1 //===- Target.cpp ---------------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Machine-specific things, such as applying relocations, creation of 11 // GOT or PLT entries, etc., are handled in this file. 12 // 13 // Refer the ELF spec for the single letter varaibles, S, A or P, used 14 // in this file. 15 // 16 // Some functions defined in this file has "relaxTls" as part of their names. 17 // They do peephole optimization for TLS variables by rewriting instructions. 18 // They are not part of the ABI but optional optimization, so you can skip 19 // them if you are not interested in how TLS variables are optimized. 20 // See the following paper for the details. 21 // 22 // Ulrich Drepper, ELF Handling For Thread-Local Storage 23 // http://www.akkadia.org/drepper/tls.pdf 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "Target.h" 28 #include "Error.h" 29 #include "InputFiles.h" 30 #include "OutputSections.h" 31 #include "Symbols.h" 32 #include "Thunks.h" 33 34 #include "llvm/ADT/ArrayRef.h" 35 #include "llvm/Object/ELF.h" 36 #include "llvm/Support/Endian.h" 37 #include "llvm/Support/ELF.h" 38 39 using namespace llvm; 40 using namespace llvm::object; 41 using namespace llvm::support::endian; 42 using namespace llvm::ELF; 43 44 namespace lld { 45 namespace elf { 46 47 TargetInfo *Target; 48 49 static void or32le(uint8_t *P, int32_t V) { write32le(P, read32le(P) | V); } 50 51 StringRef getRelName(uint32_t Type) { 52 return getELFRelocationTypeName(Config->EMachine, Type); 53 } 54 55 template <unsigned N> static void checkInt(int64_t V, uint32_t Type) { 56 if (!isInt<N>(V)) 57 error("relocation " + getRelName(Type) + " out of range"); 58 } 59 60 template <unsigned N> static void checkUInt(uint64_t V, uint32_t Type) { 61 if (!isUInt<N>(V)) 62 error("relocation " + getRelName(Type) + " out of range"); 63 } 64 65 template <unsigned N> static void checkIntUInt(uint64_t V, uint32_t Type) { 66 if (!isInt<N>(V) && !isUInt<N>(V)) 67 error("relocation " + getRelName(Type) + " out of range"); 68 } 69 70 template <unsigned N> static void checkAlignment(uint64_t V, uint32_t Type) { 71 if ((V & (N - 1)) != 0) 72 error("improper alignment for relocation " + getRelName(Type)); 73 } 74 75 static void errorDynRel(uint32_t Type) { 76 error("relocation " + getRelName(Type) + 77 " cannot be used against shared object; recompile with -fPIC."); 78 } 79 80 namespace { 81 class X86TargetInfo final : public TargetInfo { 82 public: 83 X86TargetInfo(); 84 RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; 85 uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override; 86 void writeGotPltHeader(uint8_t *Buf) const override; 87 uint32_t getDynRel(uint32_t Type) const override; 88 bool isTlsLocalDynamicRel(uint32_t Type) const override; 89 bool isTlsGlobalDynamicRel(uint32_t Type) const override; 90 bool isTlsInitialExecRel(uint32_t Type) const override; 91 void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; 92 void writePltHeader(uint8_t *Buf) const override; 93 void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, 94 int32_t Index, unsigned RelOff) const override; 95 void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 96 97 RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data, 98 RelExpr Expr) const override; 99 void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 100 void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 101 void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 102 void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 103 }; 104 105 template <class ELFT> class X86_64TargetInfo final : public TargetInfo { 106 public: 107 X86_64TargetInfo(); 108 RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; 109 uint32_t getDynRel(uint32_t Type) const override; 110 bool isTlsLocalDynamicRel(uint32_t Type) const override; 111 bool isTlsGlobalDynamicRel(uint32_t Type) const override; 112 bool isTlsInitialExecRel(uint32_t Type) const override; 113 void writeGotPltHeader(uint8_t *Buf) const override; 114 void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; 115 void writePltHeader(uint8_t *Buf) const override; 116 void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, 117 int32_t Index, unsigned RelOff) const override; 118 void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 119 120 RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data, 121 RelExpr Expr) const override; 122 void relaxGot(uint8_t *Loc, uint64_t Val) const override; 123 void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 124 void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 125 void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 126 void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 127 128 private: 129 void relaxGotNoPic(uint8_t *Loc, uint64_t Val, uint8_t Op, 130 uint8_t ModRm) const; 131 }; 132 133 class PPCTargetInfo final : public TargetInfo { 134 public: 135 PPCTargetInfo(); 136 void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 137 RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; 138 }; 139 140 class PPC64TargetInfo final : public TargetInfo { 141 public: 142 PPC64TargetInfo(); 143 RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; 144 void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, 145 int32_t Index, unsigned RelOff) const override; 146 void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 147 }; 148 149 class AArch64TargetInfo final : public TargetInfo { 150 public: 151 AArch64TargetInfo(); 152 RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; 153 uint32_t getDynRel(uint32_t Type) const override; 154 bool isTlsInitialExecRel(uint32_t Type) const override; 155 void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; 156 void writePltHeader(uint8_t *Buf) const override; 157 void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, 158 int32_t Index, unsigned RelOff) const override; 159 bool usesOnlyLowPageBits(uint32_t Type) const override; 160 void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 161 RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data, 162 RelExpr Expr) const override; 163 void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 164 void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 165 void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 166 }; 167 168 class AMDGPUTargetInfo final : public TargetInfo { 169 public: 170 AMDGPUTargetInfo(); 171 void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 172 RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; 173 }; 174 175 class ARMTargetInfo final : public TargetInfo { 176 public: 177 ARMTargetInfo(); 178 RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; 179 uint32_t getDynRel(uint32_t Type) const override; 180 uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override; 181 bool isTlsLocalDynamicRel(uint32_t Type) const override; 182 bool isTlsGlobalDynamicRel(uint32_t Type) const override; 183 bool isTlsInitialExecRel(uint32_t Type) const override; 184 void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; 185 void writePltHeader(uint8_t *Buf) const override; 186 void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, 187 int32_t Index, unsigned RelOff) const override; 188 RelExpr getThunkExpr(RelExpr Expr, uint32_t RelocType, 189 const InputFile &File, 190 const SymbolBody &S) const override; 191 void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 192 }; 193 194 template <class ELFT> class MipsTargetInfo final : public TargetInfo { 195 public: 196 MipsTargetInfo(); 197 RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; 198 uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override; 199 uint32_t getDynRel(uint32_t Type) const override; 200 bool isTlsLocalDynamicRel(uint32_t Type) const override; 201 bool isTlsGlobalDynamicRel(uint32_t Type) const override; 202 void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; 203 void writePltHeader(uint8_t *Buf) const override; 204 void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, 205 int32_t Index, unsigned RelOff) const override; 206 RelExpr getThunkExpr(RelExpr Expr, uint32_t RelocType, 207 const InputFile &File, 208 const SymbolBody &S) const override; 209 void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 210 bool usesOnlyLowPageBits(uint32_t Type) const override; 211 }; 212 } // anonymous namespace 213 214 TargetInfo *createTarget() { 215 switch (Config->EMachine) { 216 case EM_386: 217 case EM_IAMCU: 218 return new X86TargetInfo(); 219 case EM_AARCH64: 220 return new AArch64TargetInfo(); 221 case EM_AMDGPU: 222 return new AMDGPUTargetInfo(); 223 case EM_ARM: 224 return new ARMTargetInfo(); 225 case EM_MIPS: 226 switch (Config->EKind) { 227 case ELF32LEKind: 228 return new MipsTargetInfo<ELF32LE>(); 229 case ELF32BEKind: 230 return new MipsTargetInfo<ELF32BE>(); 231 case ELF64LEKind: 232 return new MipsTargetInfo<ELF64LE>(); 233 case ELF64BEKind: 234 return new MipsTargetInfo<ELF64BE>(); 235 default: 236 fatal("unsupported MIPS target"); 237 } 238 case EM_PPC: 239 return new PPCTargetInfo(); 240 case EM_PPC64: 241 return new PPC64TargetInfo(); 242 case EM_X86_64: 243 if (Config->EKind == ELF32LEKind) 244 return new X86_64TargetInfo<ELF32LE>(); 245 return new X86_64TargetInfo<ELF64LE>(); 246 } 247 fatal("unknown target machine"); 248 } 249 250 TargetInfo::~TargetInfo() {} 251 252 uint64_t