr;
404   case R_RELAX_TLS_GD_TO_IE:
405     return R_RELAX_TLS_GD_TO_IE_END;
406   case R_RELAX_TLS_GD_TO_LE:
407     return R_RELAX_TLS_GD_TO_LE_NEG;
408   }
409 }
410 
411 void X86TargetInfo::writeGotPltHeader(uint8_t *Buf) const {
412   write32le(Buf, In<ELF32LE>::Dynamic->getVA());
413 }
414 
415 void X86TargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &S) const {
416   // Entries in .got.plt initially points back to the corresponding
417   // PLT entries with a fixed offset to skip the first instruction.
418   write32le(Buf, S.getPltVA<ELF32LE>() + 6);
419 }
420 
421 void X86TargetInfo::writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const {
422   // An x86 entry is the address of the ifunc resolver function.
423   write32le(Buf, S.getVA<ELF32LE>());
424 }
425 
426 uint32_t X86TargetInfo::getDynRel(uint32_t Type) const {
427   if (Type == R_386_TLS_LE)
428     return R_386_TLS_TPOFF;
429   if (Type == R_386_TLS_LE_32)
430     return R_386_TLS_TPOFF32;
431   return Type;
432 }
433 
434 bool X86TargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const {
435   return Type == R_386_TLS_GD;
436 }
437 
438 bool X86TargetInfo::isTlsLocalDynamicRel(uint32_t Type) const {
439   return Type == R_386_TLS_LDO_32 || Type == R_386_TLS_LDM;
440 }
441 
442 bool X86TargetInfo::isTlsInitialExecRel(uint32_t Type) const {
443   return Type == R_386_TLS_IE || Type == R_386_TLS_GOTIE;
444 }
445 
446 void X86TargetInfo::writePltHeader(uint8_t *Buf) const {
447   // Executable files and shared object files have
448   // separate procedure linkage tables.
449   if (Config->pic()) {
450     const uint8_t V[] = {
451         0xff, 0xb3, 0x04, 0x00, 0x00, 0x00, // pushl 4(%ebx)
452         0xff, 0xa3, 0x08, 0x00, 0x00, 0x00, // jmp   *8(%ebx)
453         0x90, 0x90, 0x90, 0x90              // nop; nop; nop; nop
454     };
455     memcpy(Buf, V, sizeof(V));
456     return;
457   }
458 
459   const uint8_t PltData[] = {
460       0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushl (GOT+4)
461       0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp   *(GOT+8)
462       0x90, 0x90, 0x90, 0x90              // nop; nop; nop; nop
463   };
464   memcpy(Buf, PltData, sizeof(PltData));
465   uint32_t Got = In<ELF32LE>::GotPlt->getVA();
466   write32le(Buf + 2, Got + 4);
467   write32le(Buf + 8, Got + 8);
468 }
469 
470 void X86TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
471                              uint64_t PltEntryAddr, int32_t Index,
472                              unsigned RelOff) const {
473   const uint8_t Inst[] = {
474       0xff, 0x00, 0x00, 0x00, 0x00, 0x00, // jmp *foo_in_GOT|*foo@GOT(%ebx)
475       0x68, 0x00, 0x00, 0x00, 0x00,       // pushl $reloc_offset
476       0xe9, 0x00, 0x00, 0x00, 0x00        // jmp .PLT0@PC
477   };
478   memcpy(Buf, Inst, sizeof(Inst));
479 
480   // jmp *foo@GOT(%ebx) or jmp *foo_in_GOT
481   Buf[1] = Config->pic() ? 0xa3 : 0x25;
482   uint32_t Got = In<ELF32LE>::GotPlt->getVA();
483   write32le(Buf + 2, Config->Shared ? GotEntryAddr - Got : GotEntryAddr);
484   write32le(Buf + 7, RelOff);
485   write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16);
486 }
487 
488 int64_t X86TargetInfo::getImplicitAddend(const uint8_t *Buf,
489                                          uint32_t Type) const {
490   switch (Type) {
491   default:
492     return 0;
493   case R_386_8:
494   case R_386_PC8:
495     return SignExtend64<8>(*Buf);
496   case R_386_16:
497   case R_386_PC16:
498     return SignExtend64<16>(read16le(Buf));
499   case R_386_32:
500   case R_386_GOT32:
501   case R_386_GOT32X:
502   case R_386_GOTOFF:
503   case R_386_GOTPC:
504   case R_386_PC32:
505   case R_386_PLT32:
506   case R_386_TLS_LE:
507     return SignExtend64<32>(read32le(Buf));
508   }
509 }
510 
511 void X86TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
512                                 uint64_t Val) const {
513   // R_386_{PC,}{8,16} are not part of the i386 psABI, but they are
514   // being used for some 16-bit programs such as boot loaders, so
515   // we want to support them.
516   switch (Type) {
517   case R_386_8:
518     checkUInt<8>(Loc, Val, Type);
519     *Loc = Val;
520     break;
521   case R_386_PC8:
522     checkInt<8>(Loc, Val, Type);
523     *Loc = Val;
524     break;
525   case R_386_16:
526     checkUInt<16>(Loc, Val, Type);
527     write16le(Loc, Val);
528     break;
529   case R_386_PC16:
530     checkInt<16>(Loc, Val, Type);
531     write16le(Loc, Val);
532     break;
533   default:
534     checkInt<32>(Loc, Val, Type);
535     write32le(Loc, Val);
536   }
537 }
538 
539 void X86TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
540                                    uint64_t Val) const {
541   // Convert
542   //   leal x@tlsgd(, %ebx, 1),
543   //   call __tls_get_addr@plt
544   // to
545   //   movl %gs:0,%eax
546   //   subl $x@ntpoff,%eax
547   const uint8_t Inst[] = {
548       0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
549       0x81, 0xe8, 0x00, 0x00, 0x00, 0x00  // subl 0(%ebx), %eax
550   };
551   memcpy(Loc - 3, Inst, sizeof(Inst));
552   relocateOne(Loc + 5, R_386_32, Val);
553 }
554 
555 void X86TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
556                                    uint64_t Val) const {
557   // Convert
558   //   leal x@tlsgd(, %ebx, 1),
559   //   call __tls_get_addr@plt
560   // to
561   //   movl %gs:0, %eax
562   //   addl x@gotntpoff(%ebx), %eax
563   const uint8_t Inst[] = {
564       0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
565       0x03, 0x83, 0x00, 0x00, 0x00, 0x00  // addl 0(%ebx), %eax
566   };
567   memcpy(Loc - 3, Inst, sizeof(Inst));
568   relocateOne(Loc + 5, R_386_32, Val);
569 }
570 
571 // In some conditions, relocations can be optimized to avoid using GOT.
572 // This function does that for Initial Exec to Local Exec case.
573 void X86TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
574                                    uint64_t Val) const {
575   // Ulrich's document section 6.2 says that @gotntpoff can
576   // be used with MOVL or ADDL instructions.
577   // @indntpoff is similar to @gotntpoff, but for use in
578   // position dependent code.
579   uint8_t Reg = (Loc[-1] >> 3) & 7;
580 
581   if (Type == R_386_TLS_IE) {
582     if (Loc[-1] == 0xa1) {
583       // "movl foo@indntpoff,%eax" -> "movl $foo,%eax"
584       // This case is different from the generic case below because
585       // this is a 5 byte instruction while below is 6 bytes.
586       Loc[-1] = 0xb8;
587     } else if (Loc[-2] == 0x8b) {
588       // "movl foo@indntpoff,%reg" -> "movl $foo,%reg"
589       Loc[-2] = 0xc7;
590       Loc[-1] = 0xc0 | Reg;
591     } else {
592       // "addl foo@indntpoff,%reg" -> "addl $foo,%reg"
593       Loc[-2] = 0x81;
594       Loc[-1] = 0xc0 | Reg;
595     }
596   } else {
597     assert(Type == R_386_TLS_GOTIE);
598     if (Loc[-2] == 0x8b) {
599       // "movl foo@gottpoff(%rip),%reg" -> "movl $foo,%reg"
600       Loc[-2] = 0xc7;
601       Loc[-1] = 0xc0 | Reg;
602     } else {
603       // "addl foo@gotntpoff(%rip),%reg" -> "leal foo(%reg),%reg"
604       Loc[-2] = 0x8d;
605       Loc[-1] = 0x80 | (Reg << 3) | Reg;
606     }
607   }
608   relocateOne(Loc, R_386_TLS_LE, Val);
609 }
610 
611 void X86TargetInfo::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type,
612                                    uint64_t Val) const {
613   if (Type == R_386_TLS_LDO_32) {
614     relocateOne(Loc, R_386_TLS_LE, Val);
615     return;
616   }
617 
618   // Convert
619   //   leal foo(%reg),%eax
620   //   call ___tls_get_addr
621   // to
622   //   movl %gs:0,%eax
623   //   nop
624   //   leal 0(%esi,1),%esi
625   const uint8_t Inst[] = {
626       0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0,%eax
627       0x90,                               // nop
628       0x8d, 0x74, 0x26, 0x00              // leal 0(%esi,1),%esi
629   };
630   memcpy(Loc - 2, Inst, sizeof(Inst));
631 }
632 
633 template <class ELFT> X86_64TargetInfo<ELFT>::X86_64TargetInfo() {
634   CopyRel = R_X86_64_COPY;
635   GotRel = R_X86_64_GLOB_DAT;
636   PltRel = R_X86_64_JUMP_SLOT;
637   RelativeRel = R_X86_64_RELATIVE;
638   IRelativeRel = R_X86_64_IRELATIVE;
639   TlsGotRel = R_X86_64_TPOFF64;
640   TlsModuleIndexRel = R_X86_64_DTPMOD64;
641   TlsOffsetRel = R_X86_64_DTPOFF64;
642   GotEntrySize = 8;
643   GotPltEntrySize = 8;
644   PltEntrySize = 16;
645   PltHeaderSize = 16;
646   TlsGdRelaxSkip = 2;
647   // Align to the large page size (known as a superpage or huge page).
648   // FreeBSD automatically promotes large, superpage-aligned allocations.
649   DefaultImageBase = 0x200000;
650 }
651 
652 template <class ELFT>
653 RelExpr X86_64TargetInfo<ELFT>::getRelExpr(uint32_t Type,
654                                            const SymbolBody &S) const {
655   switch (Type) {
656   case R_X86_64_8:
657   case R_X86_64_16:
658   case R_X86_64_32:
659   case R_X86_64_32S:
660   case R_X86_64_64:
661   case R_X86_64_DTPOFF32:
662   case R_X86_64_DTPOFF64:
663     return R_ABS;
664   case R_X86_64_TPOFF32:
665     return R_TLS;
666   case R_X86_64_TLSLD:
667     return R_TLSLD_PC;
668   case R_X86_64_TLSGD:
669     return R_TLSGD_PC;
670   case R_X86_64_SIZE32:
671   case R_X86_64_SIZE64:
672     return R_SIZE;
673   case R_X86_64_PLT32:
674     return R_PLT_PC;
675   case R_X86_64_PC32:
676   case R_X86_64_PC64:
677     return R_PC;
678   case R_X86_64_GOT32:
679   case R_X86_64_GOT64:
680     return R_GOT_FROM_END;
681   case R_X86_64_GOTPCREL:
682   case R_X86_64_GOTPCRELX:
683   case R_X86_64_REX_GOTPCRELX:
684   case R_X86_64_GOTTPOFF:
685     return R_GOT_PC;
686   case R_X86_64_NONE:
687     return R_NONE;
688   default:
689     error(toString(S.File) + ": unknown relocation type: " + toString(Type));
690     return R_HINT;
691   }
692 }
693 
694 template <class ELFT>
695 void X86_64TargetInfo<ELFT>::writeGotPltHeader(uint8_t *Buf) const {
696   // The first entry holds the value of _DYNAMIC. It is not clear why that is
697   // required, but it is documented in the psabi and the glibc dynamic linker
698   // seems to use it (note that this is relevant for linking ld.so, not any
699   // other program).
