xref: /llvm-project-15.0.7/lld/ELF/Target.cpp (revision 7a5382de)
1 //===- Target.cpp ---------------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Machine-specific things, such as applying relocations, creation of
11 // GOT or PLT entries, etc., are handled in this file.
12 //
13 // Refer the ELF spec for the single letter varaibles, S, A or P, used
14 // in this file. SA is S+A.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "Target.h"
19 #include "Error.h"
20 #include "OutputSections.h"
21 #include "Symbols.h"
22 
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/Object/ELF.h"
25 #include "llvm/Support/Endian.h"
26 #include "llvm/Support/ELF.h"
27 
28 using namespace llvm;
29 using namespace llvm::object;
30 using namespace llvm::support::endian;
31 using namespace llvm::ELF;
32 
33 namespace lld {
34 namespace elf2 {
35 
36 std::unique_ptr<TargetInfo> Target;
37 
38 template <endianness E> static void add32(void *P, int32_t V) {
39   write32<E>(P, read32<E>(P) + V);
40 }
41 
42 static void add32le(uint8_t *P, int32_t V) { add32<support::little>(P, V); }
43 static void or32le(uint8_t *P, int32_t V) { write32le(P, read32le(P) | V); }
44 
45 template <unsigned N> static void checkInt(int64_t V, uint32_t Type) {
46   if (isInt<N>(V))
47     return;
48   StringRef S = getELFRelocationTypeName(Config->EMachine, Type);
49   error("Relocation " + S + " out of range");
50 }
51 
52 template <unsigned N> static void checkUInt(uint64_t V, uint32_t Type) {
53   if (isUInt<N>(V))
54     return;
55   StringRef S = getELFRelocationTypeName(Config->EMachine, Type);
56   error("Relocation " + S + " out of range");
57 }
58 
59 template <unsigned N> static void checkIntUInt(uint64_t V, uint32_t Type) {
60   if (isInt<N>(V) || isUInt<N>(V))
61     return;
62   StringRef S = getELFRelocationTypeName(Config->EMachine, Type);
63   error("Relocation " + S + " out of range");
64 }
65 
66 template <unsigned N> static void checkAlignment(uint64_t V, uint32_t Type) {
67   if ((V & (N - 1)) == 0)
68     return;
69   StringRef S = getELFRelocationTypeName(Config->EMachine, Type);
70   error("Improper alignment for relocation " + S);
71 }
72 
73 template <class ELFT> bool isGnuIFunc(const SymbolBody &S) {
74   if (auto *SS = dyn_cast<DefinedElf<ELFT>>(&S))
75     return SS->Sym.getType() == STT_GNU_IFUNC;
76   return false;
77 }
78 
79 namespace {
80 class X86TargetInfo final : public TargetInfo {
81 public:
82   X86TargetInfo();
83   void writeGotPltHeader(uint8_t *Buf) const override;
84   unsigned getDynRel(unsigned Type) const override;
85   unsigned getTlsGotRel(unsigned Type) const override;
86   bool isTlsDynRel(unsigned Type, const SymbolBody &S) const override;
87   void writeGotPlt(uint8_t *Buf, uint64_t Plt) const override;
88   void writePltZero(uint8_t *Buf) const override;
89   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
90                 int32_t Index, unsigned RelOff) const override;
91   bool needsCopyRel(uint32_t Type, const SymbolBody &S) const override;
92   bool needsDynRelative(unsigned Type) const override;
93   bool needsGot(uint32_t Type, const SymbolBody &S) const override;
94   bool needsPlt(uint32_t Type, const SymbolBody &S) const override;
95   void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
96                    uint64_t SA, uint64_t ZA = 0,
97                    uint8_t *PairedLoc = nullptr) const override;
98   bool canRelaxTls(unsigned Type, const SymbolBody *S) const override;
99   unsigned relaxTls(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
100                     uint64_t SA, const SymbolBody *S) const override;
101   bool isGotRelative(uint32_t Type) const override;
102 
103 private:
104   void relocateTlsLdToLe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
105                          uint64_t SA) const;
106   void relocateTlsGdToIe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
107                          uint64_t SA) const;
108   void relocateTlsGdToLe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
109                          uint64_t SA) const;
110   void relocateTlsIeToLe(unsigned Type, uint8_t *Loc, uint8_t *BufEnd,
111                          uint64_t P, uint64_t SA) const;
112 };
113 
114 class X86_64TargetInfo final : public TargetInfo {
115 public:
116   X86_64TargetInfo();
117   bool isTlsDynRel(unsigned Type, const SymbolBody &S) const override;
118   void writeGotPltHeader(uint8_t *Buf) const override;
119   void writeGotPlt(uint8_t *Buf, uint64_t Plt) const override;
120   void writePltZero(uint8_t *Buf) const override;
121   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
122                 int32_t Index, unsigned RelOff) const override;
123   bool needsCopyRel(uint32_t Type, const SymbolBody &S) const override;
124   bool needsGot(uint32_t Type, const SymbolBody &S) const override;
125   bool needsPlt(uint32_t Type, const SymbolBody &S) const override;
126   void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
127                    uint64_t SA, uint64_t ZA = 0,
128                    uint8_t *PairedLoc = nullptr) const override;
129   bool isRelRelative(uint32_t Type) const override;
130   bool canRelaxTls(unsigned Type, const SymbolBody *S) const override;
131   bool isSizeRel(uint32_t Type) const override;
132   unsigned relaxTls(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
133                     uint64_t SA, const SymbolBody *S) const override;
134 
135 private:
136   void relocateTlsLdToLe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
137                          uint64_t SA) const;
138   void relocateTlsGdToLe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
139                          uint64_t SA) const;
140   void relocateTlsGdToIe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
141                          uint64_t SA) const;
142   void relocateTlsIeToLe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
143                          uint64_t SA) const;
144 };
145 
146 class PPCTargetInfo final : public TargetInfo {
147 public:
148   PPCTargetInfo();
149   void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
150                    uint64_t SA, uint64_t ZA = 0,
151                    uint8_t *PairedLoc = nullptr) const override;
152   bool isRelRelative(uint32_t Type) const override;
153 };
154 
155 class PPC64TargetInfo final : public TargetInfo {
156 public:
157   PPC64TargetInfo();
158   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
159                 int32_t Index, unsigned RelOff) const override;
160   bool needsGot(uint32_t Type, const SymbolBody &S) const override;
161   bool needsPlt(uint32_t Type, const SymbolBody &S) const override;
162   void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
163                    uint64_t SA, uint64_t ZA = 0,
164                    uint8_t *PairedLoc = nullptr) const override;
165   bool isRelRelative(uint32_t Type) const override;
166 };
167 
168 class AArch64TargetInfo final : public TargetInfo {
169 public:
170   AArch64TargetInfo();
171   unsigned getDynRel(unsigned Type) const override;
172   void writeGotPlt(uint8_t *Buf, uint64_t Plt) const override;
173   void writePltZero(uint8_t *Buf) const override;
174   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
175                 int32_t Index, unsigned RelOff) const override;
176   unsigned getTlsGotRel(unsigned Type = -1) const override;
177   bool isTlsDynRel(unsigned Type, const SymbolBody &S) const override;
178   bool needsCopyRel(uint32_t Type, const SymbolBody &S) const override;
179   bool needsGot(uint32_t Type, const SymbolBody &S) const override;
180   bool needsPlt(uint32_t Type, const SymbolBody &S) const override;
181   void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