TargetInfo::getImplicitAddend(const uint8_t *Buf, 253 uint32_t Type) const { 254 return 0; 255 } 256 257 bool TargetInfo::usesOnlyLowPageBits(uint32_t Type) const { return false; } 258 259 RelExpr TargetInfo::getThunkExpr(RelExpr Expr, uint32_t RelocType, 260 const InputFile &File, 261 const SymbolBody &S) const { 262 return Expr; 263 } 264 265 bool TargetInfo::isTlsInitialExecRel(uint32_t Type) const { return false; } 266 267 bool TargetInfo::isTlsLocalDynamicRel(uint32_t Type) const { return false; } 268 269 bool TargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const { 270 return false; 271 } 272 273 RelExpr TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data, 274 RelExpr Expr) const { 275 return Expr; 276 } 277 278 void TargetInfo::relaxGot(uint8_t *Loc, uint64_t Val) const { 279 llvm_unreachable("Should not have claimed to be relaxable"); 280 } 281 282 void TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, 283 uint64_t Val) const { 284 llvm_unreachable("Should not have claimed to be relaxable"); 285 } 286 287 void TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, 288 uint64_t Val) const { 289 llvm_unreachable("Should not have claimed to be relaxable"); 290 } 291 292 void TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, 293 uint64_t Val) const { 294 llvm_unreachable("Should not have claimed to be relaxable"); 295 } 296 297 void TargetInfo::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, 298 uint64_t Val) const { 299 llvm_unreachable("Should not have claimed to be relaxable"); 300 } 301 302 X86TargetInfo::X86TargetInfo() { 303 CopyRel = R_386_COPY; 304 GotRel = R_386_GLOB_DAT; 305 PltRel = R_386_JUMP_SLOT; 306 IRelativeRel = R_386_IRELATIVE; 307 RelativeRel = R_386_RELATIVE; 308 TlsGotRel = R_386_TLS_TPOFF; 309 TlsModuleIndexRel = R_386_TLS_DTPMOD32; 310 TlsOffsetRel = R_386_TLS_DTPOFF32; 311 GotEntrySize = 4; 312 GotPltEntrySize = 4; 313 PltEntrySize = 16; 314 PltHeaderSize = 16; 315 TlsGdRelaxSkip = 2; 316 } 317 318 RelExpr X86TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const { 319 switch (Type) { 320 default: 321 return R_ABS; 322 case R_386_TLS_GD: 323 return R_TLSGD; 324 case R_386_TLS_LDM: 325 return R_TLSLD; 326 case R_386_PLT32: 327 return R_PLT_PC; 328 case R_386_PC32: 329 return R_PC; 330 case R_386_GOTPC: 331 return R_GOTONLY_PC; 332 case R_386_TLS_IE: 333 return R_GOT; 334 case R_386_GOT32: 335 case R_386_GOT32X: 336 case R_386_TLS_GOTIE: 337 return R_GOT_FROM_END; 338 case R_386_GOTOFF: 339 return R_GOTREL; 340 case R_386_TLS_LE: 341 return R_TLS; 342 case R_386_TLS_LE_32: 343 return R_NEG_TLS; 344 } 345 } 346 347 RelExpr X86TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data, 348 RelExpr Expr) const { 349 switch (Expr) { 350 default: 351 return Expr; 352 case R_RELAX_TLS_GD_TO_IE: 353 return R_RELAX_TLS_GD_TO_IE_END; 354 case R_RELAX_TLS_GD_TO_LE: 355 return R_RELAX_TLS_GD_TO_LE_NEG; 356 } 357 } 358 359 void X86TargetInfo::writeGotPltHeader(uint8_t *Buf) const { 360 write32le(Buf, Out<ELF32LE>::Dynamic->getVA()); 361 } 362 363 void X86TargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &S) const { 364 // Entries in .got.plt initially points back to the corresponding 365 // PLT entries with a fixed offset to skip the first instruction. 366 write32le(Buf, S.getPltVA<ELF32LE>() + 6); 367 } 368 369 uint32_t X86TargetInfo::getDynRel(uint32_t Type) const { 370 if (Type == R_386_TLS_LE) 371 return R_386_TLS_TPOFF; 372 if (Type == R_386_TLS_LE_32) 373 return R_386_TLS_TPOFF32; 374 return Type; 375 } 376 377 bool X86TargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const { 378 return Type == R_386_TLS_GD; 379 } 380 381 bool X86TargetInfo::isTlsLocalDynamicRel(uint32_t Type) const { 382 return Type == R_386_TLS_LDO_32 || Type == R_386_TLS_LDM; 383 } 384 385 bool X86TargetInfo::isTlsInitialExecRel(uint32_t Type) const { 386 return Type == R_386_TLS_IE || Type == R_386_TLS_GOTIE; 387 } 388 389 void X86TargetInfo::writePltHeader(uint8_t *Buf) const { 390 // Executable files and shared object files have 391 // separate procedure linkage tables. 392 if (Config->Pic) { 393 const uint8_t V[] = { 394 0xff, 0xb3, 0x04, 0x00, 0x00, 0x00, // pushl 4(%ebx) 395 0xff, 0xa3, 0x08, 0x00, 0x00, 0x00, // jmp *8(%ebx) 396 0x90, 0x90, 0x90, 0x90 // nop; nop; nop; nop 397 }; 398 memcpy(Buf, V, sizeof(V)); 399 return; 400 } 401 402 const uint8_t PltData[] = { 403 0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushl (GOT+4) 404 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *(GOT+8) 405 0x90, 0x90, 0x90, 0x90 // nop; nop; nop; nop 406 }; 407 memcpy(Buf, PltData, sizeof(PltData)); 408 uint32_t Got = Out<ELF32LE>::GotPlt->getVA(); 409 write32le(Buf + 2, Got + 4); 410 write32le(Buf + 8, Got + 8); 411 } 412 413 void X86TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, 414 uint64_t PltEntryAddr, int32_t Index, 415 unsigned RelOff) const { 416 const uint8_t Inst[] = { 417 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, // jmp *foo_in_GOT|*foo@GOT(%ebx) 418 0x68, 0x00, 0x00, 0x00, 0x00, // pushl $reloc_offset 419 0xe9, 0x00, 0x00, 0x00, 0x00 // jmp .PLT0@PC 420 }; 421 memcpy(Buf, Inst, sizeof(Inst)); 422 423 // jmp *foo@GOT(%ebx) or jmp *foo_in_GOT 424 Buf[1] = Config->Pic ? 0xa3 : 0x25; 425 uint32_t Got = Out<ELF32LE>::GotPlt->getVA(); 426 write32le(Buf + 2, Config->Shared ? GotEntryAddr - Got : GotEntryAddr); 427 write32le(Buf + 7, RelOff); 428 write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16); 429 } 430 431 uint64_t X86TargetInfo::getImplicitAddend(const uint8_t *Buf, 432 uint32_t Type) const { 433 switch (Type) { 434 default: 435 return 0; 436 case R_386_32: 437 case R_386_GOT32: 438 case R_386_GOT32X: 439 case R_386_GOTOFF: 440 case R_386_GOTPC: 441 case R_386_PC32: 442 case R_386_PLT32: 443 return read32le(Buf); 444 } 445 } 446 447 void X86TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, 448 uint64_t Val) const { 449 checkInt<32>(Val, Type); 450 write32le(Loc, Val); 451 } 452 453 void X86TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, 454 uint64_t Val) const { 455 // Convert 456 // leal x@tlsgd(, %ebx, 1), 457 // call __tls_get_addr@plt 458 // to 459 // movl %gs:0,%eax 460 // subl $x@ntpoff,%eax 461 const uint8_t Inst[] = { 462 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax 463 0x81, 0xe8, 0x00, 0x00, 0x00, 0x00 // subl 0(%ebx), %eax 464 }; 465 memcpy(Loc - 3, Inst, sizeof(Inst)); 466 relocateOne(Loc + 5, R_386_32, Val); 467 } 468 469 void X86TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, 470 uint64_t Val) const { 471 // Convert 472 // leal x@tlsgd(, %ebx, 1), 473 // call __tls_get_addr@plt 474 // to 475 // movl %gs:0, %eax 476 // addl x@gotntpoff(%ebx), %eax 477 const uint8_t Inst[] = { 478 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax 479 0x03, 0x83, 0x00, 0x00, 0x00, 0x00 // addl 0(%ebx), %eax 480 }; 481 memcpy(Loc - 3, Inst, sizeof(Inst)); 482 relocateOne(Loc + 5, R_386_32, Val); 483 } 484 485 // In some conditions, relocations can be optimized to avoid using GOT. 486 // This function does that for Initial Exec to Local Exec case. 487 void X86TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, 488 uint64_t Val) const { 489 // Ulrich's document section 6.2 says that @gotntpoff can 490 // be used with MOVL or ADDL instructions. 491 // @indntpoff is similar to @gotntpoff, but for use in 492 // position dependent code. 493 uint8_t Reg = (Loc[-1] >> 3) & 7; 494 495 if (Type == R_386_TLS_IE) { 496 if (Loc[-1] == 0xa1) { 497 // "movl foo@indntpoff,%eax" -> "movl $foo,%eax" 498 // This case is different from the generic case below because 499 // this is a 5 byte instruction while below is 6 bytes. 500 Loc[-1] = 0xb8; 501 } else if (Loc[-2] == 0x8b) { 502 // "movl foo@indntpoff,%reg" -> "movl $foo,%reg" 503 Loc[-2] = 0xc7; 504 Loc[-1] = 0xc0 | Reg; 505 } else { 506 // "addl foo@indntpoff,%reg" -> "addl $foo,%reg" 507 Loc[-2] = 0x81; 508 Loc[-1] = 0xc0 | Reg; 509 } 510 } else { 511 assert(Type == R_386_TLS_GOTIE); 512 if (Loc[-2] == 0x8b) { 513 // "movl foo@gottpoff(%rip),%reg" -> "movl $foo,%reg" 514 Loc[-2] = 0xc7; 515 Loc[-1] = 0xc0 | Reg; 516 } else { 517 // "addl foo@gotntpoff(%rip),%reg" -> "leal foo(%reg),%reg" 518 Loc[-2] = 0x8d; 519 Loc[-1] = 0x80 | (Reg << 3) | Reg; 520 } 521 } 522 relocateOne(Loc, R_386_TLS_LE, Val); 523 } 524 525 void X86TargetInfo::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, 526 uint64_t Val) const { 527 if (Type == R_386_TLS_LDO_32) { 528 relocateOne(Loc, R_386_TLS_LE, Val); 529 return; 530 } 531 532 // Convert 533 // leal foo(%reg),%eax 534 // call ___tls_get_addr 535 // to 536 // movl %gs:0,%eax 537 // nop 538 // leal 0(%esi,1),%esi 539 const uint8_t Inst[] = { 540 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0,%eax 541 0x90, // nop 542 0x8d, 0x74, 0x26, 0x00 // leal 0(%esi,1),%esi 543 }; 544 memcpy(Loc - 2, Inst, sizeof(Inst)); 545 } 546 547 template <class ELFT> X86_64TargetInfo<ELFT>::X86_64TargetInfo() { 548 MaxPageSize = 0x200000; // 2MiB 549 CopyRel = R_X86_64_COPY; 550 GotRel = R_X86_64_GLOB_DAT; 551 PltRel = R_X86_64_JUMP_SLOT; 552 RelativeRel = R_X86_64_RELATIVE; 553 IRelativeRel = R_X86_64_IRELATIVE; 554 TlsGotRel = R_X86_64_TPOFF64; 555 TlsModuleIndexRel = R_X86_64_DTPMOD64; 556 TlsOffsetRel = R_X86_64_DTPOFF64; 557 GotEntrySize = 8; 558 GotPltEntrySize = 8; 559 PltEntrySize = 16; 560 PltHeaderSize = 16; 561 TlsGdRelaxSkip = 2; 562 } 563 564 template <class ELFT> 565 RelExpr X86_64TargetInfo<ELFT>::getRelExpr(uint32_t Type, 566 const SymbolBody &S) const { 567 switch (Type) { 568 default: 569 return R_ABS; 570 case R_X86_64_TPOFF32: 571 return R_TLS; 572 case R_X86_64_TLSLD: 573 return R_TLSLD_PC; 574 case R_X86_64_TLSGD: 575 return R_TLSGD_PC; 576 case R_X86_64_SIZE32: 577 case R_X86_64_SIZE64: 578 return R_SIZE; 579 case R_X86_64_PLT32: 580 return R_PLT_PC; 581 case R_X86_64_PC32: 582 case R_X86_64_PC64: 583 return R_PC; 584 case R_X86_64_GOT32: 585 return R_GOT_FROM_END; 586 case R_X86_64_GOTPCREL: 587 case R_X86_64_GOTPCRELX: 588 case R_X86_64_REX_GOTPCRELX: 589 case R_X86_64_GOTTPOFF: 590 return R_GOT_PC; 591 } 592 } 593 594 template <class ELFT> 595 void X86_64TargetInfo<ELFT>::writeGotPltHeader(uint8_t *Buf) const { 596 // The first entry holds the value of _DYNAMIC. It is not clear why that is 597 // required, but it is documented in the psabi and the glibc dynamic linker 598 // seems to use it (note that this is relevant for linking ld.so, not any 599 // other program). 