700   write64le(Buf, In<ELFT>::Dynamic->getVA());
701 }
702 
703 template <class ELFT>
704 void X86_64TargetInfo<ELFT>::writeGotPlt(uint8_t *Buf,
705                                          const SymbolBody &S) const {
706   // See comments in X86TargetInfo::writeGotPlt.
707   write32le(Buf, S.getPltVA<ELFT>() + 6);
708 }
709 
710 template <class ELFT>
711 void X86_64TargetInfo<ELFT>::writePltHeader(uint8_t *Buf) const {
712   const uint8_t PltData[] = {
713       0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushq GOT+8(%rip)
714       0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *GOT+16(%rip)
715       0x0f, 0x1f, 0x40, 0x00              // nopl 0x0(rax)
716   };
717   memcpy(Buf, PltData, sizeof(PltData));
718   uint64_t Got = In<ELFT>::GotPlt->getVA();
719   uint64_t Plt = In<ELFT>::Plt->getVA();
720   write32le(Buf + 2, Got - Plt + 2); // GOT+8
721   write32le(Buf + 8, Got - Plt + 4); // GOT+16
722 }
723 
724 template <class ELFT>
725 void X86_64TargetInfo<ELFT>::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
726                                       uint64_t PltEntryAddr, int32_t Index,
727                                       unsigned RelOff) const {
728   const uint8_t Inst[] = {
729       0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmpq *got(%rip)
730       0x68, 0x00, 0x00, 0x00, 0x00,       // pushq <relocation index>
731       0xe9, 0x00, 0x00, 0x00, 0x00        // jmpq plt[0]
732   };
733   memcpy(Buf, Inst, sizeof(Inst));
734 
735   write32le(Buf + 2, GotEntryAddr - PltEntryAddr - 6);
736   write32le(Buf + 7, Index);
737   write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16);
738 }
739 
740 template <class ELFT>
741 bool X86_64TargetInfo<ELFT>::isPicRel(uint32_t Type) const {
742   return Type != R_X86_64_PC32 && Type != R_X86_64_32;
743 }
744 
745 template <class ELFT>
746 bool X86_64TargetInfo<ELFT>::isTlsInitialExecRel(uint32_t Type) const {
747   return Type == R_X86_64_GOTTPOFF;
748 }
749 
750 template <class ELFT>
751 bool X86_64TargetInfo<ELFT>::isTlsGlobalDynamicRel(uint32_t Type) const {
752   return Type == R_X86_64_TLSGD;
753 }
754 
755 template <class ELFT>
756 bool X86_64TargetInfo<ELFT>::isTlsLocalDynamicRel(uint32_t Type) const {
757   return Type == R_X86_64_DTPOFF32 || Type == R_X86_64_DTPOFF64 ||
758          Type == R_X86_64_TLSLD;
759 }
760 
761 template <class ELFT>
762 void X86_64TargetInfo<ELFT>::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
763                                             uint64_t Val) const {
764   // Convert
765   //   .byte 0x66
766   //   leaq x@tlsgd(%rip), %rdi
767   //   .word 0x6666
768   //   rex64
769   //   call __tls_get_addr@plt
770   // to
771   //   mov %fs:0x0,%rax
772   //   lea x@tpoff,%rax
773   const uint8_t Inst[] = {
774       0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax
775       0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00              // lea x@tpoff,%rax
776   };
777   memcpy(Loc - 4, Inst, sizeof(Inst));
778   // The original code used a pc relative relocation and so we have to
779   // compensate for the -4 in had in the addend.
780   relocateOne(Loc + 8, R_X86_64_TPOFF32, Val + 4);
781 }
782 
783 template <class ELFT>
784 void X86_64TargetInfo<ELFT>::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
785                                             uint64_t Val) const {
786   // Convert
787   //   .byte 0x66
788   //   leaq x@tlsgd(%rip), %rdi
789   //   .word 0x6666
790   //   rex64
791   //   call __tls_get_addr@plt
792   // to
793   //   mov %fs:0x0,%rax
794   //   addq x@tpoff,%rax
795   const uint8_t Inst[] = {
796       0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax
797       0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00              // addq x@tpoff,%rax
798   };
799   memcpy(Loc - 4, Inst, sizeof(Inst));
800   // Both code sequences are PC relatives, but since we are moving the constant
801   // forward by 8 bytes we have to subtract the value by 8.
802   relocateOne(Loc + 8, R_X86_64_PC32, Val - 8);
803 }
804 
805 // In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to
806 // R_X86_64_TPOFF32 so that it does not use GOT.
807 template <class ELFT>
808 void X86_64TargetInfo<ELFT>::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
809                                             uint64_t Val) const {
810   uint8_t *Inst = Loc - 3;
811   uint8_t Reg = Loc[-1] >> 3;
812   uint8_t *RegSlot = Loc - 1;
813 
814   // Note that ADD with RSP or R12 is converted to ADD instead of LEA
815   // because LEA with these registers needs 4 bytes to encode and thus
816   // wouldn't fit the space.
817 
818   if (memcmp(Inst, "\x48\x03\x25", 3) == 0) {
819     // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp"
820     memcpy(Inst, "\x48\x81\xc4", 3);
821   } else if (memcmp(Inst, "\x4c\x03\x25", 3) == 0) {
822     // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12"
823     memcpy(Inst, "\x49\x81\xc4", 3);
824   } else if (memcmp(Inst, "\x4c\x03", 2) == 0) {
825     // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]"
826     memcpy(Inst, "\x4d\x8d", 2);
827     *RegSlot = 0x80 | (Reg << 3) | Reg;
828   } else if (memcmp(Inst, "\x48\x03", 2) == 0) {
829     // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg"
830     memcpy(Inst, "\x48\x8d", 2);
831     *RegSlot = 0x80 | (Reg << 3) | Reg;
832   } else if (memcmp(Inst, "\x4c\x8b", 2) == 0) {
833     // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]"
834     memcpy(Inst, "\x49\xc7", 2);
835     *RegSlot = 0xc0 | Reg;
836   } else if (memcmp(Inst, "\x48\x8b", 2) == 0) {
837     // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg"
838     memcpy(Inst, "\x48\xc7", 2);
839     *RegSlot = 0xc0 | Reg;
840   } else {
841     error(getErrorLocation(Loc - 3) +
842           "R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only");
843   }
844 
845   // The original code used a PC relative relocation.
846   // Need to compensate for the -4 it had in the addend.
847   relocateOne(Loc, R_X86_64_TPOFF32, Val + 4);
848 }
849 
850 template <class ELFT>
851 void X86_64TargetInfo<ELFT>::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type,
852                                             uint64_t Val) const {
853   // Convert
854   //   leaq bar@tlsld(%rip), %rdi
855   //   callq __tls_get_addr@PLT
856   //   leaq bar@dtpoff(%rax), %rcx
857   // to
858   //   .word 0x6666
859   //   .byte 0x66
860   //   mov %fs:0,%rax
861   //   leaq bar@tpoff(%rax), %rcx
862   if (Type == R_X86_64_DTPOFF64) {
863     write64le(Loc, Val);
864     return;
865   }
866   if (Type == R_X86_64_DTPOFF32) {
867     relocateOne(Loc, R_X86_64_TPOFF32, Val);
868     return;
869   }
870 
871   const uint8_t Inst[] = {
872       0x66, 0x66,                                          // .word 0x6666
873       0x66,                                                // .byte 0x66
874       0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax
875   };
876   memcpy(Loc - 3, Inst, sizeof(Inst));
877 }
878 
879 template <class ELFT>
880 void X86_64TargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint32_t Type,
881                                          uint64_t Val) const {
882   switch (Type) {
883   case R_X86_64_8:
884     checkUInt<8>(Loc, Val, Type);
885     *Loc = Val;
886     break;
887   case R_X86_64_16:
888     checkUInt<16>(Loc, Val, Type);
889     write16le(Loc, Val);
890     break;
891   case R_X86_64_32:
892     checkUInt<32>(Loc, Val, Type);
893     write32le(Loc, Val);
894     break;
895   case R_X86_64_32S:
896   case R_X86_64_TPOFF32:
897   case R_X86_64_GOT32:
898   case R_X86_64_GOTPCREL:
899   case R_X86_64_GOTPCRELX:
900   case R_X86_64_REX_GOTPCRELX:
901   case R_X86_64_PC32:
902   case R_X86_64_GOTTPOFF:
903   case R_X86_64_PLT32:
904   case R_X86_64_TLSGD:
905   case R_X86_64_TLSLD:
906   case R_X86_64_DTPOFF32:
907   case R_X86_64_SIZE32:
908     checkInt<32>(Loc, Val, Type);
909     write32le(Loc, Val);
910     break;
911   case R_X86_64_64:
912   case R_X86_64_DTPOFF64:
913   case R_X86_64_GLOB_DAT:
914   case R_X86_64_PC64:
915   case R_X86_64_SIZE64:
916   case R_X86_64_GOT64:
917     write64le(Loc, Val);
918     break;
919   default:
920     llvm_unreachable("unexpected relocation");
921   }
922 }
923 
924 template <class ELFT>
925 RelExpr X86_64TargetInfo<ELFT>::adjustRelaxExpr(uint32_t Type,
926                                                 const uint8_t *Data,
927                                                 RelExpr RelExpr) const {
928   if (Type != R_X86_64_GOTPCRELX && Type != R_X86_64_REX_GOTPCRELX)
929     return RelExpr;
930   const uint8_t Op = Data[-2];
931   const uint8_t ModRm = Data[-1];
932   // FIXME: When PIC is disabled and foo is defined locally in the
933   // lower 32 bit address space, memory operand in mov can be converted into
934   // immediate operand. Otherwise, mov must be changed to lea. We support only
935   // latter relaxation at this moment.
936   if (Op == 0x8b)
937     return R_RELAX_GOT_PC;
938   // Relax call and jmp.
939   if (Op == 0xff && (ModRm == 0x15 || ModRm == 0x25))
940     return R_RELAX_GOT_PC;
941 
942   // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor.
943   // If PIC then no relaxation is available.
944   // We also don't relax test/binop instructions without REX byte,
945   // they are 32bit operations and not common to have.
946   assert(Type == R_X86_64_REX_GOTPCRELX);
947   return Config->pic() ? RelExpr : R_RELAX_GOT_PC_NOPIC;
948 }
949 
950 // A subset of relaxations can only be applied for no-PIC. This method
951 // handles such relaxations. Instructions encoding information was taken from:
952 // "Intel 64 and IA-32 Architectures Software Developer's Manual V2"
953 // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
954 //    64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf)
955 template <class ELFT>
956 void X86_64TargetInfo<ELFT>::relaxGotNoPic(uint8_t *Loc, uint64_t Val,
957                                            uint8_t Op, uint8_t ModRm) const {
958   const uint8_t Rex = Loc[-3];
959   // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg".
960   if (Op == 0x85) {
961     // See "TEST-Logical Compare" (4-428 Vol. 2B),
962     // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension).
963 
964     // ModR/M byte has form XX YYY ZZZ, where
965     // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1).
966     // XX has different meanings:
967     // 00: The operand's memory address is in reg1.
968     // 01: The operand's memory address is reg1 + a byte-sized displacement.
