xref: /llvm-project-15.0.7/lld/ELF/Target.cpp (revision ad867272)
1 //===- Target.cpp ---------------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Machine-specific things, such as applying relocations, creation of
11 // GOT or PLT entries, etc., are handled in this file.
12 //
13 // Refer the ELF spec for the single letter varaibles, S, A or P, used
14 // in this file.
15 //
16 // Some functions defined in this file has "relaxTls" as part of their names.
17 // They do peephole optimization for TLS variables by rewriting instructions.
18 // They are not part of the ABI but optional optimization, so you can skip
19 // them if you are not interested in how TLS variables are optimized.
20 // See the following paper for the details.
21 //
22 //   Ulrich Drepper, ELF Handling For Thread-Local Storage
23 //   http://www.akkadia.org/drepper/tls.pdf
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "Target.h"
28 #include "Error.h"
29 #include "InputFiles.h"
30 #include "OutputSections.h"
31 #include "Symbols.h"
32 #include "Thunks.h"
33 
34 #include "llvm/ADT/ArrayRef.h"
35 #include "llvm/Object/ELF.h"
36 #include "llvm/Support/Endian.h"
37 #include "llvm/Support/ELF.h"
38 
39 using namespace llvm;
40 using namespace llvm::object;
41 using namespace llvm::support::endian;
42 using namespace llvm::ELF;
43 
44 namespace lld {
45 namespace elf {
46 
47 TargetInfo *Target;
48 
49 static void or32le(uint8_t *P, int32_t V) { write32le(P, read32le(P) | V); }
50 
51 StringRef getRelName(uint32_t Type) {
52   return getELFRelocationTypeName(Config->EMachine, Type);
53 }
54 
55 template <unsigned N> static void checkInt(int64_t V, uint32_t Type) {
56   if (!isInt<N>(V))
57     error("relocation " + getRelName(Type) + " out of range");
58 }
59 
60 template <unsigned N> static void checkUInt(uint64_t V, uint32_t Type) {
61   if (!isUInt<N>(V))
62     error("relocation " + getRelName(Type) + " out of range");
63 }
64 
65 template <unsigned N> static void checkIntUInt(uint64_t V, uint32_t Type) {
66   if (!isInt<N>(V) && !isUInt<N>(V))
67     error("relocation " + getRelName(Type) + " out of range");
68 }
69 
70 template <unsigned N> static void checkAlignment(uint64_t V, uint32_t Type) {
71   if ((V & (N - 1)) != 0)
72     error("improper alignment for relocation " + getRelName(Type));
73 }
74 
75 static void errorDynRel(uint32_t Type) {
76   error("relocation " + getRelName(Type) +
77         " cannot be used against shared object; recompile with -fPIC.");
78 }
79 
80 namespace {
81 class X86TargetInfo final : public TargetInfo {
82 public:
83   X86TargetInfo();
84   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
85   uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override;
86   void writeGotPltHeader(uint8_t *Buf) const override;
87   uint32_t getDynRel(uint32_t Type) const override;
88   bool isTlsLocalDynamicRel(uint32_t Type) const override;
89   bool isTlsGlobalDynamicRel(uint32_t Type) const override;
90   bool isTlsInitialExecRel(uint32_t Type) const override;
91   void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
92   void writePltHeader(uint8_t *Buf) const override;
93   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
94                 int32_t Index, unsigned RelOff) const override;
95   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
96 
97   RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
98                           RelExpr Expr) const override;
99   void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
100   void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
101   void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
102   void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
103 };
104 
105 template <class ELFT> class X86_64TargetInfo final : public TargetInfo {
106 public:
107   X86_64TargetInfo();
108   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
109   uint32_t getDynRel(uint32_t Type) const override;
110   bool isTlsLocalDynamicRel(uint32_t Type) const override;
111   bool isTlsGlobalDynamicRel(uint32_t Type) const override;
112   bool isTlsInitialExecRel(uint32_t Type) const override;
113   void writeGotPltHeader(uint8_t *Buf) const override;
114   void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
115   void writePltHeader(uint8_t *Buf) const override;
116   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
117                 int32_t Index, unsigned RelOff) const override;
118   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
119 
120   RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
121                           RelExpr Expr) const override;
122   void relaxGot(uint8_t *Loc, uint64_t Val) const override;
123   void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
124   void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
125   void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
126   void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
127 
128 private:
129   void relaxGotNoPic(uint8_t *Loc, uint64_t Val, uint8_t Op,
130                      uint8_t ModRm) const;
131 };
132 
133 class PPCTargetInfo final : public TargetInfo {
134 public:
135   PPCTargetInfo();
136   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
137   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
138 };
139 
140 class PPC64TargetInfo final : public TargetInfo {
141 public:
142   PPC64TargetInfo();
143   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
144   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
145                 int32_t Index, unsigned RelOff) const override;
146   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
147 };
148 
149 class AArch64TargetInfo final : public TargetInfo {
150 public:
151   AArch64TargetInfo();
152   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
153   uint32_t getDynRel(uint32_t Type) const override;
154   bool isTlsInitialExecRel(uint32_t Type) const override;
155   void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
156   void writePltHeader(uint8_t *Buf) const override;
157   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
158                 int32_t Index, unsigned RelOff) const override;
159   bool usesOnlyLowPageBits(uint32_t Type) const override;
160   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
161   RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
162                           RelExpr Expr) const override;
163   void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
164   void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
165   void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
166 };
167 
168 class AMDGPUTargetInfo final : public TargetInfo {
169 public:
170   AMDGPUTargetInfo();
171   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
172   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
173 };
174 
175 class ARMTargetInfo final : public TargetInfo {
176 public:
177   ARMTargetInfo();
178   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
179   uint32_t getDynRel(uint32_t Type) const override;
180   uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override;
181   bool isTlsLocalDynamicRel(uint32_t Type) const override;
182   bool isTlsGlobalDynamicRel(uint32_t Type) const override;
183   bool isTlsInitialExecRel(uint32_t Type) const override;
184   void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
185   void writePltHeader(uint8_t *Buf) const override;
186   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
187                 int32_t Index, unsigned RelOff) const override;
188   RelExpr getThunkExpr(RelExpr Expr, uint32_t RelocType,
189                        const InputFile &File,
190                        const SymbolBody &S) const override;
191   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
192 };
193 
194 template <class ELFT> class MipsTargetInfo final : public TargetInfo {
195 public:
196   MipsTargetInfo();
197   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
198   uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override;
199   uint32_t getDynRel(uint32_t Type) const override;
200   bool isTlsLocalDynamicRel(uint32_t Type) const override;
201   bool isTlsGlobalDynamicRel(uint32_t Type) const override;
202   void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
203   void writePltHeader(uint8_t *Buf) const override;
204   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
205                 int32_t Index, unsigned RelOff) const override;
206   RelExpr getThunkExpr(RelExpr Expr, uint32_t RelocType,
207                        const InputFile &File,
208                        const SymbolBody &S) const override;
209   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
210   bool usesOnlyLowPageBits(uint32_t Type) const override;
211 };
212 } // anonymous namespace
213 
214 TargetInfo *createTarget() {
215   switch (Config->EMachine) {
216   case EM_386:
217   case EM_IAMCU:
218     return new X86TargetInfo();
219   case EM_AARCH64:
220     return new AArch64TargetInfo();
221   case EM_AMDGPU:
222     return new AMDGPUTargetInfo();
223   case EM_ARM:
224     return new ARMTargetInfo();
225   case EM_MIPS:
226     switch (Config->EKind) {
227     case ELF32LEKind:
228       return new MipsTargetInfo<ELF32LE>();
229     case ELF32BEKind:
230       return new MipsTargetInfo<ELF32BE>();
231     case ELF64LEKind:
232       return new MipsTargetInfo<ELF64LE>();
233     case ELF64BEKind:
234       return new MipsTargetInfo<ELF64BE>();
235     default:
236       fatal("unsupported MIPS target");
237     }
238   case EM_PPC:
239     return new PPCTargetInfo();
240   case EM_PPC64:
241     return new PPC64TargetInfo();
242   case EM_X86_64:
243     if (Config->EKind == ELF32LEKind)
244       return new X86_64TargetInfo<ELF32LE>();
245     return new X86_64TargetInfo<ELF64LE>();
246   }
247   fatal("unknown target machine");
248 }
249 
250 TargetInfo::~TargetInfo() {}
251 
252 uint64_t TargetInfo::getImplicitAddend(const uint8_t *Buf,
253                                        uint32_t Type) const {
254   return 0;
255 }
256 
257 bool TargetInfo::usesOnlyLowPageBits(uint32_t Type) const { return false; }
258 
259 RelExpr TargetInfo::getThunkExpr(RelExpr Expr, uint32_t RelocType,
260                                  const InputFile &File,
261                                  const SymbolBody &S) const {
262   return Expr;
263 }
264 
265 bool TargetInfo::isTlsInitialExecRel(uint32_t Type) const { return false; }
266 
267 bool TargetInfo::isTlsLocalDynamicRel(uint32_t Type) const { return false; }
268 
269 bool TargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const {
270   return false;
271 }
272 
273 RelExpr TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
274                                     RelExpr Expr) const {
275   return Expr;
276 }
277 
278 void TargetInfo::relaxGot(uint8_t *Loc, uint64_t Val) const {
279   llvm_unreachable("Should not have claimed to be relaxable");
280 }
281 
282 void TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
283                                 uint64_t Val) const {
284   llvm_unreachable("Should not have claimed to be relaxable");
285 }
286 
287 void TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
288                                 uint64_t Val) const {
289   llvm_unreachable("Should not have claimed to be relaxable");
290 }
291 
292 void TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
293                                 uint64_t Val) const {
294   llvm_unreachable("Should not have claimed to be relaxable");
295 }
296 
297 void TargetInfo::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type,
298                                 uint64_t Val) const {
299   llvm_unreachable("Should not have claimed to be relaxable");
300 }
301 
302 X86TargetInfo::X86TargetInfo() {
303   CopyRel = R_386_COPY;
304   GotRel = R_386_GLOB_DAT;
305   PltRel = R_386_JUMP_SLOT;
306   IRelativeRel = R_386_IRELATIVE;
307   RelativeRel = R_386_RELATIVE;
308   TlsGotRel = R_386_TLS_TPOFF;
309   TlsModuleIndexRel = R_386_TLS_DTPMOD32;
310   TlsOffsetRel = R_386_TLS_DTPOFF32;
311   GotEntrySize = 4;
312   GotPltEntrySize = 4;
313   PltEntrySize = 16;
314   PltHeaderSize = 16;
315   TlsGdRelaxSkip = 2;
316 }
317 
318 RelExpr X86TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
319   switch (Type) {
320   default:
321     return R_ABS;
322   case R_386_TLS_GD:
323     return R_TLSGD;
324   case R_386_TLS_LDM:
325     return R_TLSLD;
326   case R_386_PLT32:
327     return R_PLT_PC;
328   case R_386_PC32:
329     return R_PC;
330   case R_386_GOTPC:
331     return R_GOTONLY_PC;
332   case R_386_TLS_IE:
333     return R_GOT;
334   case R_386_GOT32:
335   case R_386_GOT32X:
336   case R_386_TLS_GOTIE:
337     return R_GOT_FROM_END;
338   case R_386_GOTOFF:
339     return R_GOTREL;
340   case R_386_TLS_LE:
341     return R_TLS;
342   case R_386_TLS_LE_32:
343     return R_NEG_TLS;
344   }
345 }
346 
347 RelExpr X86TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
348                                        RelExpr Expr) const {
349   switch (Expr) {
350   default:
351     return Expr;
352   case R_RELAX_TLS_GD_TO_IE:
353     return R_RELAX_TLS_GD_TO_IE_END;
354   case R_RELAX_TLS_GD_TO_LE:
355     return R_RELAX_TLS_GD_TO_LE_NEG;
356   }
357 }
358 
359 void X86TargetInfo::writeGotPltHeader(uint8_t *Buf) const {
360   write32le(Buf, Out<ELF32LE>::Dynamic->getVA());
361 }
362 
363 void X86TargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &S) const {
364   // Entries in .got.plt initially points back to the corresponding
365   // PLT entries with a fixed offset to skip the first instruction.