182                    uint64_t SA, uint64_t ZA = 0,
183                    uint8_t *PairedLoc = nullptr) const override;
184 };
185 
186 class AMDGPUTargetInfo final : public TargetInfo {
187 public:
188   AMDGPUTargetInfo() {}
189   void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
190                    uint64_t SA, uint64_t ZA = 0,
191                    uint8_t *PairedLoc = nullptr) const override;
192 };
193 
194 template <class ELFT> class MipsTargetInfo final : public TargetInfo {
195 public:
196   MipsTargetInfo();
197   unsigned getDynRel(unsigned Type) const override;
198   void writeGotHeader(uint8_t *Buf) const override;
199   bool needsGot(uint32_t Type, const SymbolBody &S) const override;
200   bool needsPlt(uint32_t Type, const SymbolBody &S) const override;
201   void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
202                    uint64_t SA, uint64_t ZA = 0,
203                    uint8_t *PairedLoc = nullptr) const override;
204   bool isHintRel(uint32_t Type) const override;
205   bool isRelRelative(uint32_t Type) const override;
206 };
207 } // anonymous namespace
208 
209 TargetInfo *createTarget() {
210   switch (Config->EMachine) {
211   case EM_386:
212     return new X86TargetInfo();
213   case EM_AARCH64:
214     return new AArch64TargetInfo();
215   case EM_AMDGPU:
216     return new AMDGPUTargetInfo();
217   case EM_MIPS:
218     switch (Config->EKind) {
219     case ELF32LEKind:
220       return new MipsTargetInfo<ELF32LE>();
221     case ELF32BEKind:
222       return new MipsTargetInfo<ELF32BE>();
223     default:
224       fatal("Unsupported MIPS target");
225     }
226   case EM_PPC:
227     return new PPCTargetInfo();
228   case EM_PPC64:
229     return new PPC64TargetInfo();
230   case EM_X86_64:
231     return new X86_64TargetInfo();
232   }
233   fatal("Unknown target machine");
234 }
235 
236 TargetInfo::~TargetInfo() {}
237 
238 bool TargetInfo::canRelaxTls(unsigned Type, const SymbolBody *S) const {
239   return false;
240 }
241 
242 uint64_t TargetInfo::getVAStart() const { return Config->Shared ? 0 : VAStart; }
243 
244 bool TargetInfo::needsCopyRel(uint32_t Type, const SymbolBody &S) const {
245   return false;
246 }
247 
248 bool TargetInfo::isTlsLocalDynamicRel(unsigned Type) const {
249   return Type == TlsLocalDynamicRel;
250 }
251 
252 bool TargetInfo::isTlsGlobalDynamicRel(unsigned Type) const {
253   return Type == TlsGlobalDynamicRel;
254 }
255 
256 bool TargetInfo::isTlsDynRel(unsigned Type, const SymbolBody &S) const {
257   return false;
258 }
259 
260 bool TargetInfo::isGotRelative(uint32_t Type) const { return false; }
261 bool TargetInfo::isHintRel(uint32_t Type) const { return false; }
262 bool TargetInfo::isRelRelative(uint32_t Type) const { return true; }
263 bool TargetInfo::isSizeRel(uint32_t Type) const { return false; }
264 
265 bool TargetInfo::needsGot(uint32_t Type, const SymbolBody &S) const {
266   return false;
267 }
268 
269 bool TargetInfo::needsPlt(uint32_t Type, const SymbolBody &S) const {
270   return false;
271 }
272 
273 unsigned TargetInfo::relaxTls(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type,
274                               uint64_t P, uint64_t SA,
275                               const SymbolBody *S) const {
276   return 0;
277 }
278 
279 X86TargetInfo::X86TargetInfo() {
280   CopyRel = R_386_COPY;
281   GotRel = R_386_GLOB_DAT;
282   PltRel = R_386_JUMP_SLOT;
283   IRelativeRel = R_386_IRELATIVE;
284   RelativeRel = R_386_RELATIVE;
285   TlsGotRel = R_386_TLS_TPOFF;
286   TlsGlobalDynamicRel = R_386_TLS_GD;
287   TlsLocalDynamicRel = R_386_TLS_LDM;
288   TlsModuleIndexRel = R_386_TLS_DTPMOD32;
289   TlsOffsetRel = R_386_TLS_DTPOFF32;
290   UseLazyBinding = true;
291   PltEntrySize = 16;
292   PltZeroSize = 16;
293 }
294 
295 void X86TargetInfo::writeGotPltHeader(uint8_t *Buf) const {
296   write32le(Buf, Out<ELF32LE>::Dynamic->getVA());
297 }
298 
299 void X86TargetInfo::writeGotPlt(uint8_t *Buf, uint64_t Plt) const {
300   // Entries in .got.plt initially points back to the corresponding
301   // PLT entries with a fixed offset to skip the first instruction.
302   write32le(Buf, Plt + 6);
303 }
304 
305 unsigned X86TargetInfo::getDynRel(unsigned Type) const {
306   if (Type == R_386_TLS_LE)
307     return R_386_TLS_TPOFF;
308   if (Type == R_386_TLS_LE_32)
309     return R_386_TLS_TPOFF32;
310   return Type;
311 }
312 
313 unsigned X86TargetInfo::getTlsGotRel(unsigned Type) const {
314   if (Type == R_386_TLS_IE)
315     return Type;
316   return TlsGotRel;
317 }
318 
319 bool X86TargetInfo::isTlsDynRel(unsigned Type, const SymbolBody &S) const {
320   if (Type == R_386_TLS_LE || Type == R_386_TLS_LE_32 ||
321       Type == R_386_TLS_GOTIE)
322     return Config->Shared;
323   if (Type == R_386_TLS_IE)
324     return canBePreempted(&S, true);
325   return Type == R_386_TLS_GD;
326 }
327 
328 void X86TargetInfo::writePltZero(uint8_t *Buf) const {
329   // Executable files and shared object files have
330   // separate procedure linkage tables.
331   if (Config->Shared) {
332     const uint8_t V[] = {
333         0xff, 0xb3, 0x04, 0x00, 0x00, 0x00, // pushl 4(%ebx)
334         0xff, 0xa3, 0x08, 0x00, 0x00, 0x00, // jmp   *8(%ebx)
335         0x90, 0x90, 0x90, 0x90              // nop; nop; nop; nop
336     };
337     memcpy(Buf, V, sizeof(V));
338     return;
339   }
340 
341   const uint8_t PltData[] = {
342       0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushl (GOT+4)
343       0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp   *(GOT+8)
344       0x90, 0x90, 0x90, 0x90              // nop; nop; nop; nop
345   };
346   memcpy(Buf, PltData, sizeof(PltData));
347   uint32_t Got = Out<ELF32LE>::GotPlt->getVA();
348   write32le(Buf + 2, Got + 4);
349   write32le(Buf + 8, Got + 8);
350 }
351 
352 void X86TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
353                              uint64_t PltEntryAddr, int32_t Index,
354                              unsigned RelOff) const {
355   const uint8_t Inst[] = {
356       0xff, 0x00, 0x00, 0x00, 0x00, 0x00, // jmp *foo_in_GOT|*foo@GOT(%ebx)
357       0x68, 0x00, 0x00, 0x00, 0x00,       // pushl $reloc_offset
358       0xe9, 0x00, 0x00, 0x00, 0x00        // jmp .PLT0@PC
359   };
360   memcpy(Buf, Inst, sizeof(Inst));
361 
362   // jmp *foo@GOT(%ebx) or jmp *foo_in_GOT
363   Buf[1] = Config->Shared ? 0xa3 : 0x25;
364   uint32_t Got = UseLazyBinding ? Out<ELF32LE>::GotPlt->getVA()
365                                 : Out<ELF32LE>::Got->getVA();
366   write32le(Buf + 2, Config->Shared ? GotEntryAddr - Got : GotEntryAddr);
367   write32le(Buf + 7, RelOff);
368   write32le(Buf + 12, -Index * PltEntrySize - PltZeroSize - 16);
369 }
370 
371 bool X86TargetInfo::needsCopyRel(uint32_t Type, const SymbolBody &S) const {
372   if (Type == R_386_32 || Type == R_386_16 || Type == R_386_8)
373     if (auto *SS = dyn_cast<SharedSymbol<ELF32LE>>(&S))
374       return SS->Sym.getType() == STT_OBJECT;
375   return false;
376 }
377 
378 bool X86TargetInfo::needsGot(uint32_t Type, const SymbolBody &S) const {
379   if (S.isTls() && Type == R_386_TLS_GD)
380     return Target->canRelaxTls(Type, &S) && canBePreempted(&S, true);
381   if (Type == R_386_TLS_GOTIE || Type == R_386_TLS_IE)
382     return !canRelaxTls(Type, &S);
383   return Type == R_386_GOT32 || needsPlt(Type, S);
384 }
385 
386 bool X86TargetInfo::needsPlt(uint32_t Type, const SymbolBody &S) const {
387   return isGnuIFunc<ELF32LE>(S) ||
388          (Type == R_386_PLT32 && canBePreempted(&S, true)) ||
389          (Type == R_386_PC32 && S.isShared());
390 }
391 
392 bool X86TargetInfo::isGotRelative(uint32_t Type) const {
393   // This relocation does not require got entry,
394   // but it is relative to got and needs it to be created.
395   // Here we request for that.