969     // 10: The operand's memory address is reg1 + a word-sized displacement.
970     // 11: The operand is reg1 itself.
971     // If an instruction requires only one operand, the unused reg2 field
972     // holds extra opcode bits rather than a register code
973     // 0xC0 == 11 000 000 binary.
974     // 0x38 == 00 111 000 binary.
975     // We transfer reg2 to reg1 here as operand.
976     // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3).
977     Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3; // ModR/M byte.
978 
979     // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32
980     // See "TEST-Logical Compare" (4-428 Vol. 2B).
981     Loc[-2] = 0xf7;
982 
983     // Move R bit to the B bit in REX byte.
984     // REX byte is encoded as 0100WRXB, where
985     // 0100 is 4bit fixed pattern.
986     // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the
987     //   default operand size is used (which is 32-bit for most but not all
988     //   instructions).
989     // REX.R This 1-bit value is an extension to the MODRM.reg field.
990     // REX.X This 1-bit value is an extension to the SIB.index field.
991     // REX.B This 1-bit value is an extension to the MODRM.rm field or the
992     // SIB.base field.
993     // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A).
994     Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2;
995     relocateOne(Loc, R_X86_64_PC32, Val);
996     return;
997   }
998 
999   // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub
1000   // or xor operations.
1001 
1002   // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg".
1003   // Logic is close to one for test instruction above, but we also
1004   // write opcode extension here, see below for details.
1005   Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3 | (Op & 0x3c); // ModR/M byte.
1006 
1007   // Primary opcode is 0x81, opcode extension is one of:
1008   // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB,
1009   // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP.
1010   // This value was wrote to MODRM.reg in a line above.
1011   // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15),
1012   // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for
1013   // descriptions about each operation.
1014   Loc[-2] = 0x81;
1015   Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2;
1016   relocateOne(Loc, R_X86_64_PC32, Val);
1017 }
1018 
1019 template <class ELFT>
1020 void X86_64TargetInfo<ELFT>::relaxGot(uint8_t *Loc, uint64_t Val) const {
1021   const uint8_t Op = Loc[-2];
1022   const uint8_t ModRm = Loc[-1];
1023 
1024   // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg".
1025   if (Op == 0x8b) {
1026     Loc[-2] = 0x8d;
1027     relocateOne(Loc, R_X86_64_PC32, Val);
1028     return;
1029   }
1030 
1031   if (Op != 0xff) {
1032     // We are relaxing a rip relative to an absolute, so compensate
1033     // for the old -4 addend.
1034     assert(!Config->pic());
1035     relaxGotNoPic(Loc, Val + 4, Op, ModRm);
1036     return;
1037   }
1038 
1039   // Convert call/jmp instructions.
1040   if (ModRm == 0x15) {
1041     // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo".
1042     // Instead we convert to "addr32 call foo" where addr32 is an instruction
1043     // prefix. That makes result expression to be a single instruction.
1044     Loc[-2] = 0x67; // addr32 prefix
1045     Loc[-1] = 0xe8; // call
1046     relocateOne(Loc, R_X86_64_PC32, Val);
1047     return;
1048   }
1049 
1050   // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop".
1051   // jmp doesn't return, so it is fine to use nop here, it is just a stub.
1052   assert(ModRm == 0x25);
1053   Loc[-2] = 0xe9; // jmp
1054   Loc[3] = 0x90;  // nop
1055   relocateOne(Loc - 1, R_X86_64_PC32, Val + 1);
1056 }
1057 
1058 // Relocation masks following the #lo(value), #hi(value), #ha(value),
1059 // #higher(value), #highera(value), #highest(value), and #highesta(value)
1060 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
1061 // document.
1062 static uint16_t applyPPCLo(uint64_t V) { return V; }
1063 static uint16_t applyPPCHi(uint64_t V) { return V >> 16; }
1064 static uint16_t applyPPCHa(uint64_t V) { return (V + 0x8000) >> 16; }
1065 static uint16_t applyPPCHigher(uint64_t V) { return V >> 32; }
1066 static uint16_t applyPPCHighera(uint64_t V) { return (V + 0x8000) >> 32; }
1067 static uint16_t applyPPCHighest(uint64_t V) { return V >> 48; }
1068 static uint16_t applyPPCHighesta(uint64_t V) { return (V + 0x8000) >> 48; }
1069 
1070 PPCTargetInfo::PPCTargetInfo() {}
1071 
1072 void PPCTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
1073                                 uint64_t Val) const {
1074   switch (Type) {
1075   case R_PPC_ADDR16_HA:
1076     write16be(Loc, applyPPCHa(Val));
1077     break;
1078   case R_PPC_ADDR16_LO:
1079     write16be(Loc, applyPPCLo(Val));
1080     break;
1081   case R_PPC_ADDR32:
1082   case R_PPC_REL32:
1083     write32be(Loc, Val);
1084     break;
1085   case R_PPC_REL24:
1086     or32be(Loc, Val & 0x3FFFFFC);
1087     break;
1088   default:
1089     error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
1090   }
1091 }
1092 
1093 RelExpr PPCTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
1094   switch (Type) {
1095   case R_PPC_REL24:
1096   case R_PPC_REL32:
1097     return R_PC;
1098   default:
1099     return R_ABS;
1100   }
1101 }
1102 
1103 PPC64TargetInfo::PPC64TargetInfo() {
1104   PltRel = GotRel = R_PPC64_GLOB_DAT;
1105   RelativeRel = R_PPC64_RELATIVE;
1106   GotEntrySize = 8;
1107   GotPltEntrySize = 8;
1108   PltEntrySize = 32;
1109   PltHeaderSize = 0;
1110 
1111   // We need 64K pages (at least under glibc/Linux, the loader won't
1112   // set different permissions on a finer granularity than that).
1113   DefaultMaxPageSize = 65536;
1114 
1115   // The PPC64 ELF ABI v1 spec, says:
1116   //
1117   //   It is normally desirable to put segments with different characteristics
1118   //   in separate 256 Mbyte portions of the address space, to give the
1119   //   operating system full paging flexibility in the 64-bit address space.
1120   //
1121   // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
1122   // use 0x10000000 as the starting address.
1123   DefaultImageBase = 0x10000000;
1124 }
1125 
1126 static uint64_t PPC64TocOffset = 0x8000;
1127 
1128 uint64_t getPPC64TocBase() {
1129   // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The
1130   // TOC starts where the first of these sections starts. We always create a
1131   // .got when we see a relocation that uses it, so for us the start is always
1132   // the .got.
1133   uint64_t TocVA = In<ELF64BE>::Got->getVA();
1134 
1135   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
1136   // thus permitting a full 64 Kbytes segment. Note that the glibc startup
1137   // code (crt1.o) assumes that you can get from the TOC base to the
1138   // start of the .toc section with only a single (signed) 16-bit relocation.
1139   return TocVA + PPC64TocOffset;
1140 }
1141 
1142 RelExpr PPC64TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
1143   switch (Type) {
1144   default:
1145     return R_ABS;
1146   case R_PPC64_TOC16:
1147   case R_PPC64_TOC16_DS:
1148   case R_PPC64_TOC16_HA:
1149   case R_PPC64_TOC16_HI:
1150   case R_PPC64_TOC16_LO:
1151   case R_PPC64_TOC16_LO_DS:
1152     return R_GOTREL;
1153   case R_PPC64_TOC:
1154     return R_PPC_TOC;
1155   case R_PPC64_REL24:
1156     return R_PPC_PLT_OPD;
1157   }
1158 }
1159 
1160 void PPC64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
1161                                uint64_t PltEntryAddr, int32_t Index,
1162                                unsigned RelOff) const {
1163   uint64_t Off = GotEntryAddr - getPPC64TocBase();
1164 
1165   // FIXME: What we should do, in theory, is get the offset of the function
1166   // descriptor in the .opd section, and use that as the offset from %r2 (the
1167   // TOC-base pointer). Instead, we have the GOT-entry offset, and that will
1168   // be a pointer to the function descriptor in the .opd section. Using
1169   // this scheme is simpler, but requires an extra indirection per PLT dispatch.
1170 
1171   write32be(Buf, 0xf8410028);                       // std %r2, 40(%r1)
1172   write32be(Buf + 4, 0x3d620000 | applyPPCHa(Off)); // addis %r11, %r2, X@ha
1173   write32be(Buf + 8, 0xe98b0000 | applyPPCLo(Off)); // ld %r12, X@l(%r11)
1174   write32be(Buf + 12, 0xe96c0000);                  // ld %r11,0(%r12)
1175   write32be(Buf + 16, 0x7d6903a6);                  // mtctr %r11
1176   write32be(Buf + 20, 0xe84c0008);                  // ld %r2,8(%r12)
1177   write32be(Buf + 24, 0xe96c0010);                  // ld %r11,16(%r12)
1178   write32be(Buf + 28, 0x4e800420);                  // bctr
1179 }
1180 
1181 static std::pair<uint32_t, uint64_t> toAddr16Rel(uint32_t Type, uint64_t Val) {
1182   uint64_t V = Val - PPC64TocOffset;
1183   switch (Type) {
1184   case R_PPC64_TOC16:
1185     return {R_PPC64_ADDR16, V};
1186   case R_PPC64_TOC16_DS:
1187     return {R_PPC64_ADDR16_DS, V};
1188   case R_PPC64_TOC16_HA:
1189     return {R_PPC64_ADDR16_HA, V};
1190   case R_PPC64_TOC16_HI:
1191     return {R_PPC64_ADDR16_HI, V};
1192   case R_PPC64_TOC16_LO:
1193     return {R_PPC64_ADDR16_LO, V};
1194   case R_PPC64_TOC16_LO_DS:
1195     return {R_PPC64_ADDR16_LO_DS, V};
1196   default:
1197     return {Type, Val};
1198   }
1199 }
1200 
1201 void PPC64TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
1202                                   uint64_t Val) const {
1203   // For a TOC-relative relocation, proceed in terms of the corresponding
1204   // ADDR16 relocation type.
