xref: /llvm-project-15.0.7/lld/ELF/Target.cpp (revision be011d6c)
1 //===- Target.cpp ---------------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Machine-specific things, such as applying relocations, creation of
11 // GOT or PLT entries, etc., are handled in this file.
12 //
13 // Refer the ELF spec for the single letter varaibles, S, A or P, used
14 // in this file. SA is S+A.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "Target.h"
19 #include "Error.h"
20 #include "OutputSections.h"
21 #include "Symbols.h"
22 
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/Object/ELF.h"
25 #include "llvm/Support/Endian.h"
26 #include "llvm/Support/ELF.h"
27 
28 using namespace llvm;
29 using namespace llvm::object;
30 using namespace llvm::support::endian;
31 using namespace llvm::ELF;
32 
33 namespace lld {
34 namespace elf2 {
35 
36 std::unique_ptr<TargetInfo> Target;
37 
38 template <endianness E> static void add32(void *P, int32_t V) {
39   write32<E>(P, read32<E>(P) + V);
40 }
41 
42 static void add32le(uint8_t *P, int32_t V) { add32<support::little>(P, V); }
43 static void or32le(uint8_t *P, int32_t V) { write32le(P, read32le(P) | V); }
44 
45 template <unsigned N> static void checkInt(int64_t V, uint32_t Type) {
46   if (isInt<N>(V))
47     return;
48   StringRef S = getELFRelocationTypeName(Config->EMachine, Type);
49   error("Relocation " + S + " out of range");
50 }
51 
52 template <unsigned N> static void checkUInt(uint64_t V, uint32_t Type) {
53   if (isUInt<N>(V))
54     return;
55   StringRef S = getELFRelocationTypeName(Config->EMachine, Type);
56   error("Relocation " + S + " out of range");
57 }
58 
59 template <unsigned N> static void checkIntUInt(uint64_t V, uint32_t Type) {
60   if (isInt<N>(V) || isUInt<N>(V))
61     return;
62   StringRef S = getELFRelocationTypeName(Config->EMachine, Type);
63   error("Relocation " + S + " out of range");
64 }
65 
66 template <unsigned N> static void checkAlignment(uint64_t V, uint32_t Type) {
67   if ((V & (N - 1)) == 0)
68     return;
69   StringRef S = getELFRelocationTypeName(Config->EMachine, Type);
70   error("Improper alignment for relocation " + S);
71 }
72 
73 namespace {
74 class X86TargetInfo final : public TargetInfo {
75 public:
76   X86TargetInfo();
77   void writeGotPltHeaderEntries(uint8_t *Buf) const override;
78   unsigned getDynReloc(unsigned Type) const override;
79   bool isTlsDynReloc(unsigned Type) const override;
80   void writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const override;
81   void writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
82                          uint64_t PltEntryAddr) const override;
83   void writePltEntry(uint8_t *Buf, uint64_t GotAddr, uint64_t GotEntryAddr,
84                      uint64_t PltEntryAddr, int32_t Index,
85                      unsigned RelOff) const override;
86   bool relocNeedsCopy(uint32_t Type, const SymbolBody &S) const override;
87   bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
88   bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
89   void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
90                    uint64_t SA, uint8_t *PairedLoc = nullptr) const override;
91 };
92 
93 class X86_64TargetInfo final : public TargetInfo {
94 public:
95   X86_64TargetInfo();
96   unsigned getPltRefReloc(unsigned Type) const override;
97   bool isTlsDynReloc(unsigned Type) const override;
98   void writeGotPltHeaderEntries(uint8_t *Buf) const override;
99   void writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const override;
100   void writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
101                          uint64_t PltEntryAddr) const override;
102   void writePltEntry(uint8_t *Buf, uint64_t GotAddr, uint64_t GotEntryAddr,
103                      uint64_t PltEntryAddr, int32_t Index,
104                      unsigned RelOff) const override;
105   bool relocNeedsCopy(uint32_t Type, const SymbolBody &S) const override;
106   bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
107   bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
108   void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
109                    uint64_t SA, uint8_t *PairedLoc = nullptr) const override;
110   bool isRelRelative(uint32_t Type) const override;
111   bool isTlsOptimized(unsigned Type, const SymbolBody *S) const override;
112   unsigned relocateTlsOptimize(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type,
113                                uint64_t P, uint64_t SA,
114                                const SymbolBody &S) const override;
115 
116 private:
117   void relocateTlsLdToLe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
118                          uint64_t SA) const;
119   void relocateTlsGdToLe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
120                          uint64_t SA) const;
121   void relocateTlsGdToIe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
122                          uint64_t SA) const;
123   void relocateTlsIeToLe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
124                          uint64_t SA) const;
125 };
126 
127 class PPC64TargetInfo final : public TargetInfo {
128 public:
129   PPC64TargetInfo();
130   void writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const override;
131   void writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
132                          uint64_t PltEntryAddr) const override;
133   void writePltEntry(uint8_t *Buf, uint64_t GotAddr, uint64_t GotEntryAddr,
134                      uint64_t PltEntryAddr, int32_t Index,
135                      unsigned RelOff) const override;
136   bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
137   bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
138   void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
139                    uint64_t SA, uint8_t *PairedLoc = nullptr) const override;
140   bool isRelRelative(uint32_t Type) const override;
141 };
142 
143 class AArch64TargetInfo final : public TargetInfo {
144 public:
145   AArch64TargetInfo();
146   unsigned getDynReloc(unsigned Type) const override;
147   unsigned getPltRefReloc(unsigned Type) const override;
148   void writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const override;
149   void writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
150                          uint64_t PltEntryAddr) const override;