600 write64le(Buf, Out<ELFT>::Dynamic->getVA()); 601 } 602 603 template <class ELFT> 604 void X86_64TargetInfo<ELFT>::writeGotPlt(uint8_t *Buf, 605 const SymbolBody &S) const { 606 // See comments in X86TargetInfo::writeGotPlt. 607 write32le(Buf, S.getPltVA<ELFT>() + 6); 608 } 609 610 template <class ELFT> 611 void X86_64TargetInfo<ELFT>::writePltHeader(uint8_t *Buf) const { 612 const uint8_t PltData[] = { 613 0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushq GOT+8(%rip) 614 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *GOT+16(%rip) 615 0x0f, 0x1f, 0x40, 0x00 // nopl 0x0(rax) 616 }; 617 memcpy(Buf, PltData, sizeof(PltData)); 618 uint64_t Got = Out<ELFT>::GotPlt->getVA(); 619 uint64_t Plt = Out<ELFT>::Plt->getVA(); 620 write32le(Buf + 2, Got - Plt + 2); // GOT+8 621 write32le(Buf + 8, Got - Plt + 4); // GOT+16 622 } 623 624 template <class ELFT> 625 void X86_64TargetInfo<ELFT>::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, 626 uint64_t PltEntryAddr, int32_t Index, 627 unsigned RelOff) const { 628 const uint8_t Inst[] = { 629 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmpq *got(%rip) 630 0x68, 0x00, 0x00, 0x00, 0x00, // pushq <relocation index> 631 0xe9, 0x00, 0x00, 0x00, 0x00 // jmpq plt[0] 632 }; 633 memcpy(Buf, Inst, sizeof(Inst)); 634 635 write32le(Buf + 2, GotEntryAddr - PltEntryAddr - 6); 636 write32le(Buf + 7, Index); 637 write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16); 638 } 639 640 template <class ELFT> 641 uint32_t X86_64TargetInfo<ELFT>::getDynRel(uint32_t Type) const { 642 if (Type == R_X86_64_PC32 || Type == R_X86_64_32) 643 errorDynRel(Type); 644 return Type; 645 } 646 647 template <class ELFT> 648 bool X86_64TargetInfo<ELFT>::isTlsInitialExecRel(uint32_t Type) const { 649 return Type == R_X86_64_GOTTPOFF; 650 } 651 652 template <class ELFT> 653 bool X86_64TargetInfo<ELFT>::isTlsGlobalDynamicRel(uint32_t Type) const { 654 return Type == R_X86_64_TLSGD; 655 } 656 657 template <class ELFT> 658 bool X86_64TargetInfo<ELFT>::isTlsLocalDynamicRel(uint32_t Type) const { 659 return Type == R_X86_64_DTPOFF32 || Type == R_X86_64_DTPOFF64 || 660 Type == R_X86_64_TLSLD; 661 } 662 663 template <class ELFT> 664 void X86_64TargetInfo<ELFT>::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, 665 uint64_t Val) const { 666 // Convert 667 // .byte 0x66 668 // leaq x@tlsgd(%rip), %rdi 669 // .word 0x6666 670 // rex64 671 // call __tls_get_addr@plt 672 // to 673 // mov %fs:0x0,%rax 674 // lea x@tpoff,%rax 675 const uint8_t Inst[] = { 676 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax 677 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff,%rax 678 }; 679 memcpy(Loc - 4, Inst, sizeof(Inst)); 680 // The original code used a pc relative relocation and so we have to 681 // compensate for the -4 in had in the addend. 682 relocateOne(Loc + 8, R_X86_64_TPOFF32, Val + 4); 683 } 684 685 template <class ELFT> 686 void X86_64TargetInfo<ELFT>::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, 687 uint64_t Val) const { 688 // Convert 689 // .byte 0x66 690 // leaq x@tlsgd(%rip), %rdi 691 // .word 0x6666 692 // rex64 693 // call __tls_get_addr@plt 694 // to 695 // mov %fs:0x0,%rax 696 // addq x@tpoff,%rax 697 const uint8_t Inst[] = { 698 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax 699 0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00 // addq x@tpoff,%rax 700 }; 701 memcpy(Loc - 4, Inst, sizeof(Inst)); 702 // Both code sequences are PC relatives, but since we are moving the constant 703 // forward by 8 bytes we have to subtract the value by 8. 704 relocateOne(Loc + 8, R_X86_64_PC32, Val - 8); 705 } 706 707 // In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to 708 // R_X86_64_TPOFF32 so that it does not use GOT. 709 template <class ELFT> 710 void X86_64TargetInfo<ELFT>::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, 711 uint64_t Val) const { 712 uint8_t *Inst = Loc - 3; 713 uint8_t Reg = Loc[-1] >> 3; 714 uint8_t *RegSlot = Loc - 1; 715 716 // Note that ADD with RSP or R12 is converted to ADD instead of LEA 717 // because LEA with these registers needs 4 bytes to encode and thus 718 // wouldn't fit the space. 719 720 if (memcmp(Inst, "\x48\x03\x25", 3) == 0) { 721 // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp" 722 memcpy(Inst, "\x48\x81\xc4", 3); 723 } else if (memcmp(Inst, "\x4c\x03\x25", 3) == 0) { 724 // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12" 725 memcpy(Inst, "\x49\x81\xc4", 3); 726 } else if (memcmp(Inst, "\x4c\x03", 2) == 0) { 727 // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]" 728 memcpy(Inst, "\x4d\x8d", 2); 729 *RegSlot = 0x80 | (Reg << 3) | Reg; 730 } else if (memcmp(Inst, "\x48\x03", 2) == 0) { 731 // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg" 732 memcpy(Inst, "\x48\x8d", 2); 733 *RegSlot = 0x80 | (Reg << 3) | Reg; 734 } else if (memcmp(Inst, "\x4c\x8b", 2) == 0) { 735 // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]" 736 memcpy(Inst, "\x49\xc7", 2); 737 *RegSlot = 0xc0 | Reg; 738 } else if (memcmp(Inst, "\x48\x8b", 2) == 0) { 739 // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg" 740 memcpy(Inst, "\x48\xc7", 2); 741 *RegSlot = 0xc0 | Reg; 742 } else { 743 fatal("R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only"); 744 } 745 746 // The original code used a PC relative relocation. 747 // Need to compensate for the -4 it had in the addend. 748 relocateOne(Loc, R_X86_64_TPOFF32, Val + 4); 749 } 750 751 template <class ELFT> 752 void X86_64TargetInfo<ELFT>::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, 753 uint64_t Val) const { 754 // Convert 755 // leaq bar@tlsld(%rip), %rdi 756 // callq __tls_get_addr@PLT 757 // leaq bar@dtpoff(%rax), %rcx 758 // to 759 // .word 0x6666 760 // .byte 0x66 761 // mov %fs:0,%rax 762 // leaq bar@tpoff(%rax), %rcx 763 if (Type == R_X86_64_DTPOFF64) { 764 write64le(Loc, Val); 765 return; 766 } 767 if (Type == R_X86_64_DTPOFF32) { 768 relocateOne(Loc, R_X86_64_TPOFF32, Val); 769 return; 770 } 771 772 const uint8_t Inst[] = { 773 0x66, 0x66, // .word 0x6666 774 0x66, // .byte 0x66 775 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax 776 }; 777 memcpy(Loc - 3, Inst, sizeof(Inst)); 778 } 779 780 template <class ELFT> 781 void X86_64TargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint32_t Type, 782 uint64_t Val) const { 783 switch (Type) { 784 case R_X86_64_32: 785 checkUInt<32>(Val, Type); 786 write32le(Loc, Val); 787 break; 788 case R_X86_64_32S: 789 case R_X86_64_TPOFF32: 790 case R_X86_64_GOT32: 791 case R_X86_64_GOTPCREL: 792 case R_X86_64_GOTPCRELX: 793 case R_X86_64_REX_GOTPCRELX: 794 case R_X86_64_PC32: 795 case R_X86_64_GOTTPOFF: 796 case R_X86_64_PLT32: 797 case R_X86_64_TLSGD: 798 case R_X86_64_TLSLD: 799 case R_X86_64_DTPOFF32: 800 case R_X86_64_SIZE32: 801 checkInt<32>(Val, Type); 802 write32le(Loc, Val); 803 break; 804 case R_X86_64_64: 805 case R_X86_64_DTPOFF64: 806 case R_X86_64_SIZE64: 807 case R_X86_64_PC64: 808 write64le(Loc, Val); 809 break; 810 default: 811 fatal("unrecognized reloc " + Twine(Type)); 812 } 813 } 814 815 template <class ELFT> 816 RelExpr X86_64TargetInfo<ELFT>::adjustRelaxExpr(uint32_t Type, 817 const uint8_t *Data, 818 RelExpr RelExpr) const { 819 if (Type != R_X86_64_GOTPCRELX && Type != R_X86_64_REX_GOTPCRELX) 820 return RelExpr; 821 const uint8_t Op = Data[-2]; 822 const uint8_t ModRm = Data[-1]; 823 // FIXME: When PIC is disabled and foo is defined locally in the 824 // lower 32 bit address space, memory operand in mov can be converted into 825 // immediate operand. Otherwise, mov must be changed to lea. We support only 826 // latter relaxation at this moment. 827 if (Op == 0x8b) 828 return R_RELAX_GOT_PC; 829 // Relax call and jmp. 830 if (Op == 0xff && (ModRm == 0x15 || ModRm == 0x25)) 831 return R_RELAX_GOT_PC; 832 833 // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor. 834 // If PIC then no relaxation is available. 