1205   std::tie(Type, Val) = toAddr16Rel(Type, Val);
1206 
1207   switch (Type) {
1208   case R_PPC64_ADDR14: {
1209     checkAlignment<4>(Loc, Val, Type);
1210     // Preserve the AA/LK bits in the branch instruction
1211     uint8_t AALK = Loc[3];
1212     write16be(Loc + 2, (AALK & 3) | (Val & 0xfffc));
1213     break;
1214   }
1215   case R_PPC64_ADDR16:
1216     checkInt<16>(Loc, Val, Type);
1217     write16be(Loc, Val);
1218     break;
1219   case R_PPC64_ADDR16_DS:
1220     checkInt<16>(Loc, Val, Type);
1221     write16be(Loc, (read16be(Loc) & 3) | (Val & ~3));
1222     break;
1223   case R_PPC64_ADDR16_HA:
1224   case R_PPC64_REL16_HA:
1225     write16be(Loc, applyPPCHa(Val));
1226     break;
1227   case R_PPC64_ADDR16_HI:
1228   case R_PPC64_REL16_HI:
1229     write16be(Loc, applyPPCHi(Val));
1230     break;
1231   case R_PPC64_ADDR16_HIGHER:
1232     write16be(Loc, applyPPCHigher(Val));
1233     break;
1234   case R_PPC64_ADDR16_HIGHERA:
1235     write16be(Loc, applyPPCHighera(Val));
1236     break;
1237   case R_PPC64_ADDR16_HIGHEST:
1238     write16be(Loc, applyPPCHighest(Val));
1239     break;
1240   case R_PPC64_ADDR16_HIGHESTA:
1241     write16be(Loc, applyPPCHighesta(Val));
1242     break;
1243   case R_PPC64_ADDR16_LO:
1244     write16be(Loc, applyPPCLo(Val));
1245     break;
1246   case R_PPC64_ADDR16_LO_DS:
1247   case R_PPC64_REL16_LO:
1248     write16be(Loc, (read16be(Loc) & 3) | (applyPPCLo(Val) & ~3));
1249     break;
1250   case R_PPC64_ADDR32:
1251   case R_PPC64_REL32:
1252     checkInt<32>(Loc, Val, Type);
1253     write32be(Loc, Val);
1254     break;
1255   case R_PPC64_ADDR64:
1256   case R_PPC64_REL64:
1257   case R_PPC64_TOC:
1258     write64be(Loc, Val);
1259     break;
1260   case R_PPC64_REL24: {
1261     uint32_t Mask = 0x03FFFFFC;
1262     checkInt<24>(Loc, Val, Type);
1263     write32be(Loc, (read32be(Loc) & ~Mask) | (Val & Mask));
1264     break;
1265   }
1266   default:
1267     error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
1268   }
1269 }
1270 
1271 AArch64TargetInfo::AArch64TargetInfo() {
1272   CopyRel = R_AARCH64_COPY;
1273   RelativeRel = R_AARCH64_RELATIVE;
1274   IRelativeRel = R_AARCH64_IRELATIVE;
1275   GotRel = R_AARCH64_GLOB_DAT;
1276   PltRel = R_AARCH64_JUMP_SLOT;
1277   TlsDescRel = R_AARCH64_TLSDESC;
1278   TlsGotRel = R_AARCH64_TLS_TPREL64;
1279   GotEntrySize = 8;
1280   GotPltEntrySize = 8;
1281   PltEntrySize = 16;
1282   PltHeaderSize = 32;
1283   DefaultMaxPageSize = 65536;
1284 
1285   // It doesn't seem to be documented anywhere, but tls on aarch64 uses variant
1286   // 1 of the tls structures and the tcb size is 16.
1287   TcbSize = 16;
1288 }
1289 
1290 RelExpr AArch64TargetInfo::getRelExpr(uint32_t Type,
1291                                       const SymbolBody &S) const {
1292   switch (Type) {
1293   default:
1294     return R_ABS;
1295   case R_AARCH64_TLSDESC_ADR_PAGE21:
1296     return R_TLSDESC_PAGE;
1297   case R_AARCH64_TLSDESC_LD64_LO12_NC:
1298   case R_AARCH64_TLSDESC_ADD_LO12_NC:
1299     return R_TLSDESC;
1300   case R_AARCH64_TLSDESC_CALL:
1301     return R_TLSDESC_CALL;
1302   case R_AARCH64_TLSLE_ADD_TPREL_HI12:
1303   case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
1304     return R_TLS;
1305   case R_AARCH64_CALL26:
1306   case R_AARCH64_CONDBR19:
1307   case R_AARCH64_JUMP26:
1308   case R_AARCH64_TSTBR14:
1309     return R_PLT_PC;
1310   case R_AARCH64_PREL16:
1311   case R_AARCH64_PREL32:
1312   case R_AARCH64_PREL64:
1313   case R_AARCH64_ADR_PREL_LO21:
1314     return R_PC;
1315   case R_AARCH64_ADR_PREL_PG_HI21:
1316     return R_PAGE_PC;
1317   case R_AARCH64_LD64_GOT_LO12_NC:
1318   case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
1319     return R_GOT;
1320   case R_AARCH64_ADR_GOT_PAGE:
1321   case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
1322     return R_GOT_PAGE_PC;
1323   case R_AARCH64_NONE:
1324     return R_NONE;
1325   }
1326 }
1327 
1328 RelExpr AArch64TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
1329                                            RelExpr Expr) const {
1330   if (Expr == R_RELAX_TLS_GD_TO_IE) {
1331     if (Type == R_AARCH64_TLSDESC_ADR_PAGE21)
1332       return R_RELAX_TLS_GD_TO_IE_PAGE_PC;
1333     return R_RELAX_TLS_GD_TO_IE_ABS;
1334   }
1335   return Expr;
1336 }
1337 
1338 bool AArch64TargetInfo::usesOnlyLowPageBits(uint32_t Type) const {
1339   switch (Type) {
1340   default:
1341     return false;
1342   case R_AARCH64_ADD_ABS_LO12_NC:
1343   case R_AARCH64_LD64_GOT_LO12_NC:
1344   case R_AARCH64_LDST128_ABS_LO12_NC:
1345   case R_AARCH64_LDST16_ABS_LO12_NC:
1346   case R_AARCH64_LDST32_ABS_LO12_NC:
1347   case R_AARCH64_LDST64_ABS_LO12_NC:
1348   case R_AARCH64_LDST8_ABS_LO12_NC:
1349   case R_AARCH64_TLSDESC_ADD_LO12_NC:
1350   case R_AARCH64_TLSDESC_LD64_LO12_NC:
1351   case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
1352     return true;
1353   }
1354 }
1355 
1356 bool AArch64TargetInfo::isTlsInitialExecRel(uint32_t Type) const {
1357   return Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 ||
1358          Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC;
1359 }
1360 
1361 bool AArch64TargetInfo::isPicRel(uint32_t Type) const {
1362   return Type == R_AARCH64_ABS32 || Type == R_AARCH64_ABS64;
1363 }
1364 
1365 void AArch64TargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &) const {
1366   write64le(Buf, In<ELF64LE>::Plt->getVA());
1367 }
1368 
1369 // Page(Expr) is the page address of the expression Expr, defined
1370 // as (Expr & ~0xFFF). (This applies even if the machine page size
1371 // supported by the platform has a different value.)
1372 uint64_t getAArch64Page(uint64_t Expr) {
1373   return Expr & (~static_cast<uint64_t>(0xFFF));
1374 }
1375 
1376 void AArch64TargetInfo::writePltHeader(uint8_t *Buf) const {
1377   const uint8_t PltData[] = {
1378       0xf0, 0x7b, 0xbf, 0xa9, // stp	x16, x30, [sp,#-16]!
1379       0x10, 0x00, 0x00, 0x90, // adrp	x16, Page(&(.plt.got[2]))
1380       0x11, 0x02, 0x40, 0xf9, // ldr	x17, [x16, Offset(&(.plt.got[2]))]
1381       0x10, 0x02, 0x00, 0x91, // add	x16, x16, Offset(&(.plt.got[2]))
1382       0x20, 0x02, 0x1f, 0xd6, // br	x17
1383       0x1f, 0x20, 0x03, 0xd5, // nop
1384       0x1f, 0x20, 0x03, 0xd5, // nop
1385       0x1f, 0x20, 0x03, 0xd5  // nop
1386   };
1387   memcpy(Buf, PltData, sizeof(PltData));
1388 
1389   uint64_t Got = In<ELF64LE>::GotPlt->getVA();
1390   uint64_t Plt = In<ELF64LE>::Plt->getVA();
1391   relocateOne(Buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
1392               getAArch64Page(Got + 16) - getAArch64Page(Plt + 4));
1393   relocateOne(Buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, Got + 16);
1394   relocateOne(Buf + 12, R_AARCH64_ADD_ABS_LO12_NC, Got + 16);
1395 }
1396 
1397 void AArch64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
1398                                  uint64_t PltEntryAddr, int32_t Index,
1399                                  unsigned RelOff) const {
1400   const uint8_t Inst[] = {
1401       0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[n]))
1402       0x11, 0x02, 0x40, 0xf9, // ldr  x17, [x16, Offset(&(.plt.got[n]))]
1403       0x10, 0x02, 0x00, 0x91, // add  x16, x16, Offset(&(.plt.got[n]))
1404       0x20, 0x02, 0x1f, 0xd6  // br   x17
1405   };
1406   memcpy(Buf, Inst, sizeof(Inst));
1407 
1408   relocateOne(Buf, R_AARCH64_ADR_PREL_PG_HI21,
1409               getAArch64Page(GotEntryAddr) - getAArch64Page(PltEntryAddr));
1410   relocateOne(Buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, GotEntryAddr);
1411   relocateOne(Buf + 8, R_AARCH64_ADD_ABS_LO12_NC, GotEntryAddr);
1412 }
1413 
1414 static void write32AArch64Addr(uint8_t *L, uint64_t Imm) {
1415   uint32_t ImmLo = (Imm & 0x3) << 29;
1416   uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
1417   uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
1418   write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
1419 }
1420 
1421 // Return the bits [Start, End] from Val shifted Start bits.
1422 // For instance, getBits(0xF0, 4, 8) returns 0xF.
1423 static uint64_t getBits(uint64_t Val, int Start, int End) {
1424   uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
1425   return (Val >> Start) & Mask;
1426 }
1427 
1428 // Update the immediate field in a AARCH64 ldr, str, and add instruction.
