xref: /llvm-project-15.0.7/lld/ELF/Target.cpp (revision 52bd8012)
1 //===- Target.cpp ---------------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Machine-specific things, such as applying relocations, creation of
11 // GOT or PLT entries, etc., are handled in this file.
12 //
13 // Refer the ELF spec for the single letter varaibles, S, A or P, used
14 // in this file.
15 //
16 // Some functions defined in this file has "relaxTls" as part of their names.
17 // They do peephole optimization for TLS variables by rewriting instructions.
18 // They are not part of the ABI but optional optimization, so you can skip
19 // them if you are not interested in how TLS variables are optimized.
20 // See the following paper for the details.
21 //
22 //   Ulrich Drepper, ELF Handling For Thread-Local Storage
23 //   http://www.akkadia.org/drepper/tls.pdf
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "Target.h"
28 #include "Error.h"
29 #include "InputFiles.h"
30 #include "OutputSections.h"
31 #include "Symbols.h"
32 #include "Thunks.h"
33 
34 #include "llvm/ADT/ArrayRef.h"
35 #include "llvm/Object/ELF.h"
36 #include "llvm/Support/Endian.h"
37 #include "llvm/Support/ELF.h"
38 
39 using namespace llvm;
40 using namespace llvm::object;
41 using namespace llvm::support::endian;
42 using namespace llvm::ELF;
43 
44 namespace lld {
45 namespace elf {
46 
47 TargetInfo *Target;
48 
49 static void or32le(uint8_t *P, int32_t V) { write32le(P, read32le(P) | V); }
50 
51 StringRef getRelName(uint32_t Type) {
52   return getELFRelocationTypeName(Config->EMachine, Type);
53 }
54 
55 template <unsigned N> static void checkInt(int64_t V, uint32_t Type) {
56   if (!isInt<N>(V))
57     error("relocation " + getRelName(Type) + " out of range");
58 }
59 
60 template <unsigned N> static void checkUInt(uint64_t V, uint32_t Type) {
61   if (!isUInt<N>(V))
62     error("relocation " + getRelName(Type) + " out of range");
63 }
64 
65 template <unsigned N> static void checkIntUInt(uint64_t V, uint32_t Type) {
66   if (!isInt<N>(V) && !isUInt<N>(V))
67     error("relocation " + getRelName(Type) + " out of range");
68 }
69 
70 template <unsigned N> static void checkAlignment(uint64_t V, uint32_t Type) {
71   if ((V & (N - 1)) != 0)
72     error("improper alignment for relocation " + getRelName(Type));
73 }
74 
75 static void errorDynRel(uint32_t Type) {
76   error("relocation " + getRelName(Type) +
77         " cannot be used against shared object; recompile with -fPIC.");
78 }
79 
80 namespace {
81 class X86TargetInfo final : public TargetInfo {
82 public:
83   X86TargetInfo();
84   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
85   uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override;
86   void writeGotPltHeader(uint8_t *Buf) const override;
87   uint32_t getDynRel(uint32_t Type) const override;
88   bool isTlsLocalDynamicRel(uint32_t Type) const override;
89   bool isTlsGlobalDynamicRel(uint32_t Type) const override;
90   bool isTlsInitialExecRel(uint32_t Type) const override;
91   void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
92   void writePltHeader(uint8_t *Buf) const override;
93   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
94                 int32_t Index, unsigned RelOff) const override;
95   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
96 
97   RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
98                           RelExpr Expr) const override;
99   void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
100   void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
101   void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
102   void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
103 };
104 
105 template <class ELFT> class X86_64TargetInfo final : public TargetInfo {
106 public:
107   X86_64TargetInfo();
108   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
109   uint32_t getDynRel(uint32_t Type) const override;
110   bool isTlsLocalDynamicRel(uint32_t Type) const override;
111   bool isTlsGlobalDynamicRel(uint32_t Type) const override;
112   bool isTlsInitialExecRel(uint32_t Type) const override;
113   void writeGotPltHeader(uint8_t *Buf) const override;
114   void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
115   void writePltHeader(uint8_t *Buf) const override;
116   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
117                 int32_t Index, unsigned RelOff) const override;
118   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
119 
120   RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
121                           RelExpr Expr) const override;
122   void relaxGot(uint8_t *Loc, uint64_t Val) const override;
123   void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
124   void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
125   void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
126   void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
127 
128 private:
129   void relaxGotNoPic(uint8_t *Loc, uint64_t Val, uint8_t Op,
130                      uint8_t ModRm) const;
131 };
132 
133 class PPCTargetInfo final : public TargetInfo {
134 public:
135   PPCTargetInfo();
136   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
137   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
138 };
139 
140 class PPC64TargetInfo final : public TargetInfo {
141 public:
142   PPC64TargetInfo();
143   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
144   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
145                 int32_t Index, unsigned RelOff) const override;
146   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
147 };
148 
149 class AArch64TargetInfo final : public TargetInfo {
150 public:
151   AArch64TargetInfo();
152   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
153   uint32_t getDynRel(uint32_t Type) const override;
154   bool isTlsInitialExecRel(uint32_t Type) const override;
155   void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
156   void writePltHeader(uint8_t *Buf) const override;
157   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
158                 int32_t Index, unsigned RelOff) const override;
159   bool usesOnlyLowPageBits(uint32_t Type) const override;
160   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
161   RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
162                           RelExpr Expr) const override;
163   void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
164   void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
165   void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
166 };
167 
168 class AMDGPUTargetInfo final : public TargetInfo {
169 public:
170   AMDGPUTargetInfo();
171   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
172   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
173 };
174 
175 class ARMTargetInfo final : public TargetInfo {
176 public:
177   ARMTargetInfo();
178   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
179   uint32_t getDynRel(uint32_t Type) const override;
180   uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override;
181   void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
182   void writePltHeader(uint8_t *Buf) const override;
183   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
184                 int32_t Index, unsigned RelOff) const override;
185   RelExpr getThunkExpr(RelExpr Expr, uint32_t RelocType,
186                        const InputFile &File,
187                        const SymbolBody &S) const override;
188   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
189 };
190 
191 template <class ELFT> class MipsTargetInfo final : public TargetInfo {
192 public:
193   MipsTargetInfo();
194   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
195   uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override;
196   uint32_t getDynRel(uint32_t Type) const override;
197   bool isTlsLocalDynamicRel(uint32_t Type) const override;
198   bool isTlsGlobalDynamicRel(uint32_t Type) const override;
199   void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
200   void writePltHeader(uint8_t *Buf) const override;
201   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
202                 int32_t Index, unsigned RelOff) const override;
203   RelExpr getThunkExpr(RelExpr Expr, uint32_t RelocType,
204                        const InputFile &File,
205                        const SymbolBody &S) const override;
206   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
207   bool usesOnlyLowPageBits(uint32_t Type) const override;
208 };
209 } // anonymous namespace
210 
211 TargetInfo *createTarget() {
212   switch (Config->EMachine) {
213   case EM_386:
214     return new X86TargetInfo();
215   case EM_AARCH64:
216     return new AArch64TargetInfo();
217   case EM_AMDGPU:
218     return new AMDGPUTargetInfo();
219   case EM_ARM:
220     return new ARMTargetInfo();
221   case EM_MIPS:
222     switch (Config->EKind) {
223     case ELF32LEKind:
224       return new MipsTargetInfo<ELF32LE>();
225     case ELF32BEKind:
226       return new MipsTargetInfo<ELF32BE>();
227     case ELF64LEKind:
228       return new MipsTargetInfo<ELF64LE>();