366   write32le(Buf, S.getPltVA<ELF32LE>() + 6);
367 }
368 
369 uint32_t X86TargetInfo::getDynRel(uint32_t Type) const {
370   if (Type == R_386_TLS_LE)
371     return R_386_TLS_TPOFF;
372   if (Type == R_386_TLS_LE_32)
373     return R_386_TLS_TPOFF32;
374   return Type;
375 }
376 
377 bool X86TargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const {
378   return Type == R_386_TLS_GD;
379 }
380 
381 bool X86TargetInfo::isTlsLocalDynamicRel(uint32_t Type) const {
382   return Type == R_386_TLS_LDO_32 || Type == R_386_TLS_LDM;
383 }
384 
385 bool X86TargetInfo::isTlsInitialExecRel(uint32_t Type) const {
386   return Type == R_386_TLS_IE || Type == R_386_TLS_GOTIE;
387 }
388 
389 void X86TargetInfo::writePltHeader(uint8_t *Buf) const {
390   // Executable files and shared object files have
391   // separate procedure linkage tables.
392   if (Config->Pic) {
393     const uint8_t V[] = {
394         0xff, 0xb3, 0x04, 0x00, 0x00, 0x00, // pushl 4(%ebx)
395         0xff, 0xa3, 0x08, 0x00, 0x00, 0x00, // jmp   *8(%ebx)
396         0x90, 0x90, 0x90, 0x90              // nop; nop; nop; nop
397     };
398     memcpy(Buf, V, sizeof(V));
399     return;
400   }
401 
402   const uint8_t PltData[] = {
403       0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushl (GOT+4)
404       0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp   *(GOT+8)
405       0x90, 0x90, 0x90, 0x90              // nop; nop; nop; nop
406   };
407   memcpy(Buf, PltData, sizeof(PltData));
408   uint32_t Got = Out<ELF32LE>::GotPlt->getVA();
409   write32le(Buf + 2, Got + 4);
410   write32le(Buf + 8, Got + 8);
411 }
412 
413 void X86TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
414                              uint64_t PltEntryAddr, int32_t Index,
415                              unsigned RelOff) const {
416   const uint8_t Inst[] = {
417       0xff, 0x00, 0x00, 0x00, 0x00, 0x00, // jmp *foo_in_GOT|*foo@GOT(%ebx)
418       0x68, 0x00, 0x00, 0x00, 0x00,       // pushl $reloc_offset
419       0xe9, 0x00, 0x00, 0x00, 0x00        // jmp .PLT0@PC
420   };
421   memcpy(Buf, Inst, sizeof(Inst));
422 
423   // jmp *foo@GOT(%ebx) or jmp *foo_in_GOT
424   Buf[1] = Config->Pic ? 0xa3 : 0x25;
425   uint32_t Got = Out<ELF32LE>::GotPlt->getVA();
426   write32le(Buf + 2, Config->Shared ? GotEntryAddr - Got : GotEntryAddr);
427   write32le(Buf + 7, RelOff);
428   write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16);
429 }
430 
431 uint64_t X86TargetInfo::getImplicitAddend(const uint8_t *Buf,
432                                           uint32_t Type) const {
433   switch (Type) {
434   default:
435     return 0;
436   case R_386_32:
437   case R_386_GOT32:
438   case R_386_GOT32X:
439   case R_386_GOTOFF:
440   case R_386_GOTPC:
441   case R_386_PC32:
442   case R_386_PLT32:
443     return read32le(Buf);
444   }
445 }
446 
447 void X86TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
448                                 uint64_t Val) const {
449   checkInt<32>(Val, Type);
450   write32le(Loc, Val);
451 }
452 
453 void X86TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
454                                    uint64_t Val) const {
455   // Convert
456   //   leal x@tlsgd(, %ebx, 1),
457   //   call __tls_get_addr@plt
458   // to
459   //   movl %gs:0,%eax
460   //   subl $x@ntpoff,%eax
461   const uint8_t Inst[] = {
462       0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
463       0x81, 0xe8, 0x00, 0x00, 0x00, 0x00  // subl 0(%ebx), %eax
464   };
465   memcpy(Loc - 3, Inst, sizeof(Inst));
466   relocateOne(Loc + 5, R_386_32, Val);
467 }
468 
469 void X86TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
470                                    uint64_t Val) const {
471   // Convert
472   //   leal x@tlsgd(, %ebx, 1),
473   //   call __tls_get_addr@plt
474   // to
475   //   movl %gs:0, %eax
476   //   addl x@gotntpoff(%ebx), %eax
477   const uint8_t Inst[] = {
478       0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
479       0x03, 0x83, 0x00, 0x00, 0x00, 0x00  // addl 0(%ebx), %eax
480   };
481   memcpy(Loc - 3, Inst, sizeof(Inst));
482   relocateOne(Loc + 5, R_386_32, Val);
483 }
484 
485 // In some conditions, relocations can be optimized to avoid using GOT.
486 // This function does that for Initial Exec to Local Exec case.
487 void X86TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
488                                    uint64_t Val) const {
489   // Ulrich's document section 6.2 says that @gotntpoff can
490   // be used with MOVL or ADDL instructions.
491   // @indntpoff is similar to @gotntpoff, but for use in
492   // position dependent code.
493   uint8_t Reg = (Loc[-1] >> 3) & 7;
494 
495   if (Type == R_386_TLS_IE) {
496     if (Loc[-1] == 0xa1) {
497       // "movl foo@indntpoff,%eax" -> "movl $foo,%eax"
498       // This case is different from the generic case below because
499       // this is a 5 byte instruction while below is 6 bytes.
500       Loc[-1] = 0xb8;
501     } else if (Loc[-2] == 0x8b) {
502       // "movl foo@indntpoff,%reg" -> "movl $foo,%reg"
503       Loc[-2] = 0xc7;
504       Loc[-1] = 0xc0 | Reg;
505     } else {
506       // "addl foo@indntpoff,%reg" -> "addl $foo,%reg"
507       Loc[-2] = 0x81;
508       Loc[-1] = 0xc0 | Reg;
509     }
510   } else {
511     assert(Type == R_386_TLS_GOTIE);
512     if (Loc[-2] == 0x8b) {
513       // "movl foo@gottpoff(%rip),%reg" -> "movl $foo,%reg"
514       Loc[-2] = 0xc7;
515       Loc[-1] = 0xc0 | Reg;
516     } else {
517       // "addl foo@gotntpoff(%rip),%reg" -> "leal foo(%reg),%reg"
518       Loc[-2] = 0x8d;
519       Loc[-1] = 0x80 | (Reg << 3) | Reg;
520     }
521   }
522   relocateOne(Loc, R_386_TLS_LE, Val);
523 }
524 
525 void X86TargetInfo::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type,
526                                    uint64_t Val) const {
527   if (Type == R_386_TLS_LDO_32) {
528     relocateOne(Loc, R_386_TLS_LE, Val);
529     return;
530   }
531 
532   // Convert
533   //   leal foo(%reg),%eax
534   //   call ___tls_get_addr
535   // to
536   //   movl %gs:0,%eax
537   //   nop
538   //   leal 0(%esi,1),%esi
539   const uint8_t Inst[] = {
540       0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0,%eax
541       0x90,                               // nop
542       0x8d, 0x74, 0x26, 0x00              // leal 0(%esi,1),%esi
543   };
544   memcpy(Loc - 2, Inst, sizeof(Inst));
545 }
546 
547 template <class ELFT> X86_64TargetInfo<ELFT>::X86_64TargetInfo() {
548   MaxPageSize = 0x200000; // 2MiB
549   CopyRel = R_X86_64_COPY;
550   GotRel = R_X86_64_GLOB_DAT;
551   PltRel = R_X86_64_JUMP_SLOT;
552   RelativeRel = R_X86_64_RELATIVE;
553   IRelativeRel = R_X86_64_IRELATIVE;
554   TlsGotRel = R_X86_64_TPOFF64;
555   TlsModuleIndexRel = R_X86_64_DTPMOD64;
556   TlsOffsetRel = R_X86_64_DTPOFF64;
557   GotEntrySize = 8;
558   GotPltEntrySize = 8;
559   PltEntrySize = 16;
560   PltHeaderSize = 16;
561   TlsGdRelaxSkip = 2;
562 }
563 
564 template <class ELFT>
565 RelExpr X86_64TargetInfo<ELFT>::getRelExpr(uint32_t Type,
566                                            const SymbolBody &S) const {
567   switch (Type) {
568   default:
569     return R_ABS;
570   case R_X86_64_TPOFF32:
571     return R_TLS;
572   case R_X86_64_TLSLD:
573     return R_TLSLD_PC;
574   case R_X86_64_TLSGD:
575     return R_TLSGD_PC;
576   case R_X86_64_SIZE32:
577   case R_X86_64_SIZE64:
578     return R_SIZE;
579   case R_X86_64_PLT32:
580     return R_PLT_PC;
581   case R_X86_64_PC32:
582   case R_X86_64_PC64:
583     return R_PC;
584   case R_X86_64_GOT32:
585     return R_GOT_FROM_END;
586   case R_X86_64_GOTPCREL:
587   case R_X86_64_GOTPCRELX:
588   case R_X86_64_REX_GOTPCRELX:
589   case R_X86_64_GOTTPOFF:
590     return R_GOT_PC;
591   }
592 }
593 
594 template <class ELFT>
595 void X86_64TargetInfo<ELFT>::writeGotPltHeader(uint8_t *Buf) const {
596   // The first entry holds the value of _DYNAMIC. It is not clear why that is
597   // required, but it is documented in the psabi and the glibc dynamic linker
598   // seems to use it (note that this is relevant for linking ld.so, not any
599   // other program).
600   write64le(Buf, Out<ELFT>::Dynamic->getVA());
601 }
602 
603 template <class ELFT>
604 void X86_64TargetInfo<ELFT>::writeGotPlt(uint8_t *Buf,
605                                          const SymbolBody &S) const {
606   // See comments in X86TargetInfo::writeGotPlt.
607   write32le(Buf, S.getPltVA<ELFT>() + 6);
608 }
609 
610 template <class ELFT>
611 void X86_64TargetInfo<ELFT>::writePltHeader(uint8_t *Buf) const {
612   const uint8_t PltData[] = {
613       0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushq GOT+8(%rip)
614       0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *GOT+16(%rip)
615       0x0f, 0x1f, 0x40, 0x00              // nopl 0x0(rax)
616   };
617   memcpy(Buf, PltData, sizeof(PltData));
618   uint64_t Got = Out<ELFT>::GotPlt->getVA();
619   uint64_t Plt = Out<ELFT>::Plt->getVA();
620   write32le(Buf + 2, Got - Plt + 2); // GOT+8
621   write32le(Buf + 8, Got - Plt + 4); // GOT+16
622 }
623 
624 template <class ELFT>
625 void X86_64TargetInfo<ELFT>::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
626                                       uint64_t PltEntryAddr, int32_t Index,
627                                       unsigned RelOff) const {
628   const uint8_t Inst[] = {
629       0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmpq *got(%rip)
630       0x68, 0x00, 0x00, 0x00, 0x00,       // pushq <relocation index>
631       0xe9, 0x00, 0x00, 0x00, 0x00        // jmpq plt[0]
632   };
633   memcpy(Buf, Inst, sizeof(Inst));
634 
635   write32le(Buf + 2, GotEntryAddr - PltEntryAddr - 6);
636   write32le(Buf + 7, Index);
637   write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16);
638 }
639 
640 template <class ELFT>
641 uint32_t X86_64TargetInfo<ELFT>::getDynRel(uint32_t Type) const {
642   if (Type == R_X86_64_PC32 || Type == R_X86_64_32)
643     errorDynRel(Type);
644   return Type;
645 }
646 
647 template <class ELFT>
648 bool X86_64TargetInfo<ELFT>::isTlsInitialExecRel(uint32_t Type) const {
649   return Type == R_X86_64_GOTTPOFF;
650 }
651 
652 template <class ELFT>
653 bool X86_64TargetInfo<ELFT>::isTlsGlobalDynamicRel(uint32_t Type) const {
654   return Type == R_X86_64_TLSGD;
655 }
656 
657 template <class ELFT>
658 bool X86_64TargetInfo<ELFT>::isTlsLocalDynamicRel(uint32_t Type) const {
659   return Type == R_X86_64_DTPOFF32 || Type == R_X86_64_DTPOFF64 ||
660          Type == R_X86_64_TLSLD;
661 }
662 
663 template <class ELFT>
664 void X86_64TargetInfo<ELFT>::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
665                                             uint64_t Val) const {
666   // Convert
667   //   .byte 0x66
668   //   leaq x@tlsgd(%rip), %rdi
669   //   .word 0x6666
670   //   rex64
671   //   call __tls_get_addr@plt
672   // to
673   //   mov %fs:0x0,%rax
674   //   lea x@tpoff,%rax
675   const uint8_t Inst[] = {
676       0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax
677       0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00              // lea x@tpoff,%rax
678   };
679   memcpy(Loc - 4, Inst, sizeof(Inst));
680   // The original code used a pc relative relocation and so we have to
681   // compensate for the -4 in had in the addend.