396   return Type == R_386_GOTOFF;
397 }
398 
399 void X86TargetInfo::relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type,
400                                 uint64_t P, uint64_t SA, uint64_t ZA,
401                                 uint8_t *PairedLoc) const {
402   switch (Type) {
403   case R_386_32:
404     add32le(Loc, SA);
405     break;
406   case R_386_GOT32: {
407     uint64_t V = SA - Out<ELF32LE>::Got->getVA() -
408                  Out<ELF32LE>::Got->getNumEntries() * 4;
409     checkInt<32>(V, Type);
410     add32le(Loc, V);
411     break;
412   }
413   case R_386_GOTOFF:
414     add32le(Loc, SA - Out<ELF32LE>::Got->getVA());
415     break;
416   case R_386_GOTPC:
417     add32le(Loc, SA + Out<ELF32LE>::Got->getVA() - P);
418     break;
419   case R_386_PC32:
420   case R_386_PLT32:
421     add32le(Loc, SA - P);
422     break;
423   case R_386_TLS_GD:
424   case R_386_TLS_LDM:
425   case R_386_TLS_TPOFF: {
426     uint64_t V = SA - Out<ELF32LE>::Got->getVA() -
427                  Out<ELF32LE>::Got->getNumEntries() * 4;
428     checkInt<32>(V, Type);
429     write32le(Loc, V);
430     break;
431   }
432   case R_386_TLS_IE:
433   case R_386_TLS_LDO_32:
434     write32le(Loc, SA);
435     break;
436   case R_386_TLS_LE:
437     write32le(Loc, SA - Out<ELF32LE>::TlsPhdr->p_memsz);
438     break;
439   case R_386_TLS_LE_32:
440     write32le(Loc, Out<ELF32LE>::TlsPhdr->p_memsz - SA);
441     break;
442   default:
443     fatal("unrecognized reloc " + Twine(Type));
444   }
445 }
446 
447 bool X86TargetInfo::canRelaxTls(unsigned Type, const SymbolBody *S) const {
448   if (Config->Shared || (S && !S->isTls()))
449     return false;
450   return Type == R_386_TLS_LDO_32 || Type == R_386_TLS_LDM ||
451          Type == R_386_TLS_GD ||
452          (Type == R_386_TLS_IE && !canBePreempted(S, true)) ||
453          (Type == R_386_TLS_GOTIE && !canBePreempted(S, true));
454 }
455 
456 bool X86TargetInfo::needsDynRelative(unsigned Type) const {
457   return Config->Shared && Type == R_386_TLS_IE;
458 }
459 
460 unsigned X86TargetInfo::relaxTls(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type,
461                                  uint64_t P, uint64_t SA,
462                                  const SymbolBody *S) const {
463   switch (Type) {
464   case R_386_TLS_GD:
465     if (canBePreempted(S, true))
466       relocateTlsGdToIe(Loc, BufEnd, P, SA);
467     else
468       relocateTlsGdToLe(Loc, BufEnd, P, SA);
469     // The next relocation should be against __tls_get_addr, so skip it
470     return 1;
471   case R_386_TLS_GOTIE:
472   case R_386_TLS_IE:
473     relocateTlsIeToLe(Type, Loc, BufEnd, P, SA);
474     return 0;
475   case R_386_TLS_LDM:
476     relocateTlsLdToLe(Loc, BufEnd, P, SA);
477     // The next relocation should be against __tls_get_addr, so skip it
478     return 1;
479   case R_386_TLS_LDO_32:
480     relocateOne(Loc, BufEnd, R_386_TLS_LE, P, SA);
481     return 0;
482   }
483   llvm_unreachable("Unknown TLS optimization");
484 }
485 
486 // "Ulrich Drepper, ELF Handling For Thread-Local Storage" (5.1
487 // IA-32 Linker Optimizations, http://www.akkadia.org/drepper/tls.pdf) shows
488 // how GD can be optimized to IE:
489 //   leal x@tlsgd(, %ebx, 1),
490 //   call __tls_get_addr@plt
491 // Is converted to:
492 //   movl %gs:0, %eax
493 //   addl x@gotntpoff(%ebx), %eax
494 void X86TargetInfo::relocateTlsGdToIe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
495                                       uint64_t SA) const {
496   const uint8_t Inst[] = {
497       0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
498       0x03, 0x83, 0x00, 0x00, 0x00, 0x00  // addl 0(%ebx), %eax
499   };
500   memcpy(Loc - 3, Inst, sizeof(Inst));
501   relocateOne(Loc + 5, BufEnd, R_386_32, P,
502               SA - Out<ELF32LE>::Got->getVA() -
503                   Out<ELF32LE>::Got->getNumEntries() * 4);
504 }
505 
506 // GD can be optimized to LE:
507 //   leal x@tlsgd(, %ebx, 1),
508 //   call __tls_get_addr@plt
509 // Can be converted to:
510 //   movl %gs:0,%eax
511 //   addl $x@ntpoff,%eax
512 // But gold emits subl $foo@tpoff,%eax instead of addl.
513 // These instructions are completely equal in behavior.
514 // This method generates subl to be consistent with gold.
515 void X86TargetInfo::relocateTlsGdToLe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
516                                       uint64_t SA) const {
517   const uint8_t Inst[] = {
518       0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
519       0x81, 0xe8, 0x00, 0x00, 0x00, 0x00  // subl 0(%ebx), %eax
520   };
521   memcpy(Loc - 3, Inst, sizeof(Inst));
522   relocateOne(Loc + 5, BufEnd, R_386_32, P,
523               Out<ELF32LE>::TlsPhdr->p_memsz - SA);
524 }
525 
526 // LD can be optimized to LE:
527 //   leal foo(%reg),%eax
528 //   call ___tls_get_addr
529 // Is converted to:
530 //   movl %gs:0,%eax
531 //   nop
532 //   leal 0(%esi,1),%esi
533 void X86TargetInfo::relocateTlsLdToLe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
534                                       uint64_t SA) const {
535   const uint8_t Inst[] = {
536       0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0,%eax
537       0x90,                               // nop
538       0x8d, 0x74, 0x26, 0x00              // leal 0(%esi,1),%esi
539   };
540   memcpy(Loc - 2, Inst, sizeof(Inst));
541 }
542 
543 // In some conditions, relocations can be optimized to avoid using GOT.
544 // This function does that for Initial Exec to Local Exec case.
545 // Read "ELF Handling For Thread-Local Storage, 5.1
546 // IA-32 Linker Optimizations" (http://www.akkadia.org/drepper/tls.pdf)
547 // by Ulrich Drepper for details.
548 void X86TargetInfo::relocateTlsIeToLe(unsigned Type, uint8_t *Loc,
549                                       uint8_t *BufEnd, uint64_t P,
550                                       uint64_t SA) const {
551   // Ulrich's document section 6.2 says that @gotntpoff can
552   // be used with MOVL or ADDL instructions.
553   // @indntpoff is similar to @gotntpoff, but for use in
554   // position dependent code.
555   uint8_t *Inst = Loc - 2;
556   uint8_t *Op = Loc - 1;
557   uint8_t Reg = (Loc[-1] >> 3) & 7;
558   bool IsMov = *Inst == 0x8b;
559   if (Type == R_386_TLS_IE) {
560     // For R_386_TLS_IE relocation we perform the next transformations:
561     // MOVL foo@INDNTPOFF,%EAX is transformed to MOVL $foo,%EAX
562     // MOVL foo@INDNTPOFF,%REG is transformed to MOVL $foo,%REG
563     // ADDL foo@INDNTPOFF,%REG is transformed to ADDL $foo,%REG
564     // First one is special because when EAX is used the sequence is 5 bytes
565     // long, otherwise it is 6 bytes.
566     if (*Op == 0xa1) {
567       *Op = 0xb8;
568     } else {
569       *Inst = IsMov ? 0xc7 : 0x81;
570       *Op = 0xc0 | ((*Op >> 3) & 7);
571     }
572   } else {
573     // R_386_TLS_GOTIE relocation can be optimized to
574     // R_386_TLS_LE so that it does not use GOT.
575     // "MOVL foo@GOTTPOFF(%RIP), %REG" is transformed to "MOVL $foo, %REG".
576     // "ADDL foo@GOTNTPOFF(%RIP), %REG" is transformed to "LEAL foo(%REG), %REG"
577     // Note: gold converts to ADDL instead of LEAL.
578     *Inst = IsMov ? 0xc7 : 0x8d;
579     if (IsMov)
580       *Op = 0xc0 | ((*Op >> 3) & 7);
581     else
582       *Op = 0x80 | Reg | (Reg << 3);
583   }
584   relocateOne(Loc, BufEnd, R_386_TLS_LE, P, SA);
585 }
586 
587 X86_64TargetInfo::X86_64TargetInfo() {
588   CopyRel = R_X86_64_COPY;
589   GotRel = R_X86_64_GLOB_DAT;
590   PltRel = R_X86_64_JUMP_SLOT;
591   RelativeRel = R_X86_64_RELATIVE;
592   IRelativeRel = R_X86_64_IRELATIVE;
593   TlsGotRel = R_X86_64_TPOFF64;
594   TlsLocalDynamicRel = R_X86_64_TLSLD;
595   TlsGlobalDynamicRel = R_X86_64_TLSGD;
596   TlsModuleIndexRel = R_X86_64_DTPMOD64;
597   TlsOffsetRel = R_X86_64_DTPOFF64;
598   UseLazyBinding = true;
599   PltEntrySize = 16;
600   PltZeroSize = 16;
601 }
602 
603 void X86_64TargetInfo::writeGotPltHeader(uint8_t *Buf) const {
604   write64le(Buf, Out<ELF64LE>::Dynamic->getVA());
605 }
606 
607 void X86_64TargetInfo::writeGotPlt(uint8_t *Buf, uint64_t Plt) const {
608   // See comments in X86TargetInfo::writeGotPlt.