229     case ELF64BEKind:
230       return new MipsTargetInfo<ELF64BE>();
231     default:
232       fatal("unsupported MIPS target");
233     }
234   case EM_PPC:
235     return new PPCTargetInfo();
236   case EM_PPC64:
237     return new PPC64TargetInfo();
238   case EM_X86_64:
239     if (Config->EKind == ELF32LEKind)
240       return new X86_64TargetInfo<ELF32LE>();
241     return new X86_64TargetInfo<ELF64LE>();
242   }
243   fatal("unknown target machine");
244 }
245 
246 TargetInfo::~TargetInfo() {}
247 
248 uint64_t TargetInfo::getImplicitAddend(const uint8_t *Buf,
249                                        uint32_t Type) const {
250   return 0;
251 }
252 
253 bool TargetInfo::usesOnlyLowPageBits(uint32_t Type) const { return false; }
254 
255 RelExpr TargetInfo::getThunkExpr(RelExpr Expr, uint32_t RelocType,
256                                  const InputFile &File,
257                                  const SymbolBody &S) const {
258   return Expr;
259 }
260 
261 bool TargetInfo::isTlsInitialExecRel(uint32_t Type) const { return false; }
262 
263 bool TargetInfo::isTlsLocalDynamicRel(uint32_t Type) const { return false; }
264 
265 bool TargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const {
266   return false;
267 }
268 
269 RelExpr TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
270                                     RelExpr Expr) const {
271   return Expr;
272 }
273 
274 void TargetInfo::relaxGot(uint8_t *Loc, uint64_t Val) const {
275   llvm_unreachable("Should not have claimed to be relaxable");
276 }
277 
278 void TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
279                                 uint64_t Val) const {
280   llvm_unreachable("Should not have claimed to be relaxable");
281 }
282 
283 void TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
284                                 uint64_t Val) const {
285   llvm_unreachable("Should not have claimed to be relaxable");
286 }
287 
288 void TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
289                                 uint64_t Val) const {
290   llvm_unreachable("Should not have claimed to be relaxable");
291 }
292 
293 void TargetInfo::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type,
294                                 uint64_t Val) const {
295   llvm_unreachable("Should not have claimed to be relaxable");
296 }
297 
298 X86TargetInfo::X86TargetInfo() {
299   CopyRel = R_386_COPY;
300   GotRel = R_386_GLOB_DAT;
301   PltRel = R_386_JUMP_SLOT;
302   IRelativeRel = R_386_IRELATIVE;
303   RelativeRel = R_386_RELATIVE;
304   TlsGotRel = R_386_TLS_TPOFF;
305   TlsModuleIndexRel = R_386_TLS_DTPMOD32;
306   TlsOffsetRel = R_386_TLS_DTPOFF32;
307   GotEntrySize = 4;
308   GotPltEntrySize = 4;
309   PltEntrySize = 16;
310   PltHeaderSize = 16;
311   TlsGdRelaxSkip = 2;
312 }
313 
314 RelExpr X86TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
315   switch (Type) {
316   default:
317     return R_ABS;
318   case R_386_TLS_GD:
319     return R_TLSGD;
320   case R_386_TLS_LDM:
321     return R_TLSLD;
322   case R_386_PLT32:
323     return R_PLT_PC;
324   case R_386_PC32:
325     return R_PC;
326   case R_386_GOTPC:
327     return R_GOTONLY_PC;
328   case R_386_TLS_IE:
329     return R_GOT;
330   case R_386_GOT32:
331   case R_386_GOT32X:
332   case R_386_TLS_GOTIE:
333     return R_GOT_FROM_END;
334   case R_386_GOTOFF:
335     return R_GOTREL;
336   case R_386_TLS_LE:
337     return R_TLS;
338   case R_386_TLS_LE_32:
339     return R_NEG_TLS;
340   }
341 }
342 
343 RelExpr X86TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
344                                        RelExpr Expr) const {
345   switch (Expr) {
346   default:
347     return Expr;
348   case R_RELAX_TLS_GD_TO_IE:
349     return R_RELAX_TLS_GD_TO_IE_END;
350   case R_RELAX_TLS_GD_TO_LE:
351     return R_RELAX_TLS_GD_TO_LE_NEG;
352   }
353 }
354 
355 void X86TargetInfo::writeGotPltHeader(uint8_t *Buf) const {
356   write32le(Buf, Out<ELF32LE>::Dynamic->getVA());
357 }
358 
359 void X86TargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &S) const {
360   // Entries in .got.plt initially points back to the corresponding
361   // PLT entries with a fixed offset to skip the first instruction.
362   write32le(Buf, S.getPltVA<ELF32LE>() + 6);
363 }
364 
365 uint32_t X86TargetInfo::getDynRel(uint32_t Type) const {
366   if (Type == R_386_TLS_LE)
367     return R_386_TLS_TPOFF;
368   if (Type == R_386_TLS_LE_32)
369     return R_386_TLS_TPOFF32;
370   return Type;
371 }
372 
373 bool X86TargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const {
374   return Type == R_386_TLS_GD;
375 }
376 
377 bool X86TargetInfo::isTlsLocalDynamicRel(uint32_t Type) const {
378   return Type == R_386_TLS_LDO_32 || Type == R_386_TLS_LDM;
379 }
380 
381 bool X86TargetInfo::isTlsInitialExecRel(uint32_t Type) const {
382   return Type == R_386_TLS_IE || Type == R_386_TLS_GOTIE;
383 }
384 
385 void X86TargetInfo::writePltHeader(uint8_t *Buf) const {
386   // Executable files and shared object files have
387   // separate procedure linkage tables.
388   if (Config->Pic) {
389     const uint8_t V[] = {
390         0xff, 0xb3, 0x04, 0x00, 0x00, 0x00, // pushl 4(%ebx)
391         0xff, 0xa3, 0x08, 0x00, 0x00, 0x00, // jmp   *8(%ebx)
392         0x90, 0x90, 0x90, 0x90              // nop; nop; nop; nop
393     };
394     memcpy(Buf, V, sizeof(V));
395     return;
396   }
397 
398   const uint8_t PltData[] = {
399       0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushl (GOT+4)
400       0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp   *(GOT+8)
401       0x90, 0x90, 0x90, 0x90              // nop; nop; nop; nop
402   };
403   memcpy(Buf, PltData, sizeof(PltData));
404   uint32_t Got = Out<ELF32LE>::GotPlt->getVA();
405   write32le(Buf + 2, Got + 4);
406   write32le(Buf + 8, Got + 8);
407 }
408 
409 void X86TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
410                              uint64_t PltEntryAddr, int32_t Index,
411                              unsigned RelOff) const {
412   const uint8_t Inst[] = {
413       0xff, 0x00, 0x00, 0x00, 0x00, 0x00, // jmp *foo_in_GOT|*foo@GOT(%ebx)
414       0x68, 0x00, 0x00, 0x00, 0x00,       // pushl $reloc_offset
415       0xe9, 0x00, 0x00, 0x00, 0x00        // jmp .PLT0@PC
416   };
417   memcpy(Buf, Inst, sizeof(Inst));
418 
419   // jmp *foo@GOT(%ebx) or jmp *foo_in_GOT
420   Buf[1] = Config->Pic ? 0xa3 : 0x25;
421   uint32_t Got = Out<ELF32LE>::GotPlt->getVA();
422   write32le(Buf + 2, Config->Shared ? GotEntryAddr - Got : GotEntryAddr);
423   write32le(Buf + 7, RelOff);
424   write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16);
425 }
426 
427 uint64_t X86TargetInfo::getImplicitAddend(const uint8_t *Buf,
428                                           uint32_t Type) const {
429   switch (Type) {
430   default:
431     return 0;
432   case R_386_32:
433   case R_386_GOT32:
434   case R_386_GOT32X:
435   case R_386_GOTOFF:
436   case R_386_GOTPC:
437   case R_386_PC32:
438   case R_386_PLT32:
439     return read32le(Buf);
440   }
441 }
442 
443 void X86TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
444                                 uint64_t Val) const {
445   checkInt<32>(Val, Type);
446   write32le(Loc, Val);
447 }
448 
449 void X86TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
450                                    uint64_t Val) const {
451   // Convert
452   //   leal x@tlsgd(, %ebx, 1),
453   //   call __tls_get_addr@plt
454   // to
455   //   movl %gs:0,%eax
456   //   subl $x@ntpoff,%eax
457   const uint8_t Inst[] = {
458       0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
459       0x81, 0xe8, 0x00, 0x00, 0x00, 0x00  // subl 0(%ebx), %eax
460   };
461   memcpy(Loc - 3, Inst, sizeof(Inst));
462   relocateOne(Loc + 5, R_386_32, Val);
463 }
464 
465 void X86TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
466                                    uint64_t Val) const {
467   // Convert
468   //   leal x@tlsgd(, %ebx, 1),
469   //   call __tls_get_addr@plt
470   // to
471   //   movl %gs:0, %eax
472   //   addl x@gotntpoff(%ebx), %eax
473   const uint8_t Inst[] = {
474       0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
475       0x03, 0x83, 0x00, 0x00, 0x00, 0x00  // addl 0(%ebx), %eax
476   };
477   memcpy(Loc - 3, Inst, sizeof(Inst));
478   relocateOne(Loc + 5, R_386_32, Val);
479 }
480 
481 // In some conditions, relocations can be optimized to avoid using GOT.
482 // This function does that for Initial Exec to Local Exec case.
483 void X86TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
484                                    uint64_t Val) const {
485   // Ulrich's document section 6.2 says that @gotntpoff can
486   // be used with MOVL or ADDL instructions.
487   // @indntpoff is similar to @gotntpoff, but for use in
488   // position dependent code.
489   uint8_t Reg = (Loc[-1] >> 3) & 7;
490 
491   if (Type == R_386_TLS_IE) {
492     if (Loc[-1] == 0xa1) {
493       // "movl foo@indntpoff,%eax" -> "movl $foo,%eax"
494       // This case is different from the generic case below because
495       // this is a 5 byte instruction while below is 6 bytes.