682   relocateOne(Loc + 8, R_X86_64_TPOFF32, Val + 4);
683 }
684 
685 template <class ELFT>
686 void X86_64TargetInfo<ELFT>::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
687                                             uint64_t Val) const {
688   // Convert
689   //   .byte 0x66
690   //   leaq x@tlsgd(%rip), %rdi
691   //   .word 0x6666
692   //   rex64
693   //   call __tls_get_addr@plt
694   // to
695   //   mov %fs:0x0,%rax
696   //   addq x@tpoff,%rax
697   const uint8_t Inst[] = {
698       0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax
699       0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00              // addq x@tpoff,%rax
700   };
701   memcpy(Loc - 4, Inst, sizeof(Inst));
702   // Both code sequences are PC relatives, but since we are moving the constant
703   // forward by 8 bytes we have to subtract the value by 8.
704   relocateOne(Loc + 8, R_X86_64_PC32, Val - 8);
705 }
706 
707 // In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to
708 // R_X86_64_TPOFF32 so that it does not use GOT.
709 template <class ELFT>
710 void X86_64TargetInfo<ELFT>::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
711                                             uint64_t Val) const {
712   uint8_t *Inst = Loc - 3;
713   uint8_t Reg = Loc[-1] >> 3;
714   uint8_t *RegSlot = Loc - 1;
715 
716   // Note that ADD with RSP or R12 is converted to ADD instead of LEA
717   // because LEA with these registers needs 4 bytes to encode and thus
718   // wouldn't fit the space.
719 
720   if (memcmp(Inst, "\x48\x03\x25", 3) == 0) {
721     // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp"
722     memcpy(Inst, "\x48\x81\xc4", 3);
723   } else if (memcmp(Inst, "\x4c\x03\x25", 3) == 0) {
724     // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12"
725     memcpy(Inst, "\x49\x81\xc4", 3);
726   } else if (memcmp(Inst, "\x4c\x03", 2) == 0) {
727     // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]"
728     memcpy(Inst, "\x4d\x8d", 2);
729     *RegSlot = 0x80 | (Reg << 3) | Reg;
730   } else if (memcmp(Inst, "\x48\x03", 2) == 0) {
731     // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg"
732     memcpy(Inst, "\x48\x8d", 2);
733     *RegSlot = 0x80 | (Reg << 3) | Reg;
734   } else if (memcmp(Inst, "\x4c\x8b", 2) == 0) {
735     // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]"
736     memcpy(Inst, "\x49\xc7", 2);
737     *RegSlot = 0xc0 | Reg;
738   } else if (memcmp(Inst, "\x48\x8b", 2) == 0) {
739     // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg"
740     memcpy(Inst, "\x48\xc7", 2);
741     *RegSlot = 0xc0 | Reg;
742   } else {
743     fatal("R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only");
744   }
745 
746   // The original code used a PC relative relocation.
747   // Need to compensate for the -4 it had in the addend.
748   relocateOne(Loc, R_X86_64_TPOFF32, Val + 4);
749 }
750 
751 template <class ELFT>
752 void X86_64TargetInfo<ELFT>::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type,
753                                             uint64_t Val) const {
754   // Convert
755   //   leaq bar@tlsld(%rip), %rdi
756   //   callq __tls_get_addr@PLT
757   //   leaq bar@dtpoff(%rax), %rcx
758   // to
759   //   .word 0x6666
760   //   .byte 0x66
761   //   mov %fs:0,%rax
762   //   leaq bar@tpoff(%rax), %rcx
763   if (Type == R_X86_64_DTPOFF64) {
764     write64le(Loc, Val);
765     return;
766   }
767   if (Type == R_X86_64_DTPOFF32) {
768     relocateOne(Loc, R_X86_64_TPOFF32, Val);
769     return;
770   }
771 
772   const uint8_t Inst[] = {
773       0x66, 0x66,                                          // .word 0x6666
774       0x66,                                                // .byte 0x66
775       0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax
776   };
777   memcpy(Loc - 3, Inst, sizeof(Inst));
778 }
779 
780 template <class ELFT>
781 void X86_64TargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint32_t Type,
782                                          uint64_t Val) const {
783   switch (Type) {
784   case R_X86_64_32:
785     checkUInt<32>(Val, Type);
786     write32le(Loc, Val);
787     break;
788   case R_X86_64_32S:
789   case R_X86_64_TPOFF32:
790   case R_X86_64_GOT32:
791   case R_X86_64_GOTPCREL:
792   case R_X86_64_GOTPCRELX:
793   case R_X86_64_REX_GOTPCRELX:
794   case R_X86_64_PC32:
795   case R_X86_64_GOTTPOFF:
796   case R_X86_64_PLT32:
797   case R_X86_64_TLSGD:
798   case R_X86_64_TLSLD:
799   case R_X86_64_DTPOFF32:
800   case R_X86_64_SIZE32:
801     checkInt<32>(Val, Type);
802     write32le(Loc, Val);
803     break;
804   case R_X86_64_64:
805   case R_X86_64_DTPOFF64:
806   case R_X86_64_SIZE64:
807   case R_X86_64_PC64:
808     write64le(Loc, Val);
809     break;
810   default:
811     fatal("unrecognized reloc " + Twine(Type));
812   }
813 }
814 
815 template <class ELFT>
816 RelExpr X86_64TargetInfo<ELFT>::adjustRelaxExpr(uint32_t Type,
817                                                 const uint8_t *Data,
818                                                 RelExpr RelExpr) const {
819   if (Type != R_X86_64_GOTPCRELX && Type != R_X86_64_REX_GOTPCRELX)
820     return RelExpr;
821   const uint8_t Op = Data[-2];
822   const uint8_t ModRm = Data[-1];
823   // FIXME: When PIC is disabled and foo is defined locally in the
824   // lower 32 bit address space, memory operand in mov can be converted into
825   // immediate operand. Otherwise, mov must be changed to lea. We support only
826   // latter relaxation at this moment.
827   if (Op == 0x8b)
828     return R_RELAX_GOT_PC;
829   // Relax call and jmp.
830   if (Op == 0xff && (ModRm == 0x15 || ModRm == 0x25))
831     return R_RELAX_GOT_PC;
832 
833   // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor.
834   // If PIC then no relaxation is available.
835   // We also don't relax test/binop instructions without REX byte,
836   // they are 32bit operations and not common to have.
837   assert(Type == R_X86_64_REX_GOTPCRELX);
838   return Config->Pic ? RelExpr : R_RELAX_GOT_PC_NOPIC;
839 }
840 
841 // A subset of relaxations can only be applied for no-PIC. This method
842 // handles such relaxations. Instructions encoding information was taken from:
843 // "Intel 64 and IA-32 Architectures Software Developer's Manual V2"
844 // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
845 //    64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf)
846 template <class ELFT>
847 void X86_64TargetInfo<ELFT>::relaxGotNoPic(uint8_t *Loc, uint64_t Val,
848                                            uint8_t Op, uint8_t ModRm) const {
849   const uint8_t Rex = Loc[-3];
850   // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg".
851   if (Op == 0x85) {
852     // See "TEST-Logical Compare" (4-428 Vol. 2B),
853     // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension).
854 
855     // ModR/M byte has form XX YYY ZZZ, where
856     // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1).
857     // XX has different meanings:
858     // 00: The operand's memory address is in reg1.
859     // 01: The operand's memory address is reg1 + a byte-sized displacement.
860     // 10: The operand's memory address is reg1 + a word-sized displacement.
861     // 11: The operand is reg1 itself.
862     // If an instruction requires only one operand, the unused reg2 field
863     // holds extra opcode bits rather than a register code
864     // 0xC0 == 11 000 000 binary.
865     // 0x38 == 00 111 000 binary.
866     // We transfer reg2 to reg1 here as operand.
867     // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3).
868     Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3; // ModR/M byte.
869 
870     // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32
871     // See "TEST-Logical Compare" (4-428 Vol. 2B).
872     Loc[-2] = 0xf7;
873 
874     // Move R bit to the B bit in REX byte.
875     // REX byte is encoded as 0100WRXB, where
876     // 0100 is 4bit fixed pattern.
877     // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the
878     //   default operand size is used (which is 32-bit for most but not all
879     //   instructions).
880     // REX.R This 1-bit value is an extension to the MODRM.reg field.
881     // REX.X This 1-bit value is an extension to the SIB.index field.
882     // REX.B This 1-bit value is an extension to the MODRM.rm field or the
883     // SIB.base field.
884     // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A).
885     Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2;
886     relocateOne(Loc, R_X86_64_PC32, Val);
887     return;
888   }
889 
890   // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub
891   // or xor operations.
892 
893   // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg".
894   // Logic is close to one for test instruction above, but we also
895   // write opcode extension here, see below for details.
896   Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3 | (Op & 0x3c); // ModR/M byte.
897 
898   // Primary opcode is 0x81, opcode extension is one of:
899   // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB,
900   // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP.
901   // This value was wrote to MODRM.reg in a line above.
902   // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15),
903   // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for
904   // descriptions about each operation.
905   Loc[-2] = 0x81;
906   Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2;
907   relocateOne(Loc, R_X86_64_PC32, Val);
908 }
909 
910 template <class ELFT>
911 void X86_64TargetInfo<ELFT>::relaxGot(uint8_t *Loc, uint64_t Val) const {
912   const uint8_t Op = Loc[-2];
913   const uint8_t ModRm = Loc[-1];
914 
915   // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg".
916   if (Op == 0x8b) {
917     Loc[-2] = 0x8d;
918     relocateOne(Loc, R_X86_64_PC32, Val);
919     return;
920   }
921 
922   if (Op != 0xff) {
923     // We are relaxing a rip relative to an absolute, so compensate
924     // for the old -4 addend.
925     assert(!Config->Pic);
926     relaxGotNoPic(Loc, Val + 4, Op, ModRm);
927     return;
928   }
929 
930   // Convert call/jmp instructions.
931   if (ModRm == 0x15) {
932     // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo".
933     // Instead we convert to "addr32 call foo" where addr32 is an instruction
934     // prefix. That makes result expression to be a single instruction.
935     Loc[-2] = 0x67; // addr32 prefix
936     Loc[-1] = 0xe8; // call
937     relocateOne(Loc, R_X86_64_PC32, Val);
938     return;
939   }
940 
941   // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop".
942   // jmp doesn't return, so it is fine to use nop here, it is just a stub.