609   write32le(Buf, Plt + 6);
610 }
611 
612 void X86_64TargetInfo::writePltZero(uint8_t *Buf) const {
613   const uint8_t PltData[] = {
614       0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushq GOT+8(%rip)
615       0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *GOT+16(%rip)
616       0x0f, 0x1f, 0x40, 0x00              // nopl 0x0(rax)
617   };
618   memcpy(Buf, PltData, sizeof(PltData));
619   uint64_t Got = Out<ELF64LE>::GotPlt->getVA();
620   uint64_t Plt = Out<ELF64LE>::Plt->getVA();
621   write32le(Buf + 2, Got - Plt + 2); // GOT+8
622   write32le(Buf + 8, Got - Plt + 4); // GOT+16
623 }
624 
625 void X86_64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
626                                 uint64_t PltEntryAddr, int32_t Index,
627                                 unsigned RelOff) const {
628   const uint8_t Inst[] = {
629       0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmpq *got(%rip)
630       0x68, 0x00, 0x00, 0x00, 0x00,       // pushq <relocation index>
631       0xe9, 0x00, 0x00, 0x00, 0x00        // jmpq plt[0]
632   };
633   memcpy(Buf, Inst, sizeof(Inst));
634 
635   write32le(Buf + 2, GotEntryAddr - PltEntryAddr - 6);
636   write32le(Buf + 7, Index);
637   write32le(Buf + 12, -Index * PltEntrySize - PltZeroSize - 16);
638 }
639 
640 bool X86_64TargetInfo::needsCopyRel(uint32_t Type, const SymbolBody &S) const {
641   if (Type == R_X86_64_32S || Type == R_X86_64_32 || Type == R_X86_64_PC32 ||
642       Type == R_X86_64_64)
643     if (auto *SS = dyn_cast<SharedSymbol<ELF64LE>>(&S))
644       return SS->Sym.getType() == STT_OBJECT;
645   return false;
646 }
647 
648 bool X86_64TargetInfo::needsGot(uint32_t Type, const SymbolBody &S) const {
649   if (Type == R_X86_64_TLSGD)
650     return Target->canRelaxTls(Type, &S) && canBePreempted(&S, true);
651   if (Type == R_X86_64_GOTTPOFF)
652     return !canRelaxTls(Type, &S);
653   return Type == R_X86_64_GOTPCREL || needsPlt(Type, S);
654 }
655 
656 bool X86_64TargetInfo::isTlsDynRel(unsigned Type, const SymbolBody &S) const {
657   return Type == R_X86_64_GOTTPOFF || Type == R_X86_64_TLSGD;
658 }
659 
660 bool X86_64TargetInfo::needsPlt(uint32_t Type, const SymbolBody &S) const {
661   if (needsCopyRel(Type, S))
662     return false;
663   if (isGnuIFunc<ELF64LE>(S))
664     return true;
665 
666   switch (Type) {
667   default:
668     return false;
669   case R_X86_64_32:
670   case R_X86_64_64:
671   case R_X86_64_PC32:
672     // This relocation is defined to have a value of (S + A - P).
673     // The problems start when a non PIC program calls a function in a shared
674     // library.
675     // In an ideal world, we could just report an error saying the relocation
676     // can overflow at runtime.
677     // In the real world with glibc, crt1.o has a R_X86_64_PC32 pointing to
678     // libc.so.
679     //
680     // The general idea on how to handle such cases is to create a PLT entry
681     // and use that as the function value.
682     //
683     // For the static linking part, we just return true and everything else
684     // will use the the PLT entry as the address.
685     //
686     // The remaining (unimplemented) problem is making sure pointer equality
687     // still works. We need the help of the dynamic linker for that. We
688     // let it know that we have a direct reference to a so symbol by creating
689     // an undefined symbol with a non zero st_value. Seeing that, the
690     // dynamic linker resolves the symbol to the value of the symbol we created.
691     // This is true even for got entries, so pointer equality is maintained.
692     // To avoid an infinite loop, the only entry that points to the
693     // real function is a dedicated got entry used by the plt. That is
694     // identified by special relocation types (R_X86_64_JUMP_SLOT,
695     // R_386_JMP_SLOT, etc).
696     return S.isShared();
697   case R_X86_64_PLT32:
698     return canBePreempted(&S, true);
699   }
700 }
701 
702 bool X86_64TargetInfo::isRelRelative(uint32_t Type) const {
703   switch (Type) {
704   default:
705     return false;
706   case R_X86_64_DTPOFF32:
707   case R_X86_64_DTPOFF64:
708   case R_X86_64_PC8:
709   case R_X86_64_PC16:
710   case R_X86_64_PC32:
711   case R_X86_64_PC64:
712   case R_X86_64_PLT32:
713     return true;
714   }
715 }
716 
717 bool X86_64TargetInfo::isSizeRel(uint32_t Type) const {
718   return Type == R_X86_64_SIZE32 || Type == R_X86_64_SIZE64;
719 }
720 
721 bool X86_64TargetInfo::canRelaxTls(unsigned Type, const SymbolBody *S) const {
722   if (Config->Shared || (S && !S->isTls()))
723     return false;
724   return Type == R_X86_64_TLSGD || Type == R_X86_64_TLSLD ||
725          Type == R_X86_64_DTPOFF32 ||
726          (Type == R_X86_64_GOTTPOFF && !canBePreempted(S, true));
727 }
728 
729 // "Ulrich Drepper, ELF Handling For Thread-Local Storage" (5.5
730 // x86-x64 linker optimizations, http://www.akkadia.org/drepper/tls.pdf) shows
731 // how LD can be optimized to LE:
732 //   leaq bar@tlsld(%rip), %rdi
733 //   callq __tls_get_addr@PLT
734 //   leaq bar@dtpoff(%rax), %rcx
735 // Is converted to:
736 //  .word 0x6666
737 //  .byte 0x66
738 //  mov %fs:0,%rax
739 //  leaq bar@tpoff(%rax), %rcx
740 void X86_64TargetInfo::relocateTlsLdToLe(uint8_t *Loc, uint8_t *BufEnd,
741                                          uint64_t P, uint64_t SA) const {
742   const uint8_t Inst[] = {
743       0x66, 0x66,                                          //.word 0x6666
744       0x66,                                                //.byte 0x66
745       0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax
746   };
747   memcpy(Loc - 3, Inst, sizeof(Inst));
748 }
749 
750 // "Ulrich Drepper, ELF Handling For Thread-Local Storage" (5.5
751 // x86-x64 linker optimizations, http://www.akkadia.org/drepper/tls.pdf) shows
752 // how GD can be optimized to LE:
753 //  .byte 0x66
754 //  leaq x@tlsgd(%rip), %rdi
755 //  .word 0x6666
756 //  rex64
757 //  call __tls_get_addr@plt
758 // Is converted to:
759 //  mov %fs:0x0,%rax
760 //  lea x@tpoff,%rax
761 void X86_64TargetInfo::relocateTlsGdToLe(uint8_t *Loc, uint8_t *BufEnd,
762                                          uint64_t P, uint64_t SA) const {
763   const uint8_t Inst[] = {
764       0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax
765       0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00              // lea x@tpoff,%rax
766   };
767   memcpy(Loc - 4, Inst, sizeof(Inst));
768   relocateOne(Loc + 8, BufEnd, R_X86_64_TPOFF32, P, SA);
769 }
770 
771 // "Ulrich Drepper, ELF Handling For Thread-Local Storage" (5.5
772 // x86-x64 linker optimizations, http://www.akkadia.org/drepper/tls.pdf) shows
773 // how GD can be optimized to IE:
774 //  .byte 0x66
775 //  leaq x@tlsgd(%rip), %rdi
776 //  .word 0x6666
777 //  rex64
778 //  call __tls_get_addr@plt
779 // Is converted to:
780 //  mov %fs:0x0,%rax
781 //  addq x@tpoff,%rax
782 void X86_64TargetInfo::relocateTlsGdToIe(uint8_t *Loc, uint8_t *BufEnd,
783                                          uint64_t P, uint64_t SA) const {
784   const uint8_t Inst[] = {
785       0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax
786       0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00              // addq x@tpoff,%rax
787   };
788   memcpy(Loc - 4, Inst, sizeof(Inst));
789   relocateOne(Loc + 8, BufEnd, R_X86_64_TPOFF64, P + 12, SA);
790 }
791 
792 // In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to
793 // R_X86_64_TPOFF32 so that it does not use GOT.
794 // This function does that. Read "ELF Handling For Thread-Local Storage,
795 // 5.5 x86-x64 linker optimizations" (http://www.akkadia.org/drepper/tls.pdf)
796 // by Ulrich Drepper for details.
797 void X86_64TargetInfo::relocateTlsIeToLe(uint8_t *Loc, uint8_t *BufEnd,
798                                          uint64_t P, uint64_t SA) const {
799   // Ulrich's document section 6.5 says that @gottpoff(%rip) must be
800   // used in MOVQ or ADDQ instructions only.
801   // "MOVQ foo@GOTTPOFF(%RIP), %REG" is transformed to "MOVQ $foo, %REG".
802   // "ADDQ foo@GOTTPOFF(%RIP), %REG" is transformed to "LEAQ foo(%REG), %REG"
803   // (if the register is not RSP/R12) or "ADDQ $foo, %RSP".
804   // Opcodes info can be found at http://ref.x86asm.net/coder64.html#x48.
805   uint8_t *Prefix = Loc - 3;
806   uint8_t *Inst = Loc - 2;
807   uint8_t *RegSlot = Loc - 1;
808   uint8_t Reg = Loc[-1] >> 3;
809   bool IsMov = *Inst == 0x8b;
810   bool RspAdd = !IsMov && Reg == 4;
811   // r12 and rsp registers requires special handling.