496       Loc[-1] = 0xb8;
497     } else if (Loc[-2] == 0x8b) {
498       // "movl foo@indntpoff,%reg" -> "movl $foo,%reg"
499       Loc[-2] = 0xc7;
500       Loc[-1] = 0xc0 | Reg;
501     } else {
502       // "addl foo@indntpoff,%reg" -> "addl $foo,%reg"
503       Loc[-2] = 0x81;
504       Loc[-1] = 0xc0 | Reg;
505     }
506   } else {
507     assert(Type == R_386_TLS_GOTIE);
508     if (Loc[-2] == 0x8b) {
509       // "movl foo@gottpoff(%rip),%reg" -> "movl $foo,%reg"
510       Loc[-2] = 0xc7;
511       Loc[-1] = 0xc0 | Reg;
512     } else {
513       // "addl foo@gotntpoff(%rip),%reg" -> "leal foo(%reg),%reg"
514       Loc[-2] = 0x8d;
515       Loc[-1] = 0x80 | (Reg << 3) | Reg;
516     }
517   }
518   relocateOne(Loc, R_386_TLS_LE, Val);
519 }
520 
521 void X86TargetInfo::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type,
522                                    uint64_t Val) const {
523   if (Type == R_386_TLS_LDO_32) {
524     relocateOne(Loc, R_386_TLS_LE, Val);
525     return;
526   }
527 
528   // Convert
529   //   leal foo(%reg),%eax
530   //   call ___tls_get_addr
531   // to
532   //   movl %gs:0,%eax
533   //   nop
534   //   leal 0(%esi,1),%esi
535   const uint8_t Inst[] = {
536       0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0,%eax
537       0x90,                               // nop
538       0x8d, 0x74, 0x26, 0x00              // leal 0(%esi,1),%esi
539   };
540   memcpy(Loc - 2, Inst, sizeof(Inst));
541 }
542 
543 template <class ELFT> X86_64TargetInfo<ELFT>::X86_64TargetInfo() {
544   CopyRel = R_X86_64_COPY;
545   GotRel = R_X86_64_GLOB_DAT;
546   PltRel = R_X86_64_JUMP_SLOT;
547   RelativeRel = R_X86_64_RELATIVE;
548   IRelativeRel = R_X86_64_IRELATIVE;
549   TlsGotRel = R_X86_64_TPOFF64;
550   TlsModuleIndexRel = R_X86_64_DTPMOD64;
551   TlsOffsetRel = R_X86_64_DTPOFF64;
552   GotEntrySize = 8;
553   GotPltEntrySize = 8;
554   PltEntrySize = 16;
555   PltHeaderSize = 16;
556   TlsGdRelaxSkip = 2;
557 }
558 
559 template <class ELFT>
560 RelExpr X86_64TargetInfo<ELFT>::getRelExpr(uint32_t Type,
561                                            const SymbolBody &S) const {
562   switch (Type) {
563   default:
564     return R_ABS;
565   case R_X86_64_TPOFF32:
566     return R_TLS;
567   case R_X86_64_TLSLD:
568     return R_TLSLD_PC;
569   case R_X86_64_TLSGD:
570     return R_TLSGD_PC;
571   case R_X86_64_SIZE32:
572   case R_X86_64_SIZE64:
573     return R_SIZE;
574   case R_X86_64_PLT32:
575     return R_PLT_PC;
576   case R_X86_64_PC32:
577   case R_X86_64_PC64:
578     return R_PC;
579   case R_X86_64_GOT32:
580     return R_GOT_FROM_END;
581   case R_X86_64_GOTPCREL:
582   case R_X86_64_GOTPCRELX:
583   case R_X86_64_REX_GOTPCRELX:
584   case R_X86_64_GOTTPOFF:
585     return R_GOT_PC;
586   }
587 }
588 
589 template <class ELFT>
590 void X86_64TargetInfo<ELFT>::writeGotPltHeader(uint8_t *Buf) const {
591   // The first entry holds the value of _DYNAMIC. It is not clear why that is
592   // required, but it is documented in the psabi and the glibc dynamic linker
593   // seems to use it (note that this is relevant for linking ld.so, not any
594   // other program).
595   write64le(Buf, Out<ELFT>::Dynamic->getVA());
596 }
597 
598 template <class ELFT>
599 void X86_64TargetInfo<ELFT>::writeGotPlt(uint8_t *Buf,
600                                          const SymbolBody &S) const {
601   // See comments in X86TargetInfo::writeGotPlt.
602   write32le(Buf, S.getPltVA<ELFT>() + 6);
603 }
604 
605 template <class ELFT>
606 void X86_64TargetInfo<ELFT>::writePltHeader(uint8_t *Buf) const {
607   const uint8_t PltData[] = {
608       0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushq GOT+8(%rip)
609       0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *GOT+16(%rip)
610       0x0f, 0x1f, 0x40, 0x00              // nopl 0x0(rax)
611   };
612   memcpy(Buf, PltData, sizeof(PltData));
613   uint64_t Got = Out<ELFT>::GotPlt->getVA();
614   uint64_t Plt = Out<ELFT>::Plt->getVA();
615   write32le(Buf + 2, Got - Plt + 2); // GOT+8
616   write32le(Buf + 8, Got - Plt + 4); // GOT+16
617 }
618 
619 template <class ELFT>
620 void X86_64TargetInfo<ELFT>::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
621                                       uint64_t PltEntryAddr, int32_t Index,
622                                       unsigned RelOff) const {
623   const uint8_t Inst[] = {
624       0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmpq *got(%rip)
625       0x68, 0x00, 0x00, 0x00, 0x00,       // pushq <relocation index>
626       0xe9, 0x00, 0x00, 0x00, 0x00        // jmpq plt[0]
627   };
628   memcpy(Buf, Inst, sizeof(Inst));
629 
630   write32le(Buf + 2, GotEntryAddr - PltEntryAddr - 6);
631   write32le(Buf + 7, Index);
632   write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16);
633 }
634 
635 template <class ELFT>
636 uint32_t X86_64TargetInfo<ELFT>::getDynRel(uint32_t Type) const {
637   if (Type == R_X86_64_PC32 || Type == R_X86_64_32)
638     errorDynRel(Type);
639   return Type;
640 }
641 
642 template <class ELFT>
643 bool X86_64TargetInfo<ELFT>::isTlsInitialExecRel(uint32_t Type) const {
644   return Type == R_X86_64_GOTTPOFF;
645 }
646 
647 template <class ELFT>
648 bool X86_64TargetInfo<ELFT>::isTlsGlobalDynamicRel(uint32_t Type) const {
649   return Type == R_X86_64_TLSGD;
650 }
651 
652 template <class ELFT>
653 bool X86_64TargetInfo<ELFT>::isTlsLocalDynamicRel(uint32_t Type) const {
654   return Type == R_X86_64_DTPOFF32 || Type == R_X86_64_DTPOFF64 ||
655          Type == R_X86_64_TLSLD;
656 }
657 
658 template <class ELFT>
659 void X86_64TargetInfo<ELFT>::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
660                                             uint64_t Val) const {
661   // Convert
662   //   .byte 0x66
663   //   leaq x@tlsgd(%rip), %rdi
664   //   .word 0x6666
665   //   rex64
666   //   call __tls_get_addr@plt
667   // to
668   //   mov %fs:0x0,%rax
669   //   lea x@tpoff,%rax
670   const uint8_t Inst[] = {
671       0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax
672       0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00              // lea x@tpoff,%rax
673   };
674   memcpy(Loc - 4, Inst, sizeof(Inst));
675   // The original code used a pc relative relocation and so we have to
676   // compensate for the -4 in had in the addend.
677   relocateOne(Loc + 8, R_X86_64_TPOFF32, Val + 4);
678 }
679 
680 template <class ELFT>
681 void X86_64TargetInfo<ELFT>::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
682                                             uint64_t Val) const {
683   // Convert
684   //   .byte 0x66
685   //   leaq x@tlsgd(%rip), %rdi
686   //   .word 0x6666
687   //   rex64
688   //   call __tls_get_addr@plt
689   // to
690   //   mov %fs:0x0,%rax
691   //   addq x@tpoff,%rax
692   const uint8_t Inst[] = {
693       0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax
694       0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00              // addq x@tpoff,%rax
695   };
696   memcpy(Loc - 4, Inst, sizeof(Inst));
697   // Both code sequences are PC relatives, but since we are moving the constant
698   // forward by 8 bytes we have to subtract the value by 8.
699   relocateOne(Loc + 8, R_X86_64_PC32, Val - 8);
700 }
701 
702 // In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to
703 // R_X86_64_TPOFF32 so that it does not use GOT.
704 template <class ELFT>
705 void X86_64TargetInfo<ELFT>::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
706                                             uint64_t Val) const {
707   uint8_t *Inst = Loc - 3;
708   uint8_t Reg = Loc[-1] >> 3;
709   uint8_t *RegSlot = Loc - 1;
710 
711   // Note that ADD with RSP or R12 is converted to ADD instead of LEA
712   // because LEA with these registers needs 4 bytes to encode and thus
713   // wouldn't fit the space.