943   assert(ModRm == 0x25);
944   Loc[-2] = 0xe9; // jmp
945   Loc[3] = 0x90;  // nop
946   relocateOne(Loc - 1, R_X86_64_PC32, Val + 1);
947 }
948 
949 // Relocation masks following the #lo(value), #hi(value), #ha(value),
950 // #higher(value), #highera(value), #highest(value), and #highesta(value)
951 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
952 // document.
953 static uint16_t applyPPCLo(uint64_t V) { return V; }
954 static uint16_t applyPPCHi(uint64_t V) { return V >> 16; }
955 static uint16_t applyPPCHa(uint64_t V) { return (V + 0x8000) >> 16; }
956 static uint16_t applyPPCHigher(uint64_t V) { return V >> 32; }
957 static uint16_t applyPPCHighera(uint64_t V) { return (V + 0x8000) >> 32; }
958 static uint16_t applyPPCHighest(uint64_t V) { return V >> 48; }
959 static uint16_t applyPPCHighesta(uint64_t V) { return (V + 0x8000) >> 48; }
960 
961 PPCTargetInfo::PPCTargetInfo() {}
962 
963 void PPCTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
964                                 uint64_t Val) const {
965   switch (Type) {
966   case R_PPC_ADDR16_HA:
967     write16be(Loc, applyPPCHa(Val));
968     break;
969   case R_PPC_ADDR16_LO:
970     write16be(Loc, applyPPCLo(Val));
971     break;
972   default:
973     fatal("unrecognized reloc " + Twine(Type));
974   }
975 }
976 
977 RelExpr PPCTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
978   return R_ABS;
979 }
980 
981 PPC64TargetInfo::PPC64TargetInfo() {
982   PltRel = GotRel = R_PPC64_GLOB_DAT;
983   RelativeRel = R_PPC64_RELATIVE;
984   GotEntrySize = 8;
985   GotPltEntrySize = 8;
986   PltEntrySize = 32;
987   PltHeaderSize = 0;
988 
989   // We need 64K pages (at least under glibc/Linux, the loader won't
990   // set different permissions on a finer granularity than that).
991   PageSize = 65536;
992 
993   // The PPC64 ELF ABI v1 spec, says:
994   //
995   //   It is normally desirable to put segments with different characteristics
996   //   in separate 256 Mbyte portions of the address space, to give the
997   //   operating system full paging flexibility in the 64-bit address space.
998   //
999   // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
1000   // use 0x10000000 as the starting address.
1001   DefaultImageBase = 0x10000000;
1002 }
1003 
1004 static uint64_t PPC64TocOffset = 0x8000;
1005 
1006 uint64_t getPPC64TocBase() {
1007   // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The
1008   // TOC starts where the first of these sections starts. We always create a
1009   // .got when we see a relocation that uses it, so for us the start is always
1010   // the .got.
1011   uint64_t TocVA = Out<ELF64BE>::Got->getVA();
1012 
1013   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
1014   // thus permitting a full 64 Kbytes segment. Note that the glibc startup
1015   // code (crt1.o) assumes that you can get from the TOC base to the
1016   // start of the .toc section with only a single (signed) 16-bit relocation.
1017   return TocVA + PPC64TocOffset;
1018 }
1019 
1020 RelExpr PPC64TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
1021   switch (Type) {
1022   default:
1023     return R_ABS;
1024   case R_PPC64_TOC16:
1025   case R_PPC64_TOC16_DS:
1026   case R_PPC64_TOC16_HA:
1027   case R_PPC64_TOC16_HI:
1028   case R_PPC64_TOC16_LO:
1029   case R_PPC64_TOC16_LO_DS:
1030     return R_GOTREL;
1031   case R_PPC64_TOC:
1032     return R_PPC_TOC;
1033   case R_PPC64_REL24:
1034     return R_PPC_PLT_OPD;
1035   }
1036 }
1037 
1038 void PPC64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
1039                                uint64_t PltEntryAddr, int32_t Index,
1040                                unsigned RelOff) const {
1041   uint64_t Off = GotEntryAddr - getPPC64TocBase();
1042 
1043   // FIXME: What we should do, in theory, is get the offset of the function
1044   // descriptor in the .opd section, and use that as the offset from %r2 (the
1045   // TOC-base pointer). Instead, we have the GOT-entry offset, and that will
1046   // be a pointer to the function descriptor in the .opd section. Using
1047   // this scheme is simpler, but requires an extra indirection per PLT dispatch.
1048 
1049   write32be(Buf,      0xf8410028);                   // std %r2, 40(%r1)
1050   write32be(Buf + 4,  0x3d620000 | applyPPCHa(Off)); // addis %r11, %r2, X@ha
1051   write32be(Buf + 8,  0xe98b0000 | applyPPCLo(Off)); // ld %r12, X@l(%r11)
1052   write32be(Buf + 12, 0xe96c0000);                   // ld %r11,0(%r12)
1053   write32be(Buf + 16, 0x7d6903a6);                   // mtctr %r11
1054   write32be(Buf + 20, 0xe84c0008);                   // ld %r2,8(%r12)
1055   write32be(Buf + 24, 0xe96c0010);                   // ld %r11,16(%r12)
1056   write32be(Buf + 28, 0x4e800420);                   // bctr
1057 }
1058 
1059 static std::pair<uint32_t, uint64_t> toAddr16Rel(uint32_t Type, uint64_t Val) {
1060   uint64_t V = Val - PPC64TocOffset;
1061   switch (Type) {
1062   case R_PPC64_TOC16: return {R_PPC64_ADDR16, V};
1063   case R_PPC64_TOC16_DS: return {R_PPC64_ADDR16_DS, V};
1064   case R_PPC64_TOC16_HA: return {R_PPC64_ADDR16_HA, V};
1065   case R_PPC64_TOC16_HI: return {R_PPC64_ADDR16_HI, V};
1066   case R_PPC64_TOC16_LO: return {R_PPC64_ADDR16_LO, V};
1067   case R_PPC64_TOC16_LO_DS: return {R_PPC64_ADDR16_LO_DS, V};
1068   default: return {Type, Val};
1069   }
1070 }
1071 
1072 void PPC64TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
1073                                   uint64_t Val) const {
1074   // For a TOC-relative relocation, proceed in terms of the corresponding
1075   // ADDR16 relocation type.
1076   std::tie(Type, Val) = toAddr16Rel(Type, Val);
1077 
1078   switch (Type) {
1079   case R_PPC64_ADDR14: {
1080     checkAlignment<4>(Val, Type);
1081     // Preserve the AA/LK bits in the branch instruction
1082     uint8_t AALK = Loc[3];
1083     write16be(Loc + 2, (AALK & 3) | (Val & 0xfffc));
1084     break;
1085   }
1086   case R_PPC64_ADDR16:
1087     checkInt<16>(Val, Type);
1088     write16be(Loc, Val);
1089     break;
1090   case R_PPC64_ADDR16_DS:
1091     checkInt<16>(Val, Type);
1092     write16be(Loc, (read16be(Loc) & 3) | (Val & ~3));
1093     break;
1094   case R_PPC64_ADDR16_HA:
1095   case R_PPC64_REL16_HA:
1096     write16be(Loc, applyPPCHa(Val));
1097     break;
1098   case R_PPC64_ADDR16_HI:
1099   case R_PPC64_REL16_HI:
1100     write16be(Loc, applyPPCHi(Val));
1101     break;
1102   case R_PPC64_ADDR16_HIGHER:
1103     write16be(Loc, applyPPCHigher(Val));
1104     break;
1105   case R_PPC64_ADDR16_HIGHERA:
1106     write16be(Loc, applyPPCHighera(Val));
1107     break;
1108   case R_PPC64_ADDR16_HIGHEST:
1109     write16be(Loc, applyPPCHighest(Val));
1110     break;
1111   case R_PPC64_ADDR16_HIGHESTA:
1112     write16be(Loc, applyPPCHighesta(Val));
1113     break;
1114   case R_PPC64_ADDR16_LO:
1115     write16be(Loc, applyPPCLo(Val));
1116     break;
1117   case R_PPC64_ADDR16_LO_DS:
1118   case R_PPC64_REL16_LO:
1119     write16be(Loc, (read16be(Loc) & 3) | (applyPPCLo(Val) & ~3));
1120     break;
1121   case R_PPC64_ADDR32:
1122   case R_PPC64_REL32:
1123     checkInt<32>(Val, Type);
1124     write32be(Loc, Val);
1125     break;
1126   case R_PPC64_ADDR64:
1127   case R_PPC64_REL64:
1128   case R_PPC64_TOC:
1129     write64be(Loc, Val);
1130     break;
1131   case R_PPC64_REL24: {
1132     uint32_t Mask = 0x03FFFFFC;
1133     checkInt<24>(Val, Type);
1134     write32be(Loc, (read32be(Loc) & ~Mask) | (Val & Mask));
1135     break;
1136   }
1137   default:
1138     fatal("unrecognized reloc " + Twine(Type));
1139   }
1140 }
1141 
1142 AArch64TargetInfo::AArch64TargetInfo() {
1143   CopyRel = R_AARCH64_COPY;
1144   RelativeRel = R_AARCH64_RELATIVE;
1145   IRelativeRel = R_AARCH64_IRELATIVE;
1146   GotRel = R_AARCH64_GLOB_DAT;
1147   PltRel = R_AARCH64_JUMP_SLOT;
1148   TlsDescRel = R_AARCH64_TLSDESC;
1149   TlsGotRel = R_AARCH64_TLS_TPREL64;
1150   GotEntrySize = 8;
1151   GotPltEntrySize = 8;
1152   PltEntrySize = 16;
1153   PltHeaderSize = 32;
1154 
1155   // It doesn't seem to be documented anywhere, but tls on aarch64 uses variant
1156   // 1 of the tls structures and the tcb size is 16.
1157   TcbSize = 16;
1158 }
1159 
1160 RelExpr AArch64TargetInfo::getRelExpr(uint32_t Type,
1161                                       const SymbolBody &S) const {
1162   switch (Type) {
1163   default:
1164     return R_ABS;
1165   case R_AARCH64_TLSDESC_ADR_PAGE21:
1166     return R_TLSDESC_PAGE;
1167   case R_AARCH64_TLSDESC_LD64_LO12_NC:
1168   case R_AARCH64_TLSDESC_ADD_LO12_NC:
1169     return R_TLSDESC;
1170   case R_AARCH64_TLSDESC_CALL:
1171     return R_HINT;
1172   case R_AARCH64_TLSLE_ADD_TPREL_HI12:
1173   case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
1174     return R_TLS;
1175   case R_AARCH64_CALL26:
1176   case R_AARCH64_CONDBR19:
1177   case R_AARCH64_JUMP26:
1178   case R_AARCH64_TSTBR14:
1179     return R_PLT_PC;
1180   case R_AARCH64_PREL16:
1181   case R_AARCH64_PREL32:
1182   case R_AARCH64_PREL64:
1183   case R_AARCH64_ADR_PREL_LO21:
1184     return R_PC;
1185   case R_AARCH64_ADR_PREL_PG_HI21:
1186     return R_PAGE_PC;
1187   case R_AARCH64_LD64_GOT_LO12_NC:
1188   case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
1189     return R_GOT;
1190   case R_AARCH64_ADR_GOT_PAGE:
1191   case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
1192     return R_GOT_PAGE_PC;
1193   }
1194 }
1195 
1196 RelExpr AArch64TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
1197                                            RelExpr Expr) const {
1198   if (Expr == R_RELAX_TLS_GD_TO_IE) {
1199     if (Type == R_AARCH64_TLSDESC_ADR_PAGE21)
1200       return R_RELAX_TLS_GD_TO_IE_PAGE_PC;
1201     return R_RELAX_TLS_GD_TO_IE_ABS;
1202   }
1203   return Expr;
1204 }
1205 
1206 bool AArch64TargetInfo::usesOnlyLowPageBits(uint32_t Type) const {
1207   switch (Type) {
1208   default:
1209     return false;
1210   case R_AARCH64_ADD_ABS_LO12_NC:
1211   case R_AARCH64_LD64_GOT_LO12_NC:
1212   case R_AARCH64_LDST128_ABS_LO12_NC:
1213   case R_AARCH64_LDST16_ABS_LO12_NC:
1214   case R_AARCH64_LDST32_ABS_LO12_NC:
1215   case R_AARCH64_LDST64_ABS_LO12_NC:
1216   case R_AARCH64_LDST8_ABS_LO12_NC:
1217   case R_AARCH64_TLSDESC_ADD_LO12_NC:
1218   case R_AARCH64_TLSDESC_LD64_LO12_NC:
1219   case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
1220     return true;
1221   }
1222 }
1223 
1224 bool AArch64TargetInfo::isTlsInitialExecRel(uint32_t Type) const {
1225   return Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 ||
1226          Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC;
1227 }
1228 
1229 uint32_t AArch64TargetInfo::getDynRel(uint32_t Type) const {
1230   if (Type == R_AARCH64_ABS32 || Type == R_AARCH64_ABS64)
1231     return Type;
1232   // Keep it going with a dummy value so that we can find more reloc errors.