812   // Problem is that for other registers, for example leaq 0xXXXXXXXX(%r11),%r11
813   // result out is 7 bytes: 4d 8d 9b XX XX XX XX,
814   // but leaq 0xXXXXXXXX(%r12),%r12 is 8 bytes: 4d 8d a4 24 XX XX XX XX.
815   // The same true for rsp. So we convert to addq for them, saving 1 byte that
816   // we dont have.
817   if (RspAdd)
818     *Inst = 0x81;
819   else
820     *Inst = IsMov ? 0xc7 : 0x8d;
821   if (*Prefix == 0x4c)
822     *Prefix = (IsMov || RspAdd) ? 0x49 : 0x4d;
823   *RegSlot = (IsMov || RspAdd) ? (0xc0 | Reg) : (0x80 | Reg | (Reg << 3));
824   relocateOne(Loc, BufEnd, R_X86_64_TPOFF32, P, SA);
825 }
826 
827 // This function applies a TLS relocation with an optimization as described
828 // in the Ulrich's document. As a result of rewriting instructions at the
829 // relocation target, relocations immediately follow the TLS relocation (which
830 // would be applied to rewritten instructions) may have to be skipped.
831 // This function returns a number of relocations that need to be skipped.
832 unsigned X86_64TargetInfo::relaxTls(uint8_t *Loc, uint8_t *BufEnd,
833                                     uint32_t Type, uint64_t P, uint64_t SA,
834                                     const SymbolBody *S) const {
835   switch (Type) {
836   case R_X86_64_DTPOFF32:
837     relocateOne(Loc, BufEnd, R_X86_64_TPOFF32, P, SA);
838     return 0;
839   case R_X86_64_GOTTPOFF:
840     relocateTlsIeToLe(Loc, BufEnd, P, SA);
841     return 0;
842   case R_X86_64_TLSGD: {
843     if (canBePreempted(S, true))
844       relocateTlsGdToIe(Loc, BufEnd, P, SA);
845     else
846       relocateTlsGdToLe(Loc, BufEnd, P, SA);
847     // The next relocation should be against __tls_get_addr, so skip it
848     return 1;
849   }
850   case R_X86_64_TLSLD:
851     relocateTlsLdToLe(Loc, BufEnd, P, SA);
852     // The next relocation should be against __tls_get_addr, so skip it
853     return 1;
854   }
855   llvm_unreachable("Unknown TLS optimization");
856 }
857 
858 void X86_64TargetInfo::relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type,
859                                    uint64_t P, uint64_t SA, uint64_t ZA,
860                                    uint8_t *PairedLoc) const {
861   switch (Type) {
862   case R_X86_64_32:
863     checkUInt<32>(SA, Type);
864     write32le(Loc, SA);
865     break;
866   case R_X86_64_32S:
867     checkInt<32>(SA, Type);
868     write32le(Loc, SA);
869     break;
870   case R_X86_64_64:
871     write64le(Loc, SA);
872     break;
873   case R_X86_64_DTPOFF32:
874     write32le(Loc, SA);
875     break;
876   case R_X86_64_GOTPCREL:
877   case R_X86_64_PC32:
878   case R_X86_64_PLT32:
879   case R_X86_64_TLSGD:
880   case R_X86_64_TLSLD:
881     write32le(Loc, SA - P);
882     break;
883   case R_X86_64_SIZE32:
884     write32le(Loc, ZA);
885     break;
886   case R_X86_64_SIZE64:
887     write64le(Loc, ZA);
888     break;
889   case R_X86_64_TPOFF32: {
890     uint64_t Val = SA - Out<ELF64LE>::TlsPhdr->p_memsz;
891     checkInt<32>(Val, Type);
892     write32le(Loc, Val);
893     break;
894   }
895   case R_X86_64_TPOFF64:
896     write32le(Loc, SA - P);
897     break;
898   default:
899     fatal("unrecognized reloc " + Twine(Type));
900   }
901 }
902 
903 // Relocation masks following the #lo(value), #hi(value), #ha(value),
904 // #higher(value), #highera(value), #highest(value), and #highesta(value)
905 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
906 // document.
907 static uint16_t applyPPCLo(uint64_t V) { return V; }
908 static uint16_t applyPPCHi(uint64_t V) { return V >> 16; }
909 static uint16_t applyPPCHa(uint64_t V) { return (V + 0x8000) >> 16; }
910 static uint16_t applyPPCHigher(uint64_t V) { return V >> 32; }
911 static uint16_t applyPPCHighera(uint64_t V) { return (V + 0x8000) >> 32; }
912 static uint16_t applyPPCHighest(uint64_t V) { return V >> 48; }
913 static uint16_t applyPPCHighesta(uint64_t V) { return (V + 0x8000) >> 48; }
914 
915 PPCTargetInfo::PPCTargetInfo() {}
916 bool PPCTargetInfo::isRelRelative(uint32_t Type) const { return false; }
917 
918 void PPCTargetInfo::relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type,
919                                 uint64_t P, uint64_t SA, uint64_t ZA,
920                                 uint8_t *PairedLoc) const {
921   switch (Type) {
922   case R_PPC_ADDR16_HA:
923     write16be(Loc, applyPPCHa(SA));
924     break;
925   case R_PPC_ADDR16_LO:
926     write16be(Loc, applyPPCLo(SA));
927     break;
928   default:
929     fatal("unrecognized reloc " + Twine(Type));
930   }
931 }
932 
933 PPC64TargetInfo::PPC64TargetInfo() {
934   GotRel = R_PPC64_GLOB_DAT;
935   RelativeRel = R_PPC64_RELATIVE;
936   PltEntrySize = 32;
937 
938   // We need 64K pages (at least under glibc/Linux, the loader won't
939   // set different permissions on a finer granularity than that).
940   PageSize = 65536;
941 
942   // The PPC64 ELF ABI v1 spec, says:
943   //
944   //   It is normally desirable to put segments with different characteristics
945   //   in separate 256 Mbyte portions of the address space, to give the
946   //   operating system full paging flexibility in the 64-bit address space.
947   //
948   // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
949   // use 0x10000000 as the starting address.
950   VAStart = 0x10000000;
951 }
952 
953 uint64_t getPPC64TocBase() {
954   // The TOC consists of sections .got, .toc, .tocbss, .plt in that
955   // order. The TOC starts where the first of these sections starts.
956 
957   // FIXME: This obviously does not do the right thing when there is no .got
958   // section, but there is a .toc or .tocbss section.
959   uint64_t TocVA = Out<ELF64BE>::Got->getVA();
960   if (!TocVA)
961     TocVA = Out<ELF64BE>::Plt->getVA();
962 
963   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
964   // thus permitting a full 64 Kbytes segment. Note that the glibc startup
965   // code (crt1.o) assumes that you can get from the TOC base to the
966   // start of the .toc section with only a single (signed) 16-bit relocation.
967   return TocVA + 0x8000;
968 }
969 
970 void PPC64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
971                                uint64_t PltEntryAddr, int32_t Index,
972                                unsigned RelOff) const {
973   uint64_t Off = GotEntryAddr - getPPC64TocBase();
974 
975   // FIXME: What we should do, in theory, is get the offset of the function
976   // descriptor in the .opd section, and use that as the offset from %r2 (the
977   // TOC-base pointer). Instead, we have the GOT-entry offset, and that will
978   // be a pointer to the function descriptor in the .opd section. Using
979   // this scheme is simpler, but requires an extra indirection per PLT dispatch.
980 
981   write32be(Buf,      0xf8410028);                   // std %r2, 40(%r1)
982   write32be(Buf + 4,  0x3d620000 | applyPPCHa(Off)); // addis %r11, %r2, X@ha
983   write32be(Buf + 8,  0xe98b0000 | applyPPCLo(Off)); // ld %r12, X@l(%r11)
984   write32be(Buf + 12, 0xe96c0000);                   // ld %r11,0(%r12)
985   write32be(Buf + 16, 0x7d6903a6);                   // mtctr %r11
986   write32be(Buf + 20, 0xe84c0008);                   // ld %r2,8(%r12)
987   write32be(Buf + 24, 0xe96c0010);                   // ld %r11,16(%r12)
988   write32be(Buf + 28, 0x4e800420);                   // bctr
989 }
990 
991 bool PPC64TargetInfo::needsGot(uint32_t Type, const SymbolBody &S) const {
992   if (needsPlt(Type, S))
993     return true;
994 
995   switch (Type) {
996   default: return false;
997   case R_PPC64_GOT16:
998   case R_PPC64_GOT16_DS:
999   case R_PPC64_GOT16_HA:
1000   case R_PPC64_GOT16_HI:
1001   case R_PPC64_GOT16_LO:
1002   case R_PPC64_GOT16_LO_DS:
1003     return true;
1004   }
1005 }
1006 
1007 bool PPC64TargetInfo::needsPlt(uint32_t Type, const SymbolBody &S) const {
1008   // These are function calls that need to be redirected through a PLT stub.