714 
715   if (memcmp(Inst, "\x48\x03\x25", 3) == 0) {
716     // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp"
717     memcpy(Inst, "\x48\x81\xc4", 3);
718   } else if (memcmp(Inst, "\x4c\x03\x25", 3) == 0) {
719     // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12"
720     memcpy(Inst, "\x49\x81\xc4", 3);
721   } else if (memcmp(Inst, "\x4c\x03", 2) == 0) {
722     // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]"
723     memcpy(Inst, "\x4d\x8d", 2);
724     *RegSlot = 0x80 | (Reg << 3) | Reg;
725   } else if (memcmp(Inst, "\x48\x03", 2) == 0) {
726     // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg"
727     memcpy(Inst, "\x48\x8d", 2);
728     *RegSlot = 0x80 | (Reg << 3) | Reg;
729   } else if (memcmp(Inst, "\x4c\x8b", 2) == 0) {
730     // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]"
731     memcpy(Inst, "\x49\xc7", 2);
732     *RegSlot = 0xc0 | Reg;
733   } else if (memcmp(Inst, "\x48\x8b", 2) == 0) {
734     // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg"
735     memcpy(Inst, "\x48\xc7", 2);
736     *RegSlot = 0xc0 | Reg;
737   } else {
738     fatal("R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only");
739   }
740 
741   // The original code used a PC relative relocation.
742   // Need to compensate for the -4 it had in the addend.
743   relocateOne(Loc, R_X86_64_TPOFF32, Val + 4);
744 }
745 
746 template <class ELFT>
747 void X86_64TargetInfo<ELFT>::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type,
748                                             uint64_t Val) const {
749   // Convert
750   //   leaq bar@tlsld(%rip), %rdi
751   //   callq __tls_get_addr@PLT
752   //   leaq bar@dtpoff(%rax), %rcx
753   // to
754   //   .word 0x6666
755   //   .byte 0x66
756   //   mov %fs:0,%rax
757   //   leaq bar@tpoff(%rax), %rcx
758   if (Type == R_X86_64_DTPOFF64) {
759     write64le(Loc, Val);
760     return;
761   }
762   if (Type == R_X86_64_DTPOFF32) {
763     relocateOne(Loc, R_X86_64_TPOFF32, Val);
764     return;
765   }
766 
767   const uint8_t Inst[] = {
768       0x66, 0x66,                                          // .word 0x6666
769       0x66,                                                // .byte 0x66
770       0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax
771   };
772   memcpy(Loc - 3, Inst, sizeof(Inst));
773 }
774 
775 template <class ELFT>
776 void X86_64TargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint32_t Type,
777                                          uint64_t Val) const {
778   switch (Type) {
779   case R_X86_64_32:
780     checkUInt<32>(Val, Type);
781     write32le(Loc, Val);
782     break;
783   case R_X86_64_32S:
784   case R_X86_64_TPOFF32:
785   case R_X86_64_GOT32:
786   case R_X86_64_GOTPCREL:
787   case R_X86_64_GOTPCRELX:
788   case R_X86_64_REX_GOTPCRELX:
789   case R_X86_64_PC32:
790   case R_X86_64_GOTTPOFF:
791   case R_X86_64_PLT32:
792   case R_X86_64_TLSGD:
793   case R_X86_64_TLSLD:
794   case R_X86_64_DTPOFF32:
795   case R_X86_64_SIZE32:
796     checkInt<32>(Val, Type);
797     write32le(Loc, Val);
798     break;
799   case R_X86_64_64:
800   case R_X86_64_DTPOFF64:
801   case R_X86_64_SIZE64:
802   case R_X86_64_PC64:
803     write64le(Loc, Val);
804     break;
805   default:
806     fatal("unrecognized reloc " + Twine(Type));
807   }
808 }
809 
810 template <class ELFT>
811 RelExpr X86_64TargetInfo<ELFT>::adjustRelaxExpr(uint32_t Type,
812                                                 const uint8_t *Data,
813                                                 RelExpr RelExpr) const {
814   if (Type != R_X86_64_GOTPCRELX && Type != R_X86_64_REX_GOTPCRELX)
815     return RelExpr;
816   const uint8_t Op = Data[-2];
817   const uint8_t ModRm = Data[-1];
818   // FIXME: When PIC is disabled and foo is defined locally in the
819   // lower 32 bit address space, memory operand in mov can be converted into
820   // immediate operand. Otherwise, mov must be changed to lea. We support only
821   // latter relaxation at this moment.
822   if (Op == 0x8b)
823     return R_RELAX_GOT_PC;
824   // Relax call and jmp.
825   if (Op == 0xff && (ModRm == 0x15 || ModRm == 0x25))
826     return R_RELAX_GOT_PC;
827 
828   // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor.
829   // If PIC then no relaxation is available.
830   // We also don't relax test/binop instructions without REX byte,
831   // they are 32bit operations and not common to have.
832   assert(Type == R_X86_64_REX_GOTPCRELX);
833   return Config->Pic ? RelExpr : R_RELAX_GOT_PC_NOPIC;
834 }
835 
836 // A subset of relaxations can only be applied for no-PIC. This method
837 // handles such relaxations. Instructions encoding information was taken from:
838 // "Intel 64 and IA-32 Architectures Software Developer's Manual V2"
839 // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
840 //    64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf)
841 template <class ELFT>
842 void X86_64TargetInfo<ELFT>::relaxGotNoPic(uint8_t *Loc, uint64_t Val,
843                                            uint8_t Op, uint8_t ModRm) const {
844   const uint8_t Rex = Loc[-3];
845   // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg".
846   if (Op == 0x85) {
847     // See "TEST-Logical Compare" (4-428 Vol. 2B),
848     // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension).
849 
850     // ModR/M byte has form XX YYY ZZZ, where
851     // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1).
852     // XX has different meanings:
853     // 00: The operand's memory address is in reg1.
854     // 01: The operand's memory address is reg1 + a byte-sized displacement.
855     // 10: The operand's memory address is reg1 + a word-sized displacement.
856     // 11: The operand is reg1 itself.
857     // If an instruction requires only one operand, the unused reg2 field
858     // holds extra opcode bits rather than a register code
859     // 0xC0 == 11 000 000 binary.
860     // 0x38 == 00 111 000 binary.
861     // We transfer reg2 to reg1 here as operand.
862     // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3).
863     Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3; // ModR/M byte.
864 
865     // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32
866     // See "TEST-Logical Compare" (4-428 Vol. 2B).
867     Loc[-2] = 0xf7;
868 
869     // Move R bit to the B bit in REX byte.
870     // REX byte is encoded as 0100WRXB, where
871     // 0100 is 4bit fixed pattern.
872     // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the
873     //   default operand size is used (which is 32-bit for most but not all
874     //   instructions).
875     // REX.R This 1-bit value is an extension to the MODRM.reg field.
876     // REX.X This 1-bit value is an extension to the SIB.index field.
877     // REX.B This 1-bit value is an extension to the MODRM.rm field or the
878     // SIB.base field.
879     // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A).
880     Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2;
881     relocateOne(Loc, R_X86_64_PC32, Val);
882     return;
883   }
884 
885   // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub
886   // or xor operations.
887 
888   // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg".
889   // Logic is close to one for test instruction above, but we also
890   // write opcode extension here, see below for details.
891   Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3 | (Op & 0x3c); // ModR/M byte.
892 
893   // Primary opcode is 0x81, opcode extension is one of:
894   // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB,
895   // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP.
896   // This value was wrote to MODRM.reg in a line above.
897   // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15),
898   // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for
899   // descriptions about each operation.
900   Loc[-2] = 0x81;
901   Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2;
902   relocateOne(Loc, R_X86_64_PC32, Val);
903 }
904 
905 template <class ELFT>
906 void X86_64TargetInfo<ELFT>::relaxGot(uint8_t *Loc, uint64_t Val) const {
907   const uint8_t Op = Loc[-2];
908   const uint8_t ModRm = Loc[-1];
909 
910   // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg".
911   if (Op == 0x8b) {
912     Loc[-2] = 0x8d;
913     relocateOne(Loc, R_X86_64_PC32, Val);
914     return;
915   }
916 
917   if (Op != 0xff) {
918     // We are relaxing a rip relative to an absolute, so compensate
919     // for the old -4 addend.
920     assert(!Config->Pic);
921     relaxGotNoPic(Loc, Val + 4, Op, ModRm);
922     return;
923   }
924 
925   // Convert call/jmp instructions.
926   if (ModRm == 0x15) {
927     // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo".
928     // Instead we convert to "addr32 call foo" where addr32 is an instruction
929     // prefix. That makes result expression to be a single instruction.
930     Loc[-2] = 0x67; // addr32 prefix
931     Loc[-1] = 0xe8; // call
932     relocateOne(Loc, R_X86_64_PC32, Val);
933     return;
934   }
935 
936   // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop".
937   // jmp doesn't return, so it is fine to use nop here, it is just a stub.
938   assert(ModRm == 0x25);
939   Loc[-2] = 0xe9; // jmp
940   Loc[3] = 0x90;  // nop
941   relocateOne(Loc - 1, R_X86_64_PC32, Val + 1);
942 }
943 
944 // Relocation masks following the #lo(value), #hi(value), #ha(value),
945 // #higher(value), #highera(value), #highest(value), and #highesta(value)
946 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
947 // document.