1233   errorDynRel(Type);
1234   return R_AARCH64_ABS32;
1235 }
1236 
1237 void AArch64TargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &) const {
1238   write64le(Buf, Out<ELF64LE>::Plt->getVA());
1239 }
1240 
1241 static uint64_t getAArch64Page(uint64_t Expr) {
1242   return Expr & (~static_cast<uint64_t>(0xFFF));
1243 }
1244 
1245 void AArch64TargetInfo::writePltHeader(uint8_t *Buf) const {
1246   const uint8_t PltData[] = {
1247       0xf0, 0x7b, 0xbf, 0xa9, // stp	x16, x30, [sp,#-16]!
1248       0x10, 0x00, 0x00, 0x90, // adrp	x16, Page(&(.plt.got[2]))
1249       0x11, 0x02, 0x40, 0xf9, // ldr	x17, [x16, Offset(&(.plt.got[2]))]
1250       0x10, 0x02, 0x00, 0x91, // add	x16, x16, Offset(&(.plt.got[2]))
1251       0x20, 0x02, 0x1f, 0xd6, // br	x17
1252       0x1f, 0x20, 0x03, 0xd5, // nop
1253       0x1f, 0x20, 0x03, 0xd5, // nop
1254       0x1f, 0x20, 0x03, 0xd5  // nop
1255   };
1256   memcpy(Buf, PltData, sizeof(PltData));
1257 
1258   uint64_t Got = Out<ELF64LE>::GotPlt->getVA();
1259   uint64_t Plt = Out<ELF64LE>::Plt->getVA();
1260   relocateOne(Buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
1261               getAArch64Page(Got + 16) - getAArch64Page(Plt + 4));
1262   relocateOne(Buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, Got + 16);
1263   relocateOne(Buf + 12, R_AARCH64_ADD_ABS_LO12_NC, Got + 16);
1264 }
1265 
1266 void AArch64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
1267                                  uint64_t PltEntryAddr, int32_t Index,
1268                                  unsigned RelOff) const {
1269   const uint8_t Inst[] = {
1270       0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[n]))
1271       0x11, 0x02, 0x40, 0xf9, // ldr  x17, [x16, Offset(&(.plt.got[n]))]
1272       0x10, 0x02, 0x00, 0x91, // add  x16, x16, Offset(&(.plt.got[n]))
1273       0x20, 0x02, 0x1f, 0xd6  // br   x17
1274   };
1275   memcpy(Buf, Inst, sizeof(Inst));
1276 
1277   relocateOne(Buf, R_AARCH64_ADR_PREL_PG_HI21,
1278               getAArch64Page(GotEntryAddr) - getAArch64Page(PltEntryAddr));
1279   relocateOne(Buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, GotEntryAddr);
1280   relocateOne(Buf + 8, R_AARCH64_ADD_ABS_LO12_NC, GotEntryAddr);
1281 }
1282 
1283 static void updateAArch64Addr(uint8_t *L, uint64_t Imm) {
1284   uint32_t ImmLo = (Imm & 0x3) << 29;
1285   uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
1286   uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
1287   write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
1288 }
1289 
1290 static inline void updateAArch64Add(uint8_t *L, uint64_t Imm) {
1291   or32le(L, (Imm & 0xFFF) << 10);
1292 }
1293 
1294 void AArch64TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
1295                                     uint64_t Val) const {
1296   switch (Type) {
1297   case R_AARCH64_ABS16:
1298   case R_AARCH64_PREL16:
1299     checkIntUInt<16>(Val, Type);
1300     write16le(Loc, Val);
1301     break;
1302   case R_AARCH64_ABS32:
1303   case R_AARCH64_PREL32:
1304     checkIntUInt<32>(Val, Type);
1305     write32le(Loc, Val);
1306     break;
1307   case R_AARCH64_ABS64:
1308   case R_AARCH64_PREL64:
1309     write64le(Loc, Val);
1310     break;
1311   case R_AARCH64_ADD_ABS_LO12_NC:
1312     // This relocation stores 12 bits and there's no instruction
1313     // to do it. Instead, we do a 32 bits store of the value
1314     // of r_addend bitwise-or'ed Loc. This assumes that the addend
1315     // bits in Loc are zero.
1316     or32le(Loc, (Val & 0xFFF) << 10);
1317     break;
1318   case R_AARCH64_ADR_GOT_PAGE:
1319   case R_AARCH64_ADR_PREL_PG_HI21:
1320   case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
1321   case R_AARCH64_TLSDESC_ADR_PAGE21:
1322     checkInt<33>(Val, Type);
1323     updateAArch64Addr(Loc, Val >> 12);
1324     break;
1325   case R_AARCH64_ADR_PREL_LO21:
1326     checkInt<21>(Val, Type);
1327     updateAArch64Addr(Loc, Val);
1328     break;
1329   case R_AARCH64_CALL26:
1330   case R_AARCH64_JUMP26:
1331     checkInt<28>(Val, Type);
1332     or32le(Loc, (Val & 0x0FFFFFFC) >> 2);
1333     break;
1334   case R_AARCH64_CONDBR19:
1335     checkInt<21>(Val, Type);
1336     or32le(Loc, (Val & 0x1FFFFC) << 3);
1337     break;
1338   case R_AARCH64_LD64_GOT_LO12_NC:
1339   case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
1340   case R_AARCH64_TLSDESC_LD64_LO12_NC:
1341     checkAlignment<8>(Val, Type);
1342     or32le(Loc, (Val & 0xFF8) << 7);
1343     break;
1344   case R_AARCH64_LDST128_ABS_LO12_NC:
1345     or32le(Loc, (Val & 0x0FF8) << 6);
1346     break;
1347   case R_AARCH64_LDST16_ABS_LO12_NC:
1348     or32le(Loc, (Val & 0x0FFC) << 9);
1349     break;
1350   case R_AARCH64_LDST8_ABS_LO12_NC:
1351     or32le(Loc, (Val & 0xFFF) << 10);
1352     break;
1353   case R_AARCH64_LDST32_ABS_LO12_NC:
1354     or32le(Loc, (Val & 0xFFC) << 8);
1355     break;
1356   case R_AARCH64_LDST64_ABS_LO12_NC:
1357     or32le(Loc, (Val & 0xFF8) << 7);
1358     break;
1359   case R_AARCH64_TSTBR14:
1360     checkInt<16>(Val, Type);
1361     or32le(Loc, (Val & 0xFFFC) << 3);
1362     break;
1363   case R_AARCH64_TLSLE_ADD_TPREL_HI12:
1364     checkInt<24>(Val, Type);
1365     updateAArch64Add(Loc, Val >> 12);
1366     break;
1367   case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
1368   case R_AARCH64_TLSDESC_ADD_LO12_NC:
1369     updateAArch64Add(Loc, Val);
1370     break;
1371   default:
1372     fatal("unrecognized reloc " + Twine(Type));
1373   }
1374 }
1375 
1376 void AArch64TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
1377                                        uint64_t Val) const {
1378   // TLSDESC Global-Dynamic relocation are in the form:
1379   //   adrp    x0, :tlsdesc:v             [R_AARCH64_TLSDESC_ADR_PAGE21]
1380   //   ldr     x1, [x0, #:tlsdesc_lo12:v  [R_AARCH64_TLSDESC_LD64_LO12_NC]
1381   //   add     x0, x0, :tlsdesc_los:v     [_AARCH64_TLSDESC_ADD_LO12_NC]
1382   //   .tlsdesccall                       [R_AARCH64_TLSDESC_CALL]
1383   //   blr     x1
1384   // And it can optimized to:
1385   //   movz    x0, #0x0, lsl #16
1386   //   movk    x0, #0x10
1387   //   nop
1388   //   nop
1389   checkUInt<32>(Val, Type);
1390 
1391   switch (Type) {
1392   case R_AARCH64_TLSDESC_ADD_LO12_NC:
1393   case R_AARCH64_TLSDESC_CALL:
1394     write32le(Loc, 0xd503201f); // nop
1395     return;
1396   case R_AARCH64_TLSDESC_ADR_PAGE21:
1397     write32le(Loc, 0xd2a00000 | (((Val >> 16) & 0xffff) << 5)); // movz
1398     return;
1399   case R_AARCH64_TLSDESC_LD64_LO12_NC:
1400     write32le(Loc, 0xf2800000 | ((Val & 0xffff) << 5)); // movk
1401     return;
1402   default:
1403     llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
1404   }
1405 }
1406 
1407 void AArch64TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
1408                                        uint64_t Val) const {
1409   // TLSDESC Global-Dynamic relocation are in the form:
1410   //   adrp    x0, :tlsdesc:v             [R_AARCH64_TLSDESC_ADR_PAGE21]
1411   //   ldr     x1, [x0, #:tlsdesc_lo12:v  [R_AARCH64_TLSDESC_LD64_LO12_NC]
1412   //   add     x0, x0, :tlsdesc_los:v     [_AARCH64_TLSDESC_ADD_LO12_NC]
1413   //   .tlsdesccall                       [R_AARCH64_TLSDESC_CALL]
1414   //   blr     x1
1415   // And it can optimized to:
1416   //   adrp    x0, :gottprel:v
1417   //   ldr     x0, [x0, :gottprel_lo12:v]
1418   //   nop
1419   //   nop
1420 
1421   switch (Type) {
1422   case R_AARCH64_TLSDESC_ADD_LO12_NC:
1423   case R_AARCH64_TLSDESC_CALL:
1424     write32le(Loc, 0xd503201f); // nop
1425     break;
1426   case R_AARCH64_TLSDESC_ADR_PAGE21:
1427     write32le(Loc, 0x90000000); // adrp
1428     relocateOne(Loc, R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, Val);
1429     break;
1430   case R_AARCH64_TLSDESC_LD64_LO12_NC:
1431     write32le(Loc, 0xf9400000); // ldr
1432     relocateOne(Loc, R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, Val);
1433     break;
1434   default:
1435     llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
1436   }
1437 }
1438 
1439 void AArch64TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
1440                                        uint64_t Val) const {
1441   checkUInt<32>(Val, Type);
1442 
1443   if (Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) {
1444     // Generate MOVZ.
1445     uint32_t RegNo = read32le(Loc) & 0x1f;
1446     write32le(Loc, (0xd2a00000 | RegNo) | (((Val >> 16) & 0xffff) << 5));
1447     return;
1448   }
1449   if (Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) {
1450     // Generate MOVK.