835 // We also don't relax test/binop instructions without REX byte, 836 // they are 32bit operations and not common to have. 837 assert(Type == R_X86_64_REX_GOTPCRELX); 838 return Config->Pic ? RelExpr : R_RELAX_GOT_PC_NOPIC; 839 } 840 841 // A subset of relaxations can only be applied for no-PIC. This method 842 // handles such relaxations. Instructions encoding information was taken from: 843 // "Intel 64 and IA-32 Architectures Software Developer's Manual V2" 844 // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/ 845 // 64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf) 846 template <class ELFT> 847 void X86_64TargetInfo<ELFT>::relaxGotNoPic(uint8_t *Loc, uint64_t Val, 848 uint8_t Op, uint8_t ModRm) const { 849 const uint8_t Rex = Loc[-3]; 850 // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg". 851 if (Op == 0x85) { 852 // See "TEST-Logical Compare" (4-428 Vol. 2B), 853 // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension). 854 855 // ModR/M byte has form XX YYY ZZZ, where 856 // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1). 857 // XX has different meanings: 858 // 00: The operand's memory address is in reg1. 859 // 01: The operand's memory address is reg1 + a byte-sized displacement. 860 // 10: The operand's memory address is reg1 + a word-sized displacement. 861 // 11: The operand is reg1 itself. 862 // If an instruction requires only one operand, the unused reg2 field 863 // holds extra opcode bits rather than a register code 864 // 0xC0 == 11 000 000 binary. 865 // 0x38 == 00 111 000 binary. 866 // We transfer reg2 to reg1 here as operand. 867 // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3). 868 Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3; // ModR/M byte. 869 870 // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32 871 // See "TEST-Logical Compare" (4-428 Vol. 2B). 872 Loc[-2] = 0xf7; 873 874 // Move R bit to the B bit in REX byte. 875 // REX byte is encoded as 0100WRXB, where 876 // 0100 is 4bit fixed pattern. 877 // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the 878 // default operand size is used (which is 32-bit for most but not all 879 // instructions). 880 // REX.R This 1-bit value is an extension to the MODRM.reg field. 881 // REX.X This 1-bit value is an extension to the SIB.index field. 882 // REX.B This 1-bit value is an extension to the MODRM.rm field or the 883 // SIB.base field. 884 // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A). 885 Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2; 886 relocateOne(Loc, R_X86_64_PC32, Val); 887 return; 888 } 889 890 // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub 891 // or xor operations. 892 893 // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg". 894 // Logic is close to one for test instruction above, but we also 895 // write opcode extension here, see below for details. 896 Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3 | (Op & 0x3c); // ModR/M byte. 897 898 // Primary opcode is 0x81, opcode extension is one of: 899 // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB, 900 // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP. 901 // This value was wrote to MODRM.reg in a line above. 902 // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15), 903 // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for 904 // descriptions about each operation. 905 Loc[-2] = 0x81; 906 Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2; 907 relocateOne(Loc, R_X86_64_PC32, Val); 908 } 909 910 template <class ELFT> 911 void X86_64TargetInfo<ELFT>::relaxGot(uint8_t *Loc, uint64_t Val) const { 912 const uint8_t Op = Loc[-2]; 913 const uint8_t ModRm = Loc[-1]; 914 915 // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg". 916 if (Op == 0x8b) { 917 Loc[-2] = 0x8d; 918 relocateOne(Loc, R_X86_64_PC32, Val); 919 return; 920 } 921 922 if (Op != 0xff) { 923 // We are relaxing a rip relative to an absolute, so compensate 924 // for the old -4 addend. 925 assert(!Config->Pic); 926 relaxGotNoPic(Loc, Val + 4, Op, ModRm); 927 return; 928 } 929 930 // Convert call/jmp instructions. 931 if (ModRm == 0x15) { 932 // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo". 933 // Instead we convert to "addr32 call foo" where addr32 is an instruction 934 // prefix. That makes result expression to be a single instruction. 935 Loc[-2] = 0x67; // addr32 prefix 936 Loc[-1] = 0xe8; // call 937 relocateOne(Loc, R_X86_64_PC32, Val); 938 return; 939 } 940 941 // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop". 942 // jmp doesn't return, so it is fine to use nop here, it is just a stub. 943 assert(ModRm == 0x25); 944 Loc[-2] = 0xe9; // jmp 945 Loc[3] = 0x90; // nop 946 relocateOne(Loc - 1, R_X86_64_PC32, Val + 1); 947 } 948 949 // Relocation masks following the #lo(value), #hi(value), #ha(value), 950 // #higher(value), #highera(value), #highest(value), and #highesta(value) 951 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi 952 // document. 953 static uint16_t applyPPCLo(uint64_t V) { return V; } 954 static uint16_t applyPPCHi(uint64_t V) { return V >> 16; } 955 static uint16_t applyPPCHa(uint64_t V) { return (V + 0x8000) >> 16; } 956 static uint16_t applyPPCHigher(uint64_t V) { return V >> 32; } 957 static uint16_t applyPPCHighera(uint64_t V) { return (V + 0x8000) >> 32; } 958 static uint16_t applyPPCHighest(uint64_t V) { return V >> 48; } 959 static uint16_t applyPPCHighesta(uint64_t V) { return (V + 0x8000) >> 48; } 960 961 PPCTargetInfo::PPCTargetInfo() {} 962 963 void PPCTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, 964 uint64_t Val) const { 965 switch (Type) { 966 case R_PPC_ADDR16_HA: 967 write16be(Loc, applyPPCHa(Val)); 968 break; 969 case R_PPC_ADDR16_LO: 970 write16be(Loc, applyPPCLo(Val)); 971 break; 972 default: 973 fatal("unrecognized reloc " + Twine(Type)); 974 } 975 } 976 977 RelExpr PPCTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const { 978 return R_ABS; 979 } 980 981 PPC64TargetInfo::PPC64TargetInfo() { 982 PltRel = GotRel = R_PPC64_GLOB_DAT; 983 RelativeRel = R_PPC64_RELATIVE; 984 GotEntrySize = 8; 985 GotPltEntrySize = 8; 986 PltEntrySize = 32; 987 PltHeaderSize = 0; 988 989 // We need 64K pages (at least under glibc/Linux, the loader won't 990 // set different permissions on a finer granularity than that). 991 PageSize = 65536; 992 993 // The PPC64 ELF ABI v1 spec, says: 994 // 995 // It is normally desirable to put segments with different characteristics 996 // in separate 256 Mbyte portions of the address space, to give the 997 // operating system full paging flexibility in the 64-bit address space. 998 // 999 // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers 1000 // use 0x10000000 as the starting address. 1001 DefaultImageBase = 0x10000000; 1002 } 1003 1004 static uint64_t PPC64TocOffset = 0x8000; 1005 1006 uint64_t getPPC64TocBase() { 1007 // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The 1008 // TOC starts where the first of these sections starts. We always create a 1009 // .got when we see a relocation that uses it, so for us the start is always 1010 // the .got. 1011 uint64_t TocVA = Out<ELF64BE>::Got->getVA(); 1012 1013 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000 1014 // thus permitting a full 64 Kbytes segment. Note that the glibc startup 1015 // code (crt1.o) assumes that you can get from the TOC base to the 1016 // start of the .toc section with only a single (signed) 16-bit relocation. 1017 return TocVA + PPC64TocOffset; 1018 } 1019 1020 RelExpr PPC64TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const { 1021 switch (Type) { 1022 default: 1023 return R_ABS; 1024 case R_PPC64_TOC16: 1025 case R_PPC64_TOC16_DS: 1026 case R_PPC64_TOC16_HA: 1027 case R_PPC64_TOC16_HI: 1028 case R_PPC64_TOC16_LO: 1029 case R_PPC64_TOC16_LO_DS: 1030 return R_GOTREL; 1031 case R_PPC64_TOC: 1032 return R_PPC_TOC; 1033 case R_PPC64_REL24: 1034 return R_PPC_PLT_OPD; 1035 } 1036 } 1037 1038 void PPC64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, 1039 uint64_t PltEntryAddr, int32_t Index, 1040 unsigned RelOff) const { 1041 uint64_t Off = GotEntryAddr - getPPC64TocBase(); 1042 1043 // FIXME: What we should do, in theory, is get the offset of the function 1044 // descriptor in the .opd section, and use that as the offset from %r2 (the 1045 // TOC-base pointer). Instead, we have the GOT-entry offset, and that will 1046 // be a pointer to the function descriptor in the .opd section. Using 1047 // this scheme is simpler, but requires an extra indirection per PLT dispatch. 