151   void writePltEntry(uint8_t *Buf, uint64_t GotAddr, uint64_t GotEntryAddr,
152                      uint64_t PltEntryAddr, int32_t Index,
153                      unsigned RelOff) const override;
154   bool relocNeedsCopy(uint32_t Type, const SymbolBody &S) const override;
155   bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
156   bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
157   void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
158                    uint64_t SA, uint8_t *PairedLoc = nullptr) const override;
159 };
160 
161 template <class ELFT> class MipsTargetInfo final : public TargetInfo {
162 public:
163   MipsTargetInfo();
164   void writeGotHeaderEntries(uint8_t *Buf) const override;
165   void writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const override;
166   void writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
167                          uint64_t PltEntryAddr) const override;
168   void writePltEntry(uint8_t *Buf, uint64_t GotAddr, uint64_t GotEntryAddr,
169                      uint64_t PltEntryAddr, int32_t Index,
170                      unsigned RelOff) const override;
171   bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
172   bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
173   void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
174                    uint64_t SA, uint8_t *PairedLoc = nullptr) const override;
175 };
176 } // anonymous namespace
177 
178 TargetInfo *createTarget() {
179   switch (Config->EMachine) {
180   case EM_386:
181     return new X86TargetInfo();
182   case EM_AARCH64:
183     return new AArch64TargetInfo();
184   case EM_MIPS:
185     switch (Config->EKind) {
186     case ELF32LEKind:
187       return new MipsTargetInfo<ELF32LE>();
188     case ELF32BEKind:
189       return new MipsTargetInfo<ELF32BE>();
190     default:
191       error("Unsupported MIPS target");
192     }
193   case EM_PPC64:
194     return new PPC64TargetInfo();
195   case EM_X86_64:
196     return new X86_64TargetInfo();
197   }
198   error("Unknown target machine");
199 }
200 
201 TargetInfo::~TargetInfo() {}
202 
203 bool TargetInfo::isTlsOptimized(unsigned Type, const SymbolBody *S) const {
204   return false;
205 }
206 
207 uint64_t TargetInfo::getVAStart() const { return Config->Shared ? 0 : VAStart; }
208 
209 bool TargetInfo::relocNeedsCopy(uint32_t Type, const SymbolBody &S) const {
210   return false;
211 }
212 
213 unsigned TargetInfo::getPltRefReloc(unsigned Type) const { return PCRelReloc; }
214 
215 bool TargetInfo::isRelRelative(uint32_t Type) const { return true; }
216 
217 unsigned TargetInfo::relocateTlsOptimize(uint8_t *Loc, uint8_t *BufEnd,
218                                          uint32_t Type, uint64_t P, uint64_t SA,
219                                          const SymbolBody &S) const {
220   return 0;
221 }
222 
223 void TargetInfo::writeGotHeaderEntries(uint8_t *Buf) const {}
224 
225 void TargetInfo::writeGotPltHeaderEntries(uint8_t *Buf) const {}
226 
227 X86TargetInfo::X86TargetInfo() {
228   CopyReloc = R_386_COPY;
229   PCRelReloc = R_386_PC32;
230   GotReloc = R_386_GLOB_DAT;
231   PltReloc = R_386_JUMP_SLOT;
232   TlsGotReloc = R_386_TLS_TPOFF;
233   TlsGlobalDynamicReloc = R_386_TLS_GD;
234   TlsLocalDynamicReloc = R_386_TLS_LDM;
235   TlsModuleIndexReloc = R_386_TLS_DTPMOD32;
236   TlsOffsetReloc = R_386_TLS_DTPOFF32;
237   LazyRelocations = true;
238   PltEntrySize = 16;
239   PltZeroEntrySize = 16;
240 }
241 
242 void X86TargetInfo::writeGotPltHeaderEntries(uint8_t *Buf) const {
243   write32le(Buf, Out<ELF32LE>::Dynamic->getVA());
244 }
245 
246 void X86TargetInfo::writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const {
247   // Skip 6 bytes of "pushl (GOT+4)"
248   write32le(Buf, Plt + 6);
249 }
250 
251 unsigned X86TargetInfo::getDynReloc(unsigned Type) const {
252   if (Type == R_386_TLS_LE)
253     return R_386_TLS_TPOFF;
254   if (Type == R_386_TLS_LE_32)
255     return R_386_TLS_TPOFF32;
256   return Type;
257 }
258 
259 bool X86TargetInfo::isTlsDynReloc(unsigned Type) const {
260   if (Type == R_386_TLS_LE || Type == R_386_TLS_LE_32 ||
261       Type == R_386_TLS_GOTIE)
262     return Config->Shared;
263   return false;
264 }
265 
266 void X86TargetInfo::writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
267                                       uint64_t PltEntryAddr) const {
268   // Executable files and shared object files have
269   // separate procedure linkage tables.
270   if (Config->Shared) {
271     const uint8_t V[] = {
272         0xff, 0xb3, 0x04, 0x00, 0x00, 0x00, // pushl 4(%ebx
273         0xff, 0xa3, 0x08, 0x00, 0x00, 0x00, // jmp *8(%ebx)
274         0x90, 0x90, 0x90, 0x90              // nop;nop;nop;nop
275     };
276     memcpy(Buf, V, sizeof(V));
277     return;
278   }
279 
280   const uint8_t PltData[] = {
281       0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushl (GOT+4)
282       0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *(GOT+8)
283       0x90, 0x90, 0x90, 0x90              // nop;nop;nop;nop
284   };
285   memcpy(Buf, PltData, sizeof(PltData));
286   write32le(Buf + 2, GotEntryAddr + 4); // GOT+4
287   write32le(Buf + 8, GotEntryAddr + 8); // GOT+8
288 }
289 
290 void X86TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotAddr,
291                                   uint64_t GotEntryAddr, uint64_t PltEntryAddr,
292                                   int32_t Index, unsigned RelOff) const {
293   const uint8_t Inst[] = {
294       0xff, 0x00, 0x00, 0x00, 0x00, 0x00, // jmp *foo_in_GOT|*foo@GOT(%ebx)
295       0x68, 0x00, 0x00, 0x00, 0x00,       // pushl $reloc_offset
296       0xe9, 0x00, 0x00, 0x00, 0x00        // jmp .PLT0@PC
297   };
298   memcpy(Buf, Inst, sizeof(Inst));
299   // jmp *foo@GOT(%ebx) or jmp *foo_in_GOT
300   Buf[1] = Config->Shared ? 0xa3 : 0x25;
301   write32le(Buf + 2, Config->Shared ? (GotEntryAddr - GotAddr) : GotEntryAddr);
302   write32le(Buf + 7, RelOff);
303   write32le(Buf + 12, -Index * PltEntrySize - PltZeroEntrySize - 16);
304 }
305 
306 bool X86TargetInfo::relocNeedsCopy(uint32_t Type, const SymbolBody &S) const {
307   if (Type == R_386_32 || Type == R_386_16 || Type == R_386_8)
308     if (auto *SS = dyn_cast<SharedSymbol<ELF32LE>>(&S))
309       return SS->Sym.getType() == STT_OBJECT;
310   return false;
311 }
312 
313 bool X86TargetInfo::relocNeedsGot(uint32_t Type, const SymbolBody &S) const {