1009   return Type == R_PPC64_REL24 && canBePreempted(&S, false);
1010 }
1011 
1012 bool PPC64TargetInfo::isRelRelative(uint32_t Type) const {
1013   switch (Type) {
1014   default:
1015     return true;
1016   case R_PPC64_ADDR64:
1017   case R_PPC64_TOC:
1018     return false;
1019   }
1020 }
1021 
1022 void PPC64TargetInfo::relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type,
1023                                   uint64_t P, uint64_t SA, uint64_t ZA,
1024                                   uint8_t *PairedLoc) const {
1025   uint64_t TB = getPPC64TocBase();
1026 
1027   // For a TOC-relative relocation, adjust the addend and proceed in terms of
1028   // the corresponding ADDR16 relocation type.
1029   switch (Type) {
1030   case R_PPC64_TOC16:       Type = R_PPC64_ADDR16;       SA -= TB; break;
1031   case R_PPC64_TOC16_DS:    Type = R_PPC64_ADDR16_DS;    SA -= TB; break;
1032   case R_PPC64_TOC16_HA:    Type = R_PPC64_ADDR16_HA;    SA -= TB; break;
1033   case R_PPC64_TOC16_HI:    Type = R_PPC64_ADDR16_HI;    SA -= TB; break;
1034   case R_PPC64_TOC16_LO:    Type = R_PPC64_ADDR16_LO;    SA -= TB; break;
1035   case R_PPC64_TOC16_LO_DS: Type = R_PPC64_ADDR16_LO_DS; SA -= TB; break;
1036   default: break;
1037   }
1038 
1039   switch (Type) {
1040   case R_PPC64_ADDR14: {
1041     checkAlignment<4>(SA, Type);
1042     // Preserve the AA/LK bits in the branch instruction
1043     uint8_t AALK = Loc[3];
1044     write16be(Loc + 2, (AALK & 3) | (SA & 0xfffc));
1045     break;
1046   }
1047   case R_PPC64_ADDR16:
1048     checkInt<16>(SA, Type);
1049     write16be(Loc, SA);
1050     break;
1051   case R_PPC64_ADDR16_DS:
1052     checkInt<16>(SA, Type);
1053     write16be(Loc, (read16be(Loc) & 3) | (SA & ~3));
1054     break;
1055   case R_PPC64_ADDR16_HA:
1056     write16be(Loc, applyPPCHa(SA));
1057     break;
1058   case R_PPC64_ADDR16_HI:
1059     write16be(Loc, applyPPCHi(SA));
1060     break;
1061   case R_PPC64_ADDR16_HIGHER:
1062     write16be(Loc, applyPPCHigher(SA));
1063     break;
1064   case R_PPC64_ADDR16_HIGHERA:
1065     write16be(Loc, applyPPCHighera(SA));
1066     break;
1067   case R_PPC64_ADDR16_HIGHEST:
1068     write16be(Loc, applyPPCHighest(SA));
1069     break;
1070   case R_PPC64_ADDR16_HIGHESTA:
1071     write16be(Loc, applyPPCHighesta(SA));
1072     break;
1073   case R_PPC64_ADDR16_LO:
1074     write16be(Loc, applyPPCLo(SA));
1075     break;
1076   case R_PPC64_ADDR16_LO_DS:
1077     write16be(Loc, (read16be(Loc) & 3) | (applyPPCLo(SA) & ~3));
1078     break;
1079   case R_PPC64_ADDR32:
1080     checkInt<32>(SA, Type);
1081     write32be(Loc, SA);
1082     break;
1083   case R_PPC64_ADDR64:
1084     write64be(Loc, SA);
1085     break;
1086   case R_PPC64_REL16_HA:
1087     write16be(Loc, applyPPCHa(SA - P));
1088     break;
1089   case R_PPC64_REL16_HI:
1090     write16be(Loc, applyPPCHi(SA - P));
1091     break;
1092   case R_PPC64_REL16_LO:
1093     write16be(Loc, applyPPCLo(SA - P));
1094     break;
1095   case R_PPC64_REL24: {
1096     // If we have an undefined weak symbol, we might get here with a symbol
1097     // address of zero. That could overflow, but the code must be unreachable,
1098     // so don't bother doing anything at all.
1099     if (!SA)
1100       break;
1101 
1102     uint64_t PltStart = Out<ELF64BE>::Plt->getVA();
1103     uint64_t PltEnd = PltStart + Out<ELF64BE>::Plt->getSize();
1104     bool InPlt = PltStart <= SA && SA < PltEnd;
1105 
1106     if (!InPlt && Out<ELF64BE>::Opd) {
1107       // If this is a local call, and we currently have the address of a
1108       // function-descriptor, get the underlying code address instead.
1109       uint64_t OpdStart = Out<ELF64BE>::Opd->getVA();
1110       uint64_t OpdEnd = OpdStart + Out<ELF64BE>::Opd->getSize();
1111       bool InOpd = OpdStart <= SA && SA < OpdEnd;
1112 
1113       if (InOpd)
1114         SA = read64be(&Out<ELF64BE>::OpdBuf[SA - OpdStart]);
1115     }
1116 
1117     uint32_t Mask = 0x03FFFFFC;
1118     checkInt<24>(SA - P, Type);
1119     write32be(Loc, (read32be(Loc) & ~Mask) | ((SA - P) & Mask));
1120 
1121     uint32_t Nop = 0x60000000;
1122     if (InPlt && Loc + 8 <= BufEnd && read32be(Loc + 4) == Nop)
1123       write32be(Loc + 4, 0xe8410028); // ld %r2, 40(%r1)
1124     break;
1125   }
1126   case R_PPC64_REL32:
1127     checkInt<32>(SA - P, Type);
1128     write32be(Loc, SA - P);
1129     break;
1130   case R_PPC64_REL64:
1131     write64be(Loc, SA - P);
1132     break;
1133   case R_PPC64_TOC:
1134     write64be(Loc, SA);
1135     break;
1136   default:
1137     fatal("unrecognized reloc " + Twine(Type));
1138   }
1139 }
1140 
1141 AArch64TargetInfo::AArch64TargetInfo() {
1142   CopyRel = R_AARCH64_COPY;
1143   IRelativeRel = R_AARCH64_IRELATIVE;
1144   GotRel = R_AARCH64_GLOB_DAT;
1145   PltRel = R_AARCH64_JUMP_SLOT;
1146   TlsGotRel = R_AARCH64_TLS_TPREL64;
1147   UseLazyBinding = true;
1148   PltEntrySize = 16;
1149   PltZeroSize = 32;
1150 }
1151 
1152 unsigned AArch64TargetInfo::getDynRel(unsigned Type) const {
1153   if (Type == R_AARCH64_ABS32 || Type == R_AARCH64_ABS64)
1154     return Type;
1155   StringRef S = getELFRelocationTypeName(EM_AARCH64, Type);
1156   error("Relocation " + S + " cannot be used when making a shared object; "
1157                             "recompile with -fPIC.");
1158   // Keep it going with a dummy value so that we can find more reloc errors.
1159   return R_AARCH64_ABS32;
1160 }
1161 
1162 void AArch64TargetInfo::writeGotPlt(uint8_t *Buf, uint64_t Plt) const {
1163   write64le(Buf, Out<ELF64LE>::Plt->getVA());
1164 }
1165 
1166 void AArch64TargetInfo::writePltZero(uint8_t *Buf) const {
1167   const uint8_t PltData[] = {
1168       0xf0, 0x7b, 0xbf, 0xa9, // stp	x16, x30, [sp,#-16]!