1048 1049 write32be(Buf, 0xf8410028); // std %r2, 40(%r1) 1050 write32be(Buf + 4, 0x3d620000 | applyPPCHa(Off)); // addis %r11, %r2, X@ha 1051 write32be(Buf + 8, 0xe98b0000 | applyPPCLo(Off)); // ld %r12, X@l(%r11) 1052 write32be(Buf + 12, 0xe96c0000); // ld %r11,0(%r12) 1053 write32be(Buf + 16, 0x7d6903a6); // mtctr %r11 1054 write32be(Buf + 20, 0xe84c0008); // ld %r2,8(%r12) 1055 write32be(Buf + 24, 0xe96c0010); // ld %r11,16(%r12) 1056 write32be(Buf + 28, 0x4e800420); // bctr 1057 } 1058 1059 static std::pair<uint32_t, uint64_t> toAddr16Rel(uint32_t Type, uint64_t Val) { 1060 uint64_t V = Val - PPC64TocOffset; 1061 switch (Type) { 1062 case R_PPC64_TOC16: return {R_PPC64_ADDR16, V}; 1063 case R_PPC64_TOC16_DS: return {R_PPC64_ADDR16_DS, V}; 1064 case R_PPC64_TOC16_HA: return {R_PPC64_ADDR16_HA, V}; 1065 case R_PPC64_TOC16_HI: return {R_PPC64_ADDR16_HI, V}; 1066 case R_PPC64_TOC16_LO: return {R_PPC64_ADDR16_LO, V}; 1067 case R_PPC64_TOC16_LO_DS: return {R_PPC64_ADDR16_LO_DS, V}; 1068 default: return {Type, Val}; 1069 } 1070 } 1071 1072 void PPC64TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, 1073 uint64_t Val) const { 1074 // For a TOC-relative relocation, proceed in terms of the corresponding 1075 // ADDR16 relocation type. 1076 std::tie(Type, Val) = toAddr16Rel(Type, Val); 1077 1078 switch (Type) { 1079 case R_PPC64_ADDR14: { 1080 checkAlignment<4>(Val, Type); 1081 // Preserve the AA/LK bits in the branch instruction 1082 uint8_t AALK = Loc[3]; 1083 write16be(Loc + 2, (AALK & 3) | (Val & 0xfffc)); 1084 break; 1085 } 1086 case R_PPC64_ADDR16: 1087 checkInt<16>(Val, Type); 1088 write16be(Loc, Val); 1089 break; 1090 case R_PPC64_ADDR16_DS: 1091 checkInt<16>(Val, Type); 1092 write16be(Loc, (read16be(Loc) & 3) | (Val & ~3)); 1093 break; 1094 case R_PPC64_ADDR16_HA: 1095 case R_PPC64_REL16_HA: 1096 write16be(Loc, applyPPCHa(Val)); 1097 break; 1098 case R_PPC64_ADDR16_HI: 1099 case R_PPC64_REL16_HI: 1100 write16be(Loc, applyPPCHi(Val)); 1101 break; 1102 case R_PPC64_ADDR16_HIGHER: 1103 write16be(Loc, applyPPCHigher(Val)); 1104 break; 1105 case R_PPC64_ADDR16_HIGHERA: 1106 write16be(Loc, applyPPCHighera(Val)); 1107 break; 1108 case R_PPC64_ADDR16_HIGHEST: 1109 write16be(Loc, applyPPCHighest(Val)); 1110 break; 1111 case R_PPC64_ADDR16_HIGHESTA: 1112 write16be(Loc, applyPPCHighesta(Val)); 1113 break; 1114 case R_PPC64_ADDR16_LO: 1115 write16be(Loc, applyPPCLo(Val)); 1116 break; 1117 case R_PPC64_ADDR16_LO_DS: 1118 case R_PPC64_REL16_LO: 1119 write16be(Loc, (read16be(Loc) & 3) | (applyPPCLo(Val) & ~3)); 1120 break; 1121 case R_PPC64_ADDR32: 1122 case R_PPC64_REL32: 1123 checkInt<32>(Val, Type); 1124 write32be(Loc, Val); 1125 break; 1126 case R_PPC64_ADDR64: 1127 case R_PPC64_REL64: 1128 case R_PPC64_TOC: 1129 write64be(Loc, Val); 1130 break; 1131 case R_PPC64_REL24: { 1132 uint32_t Mask = 0x03FFFFFC; 1133 checkInt<24>(Val, Type); 1134 write32be(Loc, (read32be(Loc) & ~Mask) | (Val & Mask)); 1135 break; 1136 } 1137 default: 1138 fatal("unrecognized reloc " + Twine(Type)); 1139 } 1140 } 1141 1142 AArch64TargetInfo::AArch64TargetInfo() { 1143 CopyRel = R_AARCH64_COPY; 1144 RelativeRel = R_AARCH64_RELATIVE; 1145 IRelativeRel = R_AARCH64_IRELATIVE; 1146 GotRel = R_AARCH64_GLOB_DAT; 1147 PltRel = R_AARCH64_JUMP_SLOT; 1148 TlsDescRel = R_AARCH64_TLSDESC; 1149 TlsGotRel = R_AARCH64_TLS_TPREL64; 1150 GotEntrySize = 8; 1151 GotPltEntrySize = 8; 1152 PltEntrySize = 16; 1153 PltHeaderSize = 32; 1154 1155 // It doesn't seem to be documented anywhere, but tls on aarch64 uses variant 1156 // 1 of the tls structures and the tcb size is 16. 1157 TcbSize = 16; 1158 } 1159 1160 RelExpr AArch64TargetInfo::getRelExpr(uint32_t Type, 1161 const SymbolBody &S) const { 1162 switch (Type) { 1163 default: 1164 return R_ABS; 1165 case R_AARCH64_TLSDESC_ADR_PAGE21: 1166 return R_TLSDESC_PAGE; 1167 case R_AARCH64_TLSDESC_LD64_LO12_NC: 1168 case R_AARCH64_TLSDESC_ADD_LO12_NC: 1169 return R_TLSDESC; 1170 case R_AARCH64_TLSDESC_CALL: 1171 return R_HINT; 1172 case R_AARCH64_TLSLE_ADD_TPREL_HI12: 1173 case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: 1174 return R_TLS; 1175 case R_AARCH64_CALL26: 1176 case R_AARCH64_CONDBR19: 1177 case R_AARCH64_JUMP26: 1178 case R_AARCH64_TSTBR14: 1179 return R_PLT_PC; 1180 case R_AARCH64_PREL16: 1181 case R_AARCH64_PREL32: 1182 case R_AARCH64_PREL64: 1183 case R_AARCH64_ADR_PREL_LO21: 1184 return R_PC; 1185 case R_AARCH64_ADR_PREL_PG_HI21: 1186 return R_PAGE_PC; 1187 case R_AARCH64_LD64_GOT_LO12_NC: 1188 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: 1189 return R_GOT; 1190 case R_AARCH64_ADR_GOT_PAGE: 1191 case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: 1192 return R_GOT_PAGE_PC; 1193 } 1194 } 1195 1196 RelExpr AArch64TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data, 1197 RelExpr Expr) const { 1198 if (Expr == R_RELAX_TLS_GD_TO_IE) { 1199 if (Type == R_AARCH64_TLSDESC_ADR_PAGE21) 1200 return R_RELAX_TLS_GD_TO_IE_PAGE_PC; 1201 return R_RELAX_TLS_GD_TO_IE_ABS; 1202 } 1203 return Expr; 1204 } 1205 1206 bool AArch64TargetInfo::usesOnlyLowPageBits(uint32_t Type) const { 1207 switch (Type) { 1208 default: 1209 return false; 1210 case R_AARCH64_ADD_ABS_LO12_NC: 1211 case R_AARCH64_LD64_GOT_LO12_NC: 1212 case R_AARCH64_LDST128_ABS_LO12_NC: 1213 case R_AARCH64_LDST16_ABS_LO12_NC: 1214 case R_AARCH64_LDST32_ABS_LO12_NC: 1215 case R_AARCH64_LDST64_ABS_LO12_NC: 1216 case R_AARCH64_LDST8_ABS_LO12_NC: 1217 case R_AARCH64_TLSDESC_ADD_LO12_NC: 1218 case R_AARCH64_TLSDESC_LD64_LO12_NC: 1219 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: 1220 return true; 1221 } 1222 } 1223 1224 bool AArch64TargetInfo::isTlsInitialExecRel(uint32_t Type) const { 1225 return Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 || 1226 Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC; 1227 } 1228 1229 uint32_t AArch64TargetInfo::getDynRel(uint32_t Type) const { 1230 if (Type == R_AARCH64_ABS32 || Type == R_AARCH64_ABS64) 1231 return Type; 1232 // Keep it going with a dummy value so that we can find more reloc errors. 1233 errorDynRel(Type); 1234 return R_AARCH64_ABS32; 1235 } 1236 1237 void AArch64TargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &) const { 1238 write64le(Buf, Out<ELF64LE>::Plt->getVA()); 1239 } 1240 1241 static uint64_t getAArch64Page(uint64_t Expr) { 1242 return Expr & (~static_cast<uint64_t>(0xFFF)); 1243 } 1244 1245 void AArch64TargetInfo::writePltHeader(uint8_t *Buf) const { 1246 const uint8_t PltData[] = { 1247 0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]! 1248 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[2])) 1249 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.plt.got[2]))] 1250 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.plt.got[2])) 1251 0x20, 0x02, 0x1f, 0xd6, // br x17 1252 0x1f, 0x20, 0x03, 0xd5, // nop 1253 0x1f, 0x20, 0x03, 0xd5, // nop 1254 0x1f, 0x20, 0x03, 0xd5 // nop 1255 }; 1256 memcpy(Buf, PltData, sizeof(PltData)); 1257 1258 uint64_t Got = Out<ELF64LE>::GotPlt->getVA(); 1259 uint64_t Plt = Out<ELF64LE>::Plt->getVA(); 1260 relocateOne(Buf + 4, R_AARCH64_ADR_PREL_PG_HI21, 1261 getAArch64Page(Got + 16) - getAArch64Page(Plt + 4)); 1262 relocateOne(Buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, Got + 16); 1263 relocateOne(Buf + 12, R_AARCH64_ADD_ABS_LO12_NC, Got + 16); 1264 } 1265 1266 void AArch64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, 1267 uint64_t PltEntryAddr, int32_t Index, 1268 unsigned RelOff) const { 1269 const uint8_t Inst[] = { 1270 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[n])) 1271 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.plt.got[n]))] 1272 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.plt.got[n])) 1273 0x20, 0x02, 0x1f, 0xd6 // br x17 1274 }; 1275 memcpy(Buf, Inst, sizeof(Inst)); 1276 1277 relocateOne(Buf, R_AARCH64_ADR_PREL_PG_HI21, 1278 getAArch64Page(GotEntryAddr) - getAArch64Page(PltEntryAddr)); 1279 relocateOne(Buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, GotEntryAddr); 1280 relocateOne(Buf + 8, R_AARCH64_ADD_ABS_LO12_NC, GotEntryAddr); 1281 } 1282 1283 static void updateAArch64Addr(uint8_t *L, uint64_t Imm) { 1284 uint32_t ImmLo = (Imm & 0x3) << 29; 1285 uint32_t ImmHi = (Imm & 0x1FFFFC) << 3; 1286 uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3); 1287 write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi); 1288 } 1289 1290 static inline void updateAArch64Add(uint8_t *L, uint64_t Imm) { 1291 or32le(L, (Imm & 0xFFF) << 10); 1292 } 1293 1294 void AArch64TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, 1295 uint64_t Val) const { 1296 switch (Type) { 1297 case R_AARCH64_ABS16: 1298 case R_AARCH64_PREL16: 1299 checkIntUInt<16>(Val, Type); 1300 write16le(Loc, Val); 1301 break; 1302 case R_AARCH64_ABS32: 1303 case R_AARCH64_PREL32: 1304 checkIntUInt<32>(Val, Type); 1305 write32le(Loc, Val); 1306 break; 1307 case R_AARCH64_ABS64: 1308 case R_AARCH64_PREL64: 1309 write64le(Loc, Val); 1310 break; 1311 case R_AARCH64_ADD_ABS_LO12_NC: 1312 // This relocation stores 12 bits and there's no instruction 1313 // to do it. Instead, we do a 32 bits store of the value 1314 // of r_addend bitwise-or'ed Loc. This assumes that the addend 1315 // bits in Loc are zero. 1316 or32le(Loc, (Val & 0xFFF) << 10); 1317 break; 1318 case R_AARCH64_ADR_GOT_PAGE: 1319 case R_AARCH64_ADR_PREL_PG_HI21: 1320 case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: 1321 case R_AARCH64_TLSDESC_ADR_PAGE21: 1322 checkInt<33>(Val, Type); 1323 updateAArch64Addr(Loc, Val >> 12); 1324 break; 1325 case R_AARCH64_ADR_PREL_LO21: 1326 checkInt<21>(Val, Type); 1327 updateAArch64Addr(Loc, Val); 1328 break; 1329 case R_AARCH64_CALL26: 1330 case R_AARCH64_JUMP26: 1331 checkInt<28>(Val, Type); 1332 or32le(Loc, (Val & 0x0FFFFFFC) >> 2); 1333 break; 1334 case R_AARCH64_CONDBR19: 1335 checkInt<21>(Val, Type); 1336 or32le(Loc, (Val & 0x1FFFFC) << 3); 1337 break; 1338 case R_AARCH64_LD64_GOT_LO12_NC: 1339 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: 1340 case R_AARCH64_TLSDESC_LD64_LO12_NC: 1341 checkAlignment<8>(Val, Type); 1342 or32le(Loc, (Val & 0xFF8) << 7); 1343 break; 1344 case R_AARCH64_LDST128_ABS_LO12_NC: 1345 or32le(Loc, (Val & 0x0FF8) << 6); 1346 break; 1347 case R_AARCH64_LDST16_ABS_LO12_NC: 1348 or32le(Loc, (Val & 0x0FFC) << 9); 1349 break; 1350 case R_AARCH64_LDST8_ABS_LO12_NC: 1351 or32le(Loc, (Val & 0xFFF) << 10); 1352 break; 1353 case R_AARCH64_LDST32_ABS_LO12_NC: 1354 or32le(Loc, (Val & 0xFFC) << 8); 1355 break; 1356 case R_AARCH64_LDST64_ABS_LO12_NC: 