314   return Type == R_386_TLS_GOTIE || Type == R_386_GOT32 ||
315          relocNeedsPlt(Type, S);
316 }
317 
318 bool X86TargetInfo::relocNeedsPlt(uint32_t Type, const SymbolBody &S) const {
319   return Type == R_386_PLT32 || (Type == R_386_PC32 && S.isShared());
320 }
321 
322 void X86TargetInfo::relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type,
323                                 uint64_t P, uint64_t SA,
324                                 uint8_t *PairedLoc) const {
325   switch (Type) {
326   case R_386_32:
327     add32le(Loc, SA);
328     break;
329   case R_386_GOT32:
330     add32le(Loc, SA - Out<ELF32LE>::Got->getVA());
331     break;
332   case R_386_GOTPC:
333     add32le(Loc, SA + Out<ELF32LE>::Got->getVA() - P);
334     break;
335   case R_386_PC32:
336     add32le(Loc, SA - P);
337     break;
338   case R_386_TLS_GD:
339   case R_386_TLS_LDM:
340   case R_386_TLS_TPOFF: {
341     uint64_t V = SA - Out<ELF32LE>::Got->getVA() -
342                  Out<ELF32LE>::Got->getNumEntries() * 4;
343     checkInt<32>(V, Type);
344     write32le(Loc, V);
345     break;
346   }
347   case R_386_TLS_LDO_32:
348     write32le(Loc, SA);
349     break;
350   case R_386_TLS_LE:
351     write32le(Loc, SA - Out<ELF32LE>::TlsPhdr->p_memsz);
352     break;
353   case R_386_TLS_LE_32:
354     write32le(Loc, Out<ELF32LE>::TlsPhdr->p_memsz - SA);
355     break;
356   default:
357     error("unrecognized reloc " + Twine(Type));
358   }
359 }
360 
361 X86_64TargetInfo::X86_64TargetInfo() {
362   CopyReloc = R_X86_64_COPY;
363   PCRelReloc = R_X86_64_PC32;
364   GotReloc = R_X86_64_GLOB_DAT;
365   PltReloc = R_X86_64_JUMP_SLOT;
366   RelativeReloc = R_X86_64_RELATIVE;
367   TlsGotReloc = R_X86_64_TPOFF64;
368   TlsLocalDynamicReloc = R_X86_64_TLSLD;
369   TlsGlobalDynamicReloc = R_X86_64_TLSGD;
370   TlsModuleIndexReloc = R_X86_64_DTPMOD64;
371   TlsOffsetReloc = R_X86_64_DTPOFF64;
372   LazyRelocations = true;
373   PltEntrySize = 16;
374   PltZeroEntrySize = 16;
375 }
376 
377 void X86_64TargetInfo::writeGotPltHeaderEntries(uint8_t *Buf) const {
378   write64le(Buf, Out<ELF64LE>::Dynamic->getVA());
379 }
380 
381 void X86_64TargetInfo::writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const {
382   // Skip 6 bytes of "jmpq *got(%rip)"
383   write32le(Buf, Plt + 6);
384 }
385 
386 void X86_64TargetInfo::writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
387                                          uint64_t PltEntryAddr) const {
388   const uint8_t PltData[] = {
389       0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushq GOT+8(%rip)
390       0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *GOT+16(%rip)
391       0x0f, 0x1f, 0x40, 0x00              // nopl 0x0(rax)
392   };
393   memcpy(Buf, PltData, sizeof(PltData));
394   write32le(Buf + 2, GotEntryAddr - PltEntryAddr + 2); // GOT+8
395   write32le(Buf + 8, GotEntryAddr - PltEntryAddr + 4); // GOT+16
396 }
397 
398 void X86_64TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotAddr,
399                                      uint64_t GotEntryAddr,
400                                      uint64_t PltEntryAddr, int32_t Index,
401                                      unsigned RelOff) const {
402   const uint8_t Inst[] = {
403       0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmpq *got(%rip)
404       0x68, 0x00, 0x00, 0x00, 0x00,       // pushq <relocation index>
405       0xe9, 0x00, 0x00, 0x00, 0x00        // jmpq plt[0]
406   };
407   memcpy(Buf, Inst, sizeof(Inst));
408 
409   write32le(Buf + 2, GotEntryAddr - PltEntryAddr - 6);
410   write32le(Buf + 7, Index);
411   write32le(Buf + 12, -Index * PltEntrySize - PltZeroEntrySize - 16);
412 }
413 
414 bool X86_64TargetInfo::relocNeedsCopy(uint32_t Type,
415                                       const SymbolBody &S) const {
416   if (Type == R_X86_64_32S || Type == R_X86_64_32 || Type == R_X86_64_PC32 ||
417       Type == R_X86_64_64)
418     if (auto *SS = dyn_cast<SharedSymbol<ELF64LE>>(&S))
419       return SS->Sym.getType() == STT_OBJECT;
420   return false;
421 }
422 
423 bool X86_64TargetInfo::relocNeedsGot(uint32_t Type, const SymbolBody &S) const {
424   if (Type == R_X86_64_TLSGD)
425     return Target->isTlsOptimized(Type, &S) && canBePreempted(&S, true);
426   if (Type == R_X86_64_GOTTPOFF)
427     return !isTlsOptimized(Type, &S);
428   return Type == R_X86_64_GOTPCREL || relocNeedsPlt(Type, S);
429 }
430 
431 bool X86_64TargetInfo::isTlsDynReloc(unsigned Type) const {
432   return Type == R_X86_64_GOTTPOFF || Type == R_X86_64_TLSGD;
433 }
434 
435 unsigned X86_64TargetInfo::getPltRefReloc(unsigned Type) const {
436   if (Type == R_X86_64_PLT32)
437     return R_X86_64_PC32;
438   return Type;
439 }
440 
441 bool X86_64TargetInfo::relocNeedsPlt(uint32_t Type, const SymbolBody &S) const {
442   if (relocNeedsCopy(Type, S))
443     return false;
444 
445   switch (Type) {
446   default:
447     return false;
448   case R_X86_64_32:
449   case R_X86_64_64:
450   case R_X86_64_PC32:
451     // This relocation is defined to have a value of (S + A - P).
452     // The problems start when a non PIC program calls a function in a shared
453     // library.
454     // In an ideal world, we could just report an error saying the relocation
455     // can overflow at runtime.
456     // In the real world with glibc, crt1.o has a R_X86_64_PC32 pointing to
457     // libc.so.
458     //
459     // The general idea on how to handle such cases is to create a PLT entry
460     // and use that as the function value.
461     //
462     // For the static linking part, we just return true and everything else
463     // will use the the PLT entry as the address.
464     //
465     // The remaining (unimplemented) problem is making sure pointer equality
466     // still works. We need the help of the dynamic linker for that. We
467     // let it know that we have a direct reference to a so symbol by creating
468     // an undefined symbol with a non zero st_value. Seeing that, the
469     // dynamic linker resolves the symbol to the value of the symbol we created.
470     // This is true even for got entries, so pointer equality is maintained.
471     // To avoid an infinite loop, the only entry that points to the
472     // real function is a dedicated got entry used by the plt. That is
473     // identified by special relocation types (R_X86_64_JUMP_SLOT,
474     // R_386_JMP_SLOT, etc).