1429 static void or32AArch64Imm(uint8_t *L, uint64_t Imm) {
1430   or32le(L, (Imm & 0xFFF) << 10);
1431 }
1432 
1433 void AArch64TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
1434                                     uint64_t Val) const {
1435   switch (Type) {
1436   case R_AARCH64_ABS16:
1437   case R_AARCH64_PREL16:
1438     checkIntUInt<16>(Loc, Val, Type);
1439     write16le(Loc, Val);
1440     break;
1441   case R_AARCH64_ABS32:
1442   case R_AARCH64_PREL32:
1443     checkIntUInt<32>(Loc, Val, Type);
1444     write32le(Loc, Val);
1445     break;
1446   case R_AARCH64_ABS64:
1447   case R_AARCH64_GLOB_DAT:
1448   case R_AARCH64_PREL64:
1449     write64le(Loc, Val);
1450     break;
1451   case R_AARCH64_ADD_ABS_LO12_NC:
1452     or32AArch64Imm(Loc, Val);
1453     break;
1454   case R_AARCH64_ADR_GOT_PAGE:
1455   case R_AARCH64_ADR_PREL_PG_HI21:
1456   case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
1457   case R_AARCH64_TLSDESC_ADR_PAGE21:
1458     checkInt<33>(Loc, Val, Type);
1459     write32AArch64Addr(Loc, Val >> 12);
1460     break;
1461   case R_AARCH64_ADR_PREL_LO21:
1462     checkInt<21>(Loc, Val, Type);
1463     write32AArch64Addr(Loc, Val);
1464     break;
1465   case R_AARCH64_CALL26:
1466   case R_AARCH64_JUMP26:
1467     checkInt<28>(Loc, Val, Type);
1468     or32le(Loc, (Val & 0x0FFFFFFC) >> 2);
1469     break;
1470   case R_AARCH64_CONDBR19:
1471     checkInt<21>(Loc, Val, Type);
1472     or32le(Loc, (Val & 0x1FFFFC) << 3);
1473     break;
1474   case R_AARCH64_LD64_GOT_LO12_NC:
1475   case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
1476   case R_AARCH64_TLSDESC_LD64_LO12_NC:
1477     checkAlignment<8>(Loc, Val, Type);
1478     or32le(Loc, (Val & 0xFF8) << 7);
1479     break;
1480   case R_AARCH64_LDST8_ABS_LO12_NC:
1481     or32AArch64Imm(Loc, getBits(Val, 0, 11));
1482     break;
1483   case R_AARCH64_LDST16_ABS_LO12_NC:
1484     or32AArch64Imm(Loc, getBits(Val, 1, 11));
1485     break;
1486   case R_AARCH64_LDST32_ABS_LO12_NC:
1487     or32AArch64Imm(Loc, getBits(Val, 2, 11));
1488     break;
1489   case R_AARCH64_LDST64_ABS_LO12_NC:
1490     or32AArch64Imm(Loc, getBits(Val, 3, 11));
1491     break;
1492   case R_AARCH64_LDST128_ABS_LO12_NC:
1493     or32AArch64Imm(Loc, getBits(Val, 4, 11));
1494     break;
1495   case R_AARCH64_MOVW_UABS_G0_NC:
1496     or32le(Loc, (Val & 0xFFFF) << 5);
1497     break;
1498   case R_AARCH64_MOVW_UABS_G1_NC:
1499     or32le(Loc, (Val & 0xFFFF0000) >> 11);
1500     break;
1501   case R_AARCH64_MOVW_UABS_G2_NC:
1502     or32le(Loc, (Val & 0xFFFF00000000) >> 27);
1503     break;
1504   case R_AARCH64_MOVW_UABS_G3:
1505     or32le(Loc, (Val & 0xFFFF000000000000) >> 43);
1506     break;
1507   case R_AARCH64_TSTBR14:
1508     checkInt<16>(Loc, Val, Type);
1509     or32le(Loc, (Val & 0xFFFC) << 3);
1510     break;
1511   case R_AARCH64_TLSLE_ADD_TPREL_HI12:
1512     checkInt<24>(Loc, Val, Type);
1513     or32AArch64Imm(Loc, Val >> 12);
1514     break;
1515   case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
1516   case R_AARCH64_TLSDESC_ADD_LO12_NC:
1517     or32AArch64Imm(Loc, Val);
1518     break;
1519   default:
1520     error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
1521   }
1522 }
1523 
1524 void AArch64TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
1525                                        uint64_t Val) const {
1526   // TLSDESC Global-Dynamic relocation are in the form:
1527   //   adrp    x0, :tlsdesc:v             [R_AARCH64_TLSDESC_ADR_PAGE21]
1528   //   ldr     x1, [x0, #:tlsdesc_lo12:v  [R_AARCH64_TLSDESC_LD64_LO12_NC]
1529   //   add     x0, x0, :tlsdesc_los:v     [_AARCH64_TLSDESC_ADD_LO12_NC]
1530   //   .tlsdesccall                       [R_AARCH64_TLSDESC_CALL]
1531   //   blr     x1
1532   // And it can optimized to:
1533   //   movz    x0, #0x0, lsl #16
1534   //   movk    x0, #0x10
1535   //   nop
1536   //   nop
1537   checkUInt<32>(Loc, Val, Type);
1538 
1539   switch (Type) {
1540   case R_AARCH64_TLSDESC_ADD_LO12_NC:
1541   case R_AARCH64_TLSDESC_CALL:
1542     write32le(Loc, 0xd503201f); // nop
1543     return;
1544   case R_AARCH64_TLSDESC_ADR_PAGE21:
1545     write32le(Loc, 0xd2a00000 | (((Val >> 16) & 0xffff) << 5)); // movz
1546     return;
1547   case R_AARCH64_TLSDESC_LD64_LO12_NC:
1548     write32le(Loc, 0xf2800000 | ((Val & 0xffff) << 5)); // movk
1549     return;
1550   default:
1551     llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
1552   }
1553 }
1554 
1555 void AArch64TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
1556                                        uint64_t Val) const {
1557   // TLSDESC Global-Dynamic relocation are in the form:
1558   //   adrp    x0, :tlsdesc:v             [R_AARCH64_TLSDESC_ADR_PAGE21]
1559   //   ldr     x1, [x0, #:tlsdesc_lo12:v  [R_AARCH64_TLSDESC_LD64_LO12_NC]
1560   //   add     x0, x0, :tlsdesc_los:v     [_AARCH64_TLSDESC_ADD_LO12_NC]
1561   //   .tlsdesccall                       [R_AARCH64_TLSDESC_CALL]
1562   //   blr     x1
1563   // And it can optimized to:
1564   //   adrp    x0, :gottprel:v
1565   //   ldr     x0, [x0, :gottprel_lo12:v]
1566   //   nop
1567   //   nop
1568 
1569   switch (Type) {
1570   case R_AARCH64_TLSDESC_ADD_LO12_NC:
1571   case R_AARCH64_TLSDESC_CALL:
1572     write32le(Loc, 0xd503201f); // nop
1573     break;
1574   case R_AARCH64_TLSDESC_ADR_PAGE21:
1575     write32le(Loc, 0x90000000); // adrp
1576     relocateOne(Loc, R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, Val);
1577     break;
1578   case R_AARCH64_TLSDESC_LD64_LO12_NC:
1579     write32le(Loc, 0xf9400000); // ldr
1580     relocateOne(Loc, R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, Val);
1581     break;
1582   default:
1583     llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
1584   }
1585 }
1586 
1587 void AArch64TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
1588                                        uint64_t Val) const {
1589   checkUInt<32>(Loc, Val, Type);
1590 
1591   if (Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) {
1592     // Generate MOVZ.
1593     uint32_t RegNo = read32le(Loc) & 0x1f;
1594     write32le(Loc, (0xd2a00000 | RegNo) | (((Val >> 16) & 0xffff) << 5));
1595     return;
1596   }
1597   if (Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) {
1598     // Generate MOVK.
1599     uint32_t RegNo = read32le(Loc) & 0x1f;
1600     write32le(Loc, (0xf2800000 | RegNo) | ((Val & 0xffff) << 5));
1601     return;
1602   }
1603   llvm_unreachable("invalid relocation for TLS IE to LE relaxation");
1604 }
1605 
1606 AMDGPUTargetInfo::AMDGPUTargetInfo() {
1607   RelativeRel = R_AMDGPU_REL64;
1608   GotRel = R_AMDGPU_ABS64;
1609   GotEntrySize = 8;
1610 }
1611 
1612 void AMDGPUTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
1613                                    uint64_t Val) const {
1614   switch (Type) {
1615   case R_AMDGPU_ABS32:
1616   case R_AMDGPU_GOTPCREL:
1617   case R_AMDGPU_GOTPCREL32_LO:
1618   case R_AMDGPU_REL32:
1619   case R_AMDGPU_REL32_LO:
1620     write32le(Loc, Val);
1621     break;
1622   case R_AMDGPU_ABS64:
1623     write64le(Loc, Val);
1624     break;
1625   case R_AMDGPU_GOTPCREL32_HI:
1626   case R_AMDGPU_REL32_HI:
1627     write32le(Loc, Val >> 32);
1628     break;
1629   default:
1630     error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
1631   }
1632 }
1633 
1634 RelExpr AMDGPUTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
1635   switch (Type) {
1636   case R_AMDGPU_ABS32:
1637   case R_AMDGPU_ABS64:
1638     return R_ABS;
1639   case R_AMDGPU_REL32:
1640   case R_AMDGPU_REL32_LO:
1641   case R_AMDGPU_REL32_HI:
1642     return R_PC;
1643   case R_AMDGPU_GOTPCREL:
1644   case R_AMDGPU_GOTPCREL32_LO:
1645   case R_AMDGPU_GOTPCREL32_HI:
1646     return R_GOT_PC;
1647   default:
1648     error(toString(S.File) + ": unknown relocation type: " + toString(Type));
1649     return R_HINT;
1650   }
1651 }
1652 
1653 ARMTargetInfo::ARMTargetInfo() {
1654   CopyRel = R_ARM_COPY;
1655   RelativeRel = R_ARM_RELATIVE;
1656   IRelativeRel = R_ARM_IRELATIVE;
1657   GotRel = R_ARM_GLOB_DAT;
1658   PltRel = R_ARM_JUMP_SLOT;
1659   TlsGotRel = R_ARM_TLS_TPOFF32;
1660   TlsModuleIndexRel = R_ARM_TLS_DTPMOD32;
1661   TlsOffsetRel = R_ARM_TLS_DTPOFF32;
1662   GotEntrySize = 4;
1663   GotPltEntrySize = 4;
1664   PltEntrySize = 16;
1665   PltHeaderSize = 20;
1666   // ARM uses Variant 1 TLS
1667   TcbSize = 8;
1668   NeedsThunks = true;
1669 }
1670 
1671 RelExpr ARMTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
1672   switch (Type) {
1673   default:
1674     return R_ABS;
1675   case R_ARM_THM_JUMP11:
1676     return R_PC;
1677   case R_ARM_CALL:
1678   case R_ARM_JUMP24:
1679   case R_ARM_PC24:
1680   case R_ARM_PLT32:
1681   case R_ARM_PREL31:
1682   case R_ARM_THM_JUMP19:
1683   case R_ARM_THM_JUMP24:
1684   case R_ARM_THM_CALL:
1685     return R_PLT_PC;
1686   case R_ARM_GOTOFF32:
1687     // (S + A) - GOT_ORG
1688     return R_GOTREL;
1689   case R_ARM_GOT_BREL:
1690     // GOT(S) + A - GOT_ORG
1691     return R_GOT_OFF;
1692   case R_ARM_GOT_PREL:
1693   case R_ARM_TLS_IE32:
1694     // GOT(S) + A - P
1695     return R_GOT_PC;
1696   case R_ARM_TARGET1:
1697     return Config->Target1Rel ? R_PC : R_ABS;
1698   case R_ARM_TARGET2:
1699     if (Config->Target2 == Target2Policy::Rel)
1700       return R_PC;
1701     if (Config->Target2 == Target2Policy::Abs)
1702       return R_ABS;
1703     return R_GOT_PC;
1704   case R_ARM_TLS_GD32:
1705     return R_TLSGD_PC;
1706   case R_ARM_TLS_LDM32:
1707     return R_TLSLD_PC;
1708   case R_ARM_BASE_PREL:
1709     // B(S) + A - P
1710     // FIXME: currently B(S) assumed to be .got, this may not hold for all
1711     // platforms.
1712     return R_GOTONLY_PC;
1713   case R_ARM_MOVW_PREL_NC:
1714   case R_ARM_MOVT_PREL:
1715   case R_ARM_REL32:
1716   case R_ARM_THM_MOVW_PREL_NC:
1717   case R_ARM_THM_MOVT_PREL:
1718     return R_PC;
1719   case R_ARM_NONE:
1720     return R_NONE;
1721   case R_ARM_TLS_LE32:
1722     return R_TLS;
1723   }
1724 }
1725 
1726 bool ARMTargetInfo::isPicRel(uint32_t Type) const {
1727   return (Type == R_ARM_TARGET1 && !Config->Target1Rel) ||
1728          (Type == R_ARM_ABS32);
1729 }
1730 
1731 uint32_t ARMTargetInfo::getDynRel(uint32_t Type) const {
1732   if (Type == R_ARM_TARGET1 && !Config->Target1Rel)
1733     return R_ARM_ABS32;
1734   if (Type == R_ARM_ABS32)
1735     return Type;
1736   // Keep it going with a dummy value so that we can find more reloc errors.
1737   return R_ARM_ABS32;
1738 }
1739 
1740 void ARMTargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &) const {
1741   write32le(Buf, In<ELF32LE>::Plt->getVA());
1742 }
1743 
1744 void ARMTargetInfo::writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const {
1745   // An ARM entry is the address of the ifunc resolver function.
1746   write32le(Buf, S.getVA<ELF32LE>());
1747 }
1748 
1749 void ARMTargetInfo::writePltHeader(uint8_t *Buf) const {
1750   const uint8_t PltData[] = {
1751       0x04, 0xe0, 0x2d, 0xe5, //     str lr, [sp,#-4]!