1357 or32le(Loc, (Val & 0xFF8) << 7); 1358 break; 1359 case R_AARCH64_TSTBR14: 1360 checkInt<16>(Val, Type); 1361 or32le(Loc, (Val & 0xFFFC) << 3); 1362 break; 1363 case R_AARCH64_TLSLE_ADD_TPREL_HI12: 1364 checkInt<24>(Val, Type); 1365 updateAArch64Add(Loc, Val >> 12); 1366 break; 1367 case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: 1368 case R_AARCH64_TLSDESC_ADD_LO12_NC: 1369 updateAArch64Add(Loc, Val); 1370 break; 1371 default: 1372 fatal("unrecognized reloc " + Twine(Type)); 1373 } 1374 } 1375 1376 void AArch64TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, 1377 uint64_t Val) const { 1378 // TLSDESC Global-Dynamic relocation are in the form: 1379 // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21] 1380 // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12_NC] 1381 // add x0, x0, :tlsdesc_los:v [_AARCH64_TLSDESC_ADD_LO12_NC] 1382 // .tlsdesccall [R_AARCH64_TLSDESC_CALL] 1383 // blr x1 1384 // And it can optimized to: 1385 // movz x0, #0x0, lsl #16 1386 // movk x0, #0x10 1387 // nop 1388 // nop 1389 checkUInt<32>(Val, Type); 1390 1391 switch (Type) { 1392 case R_AARCH64_TLSDESC_ADD_LO12_NC: 1393 case R_AARCH64_TLSDESC_CALL: 1394 write32le(Loc, 0xd503201f); // nop 1395 return; 1396 case R_AARCH64_TLSDESC_ADR_PAGE21: 1397 write32le(Loc, 0xd2a00000 | (((Val >> 16) & 0xffff) << 5)); // movz 1398 return; 1399 case R_AARCH64_TLSDESC_LD64_LO12_NC: 1400 write32le(Loc, 0xf2800000 | ((Val & 0xffff) << 5)); // movk 1401 return; 1402 default: 1403 llvm_unreachable("unsupported relocation for TLS GD to LE relaxation"); 1404 } 1405 } 1406 1407 void AArch64TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, 1408 uint64_t Val) const { 1409 // TLSDESC Global-Dynamic relocation are in the form: 1410 // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21] 1411 // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12_NC] 1412 // add x0, x0, :tlsdesc_los:v [_AARCH64_TLSDESC_ADD_LO12_NC] 1413 // .tlsdesccall [R_AARCH64_TLSDESC_CALL] 1414 // blr x1 1415 // And it can optimized to: 1416 // adrp x0, :gottprel:v 1417 // ldr x0, [x0, :gottprel_lo12:v] 1418 // nop 1419 // nop 1420 1421 switch (Type) { 1422 case R_AARCH64_TLSDESC_ADD_LO12_NC: 1423 case R_AARCH64_TLSDESC_CALL: 1424 write32le(Loc, 0xd503201f); // nop 1425 break; 1426 case R_AARCH64_TLSDESC_ADR_PAGE21: 1427 write32le(Loc, 0x90000000); // adrp 1428 relocateOne(Loc, R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, Val); 1429 break; 1430 case R_AARCH64_TLSDESC_LD64_LO12_NC: 1431 write32le(Loc, 0xf9400000); // ldr 1432 relocateOne(Loc, R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, Val); 1433 break; 1434 default: 1435 llvm_unreachable("unsupported relocation for TLS GD to LE relaxation"); 1436 } 1437 } 1438 1439 void AArch64TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, 1440 uint64_t Val) const { 1441 checkUInt<32>(Val, Type); 1442 1443 if (Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) { 1444 // Generate MOVZ. 1445 uint32_t RegNo = read32le(Loc) & 0x1f; 1446 write32le(Loc, (0xd2a00000 | RegNo) | (((Val >> 16) & 0xffff) << 5)); 1447 return; 1448 } 1449 if (Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) { 1450 // Generate MOVK. 1451 uint32_t RegNo = read32le(Loc) & 0x1f; 1452 write32le(Loc, (0xf2800000 | RegNo) | ((Val & 0xffff) << 5)); 1453 return; 1454 } 1455 llvm_unreachable("invalid relocation for TLS IE to LE relaxation"); 1456 } 1457 1458 AMDGPUTargetInfo::AMDGPUTargetInfo() { 1459 GotRel = R_AMDGPU_ABS64; 1460 GotEntrySize = 8; 1461 } 1462 1463 void AMDGPUTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, 1464 uint64_t Val) const { 1465 switch (Type) { 1466 case R_AMDGPU_ABS32: 1467 case R_AMDGPU_GOTPCREL: 1468 case R_AMDGPU_REL32: 1469 write32le(Loc, Val); 1470 break; 1471 default: 1472 fatal("unrecognized reloc " + Twine(Type)); 1473 } 1474 } 1475 1476 RelExpr AMDGPUTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const { 1477 switch (Type) { 1478 case R_AMDGPU_ABS32: 1479 return R_ABS; 1480 case R_AMDGPU_REL32: 1481 return R_PC; 1482 case R_AMDGPU_GOTPCREL: 1483 return R_GOT_PC; 1484 default: 1485 fatal("do not know how to handle relocation " + Twine(Type)); 1486 } 1487 } 1488 1489 ARMTargetInfo::ARMTargetInfo() { 1490 CopyRel = R_ARM_COPY; 1491 RelativeRel = R_ARM_RELATIVE; 1492 IRelativeRel = R_ARM_IRELATIVE; 1493 GotRel = R_ARM_GLOB_DAT; 1494 PltRel = R_ARM_JUMP_SLOT; 1495 TlsGotRel = R_ARM_TLS_TPOFF32; 1496 TlsModuleIndexRel = R_ARM_TLS_DTPMOD32; 1497 TlsOffsetRel = R_ARM_TLS_DTPOFF32; 1498 GotEntrySize = 4; 1499 GotPltEntrySize = 4; 1500 PltEntrySize = 16; 1501 PltHeaderSize = 20; 1502 // ARM uses Variant 1 TLS 1503 TcbSize = 8; 1504 NeedsThunks = true; 1505 } 1506 1507 RelExpr ARMTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const { 1508 switch (Type) { 1509 default: 1510 return R_ABS; 1511 case R_ARM_THM_JUMP11: 1512 return R_PC; 1513 case R_ARM_CALL: 1514 case R_ARM_JUMP24: 1515 case R_ARM_PC24: 1516 case R_ARM_PLT32: 1517 case R_ARM_THM_JUMP19: 1518 case R_ARM_THM_JUMP24: 1519 case R_ARM_THM_CALL: 1520 return R_PLT_PC; 1521 case R_ARM_GOTOFF32: 1522 // (S + A) - GOT_ORG 1523 return R_GOTREL; 1524 case R_ARM_GOT_BREL: 1525 // GOT(S) + A - GOT_ORG 1526 return R_GOT_OFF; 1527 case R_ARM_GOT_PREL: 1528 case R_ARM_TLS_IE32: 1529 // GOT(S) + A - P 1530 return R_GOT_PC; 1531 case R_ARM_TARGET1: 1532 return Config->Target1Rel ? R_PC : R_ABS; 1533 case R_ARM_TLS_GD32: 1534 return R_TLSGD_PC; 1535 case R_ARM_TLS_LDM32: 1536 return R_TLSLD_PC; 1537 case R_ARM_BASE_PREL: 1538 // B(S) + A - P 1539 // FIXME: currently B(S) assumed to be .got, this may not hold for all 1540 // platforms. 1541 return R_GOTONLY_PC; 1542 case R_ARM_MOVW_PREL_NC: 1543 case R_ARM_MOVT_PREL: 1544 case R_ARM_PREL31: 1545 case R_ARM_REL32: 1546 case R_ARM_THM_MOVW_PREL_NC: 1547 case R_ARM_THM_MOVT_PREL: 1548 return R_PC; 1549 case R_ARM_TLS_LE32: 1550 return R_TLS; 1551 } 1552 } 1553 1554 uint32_t ARMTargetInfo::getDynRel(uint32_t Type) const { 1555 if (Type == R_ARM_TARGET1 && !Config->Target1Rel) 1556 return R_ARM_ABS32; 1557 if (Type == R_ARM_ABS32) 1558 return Type; 1559 // Keep it going with a dummy value so that we can find more reloc errors. 1560 errorDynRel(Type); 1561 return R_ARM_ABS32; 1562 } 1563 1564 void ARMTargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &) const { 1565 write32le(Buf, Out<ELF32LE>::Plt->getVA()); 1566 } 1567 1568 void ARMTargetInfo::writePltHeader(uint8_t *Buf) const { 1569 const uint8_t PltData[] = { 1570 0x04, 0xe0, 0x2d, 0xe5, // str lr, [sp,#-4]! 1571 0x04, 0xe0, 0x9f, 0xe5, // ldr lr, L2 1572 0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr 1573 0x08, 0xf0, 0xbe, 0xe5, // ldr pc, [lr, #8] 1574 0x00, 0x00, 0x00, 0x00, // L2: .word &(.got.plt) - L1 - 8 1575 }; 1576 memcpy(Buf, PltData, sizeof(PltData)); 1577 uint64_t GotPlt = Out<ELF32LE>::GotPlt->getVA(); 1578 uint64_t L1 = Out<ELF32LE>::Plt->getVA() + 8; 1579 write32le(Buf + 16, GotPlt - L1 - 8); 1580 } 1581 1582 void ARMTargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, 1583 uint64_t PltEntryAddr, int32_t Index, 1584 unsigned RelOff) const { 1585 // FIXME: Using simple code sequence with simple relocations. 1586 // There is a more optimal sequence but it requires support for the group 1587 // relocations. See ELF for the ARM Architecture Appendix A.3 1588 const uint8_t PltData[] = { 1589 0x04, 0xc0, 0x9f, 0xe5, // ldr ip, L2 1590 0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc 1591 0x00, 0xf0, 0x9c, 0xe5, // ldr pc, [ip] 1592 0x00, 0x00, 0x00, 0x00, // L2: .word Offset(&(.plt.got) - L1 - 8 1593 }; 1594 memcpy(Buf, PltData, sizeof(PltData)); 1595 uint64_t L1 = PltEntryAddr + 4; 1596 write32le(Buf + 12, GotEntryAddr - L1 - 8); 1597 } 1598 1599 RelExpr ARMTargetInfo::getThunkExpr(RelExpr Expr, uint32_t RelocType, 1600 const InputFile &File, 1601 const SymbolBody &S) const { 1602 // A state change from ARM to Thumb and vice versa must go through an 1603 // interworking thunk if the relocation type is not R_ARM_CALL or 1604 // R_ARM_THM_CALL. 1605 switch (RelocType) { 1606 case R_ARM_PC24: 1607 case R_ARM_PLT32: 1608 case R_ARM_JUMP24: 1609 // Source is ARM, all PLT entries are ARM so no interworking required. 1610 // Otherwise we need to interwork if Symbol has bit 0 set (Thumb). 1611 if (Expr == R_PC && ((S.getVA<ELF32LE>() & 1) == 1)) 1612 return R_THUNK_PC; 1613 break; 1614 case R_ARM_THM_JUMP19: 1615 case R_ARM_THM_JUMP24: 1616 // Source is Thumb, all PLT entries are ARM so interworking is required. 1617 // Otherwise we need to interwork if Symbol has bit 0 clear (ARM). 