1169       0x10, 0x00, 0x00, 0x90, // adrp	x16, Page(&(.plt.got[2]))
1170       0x11, 0x02, 0x40, 0xf9, // ldr	x17, [x16, Offset(&(.plt.got[2]))]
1171       0x10, 0x02, 0x00, 0x91, // add	x16, x16, Offset(&(.plt.got[2]))
1172       0x20, 0x02, 0x1f, 0xd6, // br	x17
1173       0x1f, 0x20, 0x03, 0xd5, // nop
1174       0x1f, 0x20, 0x03, 0xd5, // nop
1175       0x1f, 0x20, 0x03, 0xd5  // nop
1176   };
1177   memcpy(Buf, PltData, sizeof(PltData));
1178 
1179   uint64_t Got = Out<ELF64LE>::GotPlt->getVA();
1180   uint64_t Plt = Out<ELF64LE>::Plt->getVA();
1181   relocateOne(Buf + 4, Buf + 8, R_AARCH64_ADR_PREL_PG_HI21, Plt + 4, Got + 16);
1182   relocateOne(Buf + 8, Buf + 12, R_AARCH64_LDST64_ABS_LO12_NC, Plt + 8,
1183               Got + 16);
1184   relocateOne(Buf + 12, Buf + 16, R_AARCH64_ADD_ABS_LO12_NC, Plt + 12,
1185               Got + 16);
1186 }
1187 
1188 void AArch64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
1189                                  uint64_t PltEntryAddr, int32_t Index,
1190                                  unsigned RelOff) const {
1191   const uint8_t Inst[] = {
1192       0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[n]))
1193       0x11, 0x02, 0x40, 0xf9, // ldr  x17, [x16, Offset(&(.plt.got[n]))]
1194       0x10, 0x02, 0x00, 0x91, // add  x16, x16, Offset(&(.plt.got[n]))
1195       0x20, 0x02, 0x1f, 0xd6  // br   x17
1196   };
1197   memcpy(Buf, Inst, sizeof(Inst));
1198 
1199   relocateOne(Buf, Buf + 4, R_AARCH64_ADR_PREL_PG_HI21, PltEntryAddr,
1200               GotEntryAddr);
1201   relocateOne(Buf + 4, Buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, PltEntryAddr + 4,
1202               GotEntryAddr);
1203   relocateOne(Buf + 8, Buf + 12, R_AARCH64_ADD_ABS_LO12_NC, PltEntryAddr + 8,
1204               GotEntryAddr);
1205 }
1206 
1207 unsigned AArch64TargetInfo::getTlsGotRel(unsigned Type) const {
1208   if (Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 ||
1209       Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC)
1210     return Type;
1211   return TlsGotRel;
1212 }
1213 
1214 bool AArch64TargetInfo::isTlsDynRel(unsigned Type, const SymbolBody &S) const {
1215   return Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 ||
1216          Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC;
1217 }
1218 
1219 bool AArch64TargetInfo::needsCopyRel(uint32_t Type, const SymbolBody &S) const {
1220   if (Config->Shared)
1221     return false;
1222   switch (Type) {
1223   default:
1224     return false;
1225   case R_AARCH64_ABS16:
1226   case R_AARCH64_ABS32:
1227   case R_AARCH64_ABS64:
1228   case R_AARCH64_ADD_ABS_LO12_NC:
1229   case R_AARCH64_ADR_PREL_LO21:
1230   case R_AARCH64_ADR_PREL_PG_HI21:
1231   case R_AARCH64_LDST8_ABS_LO12_NC:
1232   case R_AARCH64_LDST16_ABS_LO12_NC:
1233   case R_AARCH64_LDST32_ABS_LO12_NC:
1234   case R_AARCH64_LDST64_ABS_LO12_NC:
1235   case R_AARCH64_LDST128_ABS_LO12_NC:
1236     if (auto *SS = dyn_cast<SharedSymbol<ELF64LE>>(&S))
1237       return SS->Sym.getType() == STT_OBJECT;
1238     return false;
1239   }
1240 }
1241 
1242 bool AArch64TargetInfo::needsGot(uint32_t Type, const SymbolBody &S) const {
1243   switch (Type) {
1244   case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
1245   case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
1246   case R_AARCH64_ADR_GOT_PAGE:
1247   case R_AARCH64_LD64_GOT_LO12_NC:
1248     return true;
1249   default:
1250     return needsPlt(Type, S);
1251   }
1252 }
1253 
1254 bool AArch64TargetInfo::needsPlt(uint32_t Type, const SymbolBody &S) const {
1255   if (isGnuIFunc<ELF64LE>(S))
1256     return true;
1257   switch (Type) {
1258   default:
1259     return false;
1260   case R_AARCH64_CALL26:
1261   case R_AARCH64_CONDBR19:
1262   case R_AARCH64_JUMP26:
1263   case R_AARCH64_TSTBR14:
1264     return canBePreempted(&S, true);
1265   }
1266 }
1267 
1268 static void updateAArch64Adr(uint8_t *L, uint64_t Imm) {
1269   uint32_t ImmLo = (Imm & 0x3) << 29;
1270   uint32_t ImmHi = ((Imm & 0x1FFFFC) >> 2) << 5;
1271   uint64_t Mask = (0x3 << 29) | (0x7FFFF << 5);
1272   write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
1273 }
1274 
1275 // Page(Expr) is the page address of the expression Expr, defined
1276 // as (Expr & ~0xFFF). (This applies even if the machine page size
1277 // supported by the platform has a different value.)
1278 static uint64_t getAArch64Page(uint64_t Expr) {
1279   return Expr & (~static_cast<uint64_t>(0xFFF));
1280 }
1281 
1282 void AArch64TargetInfo::relocateOne(uint8_t *Loc, uint8_t *BufEnd,
1283                                     uint32_t Type, uint64_t P, uint64_t SA,
1284                                     uint64_t ZA, uint8_t *PairedLoc) const {
1285   switch (Type) {
1286   case R_AARCH64_ABS16:
1287     checkIntUInt<16>(SA, Type);
1288     write16le(Loc, SA);
1289     break;
1290   case R_AARCH64_ABS32:
1291     checkIntUInt<32>(SA, Type);
1292     write32le(Loc, SA);
1293     break;
1294   case R_AARCH64_ABS64:
1295     write64le(Loc, SA);
1296     break;
1297   case R_AARCH64_ADD_ABS_LO12_NC:
1298     // This relocation stores 12 bits and there's no instruction
1299     // to do it. Instead, we do a 32 bits store of the value
1300     // of r_addend bitwise-or'ed Loc. This assumes that the addend
1301     // bits in Loc are zero.
1302     or32le(Loc, (SA & 0xFFF) << 10);
1303     break;
1304   case R_AARCH64_ADR_GOT_PAGE: {
1305     uint64_t X = getAArch64Page(SA) - getAArch64Page(P);
1306     checkInt<33>(X, Type);
1307     updateAArch64Adr(Loc, (X >> 12) & 0x1FFFFF); // X[32:12]
1308     break;
1309   }
1310   case R_AARCH64_ADR_PREL_LO21: {
1311     uint64_t X = SA - P;
1312     checkInt<21>(X, Type);
1313     updateAArch64Adr(Loc, X & 0x1FFFFF);
1314     break;
1315   }
1316   case R_AARCH64_ADR_PREL_PG_HI21:
1317   case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: {
1318     uint64_t X = getAArch64Page(SA) - getAArch64Page(P);
1319     checkInt<33>(X, Type);
1320     updateAArch64Adr(Loc, (X >> 12) & 0x1FFFFF); // X[32:12]
1321     break;
1322   }
1323   case R_AARCH64_CALL26:
1324   case R_AARCH64_JUMP26: {
1325     uint64_t X = SA - P;
1326     checkInt<28>(X, Type);
1327     or32le(Loc, (X & 0x0FFFFFFC) >> 2);
1328     break;
1329   }
1330   case R_AARCH64_CONDBR19: {
1331     uint64_t X = SA - P;
1332     checkInt<21>(X, Type);
1333     or32le(Loc, (X & 0x1FFFFC) << 3);
1334     break;
1335   }
1336   case R_AARCH64_LD64_GOT_LO12_NC:
1337   case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
1338     checkAlignment<8>(SA, Type);
1339     or32le(Loc, (SA & 0xFF8) << 7);
1340     break;
1341   case R_AARCH64_LDST128_ABS_LO12_NC:
1342     or32le(Loc, (SA & 0x0FF8) << 6);
1343     break;
1344   case R_AARCH64_LDST16_ABS_LO12_NC:
1345     or32le(Loc, (SA & 0x0FFC) << 9);
1346     break;
1347   case R_AARCH64_LDST8_ABS_LO12_NC:
1348     or32le(Loc, (SA & 0xFFF) << 10);
1349     break;
1350   case R_AARCH64_LDST32_ABS_LO12_NC:
1351     or32le(Loc, (SA & 0xFFC) << 8);
1352     break;
1353   case R_AARCH64_LDST64_ABS_LO12_NC:
1354     or32le(Loc, (SA & 0xFF8) << 7);
1355     break;
1356   case R_AARCH64_PREL16:
1357     checkIntUInt<16>(SA - P, Type);
1358     write16le(Loc, SA - P);
1359     break;
1360   case R_AARCH64_PREL32:
1361     checkIntUInt<32>(SA - P, Type);
1362     write32le(Loc, SA - P);
1363     break;
1364   case R_AARCH64_PREL64:
1365     write64le(Loc, SA - P);
1366     break;
1367   case R_AARCH64_TSTBR14: {
1368     uint64_t X = SA - P;
1369     checkInt<16>(X, Type);
1370     or32le(Loc, (X & 0xFFFC) << 3);
1371     break;
1372   }
1373   default:
1374     fatal("unrecognized reloc " + Twine(Type));
1375   }
1376 }
1377 
1378 // Implementing relocations for AMDGPU is low priority since most
1379 // programs don't use relocations now. Thus, this function is not
1380 // actually called (relocateOne is called for each relocation).
1381 // That's why the AMDGPU port works without implementing this function.
1382 void AMDGPUTargetInfo::relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type,
1383                                    uint64_t P, uint64_t SA, uint64_t ZA,
1384                                    uint8_t *PairedLoc) const {
1385   llvm_unreachable("not implemented");
1386 }
1387 
1388 template <class ELFT> MipsTargetInfo<ELFT>::MipsTargetInfo() {
1389   PageSize = 65536;
1390   GotHeaderEntriesNum = 2;
1391   RelativeRel = R_MIPS_REL32;
1392 }
1393 
1394 template <class ELFT>
1395 unsigned MipsTargetInfo<ELFT>::getDynRel(unsigned Type) const {
1396   if (Type == R_MIPS_32 || Type == R_MIPS_64)
1397     return R_MIPS_REL32;
1398   StringRef S = getELFRelocationTypeName(EM_MIPS, Type);
1399   error("Relocation " + S + " cannot be used when making a shared object; "
1400                             "recompile with -fPIC.");
1401   // Keep it going with a dummy value so that we can find more reloc errors.