1752       0x04, 0xe0, 0x9f, 0xe5, //     ldr lr, L2
1753       0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr
1754       0x08, 0xf0, 0xbe, 0xe5, //     ldr pc, [lr, #8]
1755       0x00, 0x00, 0x00, 0x00, // L2: .word   &(.got.plt) - L1 - 8
1756   };
1757   memcpy(Buf, PltData, sizeof(PltData));
1758   uint64_t GotPlt = In<ELF32LE>::GotPlt->getVA();
1759   uint64_t L1 = In<ELF32LE>::Plt->getVA() + 8;
1760   write32le(Buf + 16, GotPlt - L1 - 8);
1761 }
1762 
1763 void ARMTargetInfo::addPltHeaderSymbols(InputSectionBase *ISD) const {
1764   auto *IS = cast<InputSection>(ISD);
1765   addSyntheticLocal<ELF32LE>("$a", STT_NOTYPE, 0, 0, IS);
1766   addSyntheticLocal<ELF32LE>("$d", STT_NOTYPE, 16, 0, IS);
1767 }
1768 
1769 void ARMTargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
1770                              uint64_t PltEntryAddr, int32_t Index,
1771                              unsigned RelOff) const {
1772   // FIXME: Using simple code sequence with simple relocations.
1773   // There is a more optimal sequence but it requires support for the group
1774   // relocations. See ELF for the ARM Architecture Appendix A.3
1775   const uint8_t PltData[] = {
1776       0x04, 0xc0, 0x9f, 0xe5, //     ldr ip, L2
1777       0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc
1778       0x00, 0xf0, 0x9c, 0xe5, //     ldr pc, [ip]
1779       0x00, 0x00, 0x00, 0x00, // L2: .word   Offset(&(.plt.got) - L1 - 8
1780   };
1781   memcpy(Buf, PltData, sizeof(PltData));
1782   uint64_t L1 = PltEntryAddr + 4;
1783   write32le(Buf + 12, GotEntryAddr - L1 - 8);
1784 }
1785 
1786 void ARMTargetInfo::addPltSymbols(InputSectionBase *ISD, uint64_t Off) const {
1787   auto *IS = cast<InputSection>(ISD);
1788   addSyntheticLocal<ELF32LE>("$a", STT_NOTYPE, Off, 0, IS);
1789   addSyntheticLocal<ELF32LE>("$d", STT_NOTYPE, Off + 12, 0, IS);
1790 }
1791 
1792 bool ARMTargetInfo::needsThunk(RelExpr Expr, uint32_t RelocType,
1793                                const InputFile *File,
1794                                const SymbolBody &S) const {
1795   // If S is an undefined weak symbol in an executable we don't need a Thunk.
1796   // In a DSO calls to undefined symbols, including weak ones get PLT entries
1797   // which may need a thunk.
1798   if (S.isUndefined() && !S.isLocal() && S.symbol()->isWeak() &&
1799       !Config->Shared)
1800     return false;
1801   // A state change from ARM to Thumb and vice versa must go through an
1802   // interworking thunk if the relocation type is not R_ARM_CALL or
1803   // R_ARM_THM_CALL.
1804   switch (RelocType) {
1805   case R_ARM_PC24:
1806   case R_ARM_PLT32:
1807   case R_ARM_JUMP24:
1808     // Source is ARM, all PLT entries are ARM so no interworking required.
1809     // Otherwise we need to interwork if Symbol has bit 0 set (Thumb).
1810     if (Expr == R_PC && ((S.getVA<ELF32LE>() & 1) == 1))
1811       return true;
1812     break;
1813   case R_ARM_THM_JUMP19:
1814   case R_ARM_THM_JUMP24:
1815     // Source is Thumb, all PLT entries are ARM so interworking is required.
1816     // Otherwise we need to interwork if Symbol has bit 0 clear (ARM).
1817     if (Expr == R_PLT_PC || ((S.getVA<ELF32LE>() & 1) == 0))
1818       return true;
1819     break;
1820   }
1821   return false;
1822 }
1823 
1824 void ARMTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
1825                                 uint64_t Val) const {
1826   switch (Type) {
1827   case R_ARM_ABS32:
1828   case R_ARM_BASE_PREL:
1829   case R_ARM_GLOB_DAT:
1830   case R_ARM_GOTOFF32:
1831   case R_ARM_GOT_BREL:
1832   case R_ARM_GOT_PREL:
1833   case R_ARM_REL32:
1834   case R_ARM_RELATIVE:
1835   case R_ARM_TARGET1:
1836   case R_ARM_TARGET2:
1837   case R_ARM_TLS_GD32:
1838   case R_ARM_TLS_IE32:
1839   case R_ARM_TLS_LDM32:
1840   case R_ARM_TLS_LDO32:
1841   case R_ARM_TLS_LE32:
1842   case R_ARM_TLS_TPOFF32:
1843     write32le(Loc, Val);
1844     break;
1845   case R_ARM_TLS_DTPMOD32:
1846     write32le(Loc, 1);
1847     break;
1848   case R_ARM_PREL31:
1849     checkInt<31>(Loc, Val, Type);
1850     write32le(Loc, (read32le(Loc) & 0x80000000) | (Val & ~0x80000000));
1851     break;
1852   case R_ARM_CALL:
1853     // R_ARM_CALL is used for BL and BLX instructions, depending on the
1854     // value of bit 0 of Val, we must select a BL or BLX instruction
1855     if (Val & 1) {
1856       // If bit 0 of Val is 1 the target is Thumb, we must select a BLX.
1857       // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1'
1858       checkInt<26>(Loc, Val, Type);
1859       write32le(Loc, 0xfa000000 |                    // opcode
1860                          ((Val & 2) << 23) |         // H
1861                          ((Val >> 2) & 0x00ffffff)); // imm24
1862       break;
1863     }
1864     if ((read32le(Loc) & 0xfe000000) == 0xfa000000)
1865       // BLX (always unconditional) instruction to an ARM Target, select an
1866       // unconditional BL.
1867       write32le(Loc, 0xeb000000 | (read32le(Loc) & 0x00ffffff));
1868   // fall through as BL encoding is shared with B
1869   case R_ARM_JUMP24:
1870   case R_ARM_PC24:
1871   case R_ARM_PLT32:
1872     checkInt<26>(Loc, Val, Type);
1873     write32le(Loc, (read32le(Loc) & ~0x00ffffff) | ((Val >> 2) & 0x00ffffff));
1874     break;
1875   case R_ARM_THM_JUMP11:
1876     checkInt<12>(Loc, Val, Type);
1877     write16le(Loc, (read32le(Loc) & 0xf800) | ((Val >> 1) & 0x07ff));
1878     break;
1879   case R_ARM_THM_JUMP19:
1880     // Encoding T3: Val = S:J2:J1:imm6:imm11:0
1881     checkInt<21>(Loc, Val, Type);
1882     write16le(Loc,
1883               (read16le(Loc) & 0xfbc0) |   // opcode cond
1884                   ((Val >> 10) & 0x0400) | // S
1885                   ((Val >> 12) & 0x003f)); // imm6
1886     write16le(Loc + 2,
1887               0x8000 |                    // opcode
1888                   ((Val >> 8) & 0x0800) | // J2
1889                   ((Val >> 5) & 0x2000) | // J1
1890                   ((Val >> 1) & 0x07ff)); // imm11
1891     break;
1892   case R_ARM_THM_CALL:
1893     // R_ARM_THM_CALL is used for BL and BLX instructions, depending on the
1894     // value of bit 0 of Val, we must select a BL or BLX instruction
1895     if ((Val & 1) == 0) {
1896       // Ensure BLX destination is 4-byte aligned. As BLX instruction may
1897       // only be two byte aligned. This must be done before overflow check
1898       Val = alignTo(Val, 4);
1899     }
1900     // Bit 12 is 0 for BLX, 1 for BL
1901     write16le(Loc + 2, (read16le(Loc + 2) & ~0x1000) | (Val & 1) << 12);
1902   // Fall through as rest of encoding is the same as B.W
1903   case R_ARM_THM_JUMP24:
1904     // Encoding B  T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0
1905     // FIXME: Use of I1 and I2 require v6T2ops
1906     checkInt<25>(Loc, Val, Type);
1907     write16le(Loc,
1908               0xf000 |                     // opcode
1909                   ((Val >> 14) & 0x0400) | // S
1910                   ((Val >> 12) & 0x03ff)); // imm10
1911     write16le(Loc + 2,
1912               (read16le(Loc + 2) & 0xd000) |                  // opcode
1913                   (((~(Val >> 10)) ^ (Val >> 11)) & 0x2000) | // J1
1914                   (((~(Val >> 11)) ^ (Val >> 13)) & 0x0800) | // J2
1915                   ((Val >> 1) & 0x07ff));                     // imm11
1916     break;
1917   case R_ARM_MOVW_ABS_NC:
1918   case R_ARM_MOVW_PREL_NC:
1919     write32le(Loc, (read32le(Loc) & ~0x000f0fff) | ((Val & 0xf000) << 4) |
1920                        (Val & 0x0fff));
1921     break;
1922   case R_ARM_MOVT_ABS:
1923   case R_ARM_MOVT_PREL:
1924     checkInt<32>(Loc, Val, Type);
1925     write32le(Loc, (read32le(Loc) & ~0x000f0fff) |
1926                        (((Val >> 16) & 0xf000) << 4) | ((Val >> 16) & 0xfff));
1927     break;
1928   case R_ARM_THM_MOVT_ABS:
1929   case R_ARM_THM_MOVT_PREL:
1930     // Encoding T1: A = imm4:i:imm3:imm8
1931     checkInt<32>(Loc, Val, Type);
1932     write16le(Loc,
1933               0xf2c0 |                     // opcode
1934                   ((Val >> 17) & 0x0400) | // i
1935                   ((Val >> 28) & 0x000f)); // imm4
1936     write16le(Loc + 2,
1937               (read16le(Loc + 2) & 0x8f00) | // opcode
1938                   ((Val >> 12) & 0x7000) |   // imm3
1939                   ((Val >> 16) & 0x00ff));   // imm8
1940     break;
1941   case R_ARM_THM_MOVW_ABS_NC:
1942   case R_ARM_THM_MOVW_PREL_NC:
1943     // Encoding T3: A = imm4:i:imm3:imm8
1944     write16le(Loc,
1945               0xf240 |                     // opcode
1946                   ((Val >> 1) & 0x0400) |  // i
1947                   ((Val >> 12) & 0x000f)); // imm4
1948     write16le(Loc + 2,
1949               (read16le(Loc + 2) & 0x8f00) | // opcode
1950                   ((Val << 4) & 0x7000) |    // imm3
1951                   (Val & 0x00ff));           // imm8
1952     break;
1953   default:
1954     error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
1955   }
1956 }
1957 
1958 int64_t ARMTargetInfo::getImplicitAddend(const uint8_t *Buf,
1959                                          uint32_t Type) const {
1960   switch (Type) {
1961   default:
1962     return 0;
1963   case R_ARM_ABS32:
1964   case R_ARM_BASE_PREL:
1965   case R_ARM_GOTOFF32:
1966   case R_ARM_GOT_BREL:
1967   case R_ARM_GOT_PREL:
1968   case R_ARM_REL32:
1969   case R_ARM_TARGET1:
1970   case R_ARM_TARGET2:
1971   case R_ARM_TLS_GD32:
1972   case R_ARM_TLS_LDM32:
1973   case R_ARM_TLS_LDO32:
1974   case R_ARM_TLS_IE32:
1975   case R_ARM_TLS_LE32:
1976     return SignExtend64<32>(read32le(Buf));
1977   case R_ARM_PREL31:
1978     return SignExtend64<31>(read32le(Buf));
1979   case R_ARM_CALL:
1980   case R_ARM_JUMP24:
1981   case R_ARM_PC24:
1982   case R_ARM_PLT32:
1983     return SignExtend64<26>(read32le(Buf) << 2);
1984   case R_ARM_THM_JUMP11:
1985     return SignExtend64<12>(read16le(Buf) << 1);
1986   case R_ARM_THM_JUMP19: {
1987     // Encoding T3: A = S:J2:J1:imm10:imm6:0
1988     uint16_t Hi = read16le(Buf);