1451     uint32_t RegNo = read32le(Loc) & 0x1f;
1452     write32le(Loc, (0xf2800000 | RegNo) | ((Val & 0xffff) << 5));
1453     return;
1454   }
1455   llvm_unreachable("invalid relocation for TLS IE to LE relaxation");
1456 }
1457 
1458 AMDGPUTargetInfo::AMDGPUTargetInfo() {
1459   GotRel = R_AMDGPU_ABS64;
1460   GotEntrySize = 8;
1461 }
1462 
1463 void AMDGPUTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
1464                                    uint64_t Val) const {
1465   switch (Type) {
1466   case R_AMDGPU_ABS32:
1467   case R_AMDGPU_GOTPCREL:
1468   case R_AMDGPU_REL32:
1469     write32le(Loc, Val);
1470     break;
1471   default:
1472     fatal("unrecognized reloc " + Twine(Type));
1473   }
1474 }
1475 
1476 RelExpr AMDGPUTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
1477   switch (Type) {
1478   case R_AMDGPU_ABS32:
1479     return R_ABS;
1480   case R_AMDGPU_REL32:
1481     return R_PC;
1482   case R_AMDGPU_GOTPCREL:
1483     return R_GOT_PC;
1484   default:
1485     fatal("do not know how to handle relocation " + Twine(Type));
1486   }
1487 }
1488 
1489 ARMTargetInfo::ARMTargetInfo() {
1490   CopyRel = R_ARM_COPY;
1491   RelativeRel = R_ARM_RELATIVE;
1492   IRelativeRel = R_ARM_IRELATIVE;
1493   GotRel = R_ARM_GLOB_DAT;
1494   PltRel = R_ARM_JUMP_SLOT;
1495   TlsGotRel = R_ARM_TLS_TPOFF32;
1496   TlsModuleIndexRel = R_ARM_TLS_DTPMOD32;
1497   TlsOffsetRel = R_ARM_TLS_DTPOFF32;
1498   GotEntrySize = 4;
1499   GotPltEntrySize = 4;
1500   PltEntrySize = 16;
1501   PltHeaderSize = 20;
1502   // ARM uses Variant 1 TLS
1503   TcbSize = 8;
1504   NeedsThunks = true;
1505 }
1506 
1507 RelExpr ARMTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
1508   switch (Type) {
1509   default:
1510     return R_ABS;
1511   case R_ARM_THM_JUMP11:
1512     return R_PC;
1513   case R_ARM_CALL:
1514   case R_ARM_JUMP24:
1515   case R_ARM_PC24:
1516   case R_ARM_PLT32:
1517   case R_ARM_THM_JUMP19:
1518   case R_ARM_THM_JUMP24:
1519   case R_ARM_THM_CALL:
1520     return R_PLT_PC;
1521   case R_ARM_GOTOFF32:
1522     // (S + A) - GOT_ORG
1523     return R_GOTREL;
1524   case R_ARM_GOT_BREL:
1525     // GOT(S) + A - GOT_ORG
1526     return R_GOT_OFF;
1527   case R_ARM_GOT_PREL:
1528   case R_ARM_TLS_IE32:
1529     // GOT(S) + A - P
1530     return R_GOT_PC;
1531   case R_ARM_TARGET1:
1532     return Config->Target1Rel ? R_PC : R_ABS;
1533   case R_ARM_TLS_GD32:
1534     return R_TLSGD_PC;
1535   case R_ARM_TLS_LDM32:
1536     return R_TLSLD_PC;
1537   case R_ARM_BASE_PREL:
1538     // B(S) + A - P
1539     // FIXME: currently B(S) assumed to be .got, this may not hold for all
1540     // platforms.
1541     return R_GOTONLY_PC;
1542   case R_ARM_MOVW_PREL_NC:
1543   case R_ARM_MOVT_PREL:
1544   case R_ARM_PREL31:
1545   case R_ARM_REL32:
1546   case R_ARM_THM_MOVW_PREL_NC:
1547   case R_ARM_THM_MOVT_PREL:
1548     return R_PC;
1549   case R_ARM_TLS_LE32:
1550     return R_TLS;
1551   }
1552 }
1553 
1554 uint32_t ARMTargetInfo::getDynRel(uint32_t Type) const {
1555   if (Type == R_ARM_TARGET1 && !Config->Target1Rel)
1556     return R_ARM_ABS32;
1557   if (Type == R_ARM_ABS32)
1558     return Type;
1559   // Keep it going with a dummy value so that we can find more reloc errors.
1560   errorDynRel(Type);
1561   return R_ARM_ABS32;
1562 }
1563 
1564 void ARMTargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &) const {
1565   write32le(Buf, Out<ELF32LE>::Plt->getVA());
1566 }
1567 
1568 void ARMTargetInfo::writePltHeader(uint8_t *Buf) const {
1569   const uint8_t PltData[] = {
1570       0x04, 0xe0, 0x2d, 0xe5, //     str lr, [sp,#-4]!
1571       0x04, 0xe0, 0x9f, 0xe5, //     ldr lr, L2
1572       0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr
1573       0x08, 0xf0, 0xbe, 0xe5, //     ldr pc, [lr, #8]
1574       0x00, 0x00, 0x00, 0x00, // L2: .word   &(.got.plt) - L1 - 8
1575   };
1576   memcpy(Buf, PltData, sizeof(PltData));
1577   uint64_t GotPlt = Out<ELF32LE>::GotPlt->getVA();
1578   uint64_t L1 = Out<ELF32LE>::Plt->getVA() + 8;
1579   write32le(Buf + 16, GotPlt - L1 - 8);
1580 }
1581 
1582 void ARMTargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
1583                              uint64_t PltEntryAddr, int32_t Index,
1584                              unsigned RelOff) const {
1585   // FIXME: Using simple code sequence with simple relocations.
1586   // There is a more optimal sequence but it requires support for the group
1587   // relocations. See ELF for the ARM Architecture Appendix A.3
1588   const uint8_t PltData[] = {
1589       0x04, 0xc0, 0x9f, 0xe5, //     ldr ip, L2
1590       0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc
1591       0x00, 0xf0, 0x9c, 0xe5, //     ldr pc, [ip]
1592       0x00, 0x00, 0x00, 0x00, // L2: .word   Offset(&(.plt.got) - L1 - 8
1593   };
1594   memcpy(Buf, PltData, sizeof(PltData));
1595   uint64_t L1 = PltEntryAddr + 4;
1596   write32le(Buf + 12, GotEntryAddr - L1 - 8);
1597 }
1598 
1599 RelExpr ARMTargetInfo::getThunkExpr(RelExpr Expr, uint32_t RelocType,
1600                                     const InputFile &File,
1601                                     const SymbolBody &S) const {
1602   // A state change from ARM to Thumb and vice versa must go through an
1603   // interworking thunk if the relocation type is not R_ARM_CALL or
1604   // R_ARM_THM_CALL.
1605   switch (RelocType) {
1606   case R_ARM_PC24:
1607   case R_ARM_PLT32:
1608   case R_ARM_JUMP24:
1609     // Source is ARM, all PLT entries are ARM so no interworking required.
1610     // Otherwise we need to interwork if Symbol has bit 0 set (Thumb).
1611     if (Expr == R_PC && ((S.getVA<ELF32LE>() & 1) == 1))
1612       return R_THUNK_PC;
1613     break;
1614   case R_ARM_THM_JUMP19:
1615   case R_ARM_THM_JUMP24:
1616     // Source is Thumb, all PLT entries are ARM so interworking is required.
1617     // Otherwise we need to interwork if Symbol has bit 0 clear (ARM).
1618     if (Expr == R_PLT_PC)
1619       return R_THUNK_PLT_PC;
1620     if ((S.getVA<ELF32LE>() & 1) == 0)
1621       return R_THUNK_PC;
1622     break;
1623   }
1624   return Expr;
1625 }
1626 
1627 void ARMTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
1628                                 uint64_t Val) const {
1629   switch (Type) {
1630   case R_ARM_NONE:
1631     break;
1632   case R_ARM_ABS32:
1633   case R_ARM_BASE_PREL:
1634   case R_ARM_GOTOFF32:
1635   case R_ARM_GOT_BREL:
1636   case R_ARM_GOT_PREL:
1637   case R_ARM_REL32:
1638   case R_ARM_TARGET1:
1639   case R_ARM_TLS_GD32:
1640   case R_ARM_TLS_IE32:
1641   case R_ARM_TLS_LDM32:
1642   case R_ARM_TLS_LDO32:
1643   case R_ARM_TLS_LE32:
1644     write32le(Loc, Val);
1645     break;
1646   case R_ARM_PREL31:
1647     checkInt<31>(Val, Type);
1648     write32le(Loc, (read32le(Loc) & 0x80000000) | (Val & ~0x80000000));
1649     break;
1650   case R_ARM_CALL:
1651     // R_ARM_CALL is used for BL and BLX instructions, depending on the
1652     // value of bit 0 of Val, we must select a BL or BLX instruction
1653     if (Val & 1) {
1654       // If bit 0 of Val is 1 the target is Thumb, we must select a BLX.
1655       // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1'
1656       checkInt<26>(Val, Type);
1657       write32le(Loc, 0xfa000000 |                    // opcode
1658                          ((Val & 2) << 23) |         // H
1659                          ((Val >> 2) & 0x00ffffff)); // imm24
1660       break;
1661     }
1662     if ((read32le(Loc) & 0xfe000000) == 0xfa000000)
1663       // BLX (always unconditional) instruction to an ARM Target, select an
1664       // unconditional BL.