948 static uint16_t applyPPCLo(uint64_t V) { return V; }
949 static uint16_t applyPPCHi(uint64_t V) { return V >> 16; }
950 static uint16_t applyPPCHa(uint64_t V) { return (V + 0x8000) >> 16; }
951 static uint16_t applyPPCHigher(uint64_t V) { return V >> 32; }
952 static uint16_t applyPPCHighera(uint64_t V) { return (V + 0x8000) >> 32; }
953 static uint16_t applyPPCHighest(uint64_t V) { return V >> 48; }
954 static uint16_t applyPPCHighesta(uint64_t V) { return (V + 0x8000) >> 48; }
955 
956 PPCTargetInfo::PPCTargetInfo() {}
957 
958 void PPCTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
959                                 uint64_t Val) const {
960   switch (Type) {
961   case R_PPC_ADDR16_HA:
962     write16be(Loc, applyPPCHa(Val));
963     break;
964   case R_PPC_ADDR16_LO:
965     write16be(Loc, applyPPCLo(Val));
966     break;
967   default:
968     fatal("unrecognized reloc " + Twine(Type));
969   }
970 }
971 
972 RelExpr PPCTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
973   return R_ABS;
974 }
975 
976 PPC64TargetInfo::PPC64TargetInfo() {
977   PltRel = GotRel = R_PPC64_GLOB_DAT;
978   RelativeRel = R_PPC64_RELATIVE;
979   GotEntrySize = 8;
980   GotPltEntrySize = 8;
981   PltEntrySize = 32;
982   PltHeaderSize = 0;
983 
984   // We need 64K pages (at least under glibc/Linux, the loader won't
985   // set different permissions on a finer granularity than that).
986   PageSize = 65536;
987 
988   // The PPC64 ELF ABI v1 spec, says:
989   //
990   //   It is normally desirable to put segments with different characteristics
991   //   in separate 256 Mbyte portions of the address space, to give the
992   //   operating system full paging flexibility in the 64-bit address space.
993   //
994   // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
995   // use 0x10000000 as the starting address.
996   DefaultImageBase = 0x10000000;
997 }
998 
999 static uint64_t PPC64TocOffset = 0x8000;
1000 
1001 uint64_t getPPC64TocBase() {
1002   // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The
1003   // TOC starts where the first of these sections starts. We always create a
1004   // .got when we see a relocation that uses it, so for us the start is always
1005   // the .got.
1006   uint64_t TocVA = Out<ELF64BE>::Got->getVA();
1007 
1008   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
1009   // thus permitting a full 64 Kbytes segment. Note that the glibc startup
1010   // code (crt1.o) assumes that you can get from the TOC base to the
1011   // start of the .toc section with only a single (signed) 16-bit relocation.
1012   return TocVA + PPC64TocOffset;
1013 }
1014 
1015 RelExpr PPC64TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
1016   switch (Type) {
1017   default:
1018     return R_ABS;
1019   case R_PPC64_TOC16:
1020   case R_PPC64_TOC16_DS:
1021   case R_PPC64_TOC16_HA:
1022   case R_PPC64_TOC16_HI:
1023   case R_PPC64_TOC16_LO:
1024   case R_PPC64_TOC16_LO_DS:
1025     return R_GOTREL;
1026   case R_PPC64_TOC:
1027     return R_PPC_TOC;
1028   case R_PPC64_REL24:
1029     return R_PPC_PLT_OPD;
1030   }
1031 }
1032 
1033 void PPC64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
1034                                uint64_t PltEntryAddr, int32_t Index,
1035                                unsigned RelOff) const {
1036   uint64_t Off = GotEntryAddr - getPPC64TocBase();
1037 
1038   // FIXME: What we should do, in theory, is get the offset of the function
1039   // descriptor in the .opd section, and use that as the offset from %r2 (the
1040   // TOC-base pointer). Instead, we have the GOT-entry offset, and that will
1041   // be a pointer to the function descriptor in the .opd section. Using
1042   // this scheme is simpler, but requires an extra indirection per PLT dispatch.
1043 
1044   write32be(Buf,      0xf8410028);                   // std %r2, 40(%r1)
1045   write32be(Buf + 4,  0x3d620000 | applyPPCHa(Off)); // addis %r11, %r2, X@ha
1046   write32be(Buf + 8,  0xe98b0000 | applyPPCLo(Off)); // ld %r12, X@l(%r11)
1047   write32be(Buf + 12, 0xe96c0000);                   // ld %r11,0(%r12)
1048   write32be(Buf + 16, 0x7d6903a6);                   // mtctr %r11
1049   write32be(Buf + 20, 0xe84c0008);                   // ld %r2,8(%r12)
1050   write32be(Buf + 24, 0xe96c0010);                   // ld %r11,16(%r12)
1051   write32be(Buf + 28, 0x4e800420);                   // bctr
1052 }
1053 
1054 static std::pair<uint32_t, uint64_t> toAddr16Rel(uint32_t Type, uint64_t Val) {
1055   uint64_t V = Val - PPC64TocOffset;
1056   switch (Type) {
1057   case R_PPC64_TOC16: return {R_PPC64_ADDR16, V};
1058   case R_PPC64_TOC16_DS: return {R_PPC64_ADDR16_DS, V};
1059   case R_PPC64_TOC16_HA: return {R_PPC64_ADDR16_HA, V};
1060   case R_PPC64_TOC16_HI: return {R_PPC64_ADDR16_HI, V};
1061   case R_PPC64_TOC16_LO: return {R_PPC64_ADDR16_LO, V};
1062   case R_PPC64_TOC16_LO_DS: return {R_PPC64_ADDR16_LO_DS, V};
1063   default: return {Type, Val};
1064   }
1065 }
1066 
1067 void PPC64TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
1068                                   uint64_t Val) const {
1069   // For a TOC-relative relocation, proceed in terms of the corresponding
1070   // ADDR16 relocation type.
1071   std::tie(Type, Val) = toAddr16Rel(Type, Val);
1072 
1073   switch (Type) {
1074   case R_PPC64_ADDR14: {
1075     checkAlignment<4>(Val, Type);
1076     // Preserve the AA/LK bits in the branch instruction
1077     uint8_t AALK = Loc[3];
1078     write16be(Loc + 2, (AALK & 3) | (Val & 0xfffc));
1079     break;
1080   }
1081   case R_PPC64_ADDR16:
1082     checkInt<16>(Val, Type);
1083     write16be(Loc, Val);
1084     break;
1085   case R_PPC64_ADDR16_DS:
1086     checkInt<16>(Val, Type);
1087     write16be(Loc, (read16be(Loc) & 3) | (Val & ~3));
1088     break;
1089   case R_PPC64_ADDR16_HA:
1090   case R_PPC64_REL16_HA:
1091     write16be(Loc, applyPPCHa(Val));
1092     break;
1093   case R_PPC64_ADDR16_HI:
1094   case R_PPC64_REL16_HI:
1095     write16be(Loc, applyPPCHi(Val));
1096     break;
1097   case R_PPC64_ADDR16_HIGHER:
1098     write16be(Loc, applyPPCHigher(Val));
1099     break;
1100   case R_PPC64_ADDR16_HIGHERA:
1101     write16be(Loc, applyPPCHighera(Val));
1102     break;
1103   case R_PPC64_ADDR16_HIGHEST:
1104     write16be(Loc, applyPPCHighest(Val));
1105     break;
1106   case R_PPC64_ADDR16_HIGHESTA:
1107     write16be(Loc, applyPPCHighesta(Val));
1108     break;
1109   case R_PPC64_ADDR16_LO:
1110     write16be(Loc, applyPPCLo(Val));
1111     break;
1112   case R_PPC64_ADDR16_LO_DS:
1113   case R_PPC64_REL16_LO:
1114     write16be(Loc, (read16be(Loc) & 3) | (applyPPCLo(Val) & ~3));
1115     break;
1116   case R_PPC64_ADDR32:
1117   case R_PPC64_REL32:
1118     checkInt<32>(Val, Type);
1119     write32be(Loc, Val);
1120     break;
1121   case R_PPC64_ADDR64:
1122   case R_PPC64_REL64:
1123   case R_PPC64_TOC:
1124     write64be(Loc, Val);
1125     break;
1126   case R_PPC64_REL24: {
1127     uint32_t Mask = 0x03FFFFFC;
1128     checkInt<24>(Val, Type);
1129     write32be(Loc, (read32be(Loc) & ~Mask) | (Val & Mask));
1130     break;
1131   }
1132   default:
1133     fatal("unrecognized reloc " + Twine(Type));
1134   }
1135 }
1136 
1137 AArch64TargetInfo::AArch64TargetInfo() {
1138   CopyRel = R_AARCH64_COPY;
1139   RelativeRel = R_AARCH64_RELATIVE;
1140   IRelativeRel = R_AARCH64_IRELATIVE;
1141   GotRel = R_AARCH64_GLOB_DAT;
1142   PltRel = R_AARCH64_JUMP_SLOT;
1143   TlsDescRel = R_AARCH64_TLSDESC;
1144   TlsGotRel = R_AARCH64_TLS_TPREL64;
1145   GotEntrySize = 8;
1146   GotPltEntrySize = 8;
1147   PltEntrySize = 16;
1148   PltHeaderSize = 32;
1149 
1150   // It doesn't seem to be documented anywhere, but tls on aarch64 uses variant
1151   // 1 of the tls structures and the tcb size is 16.