1402   return R_MIPS_32;
1403 }
1404 
1405 template <class ELFT>
1406 void MipsTargetInfo<ELFT>::writeGotHeader(uint8_t *Buf) const {
1407   typedef typename ELFFile<ELFT>::Elf_Off Elf_Off;
1408   typedef typename ELFFile<ELFT>::uintX_t uintX_t;
1409 
1410   // Set the MSB of the second GOT slot. This is not required by any
1411   // MIPS ABI documentation, though.
1412   //
1413   // There is a comment in glibc saying that "The MSB of got[1] of a
1414   // gnu object is set to identify gnu objects," and in GNU gold it
1415   // says "the second entry will be used by some runtime loaders".
1416   // But how this field is being used is unclear.
1417   //
1418   // We are not really willing to mimic other linkers behaviors
1419   // without understanding why they do that, but because all files
1420   // generated by GNU tools have this special GOT value, and because
1421   // we've been doing this for years, it is probably a safe bet to
1422   // keep doing this for now. We really need to revisit this to see
1423   // if we had to do this.
1424   auto *P = reinterpret_cast<Elf_Off *>(Buf);
1425   P[1] = uintX_t(1) << (ELFT::Is64Bits ? 63 : 31);
1426 }
1427 
1428 template <class ELFT>
1429 bool MipsTargetInfo<ELFT>::needsGot(uint32_t Type, const SymbolBody &S) const {
1430   return Type == R_MIPS_GOT16 || Type == R_MIPS_CALL16;
1431 }
1432 
1433 template <class ELFT>
1434 bool MipsTargetInfo<ELFT>::needsPlt(uint32_t Type, const SymbolBody &S) const {
1435   return false;
1436 }
1437 
1438 static uint16_t mipsHigh(uint64_t V) { return (V + 0x8000) >> 16; }
1439 
1440 template <endianness E, uint8_t BSIZE, uint8_t SHIFT>
1441 static void applyMipsPcReloc(uint8_t *Loc, uint32_t Type, uint64_t P,
1442                              uint64_t SA) {
1443   uint32_t Mask = 0xffffffff >> (32 - BSIZE);
1444   uint32_t Instr = read32<E>(Loc);
1445   int64_t A = SignExtend64<BSIZE + SHIFT>((Instr & Mask) << SHIFT);
1446   if (SHIFT > 0)
1447     checkAlignment<(1 << SHIFT)>(SA + A, Type);
1448   int64_t V = SA + A - P;
1449   checkInt<BSIZE + SHIFT>(V, Type);
1450   write32<E>(Loc, (Instr & ~Mask) | ((V >> SHIFT) & Mask));
1451 }
1452 
1453 template <class ELFT>
1454 void MipsTargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint8_t *BufEnd,
1455                                        uint32_t Type, uint64_t P, uint64_t SA,
1456                                        uint64_t ZA, uint8_t *PairedLoc) const {
1457   const endianness E = ELFT::TargetEndianness;
1458   switch (Type) {
1459   case R_MIPS_32:
1460     add32<E>(Loc, SA);
1461     break;
1462   case R_MIPS_CALL16:
1463   case R_MIPS_GOT16: {
1464     int64_t V = SA - getMipsGpAddr<ELFT>();
1465     if (Type == R_MIPS_GOT16)
1466       checkInt<16>(V, Type);
1467     write32<E>(Loc, (read32<E>(Loc) & 0xffff0000) | (V & 0xffff));
1468     break;
1469   }
1470   case R_MIPS_GPREL16: {
1471     uint32_t Instr = read32<E>(Loc);
1472     int64_t V = SA + SignExtend64<16>(Instr & 0xffff) - getMipsGpAddr<ELFT>();
1473     checkInt<16>(V, Type);
1474     write32<E>(Loc, (Instr & 0xffff0000) | (V & 0xffff));
1475     break;
1476   }
1477   case R_MIPS_GPREL32:
1478     write32<E>(Loc, SA + int32_t(read32<E>(Loc)) - getMipsGpAddr<ELFT>());
1479     break;
1480   case R_MIPS_HI16: {
1481     uint32_t Instr = read32<E>(Loc);
1482     if (PairedLoc) {
1483       uint64_t AHL = ((Instr & 0xffff) << 16) +
1484                      SignExtend64<16>(read32<E>(PairedLoc) & 0xffff);
1485       write32<E>(Loc, (Instr & 0xffff0000) | mipsHigh(SA + AHL));
1486     } else {
1487       warning("Can't find matching R_MIPS_LO16 relocation for R_MIPS_HI16");
1488       write32<E>(Loc, (Instr & 0xffff0000) | mipsHigh(SA));
1489     }
1490     break;
1491   }
1492   case R_MIPS_JALR:
1493     // Ignore this optimization relocation for now
1494     break;
1495   case R_MIPS_LO16: {
1496     uint32_t Instr = read32<E>(Loc);
1497     int64_t AHL = SignExtend64<16>(Instr & 0xffff);
1498     write32<E>(Loc, (Instr & 0xffff0000) | ((SA + AHL) & 0xffff));
1499     break;
1500   }
1501   case R_MIPS_PC16:
1502     applyMipsPcReloc<E, 16, 2>(Loc, Type, P, SA);
1503     break;
1504   case R_MIPS_PC19_S2:
1505     applyMipsPcReloc<E, 19, 2>(Loc, Type, P, SA);
1506     break;
1507   case R_MIPS_PC21_S2:
1508     applyMipsPcReloc<E, 21, 2>(Loc, Type, P, SA);
1509     break;
1510   case R_MIPS_PC26_S2:
1511     applyMipsPcReloc<E, 26, 2>(Loc, Type, P, SA);
1512     break;
1513   case R_MIPS_PC32:
1514     applyMipsPcReloc<E, 32, 0>(Loc, Type, P, SA);
1515     break;
1516   case R_MIPS_PCHI16: {
1517     uint32_t Instr = read32<E>(Loc);
1518     if (PairedLoc) {
1519       uint64_t AHL = ((Instr & 0xffff) << 16) +
1520                      SignExtend64<16>(read32<E>(PairedLoc) & 0xffff);
1521       write32<E>(Loc, (Instr & 0xffff0000) | mipsHigh(SA + AHL - P));
1522     } else {
1523       warning("Can't find matching R_MIPS_PCLO16 relocation for R_MIPS_PCHI16");
1524       write32<E>(Loc, (Instr & 0xffff0000) | mipsHigh(SA - P));
1525     }
1526     break;
1527   }
1528   case R_MIPS_PCLO16: {
1529     uint32_t Instr = read32<E>(Loc);
1530     int64_t AHL = SignExtend64<16>(Instr & 0xffff);
1531     write32<E>(Loc, (Instr & 0xffff0000) | ((SA + AHL - P) & 0xffff));
1532     break;
1533   }
1534   default:
1535     fatal("unrecognized reloc " + Twine(Type));
1536   }
1537 }
1538 
1539 template <class ELFT>
1540 bool MipsTargetInfo<ELFT>::isHintRel(uint32_t Type) const {
1541   return Type == R_MIPS_JALR;
1542 }
1543 
1544 template <class ELFT>
1545 bool MipsTargetInfo<ELFT>::isRelRelative(uint32_t Type) const {
1546   switch (Type) {
1547   default:
1548     return false;
1549   case R_MIPS_PC16:
1550   case R_MIPS_PC19_S2:
1551   case R_MIPS_PC21_S2:
1552   case R_MIPS_PC26_S2:
1553   case R_MIPS_PC32:
1554   case R_MIPS_PCHI16:
1555   case R_MIPS_PCLO16:
1556     return true;
1557   }
1558 }
1559 
1560 // _gp is a MIPS-specific ABI-defined symbol which points to
1561 // a location that is relative to GOT. This function returns
1562 // the value for the symbol.
1563 template <class ELFT> typename ELFFile<ELFT>::uintX_t getMipsGpAddr() {
1564   unsigned GPOffset = 0x7ff0;
1565   if (uint64_t V = Out<ELFT>::Got->getVA())
1566     return V + GPOffset;
1567   return 0;
1568 }
1569 
1570 template bool isGnuIFunc<ELF32LE>(const SymbolBody &S);
1571 template bool isGnuIFunc<ELF32BE>(const SymbolBody &S);
1572 template bool isGnuIFunc<ELF64LE>(const SymbolBody &S);
1573 template bool isGnuIFunc<ELF64BE>(const SymbolBody &S);
1574 
1575 template uint32_t getMipsGpAddr<ELF32LE>();
1576 template uint32_t getMipsGpAddr<ELF32BE>();
1577 template uint64_t getMipsGpAddr<ELF64LE>();
1578 template uint64_t getMipsGpAddr<ELF64BE>();
1579 }
1580 }
1581