1665       write32le(Loc, 0xeb000000 | (read32le(Loc) & 0x00ffffff));
1666     // fall through as BL encoding is shared with B
1667   case R_ARM_JUMP24:
1668   case R_ARM_PC24:
1669   case R_ARM_PLT32:
1670     checkInt<26>(Val, Type);
1671     write32le(Loc, (read32le(Loc) & ~0x00ffffff) | ((Val >> 2) & 0x00ffffff));
1672     break;
1673   case R_ARM_THM_JUMP11:
1674     checkInt<12>(Val, Type);
1675     write16le(Loc, (read32le(Loc) & 0xf800) | ((Val >> 1) & 0x07ff));
1676     break;
1677   case R_ARM_THM_JUMP19:
1678     // Encoding T3: Val = S:J2:J1:imm6:imm11:0
1679     checkInt<21>(Val, Type);
1680     write16le(Loc,
1681               (read16le(Loc) & 0xfbc0) |   // opcode cond
1682                   ((Val >> 10) & 0x0400) | // S
1683                   ((Val >> 12) & 0x003f)); // imm6
1684     write16le(Loc + 2,
1685               0x8000 |                    // opcode
1686                   ((Val >> 8) & 0x0800) | // J2
1687                   ((Val >> 5) & 0x2000) | // J1
1688                   ((Val >> 1) & 0x07ff)); // imm11
1689     break;
1690   case R_ARM_THM_CALL:
1691     // R_ARM_THM_CALL is used for BL and BLX instructions, depending on the
1692     // value of bit 0 of Val, we must select a BL or BLX instruction
1693     if ((Val & 1) == 0) {
1694       // Ensure BLX destination is 4-byte aligned. As BLX instruction may
1695       // only be two byte aligned. This must be done before overflow check
1696       Val = alignTo(Val, 4);
1697     }
1698     // Bit 12 is 0 for BLX, 1 for BL
1699     write16le(Loc + 2, (read16le(Loc + 2) & ~0x1000) | (Val & 1) << 12);
1700     // Fall through as rest of encoding is the same as B.W
1701   case R_ARM_THM_JUMP24:
1702     // Encoding B  T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0
1703     // FIXME: Use of I1 and I2 require v6T2ops
1704     checkInt<25>(Val, Type);
1705     write16le(Loc,
1706               0xf000 |                     // opcode
1707                   ((Val >> 14) & 0x0400) | // S
1708                   ((Val >> 12) & 0x03ff)); // imm10
1709     write16le(Loc + 2,
1710               (read16le(Loc + 2) & 0xd000) |                  // opcode
1711                   (((~(Val >> 10)) ^ (Val >> 11)) & 0x2000) | // J1
1712                   (((~(Val >> 11)) ^ (Val >> 13)) & 0x0800) | // J2
1713                   ((Val >> 1) & 0x07ff));                     // imm11
1714     break;
1715   case R_ARM_MOVW_ABS_NC:
1716   case R_ARM_MOVW_PREL_NC:
1717     write32le(Loc, (read32le(Loc) & ~0x000f0fff) | ((Val & 0xf000) << 4) |
1718                        (Val & 0x0fff));
1719     break;
1720   case R_ARM_MOVT_ABS:
1721   case R_ARM_MOVT_PREL:
1722     checkInt<32>(Val, Type);
1723     write32le(Loc, (read32le(Loc) & ~0x000f0fff) |
1724                        (((Val >> 16) & 0xf000) << 4) | ((Val >> 16) & 0xfff));
1725     break;
1726   case R_ARM_THM_MOVT_ABS:
1727   case R_ARM_THM_MOVT_PREL:
1728     // Encoding T1: A = imm4:i:imm3:imm8
1729     checkInt<32>(Val, Type);
1730     write16le(Loc,
1731               0xf2c0 |                     // opcode
1732                   ((Val >> 17) & 0x0400) | // i
1733                   ((Val >> 28) & 0x000f)); // imm4
1734     write16le(Loc + 2,
1735               (read16le(Loc + 2) & 0x8f00) | // opcode
1736                   ((Val >> 12) & 0x7000) |   // imm3
1737                   ((Val >> 16) & 0x00ff));   // imm8
1738     break;
1739   case R_ARM_THM_MOVW_ABS_NC:
1740   case R_ARM_THM_MOVW_PREL_NC:
1741     // Encoding T3: A = imm4:i:imm3:imm8
1742     write16le(Loc,
1743               0xf240 |                     // opcode
1744                   ((Val >> 1) & 0x0400) |  // i
1745                   ((Val >> 12) & 0x000f)); // imm4
1746     write16le(Loc + 2,
1747               (read16le(Loc + 2) & 0x8f00) | // opcode
1748                   ((Val << 4) & 0x7000) |    // imm3
1749                   (Val & 0x00ff));           // imm8
1750     break;
1751   default:
1752     fatal("unrecognized reloc " + Twine(Type));
1753   }
1754 }
1755 
1756 uint64_t ARMTargetInfo::getImplicitAddend(const uint8_t *Buf,
1757                                           uint32_t Type) const {
1758   switch (Type) {
1759   default:
1760     return 0;
1761   case R_ARM_ABS32:
1762   case R_ARM_BASE_PREL:
1763   case R_ARM_GOTOFF32:
1764   case R_ARM_GOT_BREL:
1765   case R_ARM_GOT_PREL:
1766   case R_ARM_REL32:
1767   case R_ARM_TARGET1:
1768   case R_ARM_TLS_GD32:
1769   case R_ARM_TLS_LDM32:
1770   case R_ARM_TLS_LDO32:
1771   case R_ARM_TLS_IE32:
1772   case R_ARM_TLS_LE32:
1773     return SignExtend64<32>(read32le(Buf));
1774   case R_ARM_PREL31:
1775     return SignExtend64<31>(read32le(Buf));
1776   case R_ARM_CALL:
1777   case R_ARM_JUMP24:
1778   case R_ARM_PC24:
1779   case R_ARM_PLT32:
1780     return SignExtend64<26>(read32le(Buf) << 2);
1781   case R_ARM_THM_JUMP11:
1782     return SignExtend64<12>(read16le(Buf) << 1);
1783   case R_ARM_THM_JUMP19: {
1784     // Encoding T3: A = S:J2:J1:imm10:imm6:0
1785     uint16_t Hi = read16le(Buf);
1786     uint16_t Lo = read16le(Buf + 2);
1787     return SignExtend64<20>(((Hi & 0x0400) << 10) | // S
1788                             ((Lo & 0x0800) << 8) |  // J2
1789                             ((Lo & 0x2000) << 5) |  // J1
1790                             ((Hi & 0x003f) << 12) | // imm6
1791                             ((Lo & 0x07ff) << 1));  // imm11:0
1792   }
1793   case R_ARM_THM_CALL:
1794   case R_ARM_THM_JUMP24: {
1795     // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0
1796     // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S)
1797     // FIXME: I1 and I2 require v6T2ops
1798     uint16_t Hi = read16le(Buf);
1799     uint16_t Lo = read16le(Buf + 2);
1800     return SignExtend64<24>(((Hi & 0x0400) << 14) |                    // S
1801                             (~((Lo ^ (Hi << 3)) << 10) & 0x00800000) | // I1
1802                             (~((Lo ^ (Hi << 1)) << 11) & 0x00400000) | // I2
1803                             ((Hi & 0x003ff) << 12) |                   // imm0
1804                             ((Lo & 0x007ff) << 1)); // imm11:0
1805   }
1806   // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and
1807   // MOVT is in the range -32768 <= A < 32768
1808   case R_ARM_MOVW_ABS_NC:
1809   case R_ARM_MOVT_ABS:
1810   case R_ARM_MOVW_PREL_NC:
1811   case R_ARM_MOVT_PREL: {
1812     uint64_t Val = read32le(Buf) & 0x000f0fff;
1813     return SignExtend64<16>(((Val & 0x000f0000) >> 4) | (Val & 0x00fff));
1814   }
1815   case R_ARM_THM_MOVW_ABS_NC:
1816   case R_ARM_THM_MOVT_ABS:
1817   case R_ARM_THM_MOVW_PREL_NC:
1818   case R_ARM_THM_MOVT_PREL: {
1819     // Encoding T3: A = imm4:i:imm3:imm8
1820     uint16_t Hi = read16le(Buf);
1821     uint16_t Lo = read16le(Buf + 2);
1822     return SignExtend64<16>(((Hi & 0x000f) << 12) | // imm4
1823                             ((Hi & 0x0400) << 1) |  // i
1824                             ((Lo & 0x7000) >> 4) |  // imm3
1825                             (Lo & 0x00ff));         // imm8
1826   }
1827   }
1828 }
1829 
1830 bool ARMTargetInfo::isTlsLocalDynamicRel(uint32_t Type) const {
1831   return Type == R_ARM_TLS_LDO32 || Type == R_ARM_TLS_LDM32;
1832 }
1833 
1834 bool ARMTargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const {
1835   return Type == R_ARM_TLS_GD32;
1836 }
1837 
1838 bool ARMTargetInfo::isTlsInitialExecRel(uint32_t Type) const {
1839   return Type == R_ARM_TLS_IE32;
1840 }
1841 
1842 template <class ELFT> MipsTargetInfo<ELFT>::MipsTargetInfo() {
1843   GotPltHeaderEntriesNum = 2;
1844   PageSize = 65536;
1845   GotEntrySize = sizeof(typename ELFT::uint);
1846   GotPltEntrySize = sizeof(typename ELFT::uint);
1847   PltEntrySize = 16;
1848   PltHeaderSize = 32;
1849   CopyRel = R_MIPS_COPY;
1850   PltRel = R_MIPS_JUMP_SLOT;
1851   NeedsThunks = true;
1852   if (ELFT::Is64Bits) {
1853     RelativeRel = (R_MIPS_64 << 8) | R_MIPS_REL32;
1854     TlsGotRel = R_MIPS_TLS_TPREL64;
1855     TlsModuleIndexRel = R_MIPS_TLS_DTPMOD64;
1856     TlsOffsetRel = R_MIPS_TLS_DTPREL64;
1857   } else {
1858     RelativeRel = R_MIPS_REL32;
1859     TlsGotRel = R_MIPS_TLS_TPREL32;
1860     TlsModuleIndexRel = R_MIPS_TLS_DTPMOD32;
1861     TlsOffsetRel = R_MIPS_TLS_DTPREL32;
1862   }
1863 }
1864 
1865 template <class ELFT>
1866 RelExpr MipsTargetInfo<ELFT>::getRelExpr(uint32_t Type,
1867                                          const SymbolBody &S) const {
1868   if (ELFT::Is64Bits)
1869     // See comment in the calculateMips64RelChain.
1870     Type &= 0xff;
1871   switch (Type) {
1872   default:
1873     return R_ABS;
1874   case R_MIPS_JALR:
1875     return R_HINT;
1876   case R_MIPS_GPREL16:
1877   case R_MIPS_GPREL32:
1878     return R_GOTREL;
1879   case R_MIPS_26:
1880     return R_PLT;
1881   case R_MIPS_HI16:
1882   case R_MIPS_LO16:
1883   case R_MIPS_GOT_OFST:
1884     // MIPS _gp_disp designates offset between start of function and 'gp'
1885     // pointer into GOT. __gnu_local_gp is equal to the current value of
1886     // the 'gp'. Therefore any relocations against them do not require
1887     // dynamic relocation.
1888     if (&S == ElfSym<ELFT>::MipsGpDisp)
1889       return R_PC;
1890     return R_ABS;
1891   case R_MIPS_PC32:
1892   case R_MIPS_PC16:
1893   case R_MIPS_PC19_S2:
1894   case R_MIPS_PC21_S2:
1895   case R_MIPS_PC26_S2:
1896   case R_MIPS_PCHI16:
1897   case R_MIPS_PCLO16:
1898     return R_PC;
1899   case R_MIPS_GOT16:
1900     if (S.isLocal())
1901       return R_MIPS_GOT_LOCAL_PAGE;
1902   // fallthrough
1903   case R_MIPS_CALL16:
1904   case R_MIPS_GOT_DISP:
1905   case R_MIPS_TLS_GOTTPREL:
1906     return R_MIPS_GOT_OFF;
1907   case R_MIPS_GOT_PAGE:
1908     return R_MIPS_GOT_LOCAL_PAGE;
1909   case R_MIPS_TLS_GD:
1910     return R_MIPS_TLSGD;
1911   case R_MIPS_TLS_LDM:
1912     return R_MIPS_TLSLD;
1913   }
1914 }
1915 
1916 template <class ELFT>
1917 uint32_t MipsTargetInfo<ELFT>::getDynRel(uint32_t Type) const {
1918   if (Type == R_MIPS_32 || Type == R_MIPS_64)
1919     return RelativeRel;
1920   // Keep it going with a dummy value so that we can find more reloc errors.