475     return S.isShared();
476   case R_X86_64_PLT32:
477     return canBePreempted(&S, true);
478   }
479 }
480 
481 bool X86_64TargetInfo::isRelRelative(uint32_t Type) const {
482   switch (Type) {
483   default:
484     return false;
485   case R_X86_64_DTPOFF32:
486   case R_X86_64_DTPOFF64:
487   case R_X86_64_PC8:
488   case R_X86_64_PC16:
489   case R_X86_64_PC32:
490   case R_X86_64_PC64:
491   case R_X86_64_PLT32:
492     return true;
493   }
494 }
495 
496 bool X86_64TargetInfo::isTlsOptimized(unsigned Type,
497                                       const SymbolBody *S) const {
498   if (Config->Shared || (S && !S->isTLS()))
499     return false;
500   return Type == R_X86_64_TLSGD || Type == R_X86_64_TLSLD ||
501          Type == R_X86_64_DTPOFF32 ||
502          (Type == R_X86_64_GOTTPOFF && !canBePreempted(S, true));
503 }
504 
505 // "Ulrich Drepper, ELF Handling For Thread-Local Storage" (5.5
506 // x86-x64 linker optimizations, http://www.akkadia.org/drepper/tls.pdf) shows
507 // how LD can be optimized to LE:
508 //   leaq bar@tlsld(%rip), %rdi
509 //   callq __tls_get_addr@PLT
510 //   leaq bar@dtpoff(%rax), %rcx
511 // Is converted to:
512 //  .word 0x6666
513 //  .byte 0x66
514 //  mov %fs:0,%rax
515 //  leaq bar@tpoff(%rax), %rcx
516 void X86_64TargetInfo::relocateTlsLdToLe(uint8_t *Loc, uint8_t *BufEnd,
517                                          uint64_t P, uint64_t SA) const {
518   const uint8_t Inst[] = {
519       0x66, 0x66,                                          //.word 0x6666
520       0x66,                                                //.byte 0x66
521       0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax
522   };
523   memcpy(Loc - 3, Inst, sizeof(Inst));
524 }
525 
526 // "Ulrich Drepper, ELF Handling For Thread-Local Storage" (5.5
527 // x86-x64 linker optimizations, http://www.akkadia.org/drepper/tls.pdf) shows
528 // how GD can be optimized to LE:
529 //  .byte 0x66
530 //  leaq x@tlsgd(%rip), %rdi
531 //  .word 0x6666
532 //  rex64
533 //  call __tls_get_addr@plt
534 // Is converted to:
535 //  mov %fs:0x0,%rax
536 //  lea x@tpoff,%rax
537 void X86_64TargetInfo::relocateTlsGdToLe(uint8_t *Loc, uint8_t *BufEnd,
538                                          uint64_t P, uint64_t SA) const {
539   const uint8_t Inst[] = {
540       0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax
541       0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00              // lea x@tpoff,%rax
542   };
543   memcpy(Loc - 4, Inst, sizeof(Inst));
544   relocateOne(Loc + 8, BufEnd, R_X86_64_TPOFF32, P, SA);
545 }
546 
547 // "Ulrich Drepper, ELF Handling For Thread-Local Storage" (5.5
548 // x86-x64 linker optimizations, http://www.akkadia.org/drepper/tls.pdf) shows
549 // how GD can be optimized to IE:
550 //  .byte 0x66
551 //  leaq x@tlsgd(%rip), %rdi
552 //  .word 0x6666
553 //  rex64
554 //  call __tls_get_addr@plt
555 // Is converted to:
556 //  mov %fs:0x0,%rax
557 //  addq x@tpoff,%rax
558 void X86_64TargetInfo::relocateTlsGdToIe(uint8_t *Loc, uint8_t *BufEnd,
559                                          uint64_t P, uint64_t SA) const {
560   const uint8_t Inst[] = {
561       0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax
562       0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00              // addq x@tpoff,%rax
563   };
564   memcpy(Loc - 4, Inst, sizeof(Inst));
565   relocateOne(Loc + 8, BufEnd, R_X86_64_TPOFF64, P + 12, SA);
566 }
567 
568 // In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to
569 // R_X86_64_TPOFF32 so that it does not use GOT.
570 // This function does that. Read "ELF Handling For Thread-Local Storage,
571 // 5.5 x86-x64 linker optimizations" (http://www.akkadia.org/drepper/tls.pdf)
572 // by Ulrich Drepper for details.
573 void X86_64TargetInfo::relocateTlsIeToLe(uint8_t *Loc, uint8_t *BufEnd,
574                                          uint64_t P, uint64_t SA) const {
575   // Ulrich's document section 6.5 says that @gottpoff(%rip) must be
576   // used in MOVQ or ADDQ instructions only.
577   // "MOVQ foo@GOTTPOFF(%RIP), %REG" is transformed to "MOVQ $foo, %REG".
578   // "ADDQ foo@GOTTPOFF(%RIP), %REG" is transformed to "LEAQ foo(%REG), %REG"
579   // (if the register is not RSP/R12) or "ADDQ $foo, %RSP".
580   // Opcodes info can be found at http://ref.x86asm.net/coder64.html#x48.
581   uint8_t *Prefix = Loc - 3;
582   uint8_t *Inst = Loc - 2;
583   uint8_t *RegSlot = Loc - 1;
584   uint8_t Reg = Loc[-1] >> 3;
585   bool IsMov = *Inst == 0x8b;
586   bool RspAdd = !IsMov && Reg == 4;
587   // r12 and rsp registers requires special handling.
588   // Problem is that for other registers, for example leaq 0xXXXXXXXX(%r11),%r11
589   // result out is 7 bytes: 4d 8d 9b XX XX XX XX,
590   // but leaq 0xXXXXXXXX(%r12),%r12 is 8 bytes: 4d 8d a4 24 XX XX XX XX.
591   // The same true for rsp. So we convert to addq for them, saving 1 byte that
592   // we dont have.
593   if (RspAdd)
594     *Inst = 0x81;
595   else
596     *Inst = IsMov ? 0xc7 : 0x8d;
597   if (*Prefix == 0x4c)
598     *Prefix = (IsMov || RspAdd) ? 0x49 : 0x4d;
599   *RegSlot = (IsMov || RspAdd) ? (0xc0 | Reg) : (0x80 | Reg | (Reg << 3));
600   relocateOne(Loc, BufEnd, R_X86_64_TPOFF32, P, SA);
601 }
602 
603 // This function applies a TLS relocation with an optimization as described
604 // in the Ulrich's document. As a result of rewriting instructions at the
605 // relocation target, relocations immediately follow the TLS relocation (which
606 // would be applied to rewritten instructions) may have to be skipped.