1618 if (Expr == R_PLT_PC) 1619 return R_THUNK_PLT_PC; 1620 if ((S.getVA<ELF32LE>() & 1) == 0) 1621 return R_THUNK_PC; 1622 break; 1623 } 1624 return Expr; 1625 } 1626 1627 void ARMTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, 1628 uint64_t Val) const { 1629 switch (Type) { 1630 case R_ARM_NONE: 1631 break; 1632 case R_ARM_ABS32: 1633 case R_ARM_BASE_PREL: 1634 case R_ARM_GOTOFF32: 1635 case R_ARM_GOT_BREL: 1636 case R_ARM_GOT_PREL: 1637 case R_ARM_REL32: 1638 case R_ARM_TARGET1: 1639 case R_ARM_TLS_GD32: 1640 case R_ARM_TLS_IE32: 1641 case R_ARM_TLS_LDM32: 1642 case R_ARM_TLS_LDO32: 1643 case R_ARM_TLS_LE32: 1644 write32le(Loc, Val); 1645 break; 1646 case R_ARM_PREL31: 1647 checkInt<31>(Val, Type); 1648 write32le(Loc, (read32le(Loc) & 0x80000000) | (Val & ~0x80000000)); 1649 break; 1650 case R_ARM_CALL: 1651 // R_ARM_CALL is used for BL and BLX instructions, depending on the 1652 // value of bit 0 of Val, we must select a BL or BLX instruction 1653 if (Val & 1) { 1654 // If bit 0 of Val is 1 the target is Thumb, we must select a BLX. 1655 // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1' 1656 checkInt<26>(Val, Type); 1657 write32le(Loc, 0xfa000000 | // opcode 1658 ((Val & 2) << 23) | // H 1659 ((Val >> 2) & 0x00ffffff)); // imm24 1660 break; 1661 } 1662 if ((read32le(Loc) & 0xfe000000) == 0xfa000000) 1663 // BLX (always unconditional) instruction to an ARM Target, select an 1664 // unconditional BL. 1665 write32le(Loc, 0xeb000000 | (read32le(Loc) & 0x00ffffff)); 1666 // fall through as BL encoding is shared with B 1667 case R_ARM_JUMP24: 1668 case R_ARM_PC24: 1669 case R_ARM_PLT32: 1670 checkInt<26>(Val, Type); 1671 write32le(Loc, (read32le(Loc) & ~0x00ffffff) | ((Val >> 2) & 0x00ffffff)); 1672 break; 1673 case R_ARM_THM_JUMP11: 1674 checkInt<12>(Val, Type); 1675 write16le(Loc, (read32le(Loc) & 0xf800) | ((Val >> 1) & 0x07ff)); 1676 break; 1677 case R_ARM_THM_JUMP19: 1678 // Encoding T3: Val = S:J2:J1:imm6:imm11:0 1679 checkInt<21>(Val, Type); 1680 write16le(Loc, 1681 (read16le(Loc) & 0xfbc0) | // opcode cond 1682 ((Val >> 10) & 0x0400) | // S 1683 ((Val >> 12) & 0x003f)); // imm6 1684 write16le(Loc + 2, 1685 0x8000 | // opcode 1686 ((Val >> 8) & 0x0800) | // J2 1687 ((Val >> 5) & 0x2000) | // J1 1688 ((Val >> 1) & 0x07ff)); // imm11 1689 break; 1690 case R_ARM_THM_CALL: 1691 // R_ARM_THM_CALL is used for BL and BLX instructions, depending on the 1692 // value of bit 0 of Val, we must select a BL or BLX instruction 1693 if ((Val & 1) == 0) { 1694 // Ensure BLX destination is 4-byte aligned. As BLX instruction may 1695 // only be two byte aligned. This must be done before overflow check 1696 Val = alignTo(Val, 4); 1697 } 1698 // Bit 12 is 0 for BLX, 1 for BL 1699 write16le(Loc + 2, (read16le(Loc + 2) & ~0x1000) | (Val & 1) << 12); 1700 // Fall through as rest of encoding is the same as B.W 1701 case R_ARM_THM_JUMP24: 1702 // Encoding B T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0 1703 // FIXME: Use of I1 and I2 require v6T2ops 1704 checkInt<25>(Val, Type); 1705 write16le(Loc, 1706 0xf000 | // opcode 1707 ((Val >> 14) & 0x0400) | // S 1708 ((Val >> 12) & 0x03ff)); // imm10 1709 write16le(Loc + 2, 1710 (read16le(Loc + 2) & 0xd000) | // opcode 1711 (((~(Val >> 10)) ^ (Val >> 11)) & 0x2000) | // J1 1712 (((~(Val >> 11)) ^ (Val >> 13)) & 0x0800) | // J2 1713 ((Val >> 1) & 0x07ff)); // imm11 1714 break; 1715 case R_ARM_MOVW_ABS_NC: 1716 case R_ARM_MOVW_PREL_NC: 1717 write32le(Loc, (read32le(Loc) & ~0x000f0fff) | ((Val & 0xf000) << 4) | 1718 (Val & 0x0fff)); 1719 break; 1720 case R_ARM_MOVT_ABS: 1721 case R_ARM_MOVT_PREL: 1722 checkInt<32>(Val, Type); 1723 write32le(Loc, (read32le(Loc) & ~0x000f0fff) | 1724 (((Val >> 16) & 0xf000) << 4) | ((Val >> 16) & 0xfff)); 1725 break; 1726 case R_ARM_THM_MOVT_ABS: 1727 case R_ARM_THM_MOVT_PREL: 1728 // Encoding T1: A = imm4:i:imm3:imm8 1729 checkInt<32>(Val, Type); 1730 write16le(Loc, 1731 0xf2c0 | // opcode 1732 ((Val >> 17) & 0x0400) | // i 1733 ((Val >> 28) & 0x000f)); // imm4 1734 write16le(Loc + 2, 1735 (read16le(Loc + 2) & 0x8f00) | // opcode 1736 ((Val >> 12) & 0x7000) | // imm3 1737 ((Val >> 16) & 0x00ff)); // imm8 1738 break; 1739 case R_ARM_THM_MOVW_ABS_NC: 1740 case R_ARM_THM_MOVW_PREL_NC: 1741 // Encoding T3: A = imm4:i:imm3:imm8 1742 write16le(Loc, 1743 0xf240 | // opcode 1744 ((Val >> 1) & 0x0400) | // i 1745 ((Val >> 12) & 0x000f)); // imm4 1746 write16le(Loc + 2, 1747 (read16le(Loc + 2) & 0x8f00) | // opcode 1748 ((Val << 4) & 0x7000) | // imm3 1749 (Val & 0x00ff)); // imm8 1750 break; 1751 default: 1752 fatal("unrecognized reloc " + Twine(Type)); 1753 } 1754 } 1755 1756 uint64_t ARMTargetInfo::getImplicitAddend(const uint8_t *Buf, 1757 uint32_t Type) const { 1758 switch (Type) { 1759 default: 1760 return 0; 1761 case R_ARM_ABS32: 1762 case R_ARM_BASE_PREL: 1763 case R_ARM_GOTOFF32: 1764 case R_ARM_GOT_BREL: 1765 case R_ARM_GOT_PREL: 1766 case R_ARM_REL32: 1767 case R_ARM_TARGET1: 1768 case R_ARM_TLS_GD32: 1769 case R_ARM_TLS_LDM32: 1770 case R_ARM_TLS_LDO32: 1771 case R_ARM_TLS_IE32: 1772 case R_ARM_TLS_LE32: 1773 return SignExtend64<32>(read32le(Buf)); 1774 case R_ARM_PREL31: 1775 return SignExtend64<31>(read32le(Buf)); 1776 case R_ARM_CALL: 1777 case R_ARM_JUMP24: 1778 case R_ARM_PC24: 1779 case R_ARM_PLT32: 1780 return SignExtend64<26>(read32le(Buf) << 2); 1781 case R_ARM_THM_JUMP11: 1782 return SignExtend64<12>(read16le(Buf) << 1); 1783 case R_ARM_THM_JUMP19: { 1784 // Encoding T3: A = S:J2:J1:imm10:imm6:0 1785 uint16_t Hi = read16le(Buf); 1786 uint16_t Lo = read16le(Buf + 2); 1787 return SignExtend64<20>(((Hi & 0x0400) << 10) | // S 1788 ((Lo & 0x0800) << 8) | // J2 1789 ((Lo & 0x2000) << 5) | // J1 1790 ((Hi & 0x003f) << 12) | // imm6 1791 ((Lo & 0x07ff) << 1)); // imm11:0 1792 } 1793 case R_ARM_THM_CALL: 1794 case R_ARM_THM_JUMP24: { 1795 // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0 1796 // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S) 1797 // FIXME: I1 and I2 require v6T2ops 1798 uint16_t Hi = read16le(Buf); 1799 uint16_t Lo = read16le(Buf + 2); 1800 return SignExtend64<24>(((Hi & 0x0400) << 14) | // S 1801 (~((Lo ^ (Hi << 3)) << 10) & 0x00800000) | // I1 1802 (~((Lo ^ (Hi << 1)) << 11) & 0x00400000) | // I2 1803 ((Hi & 0x003ff) << 12) | // imm0 1804 ((Lo & 0x007ff) << 1)); // imm11:0 1805 } 1806 // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and 1807 // MOVT is in the range -32768 <= A < 32768 1808 case R_ARM_MOVW_ABS_NC: 1809 case R_ARM_MOVT_ABS: 1810 case R_ARM_MOVW_PREL_NC: 1811 case R_ARM_MOVT_PREL: { 1812 uint64_t Val = read32le(Buf) & 0x000f0fff; 1813 return SignExtend64<16>(((Val & 0x000f0000) >> 4) | (Val & 0x00fff)); 1814 } 1815 case R_ARM_THM_MOVW_ABS_NC: 1816 case R_ARM_THM_MOVT_ABS: 1817 case R_ARM_THM_MOVW_PREL_NC: 1818 case R_ARM_THM_MOVT_PREL: { 1819 // Encoding T3: A = imm4:i:imm3:imm8 1820 uint16_t Hi = read16le(Buf); 1821 uint16_t Lo = read16le(Buf + 2); 1822 return SignExtend64<16>(((Hi & 0x000f) << 12) | // imm4 1823 ((Hi & 0x0400) << 1) | // i 1824 ((Lo & 0x7000) >> 4) | // imm3 1825 (Lo & 0x00ff)); // imm8 1826 } 1827 } 1828 } 1829 1830 bool ARMTargetInfo::isTlsLocalDynamicRel(uint32_t Type) const { 1831 return Type == R_ARM_TLS_LDO32 || Type == R_ARM_TLS_LDM32; 1832 } 1833 1834 bool ARMTargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const { 1835 return Type == R_ARM_TLS_GD32; 1836 } 1837 1838 bool ARMTargetInfo::isTlsInitialExecRel(uint32_t Type) const { 1839 return Type == R_ARM_TLS_IE32; 1840 } 1841 1842 template <class ELFT> MipsTargetInfo<ELFT>::MipsTargetInfo() { 1843 GotPltHeaderEntriesNum = 2; 1844 PageSize = 65536; 1845 GotEntrySize = sizeof(typename ELFT::uint); 1846 GotPltEntrySize = sizeof(typename ELFT::uint); 1847 PltEntrySize = 16; 1848 PltHeaderSize = 32; 1849 CopyRel = R_MIPS_COPY; 1850 PltRel = R_MIPS_JUMP_SLOT; 1851 NeedsThunks = true; 1852 if (ELFT::Is64Bits) { 1853 RelativeRel = (R_MIPS_64 << 8) | R_MIPS_REL32; 1854 TlsGotRel = R_MIPS_TLS_TPREL64; 1855 TlsModuleIndexRel = R_MIPS_TLS_DTPMOD64; 1856 TlsOffsetRel = R_MIPS_TLS_DTPREL64; 1857 } else { 1858 RelativeRel = R_MIPS_REL32; 1859 TlsGotRel = R_MIPS_TLS_TPREL32; 1860 TlsModuleIndexRel = R_MIPS_TLS_DTPMOD32; 1861 TlsOffsetRel = R_MIPS_TLS_DTPREL32; 1862 } 1863 } 1864 1865 template <class ELFT> 1866 RelExpr MipsTargetInfo<ELFT>::getRelExpr(uint32_t Type, 1867 const SymbolBody &S) const { 1868 if (ELFT::Is64Bits) 1869 // See comment in the calculateMips64RelChain. 1870 Type &= 0xff; 1871 switch (Type) { 1872 default: 1873 return R_ABS; 1874 case R_MIPS_JALR: 1875 return R_HINT; 1876 case R_MIPS_GPREL16: 1877 case R_MIPS_GPREL32: 1878 return R_GOTREL; 1879 case R_MIPS_26: 1880 return R_PLT; 1881 case R_MIPS_HI16: 1882 case R_MIPS_LO16: 1883 case R_MIPS_GOT_OFST: 1884 // MIPS _gp_disp designates offset between start of function and 'gp' 1885 // pointer into GOT. __gnu_local_gp is equal to the current value of 1886 // the 'gp'. Therefore any relocations against them do not require 1887 // dynamic relocation. 1888 if (&S == ElfSym<ELFT>::MipsGpDisp) 1889 return R_PC; 1890 return R_ABS; 1891 case R_MIPS_PC32: 1892 case R_MIPS_PC16: 1893 case R_MIPS_PC19_S2: 1894 case R_MIPS_PC21_S2: 1895 case R_MIPS_PC26_S2: 1896 case R_MIPS_PCHI16: 1897 case R_MIPS_PCLO16: 1898 return R_PC; 1899 case R_MIPS_GOT16: 1900 if (S.isLocal()) 1901 return R_MIPS_GOT_LOCAL_PAGE; 1902 // fallthrough 1903 case R_MIPS_CALL16: 1904 case R_MIPS_GOT_DISP: 1905 case R_MIPS_TLS_GOTTPREL: 1906 return R_MIPS_GOT_OFF; 1907 case R_MIPS_GOT_PAGE: 1908 return R_MIPS_GOT_LOCAL_PAGE; 1909 case R_MIPS_TLS_GD: 1910 return R_MIPS_TLSGD; 1911 case R_MIPS_TLS_LDM: 1912 return R_MIPS_TLSLD; 1913 } 1914 } 1915 1916 template <class ELFT> 1917 uint32_t MipsTargetInfo<ELFT>::getDynRel(uint32_t Type) const { 1918 if (Type == R_MIPS_32 || Type == R_MIPS_64) 1919 return RelativeRel; 1920 // Keep it going with a dummy value so that we can find more reloc errors. 