1989     uint16_t Lo = read16le(Buf + 2);
1990     return SignExtend64<20>(((Hi & 0x0400) << 10) | // S
1991                             ((Lo & 0x0800) << 8) |  // J2
1992                             ((Lo & 0x2000) << 5) |  // J1
1993                             ((Hi & 0x003f) << 12) | // imm6
1994                             ((Lo & 0x07ff) << 1));  // imm11:0
1995   }
1996   case R_ARM_THM_CALL:
1997   case R_ARM_THM_JUMP24: {
1998     // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0
1999     // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S)
2000     // FIXME: I1 and I2 require v6T2ops
2001     uint16_t Hi = read16le(Buf);
2002     uint16_t Lo = read16le(Buf + 2);
2003     return SignExtend64<24>(((Hi & 0x0400) << 14) |                    // S
2004                             (~((Lo ^ (Hi << 3)) << 10) & 0x00800000) | // I1
2005                             (~((Lo ^ (Hi << 1)) << 11) & 0x00400000) | // I2
2006                             ((Hi & 0x003ff) << 12) |                   // imm0
2007                             ((Lo & 0x007ff) << 1)); // imm11:0
2008   }
2009   // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and
2010   // MOVT is in the range -32768 <= A < 32768
2011   case R_ARM_MOVW_ABS_NC:
2012   case R_ARM_MOVT_ABS:
2013   case R_ARM_MOVW_PREL_NC:
2014   case R_ARM_MOVT_PREL: {
2015     uint64_t Val = read32le(Buf) & 0x000f0fff;
2016     return SignExtend64<16>(((Val & 0x000f0000) >> 4) | (Val & 0x00fff));
2017   }
2018   case R_ARM_THM_MOVW_ABS_NC:
2019   case R_ARM_THM_MOVT_ABS:
2020   case R_ARM_THM_MOVW_PREL_NC:
2021   case R_ARM_THM_MOVT_PREL: {
2022     // Encoding T3: A = imm4:i:imm3:imm8
2023     uint16_t Hi = read16le(Buf);
2024     uint16_t Lo = read16le(Buf + 2);
2025     return SignExtend64<16>(((Hi & 0x000f) << 12) | // imm4
2026                             ((Hi & 0x0400) << 1) |  // i
2027                             ((Lo & 0x7000) >> 4) |  // imm3
2028                             (Lo & 0x00ff));         // imm8
2029   }
2030   }
2031 }
2032 
2033 bool ARMTargetInfo::isTlsLocalDynamicRel(uint32_t Type) const {
2034   return Type == R_ARM_TLS_LDO32 || Type == R_ARM_TLS_LDM32;
2035 }
2036 
2037 bool ARMTargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const {
2038   return Type == R_ARM_TLS_GD32;
2039 }
2040 
2041 bool ARMTargetInfo::isTlsInitialExecRel(uint32_t Type) const {
2042   return Type == R_ARM_TLS_IE32;
2043 }
2044 
2045 template <class ELFT> MipsTargetInfo<ELFT>::MipsTargetInfo() {
2046   GotPltHeaderEntriesNum = 2;
2047   DefaultMaxPageSize = 65536;
2048   GotEntrySize = sizeof(typename ELFT::uint);
2049   GotPltEntrySize = sizeof(typename ELFT::uint);
2050   PltEntrySize = 16;
2051   PltHeaderSize = 32;
2052   CopyRel = R_MIPS_COPY;
2053   PltRel = R_MIPS_JUMP_SLOT;
2054   NeedsThunks = true;
2055   if (ELFT::Is64Bits) {
2056     RelativeRel = (R_MIPS_64 << 8) | R_MIPS_REL32;
2057     TlsGotRel = R_MIPS_TLS_TPREL64;
2058     TlsModuleIndexRel = R_MIPS_TLS_DTPMOD64;
2059     TlsOffsetRel = R_MIPS_TLS_DTPREL64;
2060   } else {
2061     RelativeRel = R_MIPS_REL32;
2062     TlsGotRel = R_MIPS_TLS_TPREL32;
2063     TlsModuleIndexRel = R_MIPS_TLS_DTPMOD32;
2064     TlsOffsetRel = R_MIPS_TLS_DTPREL32;
2065   }
2066 }
2067 
2068 template <class ELFT>
2069 RelExpr MipsTargetInfo<ELFT>::getRelExpr(uint32_t Type,
2070                                          const SymbolBody &S) const {
2071   // See comment in the calculateMipsRelChain.
2072   if (ELFT::Is64Bits || Config->MipsN32Abi)
2073     Type &= 0xff;
2074   switch (Type) {
2075   default:
2076     return R_ABS;
2077   case R_MIPS_JALR:
2078     return R_HINT;
2079   case R_MIPS_GPREL16:
2080   case R_MIPS_GPREL32:
2081     return R_MIPS_GOTREL;
2082   case R_MIPS_26:
2083     return R_PLT;
2084   case R_MIPS_HI16:
2085   case R_MIPS_LO16:
2086   case R_MIPS_GOT_OFST:
2087     // R_MIPS_HI16/R_MIPS_LO16 relocations against _gp_disp calculate
2088     // offset between start of function and 'gp' value which by default
2089     // equal to the start of .got section. In that case we consider these
2090     // relocations as relative.
2091     if (&S == ElfSym::MipsGpDisp)
2092       return R_PC;
2093     return R_ABS;
2094   case R_MIPS_PC32:
2095   case R_MIPS_PC16:
2096   case R_MIPS_PC19_S2:
2097   case R_MIPS_PC21_S2:
2098   case R_MIPS_PC26_S2:
2099   case R_MIPS_PCHI16:
2100   case R_MIPS_PCLO16:
2101     return R_PC;
2102   case R_MIPS_GOT16:
2103     if (S.isLocal())
2104       return R_MIPS_GOT_LOCAL_PAGE;
2105   // fallthrough
2106   case R_MIPS_CALL16:
2107   case R_MIPS_GOT_DISP:
2108   case R_MIPS_TLS_GOTTPREL:
2109     return R_MIPS_GOT_OFF;
2110   case R_MIPS_CALL_HI16:
2111   case R_MIPS_CALL_LO16:
2112   case R_MIPS_GOT_HI16:
2113   case R_MIPS_GOT_LO16:
2114     return R_MIPS_GOT_OFF32;
2115   case R_MIPS_GOT_PAGE:
2116     return R_MIPS_GOT_LOCAL_PAGE;
2117   case R_MIPS_TLS_GD:
2118     return R_MIPS_TLSGD;
2119   case R_MIPS_TLS_LDM:
2120     return R_MIPS_TLSLD;
2121   }
2122 }
2123 
2124 template <class ELFT> bool MipsTargetInfo<ELFT>::isPicRel(uint32_t Type) const {
2125   return Type == R_MIPS_32 || Type == R_MIPS_64;
2126 }
2127 
2128 template <class ELFT>
2129 uint32_t MipsTargetInfo<ELFT>::getDynRel(uint32_t Type) const {
2130   return RelativeRel;
2131 }
2132 
2133 template <class ELFT>
2134 bool MipsTargetInfo<ELFT>::isTlsLocalDynamicRel(uint32_t Type) const {
2135   return Type == R_MIPS_TLS_LDM;
2136 }
2137 
2138 template <class ELFT>
2139 bool MipsTargetInfo<ELFT>::isTlsGlobalDynamicRel(uint32_t Type) const {
2140   return Type == R_MIPS_TLS_GD;
2141 }
2142 
2143 template <class ELFT>
2144 void MipsTargetInfo<ELFT>::writeGotPlt(uint8_t *Buf, const SymbolBody &) const {
2145   write32<ELFT::TargetEndianness>(Buf, In<ELFT>::Plt->getVA());
2146 }
2147 
2148 template <endianness E, uint8_t BSIZE, uint8_t SHIFT>
2149 static int64_t getPcRelocAddend(const uint8_t *Loc) {
2150   uint32_t Instr = read32<E>(Loc);
2151   uint32_t Mask = 0xffffffff >> (32 - BSIZE);
2152   return SignExtend64<BSIZE + SHIFT>((Instr & Mask) << SHIFT);
2153 }
2154 
2155 template <endianness E, uint8_t BSIZE, uint8_t SHIFT>
2156 static void applyMipsPcReloc(uint8_t *Loc, uint32_t Type, uint64_t V) {
2157   uint32_t Mask = 0xffffffff >> (32 - BSIZE);
2158   uint32_t Instr = read32<E>(Loc);
2159   if (SHIFT > 0)
2160     checkAlignment<(1 << SHIFT)>(Loc, V, Type);
2161   checkInt<BSIZE + SHIFT>(Loc, V, Type);
2162   write32<E>(Loc, (Instr & ~Mask) | ((V >> SHIFT) & Mask));
2163 }
2164 
2165 template <endianness E> static void writeMipsHi16(uint8_t *Loc, uint64_t V) {
2166   uint32_t Instr = read32<E>(Loc);
2167   uint16_t Res = ((V + 0x8000) >> 16) & 0xffff;
2168   write32<E>(Loc, (Instr & 0xffff0000) | Res);
2169 }
2170 
2171 template <endianness E> static void writeMipsHigher(uint8_t *Loc, uint64_t V) {
2172   uint32_t Instr = read32<E>(Loc);
2173   uint16_t Res = ((V + 0x80008000) >> 32) & 0xffff;
2174   write32<E>(Loc, (Instr & 0xffff0000) | Res);
2175 }
2176 
2177 template <endianness E> static void writeMipsHighest(uint8_t *Loc, uint64_t V) {
2178   uint32_t Instr = read32<E>(Loc);
2179   uint16_t Res = ((V + 0x800080008000) >> 48) & 0xffff;
2180   write32<E>(Loc, (Instr & 0xffff0000) | Res);
2181 }
2182 
2183 template <endianness E> static void writeMipsLo16(uint8_t *Loc, uint64_t V) {
2184   uint32_t Instr = read32<E>(Loc);
2185   write32<E>(Loc, (Instr & 0xffff0000) | (V & 0xffff));
2186 }
2187 
2188 template <class ELFT> static bool isMipsR6() {
2189   const auto &FirstObj = cast<ELFFileBase<ELFT>>(*Config->FirstElf);
2190   uint32_t Arch = FirstObj.getObj().getHeader()->e_flags & EF_MIPS_ARCH;
2191   return Arch == EF_MIPS_ARCH_32R6 || Arch == EF_MIPS_ARCH_64R6;
2192 }
2193 
2194 template <class ELFT>
2195 void MipsTargetInfo<ELFT>::writePltHeader(uint8_t *Buf) const {
2196   const endianness E = ELFT::TargetEndianness;
2197   if (Config->MipsN32Abi) {
2198     write32<E>(Buf, 0x3c0e0000);      // lui   $14, %hi(&GOTPLT[0])
2199     write32<E>(Buf + 4, 0x8dd90000);  // lw    $25, %lo(&GOTPLT[0])($14)
2200     write32<E>(Buf + 8, 0x25ce0000);  // addiu $14, $14, %lo(&GOTPLT[0])
2201     write32<E>(Buf + 12, 0x030ec023); // subu  $24, $24, $14
2202   } else {
2203     write32<E>(Buf, 0x3c1c0000);      // lui   $28, %hi(&GOTPLT[0])
2204     write32<E>(Buf + 4, 0x8f990000);  // lw    $25, %lo(&GOTPLT[0])($28)
2205     write32<E>(Buf + 8, 0x279c0000);  // addiu $28, $28, %lo(&GOTPLT[0])
2206     write32<E>(Buf + 12, 0x031cc023); // subu  $24, $24, $28
2207   }
2208   write32<E>(Buf + 16, 0x03e07825); // move  $15, $31
2209   write32<E>(Buf + 20, 0x0018c082); // srl   $24, $24, 2
2210   write32<E>(Buf + 24, 0x0320f809); // jalr  $25
2211   write32<E>(Buf + 28, 0x2718fffe); // subu  $24, $24, 2
2212   uint64_t Got = In<ELFT>::GotPlt->getVA();
2213   writeMipsHi16<E>(Buf, Got);
2214   writeMipsLo16<E>(Buf + 4, Got);
2215   writeMipsLo16<E>(Buf + 8, Got);
2216 }
2217 
2218 template <class ELFT>
2219 void MipsTargetInfo<ELFT>::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
2220                                     uint64_t PltEntryAddr, int32_t Index,
2221                                     unsigned RelOff) const {
2222   const endianness E = ELFT::TargetEndianness;
2223   write32<E>(Buf, 0x3c0f0000);     // lui   $15, %hi(.got.plt entry)
2224   write32<E>(Buf + 4, 0x8df90000); // l[wd] $25, %lo(.got.plt entry)($15)
2225                                    // jr    $25
2226   write32<E>(Buf + 8, isMipsR6<ELFT>() ? 0x03200009 : 0x03200008);
2227   write32<E>(Buf + 12, 0x25f80000); // addiu $24, $15, %lo(.got.plt entry)
2228   writeMipsHi16<E>(Buf, GotEntryAddr);
2229   writeMipsLo16<E>(Buf + 4, GotEntryAddr);
2230   writeMipsLo16<E>(Buf + 12, GotEntryAddr);
2231 }
2232 
2233 template <class ELFT>
2234 bool MipsTargetInfo<ELFT>::needsThunk(RelExpr Expr, uint32_t Type,
2235                                       const InputFile *File,
2236                                       const SymbolBody &S) const {
2237   // Any MIPS PIC code function is invoked with its address in register $t9.