607 // This function returns a number of relocations that need to be skipped.
608 unsigned X86_64TargetInfo::relocateTlsOptimize(uint8_t *Loc, uint8_t *BufEnd,
609                                                uint32_t Type, uint64_t P,
610                                                uint64_t SA,
611                                                const SymbolBody &S) const {
612   switch (Type) {
613   case R_X86_64_DTPOFF32:
614     relocateOne(Loc, BufEnd, R_X86_64_TPOFF32, P, SA);
615     return 0;
616   case R_X86_64_GOTTPOFF:
617     relocateTlsIeToLe(Loc, BufEnd, P, SA);
618     return 0;
619   case R_X86_64_TLSGD: {
620     if (canBePreempted(&S, true))
621       relocateTlsGdToIe(Loc, BufEnd, P, SA);
622     else
623       relocateTlsGdToLe(Loc, BufEnd, P, SA);
624     // The next relocation should be against __tls_get_addr, so skip it
625     return 1;
626   }
627   case R_X86_64_TLSLD:
628     relocateTlsLdToLe(Loc, BufEnd, P, SA);
629     // The next relocation should be against __tls_get_addr, so skip it
630     return 1;
631   }
632   llvm_unreachable("Unknown TLS optimization");
633 }
634 
635 void X86_64TargetInfo::relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type,
636                                    uint64_t P, uint64_t SA,
637                                    uint8_t *PairedLoc) const {
638   switch (Type) {
639   case R_X86_64_32:
640     checkUInt<32>(SA, Type);
641     write32le(Loc, SA);
642     break;
643   case R_X86_64_32S:
644     checkInt<32>(SA, Type);
645     write32le(Loc, SA);
646     break;
647   case R_X86_64_64:
648     write64le(Loc, SA);
649     break;
650   case R_X86_64_DTPOFF32:
651     write32le(Loc, SA);
652     break;
653   case R_X86_64_DTPOFF64:
654     write64le(Loc, SA);
655     break;
656   case R_X86_64_GOTPCREL:
657   case R_X86_64_PC32:
658   case R_X86_64_PLT32:
659   case R_X86_64_TLSGD:
660   case R_X86_64_TLSLD:
661     write32le(Loc, SA - P);
662     break;
663   case R_X86_64_TPOFF32: {
664     uint64_t Val = SA - Out<ELF64LE>::TlsPhdr->p_memsz;
665     checkInt<32>(Val, Type);
666     write32le(Loc, Val);
667     break;
668   }
669   case R_X86_64_TPOFF64:
670     write32le(Loc, SA - P);
671     break;
672   default:
673     error("unrecognized reloc " + Twine(Type));
674   }
675 }
676 
677 // Relocation masks following the #lo(value), #hi(value), #ha(value),
678 // #higher(value), #highera(value), #highest(value), and #highesta(value)
679 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
680 // document.
681 static uint16_t applyPPCLo(uint64_t V) { return V; }
682 static uint16_t applyPPCHi(uint64_t V) { return V >> 16; }
683 static uint16_t applyPPCHa(uint64_t V) { return (V + 0x8000) >> 16; }
684 static uint16_t applyPPCHigher(uint64_t V) { return V >> 32; }
685 static uint16_t applyPPCHighera(uint64_t V) { return (V + 0x8000) >> 32; }
686 static uint16_t applyPPCHighest(uint64_t V) { return V >> 48; }
687 static uint16_t applyPPCHighesta(uint64_t V) { return (V + 0x8000) >> 48; }
688 
689 PPC64TargetInfo::PPC64TargetInfo() {
690   PCRelReloc = R_PPC64_REL24;
691   GotReloc = R_PPC64_GLOB_DAT;
692   RelativeReloc = R_PPC64_RELATIVE;
693   PltEntrySize = 32;
694 
695   // We need 64K pages (at least under glibc/Linux, the loader won't
696   // set different permissions on a finer granularity than that).
697   PageSize = 65536;
698 
699   // The PPC64 ELF ABI v1 spec, says:
700   //
701   //   It is normally desirable to put segments with different characteristics
702   //   in separate 256 Mbyte portions of the address space, to give the
703   //   operating system full paging flexibility in the 64-bit address space.
704   //
705   // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
706   // use 0x10000000 as the starting address.
707   VAStart = 0x10000000;
708 }
709 
710 uint64_t getPPC64TocBase() {
711   // The TOC consists of sections .got, .toc, .tocbss, .plt in that
712   // order. The TOC starts where the first of these sections starts.
713 
714   // FIXME: This obviously does not do the right thing when there is no .got
715   // section, but there is a .toc or .tocbss section.
716   uint64_t TocVA = Out<ELF64BE>::Got->getVA();
717   if (!TocVA)
718     TocVA = Out<ELF64BE>::Plt->getVA();
719 
720   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
721   // thus permitting a full 64 Kbytes segment. Note that the glibc startup
722   // code (crt1.o) assumes that you can get from the TOC base to the
723   // start of the .toc section with only a single (signed) 16-bit relocation.
724   return TocVA + 0x8000;
725 }
726 
727 void PPC64TargetInfo::writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const {}
728 void PPC64TargetInfo::writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
729                                         uint64_t PltEntryAddr) const {}
730 void PPC64TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotAddr,
731                                     uint64_t GotEntryAddr,
732                                     uint64_t PltEntryAddr, int32_t Index,
733                                     unsigned RelOff) const {
734   uint64_t Off = GotEntryAddr - getPPC64TocBase();
735 
736   // FIXME: What we should do, in theory, is get the offset of the function
737   // descriptor in the .opd section, and use that as the offset from %r2 (the
738   // TOC-base pointer). Instead, we have the GOT-entry offset, and that will
739   // be a pointer to the function descriptor in the .opd section. Using
740   // this scheme is simpler, but requires an extra indirection per PLT dispatch.
741 
742   write32be(Buf,      0xf8410028);                   // std %r2, 40(%r1)
743   write32be(Buf + 4,  0x3d620000 | applyPPCHa(Off)); // addis %r11, %r2, X@ha
744   write32be(Buf + 8,  0xe98b0000 | applyPPCLo(Off)); // ld %r12, X@l(%r11)
745   write32be(Buf + 12, 0xe96c0000);                   // ld %r11,0(%r12)
746   write32be(Buf + 16, 0x7d6903a6);                   // mtctr %r11
747   write32be(Buf + 20, 0xe84c0008);                   // ld %r2,8(%r12)
748   write32be(Buf + 24, 0xe96c0010);                   // ld %r11,16(%r12)
749   write32be(Buf + 28, 0x4e800420);                   // bctr
750 }
751 
752 bool PPC64TargetInfo::relocNeedsGot(uint32_t Type, const SymbolBody &S) const {
753   if (relocNeedsPlt(Type, S))
754     return true;
755 
756   switch (Type) {
757   default: return false;
758   case R_PPC64_GOT16:
759   case R_PPC64_GOT16_DS:
760   case R_PPC64_GOT16_HA:
761   case R_PPC64_GOT16_HI:
762   case R_PPC64_GOT16_LO:
763   case R_PPC64_GOT16_LO_DS:
764     return true;
765   }
766 }
767 
768 bool PPC64TargetInfo::relocNeedsPlt(uint32_t Type, const SymbolBody &S) const {
769   // These are function calls that need to be redirected through a PLT stub.