1152   TcbSize = 16;
1153 }
1154 
1155 RelExpr AArch64TargetInfo::getRelExpr(uint32_t Type,
1156                                       const SymbolBody &S) const {
1157   switch (Type) {
1158   default:
1159     return R_ABS;
1160   case R_AARCH64_TLSDESC_ADR_PAGE21:
1161     return R_TLSDESC_PAGE;
1162   case R_AARCH64_TLSDESC_LD64_LO12_NC:
1163   case R_AARCH64_TLSDESC_ADD_LO12_NC:
1164     return R_TLSDESC;
1165   case R_AARCH64_TLSDESC_CALL:
1166     return R_HINT;
1167   case R_AARCH64_TLSLE_ADD_TPREL_HI12:
1168   case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
1169     return R_TLS;
1170   case R_AARCH64_CALL26:
1171   case R_AARCH64_CONDBR19:
1172   case R_AARCH64_JUMP26:
1173   case R_AARCH64_TSTBR14:
1174     return R_PLT_PC;
1175   case R_AARCH64_PREL16:
1176   case R_AARCH64_PREL32:
1177   case R_AARCH64_PREL64:
1178   case R_AARCH64_ADR_PREL_LO21:
1179     return R_PC;
1180   case R_AARCH64_ADR_PREL_PG_HI21:
1181     return R_PAGE_PC;
1182   case R_AARCH64_LD64_GOT_LO12_NC:
1183   case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
1184     return R_GOT;
1185   case R_AARCH64_ADR_GOT_PAGE:
1186   case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
1187     return R_GOT_PAGE_PC;
1188   }
1189 }
1190 
1191 RelExpr AArch64TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
1192                                            RelExpr Expr) const {
1193   if (Expr == R_RELAX_TLS_GD_TO_IE) {
1194     if (Type == R_AARCH64_TLSDESC_ADR_PAGE21)
1195       return R_RELAX_TLS_GD_TO_IE_PAGE_PC;
1196     return R_RELAX_TLS_GD_TO_IE_ABS;
1197   }
1198   return Expr;
1199 }
1200 
1201 bool AArch64TargetInfo::usesOnlyLowPageBits(uint32_t Type) const {
1202   switch (Type) {
1203   default:
1204     return false;
1205   case R_AARCH64_ADD_ABS_LO12_NC:
1206   case R_AARCH64_LD64_GOT_LO12_NC:
1207   case R_AARCH64_LDST128_ABS_LO12_NC:
1208   case R_AARCH64_LDST16_ABS_LO12_NC:
1209   case R_AARCH64_LDST32_ABS_LO12_NC:
1210   case R_AARCH64_LDST64_ABS_LO12_NC:
1211   case R_AARCH64_LDST8_ABS_LO12_NC:
1212   case R_AARCH64_TLSDESC_ADD_LO12_NC:
1213   case R_AARCH64_TLSDESC_LD64_LO12_NC:
1214   case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
1215     return true;
1216   }
1217 }
1218 
1219 bool AArch64TargetInfo::isTlsInitialExecRel(uint32_t Type) const {
1220   return Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 ||
1221          Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC;
1222 }
1223 
1224 uint32_t AArch64TargetInfo::getDynRel(uint32_t Type) const {
1225   if (Type == R_AARCH64_ABS32 || Type == R_AARCH64_ABS64)
1226     return Type;
1227   // Keep it going with a dummy value so that we can find more reloc errors.
1228   errorDynRel(Type);
1229   return R_AARCH64_ABS32;
1230 }
1231 
1232 void AArch64TargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &) const {
1233   write64le(Buf, Out<ELF64LE>::Plt->getVA());
1234 }
1235 
1236 static uint64_t getAArch64Page(uint64_t Expr) {
1237   return Expr & (~static_cast<uint64_t>(0xFFF));
1238 }
1239 
1240 void AArch64TargetInfo::writePltHeader(uint8_t *Buf) const {
1241   const uint8_t PltData[] = {
1242       0xf0, 0x7b, 0xbf, 0xa9, // stp	x16, x30, [sp,#-16]!
1243       0x10, 0x00, 0x00, 0x90, // adrp	x16, Page(&(.plt.got[2]))
1244       0x11, 0x02, 0x40, 0xf9, // ldr	x17, [x16, Offset(&(.plt.got[2]))]
1245       0x10, 0x02, 0x00, 0x91, // add	x16, x16, Offset(&(.plt.got[2]))
1246       0x20, 0x02, 0x1f, 0xd6, // br	x17
1247       0x1f, 0x20, 0x03, 0xd5, // nop
1248       0x1f, 0x20, 0x03, 0xd5, // nop
1249       0x1f, 0x20, 0x03, 0xd5  // nop
1250   };
1251   memcpy(Buf, PltData, sizeof(PltData));
1252 
1253   uint64_t Got = Out<ELF64LE>::GotPlt->getVA();
1254   uint64_t Plt = Out<ELF64LE>::Plt->getVA();
1255   relocateOne(Buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
1256               getAArch64Page(Got + 16) - getAArch64Page(Plt + 4));
1257   relocateOne(Buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, Got + 16);
1258   relocateOne(Buf + 12, R_AARCH64_ADD_ABS_LO12_NC, Got + 16);
1259 }
1260 
1261 void AArch64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
1262                                  uint64_t PltEntryAddr, int32_t Index,
1263                                  unsigned RelOff) const {
1264   const uint8_t Inst[] = {
1265       0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[n]))
1266       0x11, 0x02, 0x40, 0xf9, // ldr  x17, [x16, Offset(&(.plt.got[n]))]
1267       0x10, 0x02, 0x00, 0x91, // add  x16, x16, Offset(&(.plt.got[n]))
1268       0x20, 0x02, 0x1f, 0xd6  // br   x17
1269   };
1270   memcpy(Buf, Inst, sizeof(Inst));
1271 
1272   relocateOne(Buf, R_AARCH64_ADR_PREL_PG_HI21,
1273               getAArch64Page(GotEntryAddr) - getAArch64Page(PltEntryAddr));
1274   relocateOne(Buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, GotEntryAddr);
1275   relocateOne(Buf + 8, R_AARCH64_ADD_ABS_LO12_NC, GotEntryAddr);
1276 }
1277 
1278 static void updateAArch64Addr(uint8_t *L, uint64_t Imm) {
1279   uint32_t ImmLo = (Imm & 0x3) << 29;
1280   uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
1281   uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
1282   write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
1283 }
1284 
1285 static inline void updateAArch64Add(uint8_t *L, uint64_t Imm) {
1286   or32le(L, (Imm & 0xFFF) << 10);
1287 }
1288 
1289 void AArch64TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
1290                                     uint64_t Val) const {
1291   switch (Type) {
1292   case R_AARCH64_ABS16:
1293   case R_AARCH64_PREL16:
1294     checkIntUInt<16>(Val, Type);
1295     write16le(Loc, Val);
1296     break;
1297   case R_AARCH64_ABS32:
1298   case R_AARCH64_PREL32:
1299     checkIntUInt<32>(Val, Type);
1300     write32le(Loc, Val);
1301     break;
1302   case R_AARCH64_ABS64:
1303   case R_AARCH64_PREL64:
1304     write64le(Loc, Val);
1305     break;
1306   case R_AARCH64_ADD_ABS_LO12_NC:
1307     // This relocation stores 12 bits and there's no instruction
1308     // to do it. Instead, we do a 32 bits store of the value
1309     // of r_addend bitwise-or'ed Loc. This assumes that the addend
1310     // bits in Loc are zero.