2238   // So if we have a branch instruction from non-PIC code to the PIC one
2239   // we cannot make the jump directly and need to create a small stubs
2240   // to save the target function address.
2241   // See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2242   if (Type != R_MIPS_26)
2243     return false;
2244   auto *F = dyn_cast_or_null<ELFFileBase<ELFT>>(File);
2245   if (!F)
2246     return false;
2247   // If current file has PIC code, LA25 stub is not required.
2248   if (F->getObj().getHeader()->e_flags & EF_MIPS_PIC)
2249     return false;
2250   auto *D = dyn_cast<DefinedRegular>(&S);
2251   // LA25 is required if target file has PIC code
2252   // or target symbol is a PIC symbol.
2253   return D && D->isMipsPIC<ELFT>();
2254 }
2255 
2256 template <class ELFT>
2257 int64_t MipsTargetInfo<ELFT>::getImplicitAddend(const uint8_t *Buf,
2258                                                 uint32_t Type) const {
2259   const endianness E = ELFT::TargetEndianness;
2260   switch (Type) {
2261   default:
2262     return 0;
2263   case R_MIPS_32:
2264   case R_MIPS_GPREL32:
2265   case R_MIPS_TLS_DTPREL32:
2266   case R_MIPS_TLS_TPREL32:
2267     return SignExtend64<32>(read32<E>(Buf));
2268   case R_MIPS_26:
2269     // FIXME (simon): If the relocation target symbol is not a PLT entry
2270     // we should use another expression for calculation:
2271     // ((A << 2) | (P & 0xf0000000)) >> 2
2272     return SignExtend64<28>((read32<E>(Buf) & 0x3ffffff) << 2);
2273   case R_MIPS_GPREL16:
2274   case R_MIPS_LO16:
2275   case R_MIPS_PCLO16:
2276   case R_MIPS_TLS_DTPREL_HI16:
2277   case R_MIPS_TLS_DTPREL_LO16:
2278   case R_MIPS_TLS_TPREL_HI16:
2279   case R_MIPS_TLS_TPREL_LO16:
2280     return SignExtend64<16>(read32<E>(Buf));
2281   case R_MIPS_PC16:
2282     return getPcRelocAddend<E, 16, 2>(Buf);
2283   case R_MIPS_PC19_S2:
2284     return getPcRelocAddend<E, 19, 2>(Buf);
2285   case R_MIPS_PC21_S2:
2286     return getPcRelocAddend<E, 21, 2>(Buf);
2287   case R_MIPS_PC26_S2:
2288     return getPcRelocAddend<E, 26, 2>(Buf);
2289   case R_MIPS_PC32:
2290     return getPcRelocAddend<E, 32, 0>(Buf);
2291   }
2292 }
2293 
2294 static std::pair<uint32_t, uint64_t>
2295 calculateMipsRelChain(uint8_t *Loc, uint32_t Type, uint64_t Val) {
2296   // MIPS N64 ABI packs multiple relocations into the single relocation
2297   // record. In general, all up to three relocations can have arbitrary
2298   // types. In fact, Clang and GCC uses only a few combinations. For now,
2299   // we support two of them. That is allow to pass at least all LLVM
2300   // test suite cases.
2301   // <any relocation> / R_MIPS_SUB / R_MIPS_HI16 | R_MIPS_LO16
2302   // <any relocation> / R_MIPS_64 / R_MIPS_NONE
2303   // The first relocation is a 'real' relocation which is calculated
2304   // using the corresponding symbol's value. The second and the third
2305   // relocations used to modify result of the first one: extend it to
2306   // 64-bit, extract high or low part etc. For details, see part 2.9 Relocation
2307   // at the https://dmz-portal.mips.com/mw/images/8/82/007-4658-001.pdf
2308   uint32_t Type2 = (Type >> 8) & 0xff;
2309   uint32_t Type3 = (Type >> 16) & 0xff;
2310   if (Type2 == R_MIPS_NONE && Type3 == R_MIPS_NONE)
2311     return std::make_pair(Type, Val);
2312   if (Type2 == R_MIPS_64 && Type3 == R_MIPS_NONE)
2313     return std::make_pair(Type2, Val);
2314   if (Type2 == R_MIPS_SUB && (Type3 == R_MIPS_HI16 || Type3 == R_MIPS_LO16))
2315     return std::make_pair(Type3, -Val);
2316   error(getErrorLocation(Loc) + "unsupported relocations combination " +
2317         Twine(Type));
2318   return std::make_pair(Type & 0xff, Val);
2319 }
2320 
2321 template <class ELFT>
2322 void MipsTargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint32_t Type,
2323                                        uint64_t Val) const {
2324   const endianness E = ELFT::TargetEndianness;
2325   // Thread pointer and DRP offsets from the start of TLS data area.
2326   // https://www.linux-mips.org/wiki/NPTL
2327   if (Type == R_MIPS_TLS_DTPREL_HI16 || Type == R_MIPS_TLS_DTPREL_LO16 ||
2328       Type == R_MIPS_TLS_DTPREL32 || Type == R_MIPS_TLS_DTPREL64)
2329     Val -= 0x8000;
2330   else if (Type == R_MIPS_TLS_TPREL_HI16 || Type == R_MIPS_TLS_TPREL_LO16 ||
2331            Type == R_MIPS_TLS_TPREL32 || Type == R_MIPS_TLS_TPREL64)
2332     Val -= 0x7000;
2333   if (ELFT::Is64Bits || Config->MipsN32Abi)
2334     std::tie(Type, Val) = calculateMipsRelChain(Loc, Type, Val);
2335   switch (Type) {
2336   case R_MIPS_32:
2337   case R_MIPS_GPREL32:
2338   case R_MIPS_TLS_DTPREL32:
2339   case R_MIPS_TLS_TPREL32:
2340     write32<E>(Loc, Val);
2341     break;
2342   case R_MIPS_64:
2343   case R_MIPS_TLS_DTPREL64:
2344   case R_MIPS_TLS_TPREL64:
2345     write64<E>(Loc, Val);
2346     break;
2347   case R_MIPS_26:
2348     write32<E>(Loc, (read32<E>(Loc) & ~0x3ffffff) | ((Val >> 2) & 0x3ffffff));
2349     break;
2350   case R_MIPS_GOT16:
2351     // The R_MIPS_GOT16 relocation's value in "relocatable" linking mode
2352     // is updated addend (not a GOT index). In that case write high 16 bits
2353     // to store a correct addend value.
2354     if (Config->Relocatable)
2355       writeMipsHi16<E>(Loc, Val);
2356     else {
2357       checkInt<16>(Loc, Val, Type);
2358       writeMipsLo16<E>(Loc, Val);
2359     }
2360     break;
2361   case R_MIPS_GOT_DISP:
2362   case R_MIPS_GOT_PAGE:
2363   case R_MIPS_GPREL16:
2364   case R_MIPS_TLS_GD:
2365   case R_MIPS_TLS_LDM:
2366     checkInt<16>(Loc, Val, Type);
2367   // fallthrough
2368   case R_MIPS_CALL16:
2369   case R_MIPS_CALL_LO16:
2370   case R_MIPS_GOT_LO16:
2371   case R_MIPS_GOT_OFST:
2372   case R_MIPS_LO16:
2373   case R_MIPS_PCLO16:
2374   case R_MIPS_TLS_DTPREL_LO16:
2375   case R_MIPS_TLS_GOTTPREL:
2376   case R_MIPS_TLS_TPREL_LO16:
2377     writeMipsLo16<E>(Loc, Val);
2378     break;
2379   case R_MIPS_CALL_HI16:
2380   case R_MIPS_GOT_HI16:
2381   case R_MIPS_HI16:
2382   case R_MIPS_PCHI16:
2383   case R_MIPS_TLS_DTPREL_HI16:
2384   case R_MIPS_TLS_TPREL_HI16:
2385     writeMipsHi16<E>(Loc, Val);
2386     break;
2387   case R_MIPS_HIGHER:
2388     writeMipsHigher<E>(Loc, Val);
2389     break;
2390   case R_MIPS_HIGHEST:
2391     writeMipsHighest<E>(Loc, Val);
2392     break;
2393   case R_MIPS_JALR:
2394     // Ignore this optimization relocation for now
2395     break;
2396   case R_MIPS_PC16:
2397     applyMipsPcReloc<E, 16, 2>(Loc, Type, Val);
2398     break;
2399   case R_MIPS_PC19_S2:
2400     applyMipsPcReloc<E, 19, 2>(Loc, Type, Val);
2401     break;
2402   case R_MIPS_PC21_S2:
2403     applyMipsPcReloc<E, 21, 2>(Loc, Type, Val);
2404     break;
2405   case R_MIPS_PC26_S2:
2406     applyMipsPcReloc<E, 26, 2>(Loc, Type, Val);
2407     break;
2408   case R_MIPS_PC32:
2409     applyMipsPcReloc<E, 32, 0>(Loc, Type, Val);
2410     break;
2411   default:
2412     error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
2413   }
2414 }
2415 
2416 template <class ELFT>
2417 bool MipsTargetInfo<ELFT>::usesOnlyLowPageBits(uint32_t Type) const {
2418   return Type == R_MIPS_LO16 || Type == R_MIPS_GOT_OFST;
2419 }
2420 }
2421 }
2422