770   return Type == R_PPC64_REL24 && canBePreempted(&S, false);
771 }
772 
773 bool PPC64TargetInfo::isRelRelative(uint32_t Type) const {
774   switch (Type) {
775   default:
776     return true;
777   case R_PPC64_ADDR64:
778   case R_PPC64_TOC:
779     return false;
780   }
781 }
782 
783 void PPC64TargetInfo::relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type,
784                                   uint64_t P, uint64_t SA,
785                                   uint8_t *PairedLoc) const {
786   uint64_t TB = getPPC64TocBase();
787 
788   // For a TOC-relative relocation, adjust the addend and proceed in terms of
789   // the corresponding ADDR16 relocation type.
790   switch (Type) {
791   case R_PPC64_TOC16:       Type = R_PPC64_ADDR16;       SA -= TB; break;
792   case R_PPC64_TOC16_DS:    Type = R_PPC64_ADDR16_DS;    SA -= TB; break;
793   case R_PPC64_TOC16_HA:    Type = R_PPC64_ADDR16_HA;    SA -= TB; break;
794   case R_PPC64_TOC16_HI:    Type = R_PPC64_ADDR16_HI;    SA -= TB; break;
795   case R_PPC64_TOC16_LO:    Type = R_PPC64_ADDR16_LO;    SA -= TB; break;
796   case R_PPC64_TOC16_LO_DS: Type = R_PPC64_ADDR16_LO_DS; SA -= TB; break;
797   default: break;
798   }
799 
800   switch (Type) {
801   case R_PPC64_ADDR14: {
802     checkAlignment<4>(SA, Type);
803     // Preserve the AA/LK bits in the branch instruction
804     uint8_t AALK = Loc[3];
805     write16be(Loc + 2, (AALK & 3) | (SA & 0xfffc));
806     break;
807   }
808   case R_PPC64_ADDR16:
809     checkInt<16>(SA, Type);
810     write16be(Loc, SA);
811     break;
812   case R_PPC64_ADDR16_DS:
813     checkInt<16>(SA, Type);
814     write16be(Loc, (read16be(Loc) & 3) | (SA & ~3));
815     break;
816   case R_PPC64_ADDR16_HA:
817     write16be(Loc, applyPPCHa(SA));
818     break;
819   case R_PPC64_ADDR16_HI:
820     write16be(Loc, applyPPCHi(SA));
821     break;
822   case R_PPC64_ADDR16_HIGHER:
823     write16be(Loc, applyPPCHigher(SA));
824     break;
825   case R_PPC64_ADDR16_HIGHERA:
826     write16be(Loc, applyPPCHighera(SA));
827     break;
828   case R_PPC64_ADDR16_HIGHEST:
829     write16be(Loc, applyPPCHighest(SA));
830     break;
831   case R_PPC64_ADDR16_HIGHESTA:
832     write16be(Loc, applyPPCHighesta(SA));
833     break;
834   case R_PPC64_ADDR16_LO:
835     write16be(Loc, applyPPCLo(SA));
836     break;
837   case R_PPC64_ADDR16_LO_DS:
838     write16be(Loc, (read16be(Loc) & 3) | (applyPPCLo(SA) & ~3));
839     break;
840   case R_PPC64_ADDR32:
841     checkInt<32>(SA, Type);
842     write32be(Loc, SA);
843     break;
844   case R_PPC64_ADDR64:
845     write64be(Loc, SA);
846     break;
847   case R_PPC64_REL16_HA:
848     write16be(Loc, applyPPCHa(SA - P));
849     break;
850   case R_PPC64_REL16_HI:
851     write16be(Loc, applyPPCHi(SA - P));
852     break;
853   case R_PPC64_REL16_LO:
854     write16be(Loc, applyPPCLo(SA - P));
855     break;
856   case R_PPC64_REL24: {
857     // If we have an undefined weak symbol, we might get here with a symbol
858     // address of zero. That could overflow, but the code must be unreachable,
859     // so don't bother doing anything at all.
860     if (!SA)
861       break;
862 
863     uint64_t PltStart = Out<ELF64BE>::Plt->getVA();
864     uint64_t PltEnd = PltStart + Out<ELF64BE>::Plt->getSize();
865     bool InPlt = PltStart <= SA && SA < PltEnd;
866 
867     if (!InPlt && Out<ELF64BE>::Opd) {
868       // If this is a local call, and we currently have the address of a
869       // function-descriptor, get the underlying code address instead.
870       uint64_t OpdStart = Out<ELF64BE>::Opd->getVA();
871       uint64_t OpdEnd = OpdStart + Out<ELF64BE>::Opd->getSize();
872       bool InOpd = OpdStart <= SA && SA < OpdEnd;
873 
874       if (InOpd)
875         SA = read64be(&Out<ELF64BE>::OpdBuf[SA - OpdStart]);
876     }
877 
878     uint32_t Mask = 0x03FFFFFC;
879     checkInt<24>(SA - P, Type);
880     write32be(Loc, (read32be(Loc) & ~Mask) | ((SA - P) & Mask));
881 
882     uint32_t Nop = 0x60000000;
883     if (InPlt && Loc + 8 <= BufEnd && read32be(Loc + 4) == Nop)
884       write32be(Loc + 4, 0xe8410028); // ld %r2, 40(%r1)
885     break;
886   }
887   case R_PPC64_REL32:
888     checkInt<32>(SA - P, Type);
889     write32be(Loc, SA - P);
890     break;
891   case R_PPC64_REL64:
892     write64be(Loc, SA - P);
893     break;
894   case R_PPC64_TOC:
895     write64be(Loc, SA);
896     break;
897   default:
898     error("unrecognized reloc " + Twine(Type));
899   }
900 }
901 
902 AArch64TargetInfo::AArch64TargetInfo() {
903   CopyReloc = R_AARCH64_COPY;
904   GotReloc = R_AARCH64_GLOB_DAT;
905   PltReloc = R_AARCH64_JUMP_SLOT;
906   LazyRelocations = true;
907   PltEntrySize = 16;
908   PltZeroEntrySize = 32;
909 }
910 
911 unsigned AArch64TargetInfo::getDynReloc(unsigned Type) const {
912   if (Type == R_AARCH64_ABS32 || Type == R_AARCH64_ABS64)
913     return Type;
914   StringRef S = getELFRelocationTypeName(EM_AARCH64, Type);
915   error("Relocation " + S + " cannot be used when making a shared object; "
916                             "recompile with -fPIC.");
917 }
918 
919 unsigned AArch64TargetInfo::getPltRefReloc(unsigned Type) const { return Type; }
920 
921 void AArch64TargetInfo::writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const {
922   write64le(Buf, Out<ELF64LE>::Plt->getVA());
923 }
924 
925 void AArch64TargetInfo::writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
926                                           uint64_t PltEntryAddr) const {
927   const uint8_t PltData[] = {
928       0xf0, 0x7b, 0xbf, 0xa9, // stp	x16, x30, [sp,#-16]!