1311     or32le(Loc, (Val & 0xFFF) << 10);
1312     break;
1313   case R_AARCH64_ADR_GOT_PAGE:
1314   case R_AARCH64_ADR_PREL_PG_HI21:
1315   case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
1316   case R_AARCH64_TLSDESC_ADR_PAGE21:
1317     checkInt<33>(Val, Type);
1318     updateAArch64Addr(Loc, Val >> 12);
1319     break;
1320   case R_AARCH64_ADR_PREL_LO21:
1321     checkInt<21>(Val, Type);
1322     updateAArch64Addr(Loc, Val);
1323     break;
1324   case R_AARCH64_CALL26:
1325   case R_AARCH64_JUMP26:
1326     checkInt<28>(Val, Type);
1327     or32le(Loc, (Val & 0x0FFFFFFC) >> 2);
1328     break;
1329   case R_AARCH64_CONDBR19:
1330     checkInt<21>(Val, Type);
1331     or32le(Loc, (Val & 0x1FFFFC) << 3);
1332     break;
1333   case R_AARCH64_LD64_GOT_LO12_NC:
1334   case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
1335   case R_AARCH64_TLSDESC_LD64_LO12_NC:
1336     checkAlignment<8>(Val, Type);
1337     or32le(Loc, (Val & 0xFF8) << 7);
1338     break;
1339   case R_AARCH64_LDST128_ABS_LO12_NC:
1340     or32le(Loc, (Val & 0x0FF8) << 6);
1341     break;
1342   case R_AARCH64_LDST16_ABS_LO12_NC:
1343     or32le(Loc, (Val & 0x0FFC) << 9);
1344     break;
1345   case R_AARCH64_LDST8_ABS_LO12_NC:
1346     or32le(Loc, (Val & 0xFFF) << 10);
1347     break;
1348   case R_AARCH64_LDST32_ABS_LO12_NC:
1349     or32le(Loc, (Val & 0xFFC) << 8);
1350     break;
1351   case R_AARCH64_LDST64_ABS_LO12_NC:
1352     or32le(Loc, (Val & 0xFF8) << 7);
1353     break;
1354   case R_AARCH64_TSTBR14:
1355     checkInt<16>(Val, Type);
1356     or32le(Loc, (Val & 0xFFFC) << 3);
1357     break;
1358   case R_AARCH64_TLSLE_ADD_TPREL_HI12:
1359     checkInt<24>(Val, Type);
1360     updateAArch64Add(Loc, Val >> 12);
1361     break;
1362   case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
1363   case R_AARCH64_TLSDESC_ADD_LO12_NC:
1364     updateAArch64Add(Loc, Val);
1365     break;
1366   default:
1367     fatal("unrecognized reloc " + Twine(Type));
1368   }
1369 }
1370 
1371 void AArch64TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
1372                                        uint64_t Val) const {
1373   // TLSDESC Global-Dynamic relocation are in the form:
1374   //   adrp    x0, :tlsdesc:v             [R_AARCH64_TLSDESC_ADR_PAGE21]
1375   //   ldr     x1, [x0, #:tlsdesc_lo12:v  [R_AARCH64_TLSDESC_LD64_LO12_NC]
1376   //   add     x0, x0, :tlsdesc_los:v     [_AARCH64_TLSDESC_ADD_LO12_NC]
1377   //   .tlsdesccall                       [R_AARCH64_TLSDESC_CALL]
1378   //   blr     x1
1379   // And it can optimized to:
1380   //   movz    x0, #0x0, lsl #16
1381   //   movk    x0, #0x10
1382   //   nop
1383   //   nop
1384   checkUInt<32>(Val, Type);
1385 
1386   switch (Type) {
1387   case R_AARCH64_TLSDESC_ADD_LO12_NC:
1388   case R_AARCH64_TLSDESC_CALL:
1389     write32le(Loc, 0xd503201f); // nop
1390     return;
1391   case R_AARCH64_TLSDESC_ADR_PAGE21:
1392     write32le(Loc, 0xd2a00000 | (((Val >> 16) & 0xffff) << 5)); // movz
1393     return;
1394   case R_AARCH64_TLSDESC_LD64_LO12_NC:
1395     write32le(Loc, 0xf2800000 | ((Val & 0xffff) << 5)); // movk
1396     return;
1397   default:
1398     llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
1399   }
1400 }
1401 
1402 void AArch64TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
1403                                        uint64_t Val) const {
1404   // TLSDESC Global-Dynamic relocation are in the form:
1405   //   adrp    x0, :tlsdesc:v             [R_AARCH64_TLSDESC_ADR_PAGE21]
1406   //   ldr     x1, [x0, #:tlsdesc_lo12:v  [R_AARCH64_TLSDESC_LD64_LO12_NC]
1407   //   add     x0, x0, :tlsdesc_los:v     [_AARCH64_TLSDESC_ADD_LO12_NC]
1408   //   .tlsdesccall                       [R_AARCH64_TLSDESC_CALL]
1409   //   blr     x1
1410   // And it can optimized to:
1411   //   adrp    x0, :gottprel:v
1412   //   ldr     x0, [x0, :gottprel_lo12:v]
1413   //   nop
1414   //   nop
1415 
1416   switch (Type) {
1417   case R_AARCH64_TLSDESC_ADD_LO12_NC:
1418   case R_AARCH64_TLSDESC_CALL:
1419     write32le(Loc, 0xd503201f); // nop
1420     break;
1421   case R_AARCH64_TLSDESC_ADR_PAGE21:
1422     write32le(Loc, 0x90000000); // adrp
1423     relocateOne(Loc, R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, Val);
1424     break;
1425   case R_AARCH64_TLSDESC_LD64_LO12_NC:
1426     write32le(Loc, 0xf9400000); // ldr
1427     relocateOne(Loc, R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, Val);
1428     break;
1429   default:
1430     llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
1431   }
1432 }
1433 
1434 void AArch64TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
1435                                        uint64_t Val) const {
1436   checkUInt<32>(Val, Type);
1437 
1438   if (Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) {
1439     // Generate MOVZ.
1440     uint32_t RegNo = read32le(Loc) & 0x1f;
1441     write32le(Loc, (0xd2a00000 | RegNo) | (((Val >> 16) & 0xffff) << 5));
1442     return;
1443   }
1444   if (Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) {
1445     // Generate MOVK.
1446     uint32_t RegNo = read32le(Loc) & 0x1f;
1447     write32le(Loc, (0xf2800000 | RegNo) | ((Val & 0xffff) << 5));
1448     return;
1449   }
1450   llvm_unreachable("invalid relocation for TLS IE to LE relaxation");
1451 }
1452 
1453 AMDGPUTargetInfo::AMDGPUTargetInfo() {
1454   GotRel = R_AMDGPU_ABS64;
1455   GotEntrySize = 8;
1456 }
1457 
1458 void AMDGPUTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
1459                                    uint64_t Val) const {
1460   switch (Type) {
1461   case R_AMDGPU_GOTPCREL:
1462   case R_AMDGPU_REL32:
1463     write32le(Loc, Val);
1464     break;
1465   default:
1466     fatal("unrecognized reloc " + Twine(Type));
1467   }
1468 }
1469 
1470 RelExpr AMDGPUTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
1471   switch (Type) {
1472   case R_AMDGPU_REL32:
1473     return R_PC;
1474   case R_AMDGPU_GOTPCREL:
1475     return R_GOT_PC;
1476   default:
1477     fatal("do not know how to handle relocation " + Twine(Type));
1478   }
1479 }
1480 
1481 ARMTargetInfo::ARMTargetInfo() {
1482   CopyRel = R_ARM_COPY;
1483   RelativeRel = R_ARM_RELATIVE;
1484   IRelativeRel = R_ARM_IRELATIVE;
1485   GotRel = R_ARM_GLOB_DAT;
1486   PltRel = R_ARM_JUMP_SLOT;
1487   TlsGotRel = R_ARM_TLS_TPOFF32;
1488   TlsModuleIndexRel = R_ARM_TLS_DTPMOD32;
1489   TlsOffsetRel = R_ARM_TLS_DTPOFF32;
1490   GotEntrySize = 4;
1491   GotPltEntrySize = 4;
1492   PltEntrySize = 16;
1493   PltHeaderSize = 20;
1494 }
1495 
1496 RelExpr ARMTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
1497   switch (Type) {
1498   default:
1499     return R_ABS;
1500   case R_ARM_THM_JUMP11:
1501     return R_PC;
1502   case R_ARM_CALL:
1503   case R_ARM_JUMP24:
1504   case R_ARM_PC24:
1505   case R_ARM_PLT32:
1506   case R_ARM_THM_JUMP19:
1507   case R_ARM_THM_JUMP24:
1508   case R_ARM_THM_CALL:
1509     return R_PLT_PC;
1510   case R_ARM_GOTOFF32:
1511     // (S + A) - GOT_ORG
1512     return R_GOTREL;
1513   case R_ARM_GOT_BREL:
1514     // GOT(S) + A - GOT_ORG
1515     return R_GOT_OFF;
1516   case R_ARM_GOT_PREL:
1517     // GOT(S) + - GOT_ORG
1518     return R_GOT_PC;
1519   case R_ARM_BASE_PREL:
1520     // B(S) + A - P
1521     // FIXME: currently B(S) assumed to be .got, this may not hold for all
1522     // platforms.
1523     return R_GOTONLY_PC;
1524   case R_ARM_MOVW_PREL_NC:
1525   case R_ARM_MOVT_PREL:
1526   case R_ARM_PREL31:
1527   case R_ARM_REL32:
1528   case R_ARM_THM_MOVW_PREL_NC:
1529   case R_ARM_THM_MOVT_PREL:
1530     return R_PC;
1531   }
1532 }
1533 
1534 uint32_t ARMTargetInfo::getDynRel(uint32_t Type) const {
1535   if (Type == R_ARM_ABS32)
1536     return Type;
1537   // Keep it going with a dummy value so that we can find more reloc errors.