1921 errorDynRel(Type); 1922 return R_MIPS_32; 1923 } 1924 1925 template <class ELFT> 1926 bool MipsTargetInfo<ELFT>::isTlsLocalDynamicRel(uint32_t Type) const { 1927 return Type == R_MIPS_TLS_LDM; 1928 } 1929 1930 template <class ELFT> 1931 bool MipsTargetInfo<ELFT>::isTlsGlobalDynamicRel(uint32_t Type) const { 1932 return Type == R_MIPS_TLS_GD; 1933 } 1934 1935 template <class ELFT> 1936 void MipsTargetInfo<ELFT>::writeGotPlt(uint8_t *Buf, const SymbolBody &) const { 1937 write32<ELFT::TargetEndianness>(Buf, Out<ELFT>::Plt->getVA()); 1938 } 1939 1940 static uint16_t mipsHigh(uint64_t V) { return (V + 0x8000) >> 16; } 1941 1942 template <endianness E, uint8_t BSIZE, uint8_t SHIFT> 1943 static int64_t getPcRelocAddend(const uint8_t *Loc) { 1944 uint32_t Instr = read32<E>(Loc); 1945 uint32_t Mask = 0xffffffff >> (32 - BSIZE); 1946 return SignExtend64<BSIZE + SHIFT>((Instr & Mask) << SHIFT); 1947 } 1948 1949 template <endianness E, uint8_t BSIZE, uint8_t SHIFT> 1950 static void applyMipsPcReloc(uint8_t *Loc, uint32_t Type, uint64_t V) { 1951 uint32_t Mask = 0xffffffff >> (32 - BSIZE); 1952 uint32_t Instr = read32<E>(Loc); 1953 if (SHIFT > 0) 1954 checkAlignment<(1 << SHIFT)>(V, Type); 1955 checkInt<BSIZE + SHIFT>(V, Type); 1956 write32<E>(Loc, (Instr & ~Mask) | ((V >> SHIFT) & Mask)); 1957 } 1958 1959 template <endianness E> 1960 static void writeMipsHi16(uint8_t *Loc, uint64_t V) { 1961 uint32_t Instr = read32<E>(Loc); 1962 write32<E>(Loc, (Instr & 0xffff0000) | mipsHigh(V)); 1963 } 1964 1965 template <endianness E> 1966 static void writeMipsLo16(uint8_t *Loc, uint64_t V) { 1967 uint32_t Instr = read32<E>(Loc); 1968 write32<E>(Loc, (Instr & 0xffff0000) | (V & 0xffff)); 1969 } 1970 1971 template <class ELFT> static bool isMipsR6() { 1972 const auto &FirstObj = cast<ELFFileBase<ELFT>>(*Config->FirstElf); 1973 uint32_t Arch = FirstObj.getObj().getHeader()->e_flags & EF_MIPS_ARCH; 1974 return Arch == EF_MIPS_ARCH_32R6 || Arch == EF_MIPS_ARCH_64R6; 1975 } 1976 1977 template <class ELFT> 1978 void MipsTargetInfo<ELFT>::writePltHeader(uint8_t *Buf) const { 1979 const endianness E = ELFT::TargetEndianness; 1980 write32<E>(Buf, 0x3c1c0000); // lui $28, %hi(&GOTPLT[0]) 1981 write32<E>(Buf + 4, 0x8f990000); // lw $25, %lo(&GOTPLT[0])($28) 1982 write32<E>(Buf + 8, 0x279c0000); // addiu $28, $28, %lo(&GOTPLT[0]) 1983 write32<E>(Buf + 12, 0x031cc023); // subu $24, $24, $28 1984 write32<E>(Buf + 16, 0x03e07825); // move $15, $31 1985 write32<E>(Buf + 20, 0x0018c082); // srl $24, $24, 2 1986 write32<E>(Buf + 24, 0x0320f809); // jalr $25 1987 write32<E>(Buf + 28, 0x2718fffe); // subu $24, $24, 2 1988 uint64_t Got = Out<ELFT>::GotPlt->getVA(); 1989 writeMipsHi16<E>(Buf, Got); 1990 writeMipsLo16<E>(Buf + 4, Got); 1991 writeMipsLo16<E>(Buf + 8, Got); 1992 } 1993 1994 template <class ELFT> 1995 void MipsTargetInfo<ELFT>::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, 1996 uint64_t PltEntryAddr, int32_t Index, 1997 unsigned RelOff) const { 1998 const endianness E = ELFT::TargetEndianness; 1999 write32<E>(Buf, 0x3c0f0000); // lui $15, %hi(.got.plt entry) 2000 write32<E>(Buf + 4, 0x8df90000); // l[wd] $25, %lo(.got.plt entry)($15) 2001 // jr $25 2002 write32<E>(Buf + 8, isMipsR6<ELFT>() ? 0x03200009 : 0x03200008); 2003 write32<E>(Buf + 12, 0x25f80000); // addiu $24, $15, %lo(.got.plt entry) 2004 writeMipsHi16<E>(Buf, GotEntryAddr); 2005 writeMipsLo16<E>(Buf + 4, GotEntryAddr); 2006 writeMipsLo16<E>(Buf + 12, GotEntryAddr); 2007 } 2008 2009 template <class ELFT> 2010 RelExpr MipsTargetInfo<ELFT>::getThunkExpr(RelExpr Expr, uint32_t Type, 2011 const InputFile &File, 2012 const SymbolBody &S) const { 2013 // Any MIPS PIC code function is invoked with its address in register $t9. 2014 // So if we have a branch instruction from non-PIC code to the PIC one 2015 // we cannot make the jump directly and need to create a small stubs 2016 // to save the target function address. 2017 // See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 2018 if (Type != R_MIPS_26) 2019 return Expr; 2020 auto *F = dyn_cast<ELFFileBase<ELFT>>(&File); 2021 if (!F) 2022 return Expr; 2023 // If current file has PIC code, LA25 stub is not required. 2024 if (F->getObj().getHeader()->e_flags & EF_MIPS_PIC) 2025 return Expr; 2026 auto *D = dyn_cast<DefinedRegular<ELFT>>(&S); 2027 if (!D || !D->Section) 2028 return Expr; 2029 // LA25 is required if target file has PIC code 2030 // or target symbol is a PIC symbol. 2031 const ELFFile<ELFT> &DefFile = D->Section->getFile()->getObj(); 2032 bool PicFile = DefFile.getHeader()->e_flags & EF_MIPS_PIC; 2033 bool PicSym = (D->StOther & STO_MIPS_MIPS16) == STO_MIPS_PIC; 2034 return (PicFile || PicSym) ? R_THUNK_ABS : Expr; 2035 } 2036 2037 template <class ELFT> 2038 uint64_t MipsTargetInfo<ELFT>::getImplicitAddend(const uint8_t *Buf, 2039 uint32_t Type) const { 2040 const endianness E = ELFT::TargetEndianness; 2041 switch (Type) { 2042 default: 2043 return 0; 2044 case R_MIPS_32: 2045 case R_MIPS_GPREL32: 2046 return read32<E>(Buf); 2047 case R_MIPS_26: 2048 // FIXME (simon): If the relocation target symbol is not a PLT entry 2049 // we should use another expression for calculation: 2050 // ((A << 2) | (P & 0xf0000000)) >> 2 2051 return SignExtend64<28>((read32<E>(Buf) & 0x3ffffff) << 2); 2052 case R_MIPS_GPREL16: 2053 case R_MIPS_LO16: 2054 case R_MIPS_PCLO16: 2055 case R_MIPS_TLS_DTPREL_HI16: 2056 case R_MIPS_TLS_DTPREL_LO16: 2057 case R_MIPS_TLS_TPREL_HI16: 2058 case R_MIPS_TLS_TPREL_LO16: 2059 return SignExtend64<16>(read32<E>(Buf)); 2060 case R_MIPS_PC16: 2061 return getPcRelocAddend<E, 16, 2>(Buf); 2062 case R_MIPS_PC19_S2: 2063 return getPcRelocAddend<E, 19, 2>(Buf); 2064 case R_MIPS_PC21_S2: 2065 return getPcRelocAddend<E, 21, 2>(Buf); 2066 case R_MIPS_PC26_S2: 2067 return getPcRelocAddend<E, 26, 2>(Buf); 2068 case R_MIPS_PC32: 2069 return getPcRelocAddend<E, 32, 0>(Buf); 2070 } 2071 } 2072 2073 static std::pair<uint32_t, uint64_t> calculateMips64RelChain(uint32_t Type, 2074 uint64_t Val) { 2075 // MIPS N64 ABI packs multiple relocations into the single relocation 2076 // record. In general, all up to three relocations can have arbitrary 2077 // types. In fact, Clang and GCC uses only a few combinations. For now, 2078 // we support two of them. That is allow to pass at least all LLVM 2079 // test suite cases. 2080 // <any relocation> / R_MIPS_SUB / R_MIPS_HI16 | R_MIPS_LO16 2081 // <any relocation> / R_MIPS_64 / R_MIPS_NONE 2082 // The first relocation is a 'real' relocation which is calculated 2083 // using the corresponding symbol's value. The second and the third 2084 // relocations used to modify result of the first one: extend it to 2085 // 64-bit, extract high or low part etc. For details, see part 2.9 Relocation 2086 // at the https://dmz-portal.mips.com/mw/images/8/82/007-4658-001.pdf 2087 uint32_t Type2 = (Type >> 8) & 0xff; 2088 uint32_t Type3 = (Type >> 16) & 0xff; 2089 if (Type2 == R_MIPS_NONE && Type3 == R_MIPS_NONE) 2090 return std::make_pair(Type, Val); 2091 if (Type2 == R_MIPS_64 && Type3 == R_MIPS_NONE) 2092 return std::make_pair(Type2, Val); 2093 if (Type2 == R_MIPS_SUB && (Type3 == R_MIPS_HI16 || Type3 == R_MIPS_LO16)) 2094 return std::make_pair(Type3, -Val); 2095 error("unsupported relocations combination " + Twine(Type)); 2096 return std::make_pair(Type & 0xff, Val); 2097 } 2098 2099 template <class ELFT> 2100 void MipsTargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint32_t Type, 2101 uint64_t Val) const { 2102 const endianness E = ELFT::TargetEndianness; 2103 // Thread pointer and DRP offsets from the start of TLS data area. 2104 // https://www.linux-mips.org/wiki/NPTL 2105 if (Type == R_MIPS_TLS_DTPREL_HI16 || Type == R_MIPS_TLS_DTPREL_LO16) 2106 Val -= 0x8000; 2107 else if (Type == R_MIPS_TLS_TPREL_HI16 || Type == R_MIPS_TLS_TPREL_LO16) 2108 Val -= 0x7000; 2109 if (ELFT::Is64Bits) 2110 std::tie(Type, Val) = calculateMips64RelChain(Type, Val); 2111 switch (Type) { 2112 case R_MIPS_32: 2113 case R_MIPS_GPREL32: 2114 write32<E>(Loc, Val); 2115 break; 2116 case R_MIPS_64: 2117 write64<E>(Loc, Val); 2118 break; 2119 case R_MIPS_26: 2120 write32<E>(Loc, (read32<E>(Loc) & ~0x3ffffff) | ((Val >> 2) & 0x3ffffff)); 2121 break; 2122 case R_MIPS_GOT_DISP: 2123 case R_MIPS_GOT_PAGE: 2124 case R_MIPS_GOT16: 2125 case R_MIPS_GPREL16: 2126 case R_MIPS_TLS_GD: 2127 case R_MIPS_TLS_LDM: 2128 checkInt<16>(Val, Type); 2129 // fallthrough 2130 case R_MIPS_CALL16: 2131 case R_MIPS_GOT_OFST: 2132 case R_MIPS_LO16: 2133 case R_MIPS_PCLO16: 2134 case R_MIPS_TLS_DTPREL_LO16: 2135 case R_MIPS_TLS_GOTTPREL: 2136 case R_MIPS_TLS_TPREL_LO16: 2137 writeMipsLo16<E>(Loc, Val); 2138 break; 2139 case R_MIPS_HI16: 2140 case R_MIPS_PCHI16: 2141 case R_MIPS_TLS_DTPREL_HI16: 2142 case R_MIPS_TLS_TPREL_HI16: 2143 writeMipsHi16<E>(Loc, Val); 2144 break; 2145 case R_MIPS_JALR: 2146 // Ignore this optimization relocation for now 2147 break; 2148 case R_MIPS_PC16: 2149 applyMipsPcReloc<E, 16, 2>(Loc, Type, Val); 2150 break; 2151 case R_MIPS_PC19_S2: 2152 applyMipsPcReloc<E, 19, 2>(Loc, Type, Val); 2153 break; 2154 case R_MIPS_PC21_S2: 2155 applyMipsPcReloc<E, 21, 2>(Loc, Type, Val); 2156 break; 2157 case R_MIPS_PC26_S2: 2158 applyMipsPcReloc<E, 26, 2>(Loc, Type, Val); 2159 break; 2160 case R_MIPS_PC32: 2161 applyMipsPcReloc<E, 32, 0>(Loc, Type, Val); 2162 break; 2163 default: 2164 fatal("unrecognized reloc " + Twine(Type)); 2165 } 2166 } 2167 2168 template <class ELFT> 2169 bool MipsTargetInfo<ELFT>::usesOnlyLowPageBits(uint32_t Type) const { 2170 return Type == R_MIPS_LO16 || Type == R_MIPS_GOT_OFST; 2171 } 2172 } 2173 } 2174