929       0x10, 0x00, 0x00, 0x90, // adrp	x16, Page(&(.plt.got[2]))
930       0x11, 0x02, 0x40, 0xf9, // ldr	x17, [x16, Offset(&(.plt.got[2]))]
931       0x10, 0x02, 0x00, 0x91, // add	x16, x16, Offset(&(.plt.got[2]))
932       0x20, 0x02, 0x1f, 0xd6, // br	x17
933       0x1f, 0x20, 0x03, 0xd5, // nop
934       0x1f, 0x20, 0x03, 0xd5, // nop
935       0x1f, 0x20, 0x03, 0xd5  // nop
936   };
937   memcpy(Buf, PltData, sizeof(PltData));
938 
939   relocateOne(Buf + 4, Buf + 8, R_AARCH64_ADR_PREL_PG_HI21, PltEntryAddr + 4,
940               GotEntryAddr + 16);
941   relocateOne(Buf + 8, Buf + 12, R_AARCH64_LDST64_ABS_LO12_NC, PltEntryAddr + 8,
942               GotEntryAddr + 16);
943   relocateOne(Buf + 12, Buf + 16, R_AARCH64_ADD_ABS_LO12_NC, PltEntryAddr + 12,
944               GotEntryAddr + 16);
945 }
946 
947 void AArch64TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotAddr,
948                                       uint64_t GotEntryAddr,
949                                       uint64_t PltEntryAddr, int32_t Index,
950                                       unsigned RelOff) const {
951   const uint8_t Inst[] = {
952       0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[n]))
953       0x11, 0x02, 0x40, 0xf9, // ldr  x17, [x16, Offset(&(.plt.got[n]))]
954       0x10, 0x02, 0x00, 0x91, // add  x16, x16, Offset(&(.plt.got[n]))
955       0x20, 0x02, 0x1f, 0xd6  // br   x17
956   };
957   memcpy(Buf, Inst, sizeof(Inst));
958 
959   relocateOne(Buf, Buf + 4, R_AARCH64_ADR_PREL_PG_HI21, PltEntryAddr,
960               GotEntryAddr);
961   relocateOne(Buf + 4, Buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, PltEntryAddr + 4,
962               GotEntryAddr);
963   relocateOne(Buf + 8, Buf + 12, R_AARCH64_ADD_ABS_LO12_NC, PltEntryAddr + 8,
964               GotEntryAddr);
965 }
966 
967 bool AArch64TargetInfo::relocNeedsCopy(uint32_t Type,
968                                        const SymbolBody &S) const {
969   if (Config->Shared)
970     return false;
971   switch (Type) {
972   default:
973     return false;
974   case R_AARCH64_ABS16:
975   case R_AARCH64_ABS32:
976   case R_AARCH64_ABS64:
977   case R_AARCH64_ADD_ABS_LO12_NC:
978   case R_AARCH64_ADR_PREL_LO21:
979   case R_AARCH64_ADR_PREL_PG_HI21:
980   case R_AARCH64_LDST8_ABS_LO12_NC:
981   case R_AARCH64_LDST32_ABS_LO12_NC:
982   case R_AARCH64_LDST64_ABS_LO12_NC:
983     if (auto *SS = dyn_cast<SharedSymbol<ELF64LE>>(&S))
984       return SS->Sym.getType() == STT_OBJECT;
985     return false;
986   }
987 }
988 
989 bool AArch64TargetInfo::relocNeedsGot(uint32_t Type,
990                                       const SymbolBody &S) const {
991   return Type == R_AARCH64_ADR_GOT_PAGE || Type == R_AARCH64_LD64_GOT_LO12_NC ||
992          relocNeedsPlt(Type, S);
993 }
994 
995 bool AArch64TargetInfo::relocNeedsPlt(uint32_t Type,
996                                       const SymbolBody &S) const {
997   switch (Type) {
998   default:
999     return false;
1000   case R_AARCH64_CALL26:
1001   case R_AARCH64_JUMP26:
1002     return canBePreempted(&S, true);
1003   }
1004 }
1005 
1006 static void updateAArch64Adr(uint8_t *L, uint64_t Imm) {
1007   uint32_t ImmLo = (Imm & 0x3) << 29;
1008   uint32_t ImmHi = ((Imm & 0x1FFFFC) >> 2) << 5;
1009   uint64_t Mask = (0x3 << 29) | (0x7FFFF << 5);
1010   write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
1011 }
1012 
1013 // Page(Expr) is the page address of the expression Expr, defined
1014 // as (Expr & ~0xFFF). (This applies even if the machine page size
1015 // supported by the platform has a different value.)
1016 static uint64_t getAArch64Page(uint64_t Expr) {
1017   return Expr & (~static_cast<uint64_t>(0xFFF));
1018 }
1019 
1020 void AArch64TargetInfo::relocateOne(uint8_t *Loc, uint8_t *BufEnd,
1021                                     uint32_t Type, uint64_t P, uint64_t SA,
1022                                     uint8_t *PairedLoc) const {
1023   switch (Type) {
1024   case R_AARCH64_ABS16:
1025     checkIntUInt<16>(SA, Type);
1026     write16le(Loc, SA);
1027     break;
1028   case R_AARCH64_ABS32:
1029     checkIntUInt<32>(SA, Type);
1030     write32le(Loc, SA);
1031     break;
1032   case R_AARCH64_ABS64:
1033     write64le(Loc, SA);
1034     break;
1035   case R_AARCH64_ADD_ABS_LO12_NC:
1036     // This relocation stores 12 bits and there's no instruction
1037     // to do it. Instead, we do a 32 bits store of the value
1038     // of r_addend bitwise-or'ed Loc. This assumes that the addend
1039     // bits in Loc are zero.