1921   errorDynRel(Type);
1922   return R_MIPS_32;
1923 }
1924 
1925 template <class ELFT>
1926 bool MipsTargetInfo<ELFT>::isTlsLocalDynamicRel(uint32_t Type) const {
1927   return Type == R_MIPS_TLS_LDM;
1928 }
1929 
1930 template <class ELFT>
1931 bool MipsTargetInfo<ELFT>::isTlsGlobalDynamicRel(uint32_t Type) const {
1932   return Type == R_MIPS_TLS_GD;
1933 }
1934 
1935 template <class ELFT>
1936 void MipsTargetInfo<ELFT>::writeGotPlt(uint8_t *Buf, const SymbolBody &) const {
1937   write32<ELFT::TargetEndianness>(Buf, Out<ELFT>::Plt->getVA());
1938 }
1939 
1940 static uint16_t mipsHigh(uint64_t V) { return (V + 0x8000) >> 16; }
1941 
1942 template <endianness E, uint8_t BSIZE, uint8_t SHIFT>
1943 static int64_t getPcRelocAddend(const uint8_t *Loc) {
1944   uint32_t Instr = read32<E>(Loc);
1945   uint32_t Mask = 0xffffffff >> (32 - BSIZE);
1946   return SignExtend64<BSIZE + SHIFT>((Instr & Mask) << SHIFT);
1947 }
1948 
1949 template <endianness E, uint8_t BSIZE, uint8_t SHIFT>
1950 static void applyMipsPcReloc(uint8_t *Loc, uint32_t Type, uint64_t V) {
1951   uint32_t Mask = 0xffffffff >> (32 - BSIZE);
1952   uint32_t Instr = read32<E>(Loc);
1953   if (SHIFT > 0)
1954     checkAlignment<(1 << SHIFT)>(V, Type);
1955   checkInt<BSIZE + SHIFT>(V, Type);
1956   write32<E>(Loc, (Instr & ~Mask) | ((V >> SHIFT) & Mask));
1957 }
1958 
1959 template <endianness E>
1960 static void writeMipsHi16(uint8_t *Loc, uint64_t V) {
1961   uint32_t Instr = read32<E>(Loc);
1962   write32<E>(Loc, (Instr & 0xffff0000) | mipsHigh(V));
1963 }
1964 
1965 template <endianness E>
1966 static void writeMipsLo16(uint8_t *Loc, uint64_t V) {
1967   uint32_t Instr = read32<E>(Loc);
1968   write32<E>(Loc, (Instr & 0xffff0000) | (V & 0xffff));
1969 }
1970 
1971 template <class ELFT> static bool isMipsR6() {
1972   const auto &FirstObj = cast<ELFFileBase<ELFT>>(*Config->FirstElf);
1973   uint32_t Arch = FirstObj.getObj().getHeader()->e_flags & EF_MIPS_ARCH;
1974   return Arch == EF_MIPS_ARCH_32R6 || Arch == EF_MIPS_ARCH_64R6;
1975 }
1976 
1977 template <class ELFT>
1978 void MipsTargetInfo<ELFT>::writePltHeader(uint8_t *Buf) const {
1979   const endianness E = ELFT::TargetEndianness;
1980   write32<E>(Buf, 0x3c1c0000);      // lui   $28, %hi(&GOTPLT[0])
1981   write32<E>(Buf + 4, 0x8f990000);  // lw    $25, %lo(&GOTPLT[0])($28)
1982   write32<E>(Buf + 8, 0x279c0000);  // addiu $28, $28, %lo(&GOTPLT[0])
1983   write32<E>(Buf + 12, 0x031cc023); // subu  $24, $24, $28
1984   write32<E>(Buf + 16, 0x03e07825); // move  $15, $31
1985   write32<E>(Buf + 20, 0x0018c082); // srl   $24, $24, 2
1986   write32<E>(Buf + 24, 0x0320f809); // jalr  $25
1987   write32<E>(Buf + 28, 0x2718fffe); // subu  $24, $24, 2
1988   uint64_t Got = Out<ELFT>::GotPlt->getVA();
1989   writeMipsHi16<E>(Buf, Got);
1990   writeMipsLo16<E>(Buf + 4, Got);
1991   writeMipsLo16<E>(Buf + 8, Got);
1992 }
1993 
1994 template <class ELFT>
1995 void MipsTargetInfo<ELFT>::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
1996                                     uint64_t PltEntryAddr, int32_t Index,
1997                                     unsigned RelOff) const {
1998   const endianness E = ELFT::TargetEndianness;
1999   write32<E>(Buf, 0x3c0f0000);      // lui   $15, %hi(.got.plt entry)
2000   write32<E>(Buf + 4, 0x8df90000);  // l[wd] $25, %lo(.got.plt entry)($15)
2001                                     // jr    $25
2002   write32<E>(Buf + 8, isMipsR6<ELFT>() ? 0x03200009 : 0x03200008);
2003   write32<E>(Buf + 12, 0x25f80000); // addiu $24, $15, %lo(.got.plt entry)
2004   writeMipsHi16<E>(Buf, GotEntryAddr);
2005   writeMipsLo16<E>(Buf + 4, GotEntryAddr);
2006   writeMipsLo16<E>(Buf + 12, GotEntryAddr);
2007 }
2008 
2009 template <class ELFT>
2010 RelExpr MipsTargetInfo<ELFT>::getThunkExpr(RelExpr Expr, uint32_t Type,
2011                                            const InputFile &File,
2012                                            const SymbolBody &S) const {
2013   // Any MIPS PIC code function is invoked with its address in register $t9.
2014   // So if we have a branch instruction from non-PIC code to the PIC one
2015   // we cannot make the jump directly and need to create a small stubs
2016   // to save the target function address.
2017   // See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2018   if (Type != R_MIPS_26)
2019     return Expr;
2020   auto *F = dyn_cast<ELFFileBase<ELFT>>(&File);
2021   if (!F)
2022     return Expr;
2023   // If current file has PIC code, LA25 stub is not required.
2024   if (F->getObj().getHeader()->e_flags & EF_MIPS_PIC)
2025     return Expr;
2026   auto *D = dyn_cast<DefinedRegular<ELFT>>(&S);
2027   if (!D || !D->Section)
2028     return Expr;
2029   // LA25 is required if target file has PIC code
2030   // or target symbol is a PIC symbol.
2031   const ELFFile<ELFT> &DefFile = D->Section->getFile()->getObj();
2032   bool PicFile = DefFile.getHeader()->e_flags & EF_MIPS_PIC;
2033   bool PicSym = (D->StOther & STO_MIPS_MIPS16) == STO_MIPS_PIC;
2034   return (PicFile || PicSym) ? R_THUNK_ABS : Expr;
2035 }
2036 
2037 template <class ELFT>
2038 uint64_t MipsTargetInfo<ELFT>::getImplicitAddend(const uint8_t *Buf,
2039                                                  uint32_t Type) const {
2040   const endianness E = ELFT::TargetEndianness;
2041   switch (Type) {
2042   default:
2043     return 0;
2044   case R_MIPS_32:
2045   case R_MIPS_GPREL32:
2046     return read32<E>(Buf);
2047   case R_MIPS_26:
2048     // FIXME (simon): If the relocation target symbol is not a PLT entry
2049     // we should use another expression for calculation:
2050     // ((A << 2) | (P & 0xf0000000)) >> 2
2051     return SignExtend64<28>((read32<E>(Buf) & 0x3ffffff) << 2);
2052   case R_MIPS_GPREL16:
2053   case R_MIPS_LO16:
2054   case R_MIPS_PCLO16:
2055   case R_MIPS_TLS_DTPREL_HI16:
2056   case R_MIPS_TLS_DTPREL_LO16:
2057   case R_MIPS_TLS_TPREL_HI16:
2058   case R_MIPS_TLS_TPREL_LO16:
2059     return SignExtend64<16>(read32<E>(Buf));
2060   case R_MIPS_PC16:
2061     return getPcRelocAddend<E, 16, 2>(Buf);
2062   case R_MIPS_PC19_S2:
2063     return getPcRelocAddend<E, 19, 2>(Buf);
2064   case R_MIPS_PC21_S2:
2065     return getPcRelocAddend<E, 21, 2>(Buf);
2066   case R_MIPS_PC26_S2:
2067     return getPcRelocAddend<E, 26, 2>(Buf);
2068   case R_MIPS_PC32:
2069     return getPcRelocAddend<E, 32, 0>(Buf);
2070   }
2071 }
2072 
2073 static std::pair<uint32_t, uint64_t> calculateMips64RelChain(uint32_t Type,
2074                                                              uint64_t Val) {
2075   // MIPS N64 ABI packs multiple relocations into the single relocation
2076   // record. In general, all up to three relocations can have arbitrary
2077   // types. In fact, Clang and GCC uses only a few combinations. For now,
2078   // we support two of them. That is allow to pass at least all LLVM
2079   // test suite cases.
2080   // <any relocation> / R_MIPS_SUB / R_MIPS_HI16 | R_MIPS_LO16
2081   // <any relocation> / R_MIPS_64 / R_MIPS_NONE
2082   // The first relocation is a 'real' relocation which is calculated
2083   // using the corresponding symbol's value. The second and the third
2084   // relocations used to modify result of the first one: extend it to
2085   // 64-bit, extract high or low part etc. For details, see part 2.9 Relocation
2086   // at the https://dmz-portal.mips.com/mw/images/8/82/007-4658-001.pdf
2087   uint32_t Type2 = (Type >> 8) & 0xff;
2088   uint32_t Type3 = (Type >> 16) & 0xff;
2089   if (Type2 == R_MIPS_NONE && Type3 == R_MIPS_NONE)
2090     return std::make_pair(Type, Val);
2091   if (Type2 == R_MIPS_64 && Type3 == R_MIPS_NONE)
2092     return std::make_pair(Type2, Val);
2093   if (Type2 == R_MIPS_SUB && (Type3 == R_MIPS_HI16 || Type3 == R_MIPS_LO16))
2094     return std::make_pair(Type3, -Val);
2095   error("unsupported relocations combination " + Twine(Type));
2096   return std::make_pair(Type & 0xff, Val);
2097 }
2098 
2099 template <class ELFT>
2100 void MipsTargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint32_t Type,
2101                                        uint64_t Val) const {
2102   const endianness E = ELFT::TargetEndianness;
2103   // Thread pointer and DRP offsets from the start of TLS data area.
2104   // https://www.linux-mips.org/wiki/NPTL
2105   if (Type == R_MIPS_TLS_DTPREL_HI16 || Type == R_MIPS_TLS_DTPREL_LO16)
2106     Val -= 0x8000;
2107   else if (Type == R_MIPS_TLS_TPREL_HI16 || Type == R_MIPS_TLS_TPREL_LO16)
2108     Val -= 0x7000;
2109   if (ELFT::Is64Bits)
2110     std::tie(Type, Val) = calculateMips64RelChain(Type, Val);
2111   switch (Type) {
2112   case R_MIPS_32:
2113   case R_MIPS_GPREL32:
2114     write32<E>(Loc, Val);
2115     break;
2116   case R_MIPS_64:
2117     write64<E>(Loc, Val);
2118     break;
2119   case R_MIPS_26:
2120     write32<E>(Loc, (read32<E>(Loc) & ~0x3ffffff) | ((Val >> 2) & 0x3ffffff));
2121     break;
2122   case R_MIPS_GOT_DISP:
2123   case R_MIPS_GOT_PAGE:
2124   case R_MIPS_GOT16:
2125   case R_MIPS_GPREL16:
2126   case R_MIPS_TLS_GD:
2127   case R_MIPS_TLS_LDM:
2128     checkInt<16>(Val, Type);
2129   // fallthrough
2130   case R_MIPS_CALL16:
2131   case R_MIPS_GOT_OFST:
2132   case R_MIPS_LO16:
2133   case R_MIPS_PCLO16:
2134   case R_MIPS_TLS_DTPREL_LO16:
2135   case R_MIPS_TLS_GOTTPREL:
2136   case R_MIPS_TLS_TPREL_LO16:
2137     writeMipsLo16<E>(Loc, Val);
2138     break;
2139   case R_MIPS_HI16:
2140   case R_MIPS_PCHI16:
2141   case R_MIPS_TLS_DTPREL_HI16:
2142   case R_MIPS_TLS_TPREL_HI16:
2143     writeMipsHi16<E>(Loc, Val);
2144     break;
2145   case R_MIPS_JALR:
2146     // Ignore this optimization relocation for now
2147     break;
2148   case R_MIPS_PC16:
2149     applyMipsPcReloc<E, 16, 2>(Loc, Type, Val);
2150     break;
2151   case R_MIPS_PC19_S2:
2152     applyMipsPcReloc<E, 19, 2>(Loc, Type, Val);
2153     break;
2154   case R_MIPS_PC21_S2:
2155     applyMipsPcReloc<E, 21, 2>(Loc, Type, Val);
2156     break;
2157   case R_MIPS_PC26_S2:
2158     applyMipsPcReloc<E, 26, 2>(Loc, Type, Val);
2159     break;
2160   case R_MIPS_PC32:
2161     applyMipsPcReloc<E, 32, 0>(Loc, Type, Val);
2162     break;
2163   default:
2164     fatal("unrecognized reloc " + Twine(Type));
2165   }
2166 }
2167 
2168 template <class ELFT>
2169 bool MipsTargetInfo<ELFT>::usesOnlyLowPageBits(uint32_t Type) const {
2170   return Type == R_MIPS_LO16 || Type == R_MIPS_GOT_OFST;
2171 }
2172 }
2173 }
2174