1040     or32le(Loc, (SA & 0xFFF) << 10);
1041     break;
1042   case R_AARCH64_ADR_GOT_PAGE: {
1043     uint64_t X = getAArch64Page(SA) - getAArch64Page(P);
1044     checkInt<33>(X, Type);
1045     updateAArch64Adr(Loc, (X >> 12) & 0x1FFFFF); // X[32:12]
1046     break;
1047   }
1048   case R_AARCH64_ADR_PREL_LO21: {
1049     uint64_t X = SA - P;
1050     checkInt<21>(X, Type);
1051     updateAArch64Adr(Loc, X & 0x1FFFFF);
1052     break;
1053   }
1054   case R_AARCH64_ADR_PREL_PG_HI21: {
1055     uint64_t X = getAArch64Page(SA) - getAArch64Page(P);
1056     checkInt<33>(X, Type);
1057     updateAArch64Adr(Loc, (X >> 12) & 0x1FFFFF); // X[32:12]
1058     break;
1059   }
1060   case R_AARCH64_CALL26:
1061   case R_AARCH64_JUMP26: {
1062     uint64_t X = SA - P;
1063     checkInt<28>(X, Type);
1064     or32le(Loc, (X & 0x0FFFFFFC) >> 2);
1065     break;
1066   }
1067   case R_AARCH64_LD64_GOT_LO12_NC:
1068     checkAlignment<8>(SA, Type);
1069     or32le(Loc, (SA & 0xFF8) << 7);
1070     break;
1071   case R_AARCH64_LDST8_ABS_LO12_NC:
1072     or32le(Loc, (SA & 0xFFF) << 10);
1073     break;
1074   case R_AARCH64_LDST32_ABS_LO12_NC:
1075     or32le(Loc, (SA & 0xFFC) << 8);
1076     break;
1077   case R_AARCH64_LDST64_ABS_LO12_NC:
1078     or32le(Loc, (SA & 0xFF8) << 7);
1079     break;
1080   case R_AARCH64_PREL16:
1081     checkIntUInt<16>(SA - P, Type);
1082     write16le(Loc, SA - P);
1083     break;
1084   case R_AARCH64_PREL32:
1085     checkIntUInt<32>(SA - P, Type);
1086     write32le(Loc, SA - P);
1087     break;
1088   case R_AARCH64_PREL64:
1089     write64le(Loc, SA - P);
1090     break;
1091   default:
1092     error("unrecognized reloc " + Twine(Type));
1093   }
1094 }
1095 
1096 template <class ELFT> MipsTargetInfo<ELFT>::MipsTargetInfo() {
1097   PageSize = 65536;
1098   GotHeaderEntriesNum = 2;
1099 }
1100 
1101 template <class ELFT>
1102 void MipsTargetInfo<ELFT>::writeGotHeaderEntries(uint8_t *Buf) const {
1103   typedef typename ELFFile<ELFT>::Elf_Off Elf_Off;
1104   auto *P = reinterpret_cast<Elf_Off *>(Buf);
1105   // Module pointer
1106   P[1] = ELFT::Is64Bits ? 0x8000000000000000 : 0x80000000;
1107 }
1108 
1109 template <class ELFT>
1110 void MipsTargetInfo<ELFT>::writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const {}
1111 template <class ELFT>
1112 void MipsTargetInfo<ELFT>::writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
1113                                        uint64_t PltEntryAddr) const {}
1114 template <class ELFT>
1115 void MipsTargetInfo<ELFT>::writePltEntry(uint8_t *Buf, uint64_t GotAddr,
1116                                          uint64_t GotEntryAddr,
1117                                          uint64_t PltEntryAddr, int32_t Index,
1118                                          unsigned RelOff) const {}
1119 
1120 template <class ELFT>
1121 bool MipsTargetInfo<ELFT>::relocNeedsGot(uint32_t Type,
1122                                          const SymbolBody &S) const {
1123   return Type == R_MIPS_GOT16 || Type == R_MIPS_CALL16;
1124 }
1125 
1126 template <class ELFT>
1127 bool MipsTargetInfo<ELFT>::relocNeedsPlt(uint32_t Type,
1128                                          const SymbolBody &S) const {
1129   return false;
1130 }
1131 
1132 template <class ELFT>
1133 void MipsTargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint8_t *BufEnd,
1134                                        uint32_t Type, uint64_t P, uint64_t SA,
1135                                        uint8_t *PairedLoc) const {
1136   const endianness E = ELFT::TargetEndianness;
1137   switch (Type) {
1138   case R_MIPS_32:
1139     add32<E>(Loc, SA);
1140     break;
1141   case R_MIPS_CALL16:
1142   case R_MIPS_GOT16: {
1143     int64_t V = SA - getMipsGpAddr<ELFT>();
1144     if (Type == R_MIPS_GOT16)
1145       checkInt<16>(V, Type);
1146     write32<E>(Loc, (read32<E>(Loc) & 0xffff0000) | (V & 0xffff));
1147     break;
1148   }
1149   case R_MIPS_HI16: {
1150     uint32_t Instr = read32<E>(Loc);
1151     if (PairedLoc) {
1152       uint64_t AHL = ((Instr & 0xffff) << 16) +
1153                      SignExtend64<16>(read32<E>(PairedLoc) & 0xffff);
1154       write32<E>(Loc, (Instr & 0xffff0000) | (((SA + AHL) >> 16) & 0xffff));
1155     } else {
1156       warning("Can't find matching R_MIPS_LO16 relocation for R_MIPS_HI16");
1157       write32<E>(Loc, (Instr & 0xffff0000) | ((SA >> 16) & 0xffff));
1158     }
1159     break;
1160   }
1161   case R_MIPS_LO16: {
1162     uint32_t Instr = read32<E>(Loc);
1163     int64_t AHL = SignExtend64<16>(Instr & 0xffff);
1164     write32<E>(Loc, (Instr & 0xffff0000) | ((SA + AHL) & 0xffff));
1165     break;
1166   }
1167   default:
1168     error("unrecognized reloc " + Twine(Type));
1169   }
1170 }
1171 
1172 template <class ELFT> typename ELFFile<ELFT>::uintX_t getMipsGpAddr() {
1173   const unsigned GPOffset = 0x7ff0;
1174   return Out<ELFT>::Got->getVA() ? (Out<ELFT>::Got->getVA() + GPOffset) : 0;
1175 }
1176 
1177 template uint32_t getMipsGpAddr<ELF32LE>();
1178 template uint32_t getMipsGpAddr<ELF32BE>();
1179 template uint64_t getMipsGpAddr<ELF64LE>();
1180 template uint64_t getMipsGpAddr<ELF64BE>();
1181 }
1182 }
1183