1538   errorDynRel(Type);
1539   return R_ARM_ABS32;
1540 }
1541 
1542 void ARMTargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &) const {
1543   write32le(Buf, Out<ELF32LE>::Plt->getVA());
1544 }
1545 
1546 void ARMTargetInfo::writePltHeader(uint8_t *Buf) const {
1547   const uint8_t PltData[] = {
1548       0x04, 0xe0, 0x2d, 0xe5, //     str lr, [sp,#-4]!
1549       0x04, 0xe0, 0x9f, 0xe5, //     ldr lr, L2
1550       0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr
1551       0x08, 0xf0, 0xbe, 0xe5, //     ldr pc, [lr, #8]
1552       0x00, 0x00, 0x00, 0x00, // L2: .word   &(.got.plt) - L1 - 8
1553   };
1554   memcpy(Buf, PltData, sizeof(PltData));
1555   uint64_t GotPlt = Out<ELF32LE>::GotPlt->getVA();
1556   uint64_t L1 = Out<ELF32LE>::Plt->getVA() + 8;
1557   write32le(Buf + 16, GotPlt - L1 - 8);
1558 }
1559 
1560 void ARMTargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
1561                              uint64_t PltEntryAddr, int32_t Index,
1562                              unsigned RelOff) const {
1563   // FIXME: Using simple code sequence with simple relocations.
1564   // There is a more optimal sequence but it requires support for the group
1565   // relocations. See ELF for the ARM Architecture Appendix A.3
1566   const uint8_t PltData[] = {
1567       0x04, 0xc0, 0x9f, 0xe5, //     ldr ip, L2
1568       0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc
1569       0x00, 0xf0, 0x9c, 0xe5, //     ldr pc, [ip]
1570       0x00, 0x00, 0x00, 0x00, // L2: .word   Offset(&(.plt.got) - L1 - 8
1571   };
1572   memcpy(Buf, PltData, sizeof(PltData));
1573   uint64_t L1 = PltEntryAddr + 4;
1574   write32le(Buf + 12, GotEntryAddr - L1 - 8);
1575 }
1576 
1577 RelExpr ARMTargetInfo::getThunkExpr(RelExpr Expr, uint32_t RelocType,
1578                                     const InputFile &File,
1579                                     const SymbolBody &S) const {
1580   // A state change from ARM to Thumb and vice versa must go through an
1581   // interworking thunk if the relocation type is not R_ARM_CALL or
1582   // R_ARM_THM_CALL.
1583   switch (RelocType) {
1584   case R_ARM_PC24:
1585   case R_ARM_PLT32:
1586   case R_ARM_JUMP24:
1587     // Source is ARM, all PLT entries are ARM so no interworking required.
1588     // Otherwise we need to interwork if Symbol has bit 0 set (Thumb).
1589     if (Expr == R_PC && ((S.getVA<ELF32LE>() & 1) == 1))
1590       return R_THUNK_PC;
1591     break;
1592   case R_ARM_THM_JUMP19:
1593   case R_ARM_THM_JUMP24:
1594     // Source is Thumb, all PLT entries are ARM so interworking is required.
1595     // Otherwise we need to interwork if Symbol has bit 0 clear (ARM).
1596     if (Expr == R_PLT_PC)
1597       return R_THUNK_PLT_PC;
1598     if ((S.getVA<ELF32LE>() & 1) == 0)
1599       return R_THUNK_PC;
1600     break;
1601   }
1602   return Expr;
1603 }
1604 
1605 void ARMTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
1606                                 uint64_t Val) const {
1607   switch (Type) {
1608   case R_ARM_NONE:
1609     break;
1610   case R_ARM_ABS32:
1611   case R_ARM_BASE_PREL:
1612   case R_ARM_GOTOFF32:
1613   case R_ARM_GOT_BREL:
1614   case R_ARM_GOT_PREL:
1615   case R_ARM_REL32:
1616     write32le(Loc, Val);
1617     break;
1618   case R_ARM_PREL31:
1619     checkInt<31>(Val, Type);
1620     write32le(Loc, (read32le(Loc) & 0x80000000) | (Val & ~0x80000000));
1621     break;
1622   case R_ARM_CALL:
1623     // R_ARM_CALL is used for BL and BLX instructions, depending on the
1624     // value of bit 0 of Val, we must select a BL or BLX instruction
1625     if (Val & 1) {
1626       // If bit 0 of Val is 1 the target is Thumb, we must select a BLX.
1627       // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1'
1628       checkInt<26>(Val, Type);
1629       write32le(Loc, 0xfa000000 |                    // opcode
1630                          ((Val & 2) << 23) |         // H
1631                          ((Val >> 2) & 0x00ffffff)); // imm24
1632       break;
1633     }
1634     if ((read32le(Loc) & 0xfe000000) == 0xfa000000)
1635       // BLX (always unconditional) instruction to an ARM Target, select an
1636       // unconditional BL.
1637       write32le(Loc, 0xeb000000 | (read32le(Loc) & 0x00ffffff));
1638     // fall through as BL encoding is shared with B
1639   case R_ARM_JUMP24:
1640   case R_ARM_PC24:
1641   case R_ARM_PLT32:
1642     checkInt<26>(Val, Type);
1643     write32le(Loc, (read32le(Loc) & ~0x00ffffff) | ((Val >> 2) & 0x00ffffff));
1644     break;
1645   case R_ARM_THM_JUMP11:
1646     checkInt<12>(Val, Type);
1647     write16le(Loc, (read32le(Loc) & 0xf800) | ((Val >> 1) & 0x07ff));
1648     break;
1649   case R_ARM_THM_JUMP19:
1650     // Encoding T3: Val = S:J2:J1:imm6:imm11:0
1651     checkInt<21>(Val, Type);
1652     write16le(Loc,
1653               (read16le(Loc) & 0xfbc0) |   // opcode cond
1654                   ((Val >> 10) & 0x0400) | // S
1655                   ((Val >> 12) & 0x003f)); // imm6
1656     write16le(Loc + 2,
1657               0x8000 |                    // opcode
1658                   ((Val >> 8) & 0x0800) | // J2
1659                   ((Val >> 5) & 0x2000) | // J1
1660                   ((Val >> 1) & 0x07ff)); // imm11
1661     break;
1662   case R_ARM_THM_CALL:
1663     // R_ARM_THM_CALL is used for BL and BLX instructions, depending on the
1664     // value of bit 0 of Val, we must select a BL or BLX instruction
1665     if ((Val & 1) == 0) {
1666       // Ensure BLX destination is 4-byte aligned. As BLX instruction may
1667       // only be two byte aligned. This must be done before overflow check
1668       Val = alignTo(Val, 4);
1669     }
1670     // Bit 12 is 0 for BLX, 1 for BL
1671     write16le(Loc + 2, (read16le(Loc + 2) & ~0x1000) | (Val & 1) << 12);
1672     // Fall through as rest of encoding is the same as B.W
1673   case R_ARM_THM_JUMP24:
1674     // Encoding B  T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0
1675     // FIXME: Use of I1 and I2 require v6T2ops
1676     checkInt<25>(Val, Type);
1677     write16le(Loc,
1678               0xf000 |                     // opcode
1679                   ((Val >> 14) & 0x0400) | // S
1680                   ((Val >> 12) & 0x03ff)); // imm10
1681     write16le(Loc + 2,
1682               (read16le(Loc + 2) & 0xd000) |                  // opcode
1683                   (((~(Val >> 10)) ^ (Val >> 11)) & 0x2000) | // J1
1684                   (((~(Val >> 11)) ^ (Val >> 13)) & 0x0800) | // J2
1685                   ((Val >> 1) & 0x07ff));                     // imm11
1686     break;
1687   case R_ARM_MOVW_ABS_NC:
1688   case R_ARM_MOVW_PREL_NC:
1689     write32le(Loc, (read32le(Loc) & ~0x000f0fff) | ((Val & 0xf000) << 4) |
1690                        (Val & 0x0fff));
1691     break;
1692   case R_ARM_MOVT_ABS:
1693   case R_ARM_MOVT_PREL:
1694     checkInt<32>(Val, Type);
1695     write32le(Loc, (read32le(Loc) & ~0x000f0fff) |
1696                        (((Val >> 16) & 0xf000) << 4) | ((Val >> 16) & 0xfff));
1697     break;
1698   case R_ARM_THM_MOVT_ABS:
1699   case R_ARM_THM_MOVT_PREL:
1700     // Encoding T1: A = imm4:i:imm3:imm8
1701     checkInt<32>(Val, Type);
1702     write16le(Loc,
1703               0xf2c0 |                     // opcode
1704                   ((Val >> 17) & 0x0400) | // i
1705                   ((Val >> 28) & 0x000f)); // imm4
1706     write16le(Loc + 2,
1707               (read16le(Loc + 2) & 0x8f00) | // opcode
1708                   ((Val >> 12) & 0x7000) |   // imm3
1709                   ((Val >> 16) & 0x00ff));   // imm8
1710     break;
1711   case R_ARM_THM_MOVW_ABS_NC:
1712   case R_ARM_THM_MOVW_PREL_NC:
1713     // Encoding T3: A = imm4:i:imm3:imm8
1714     write16le(Loc,
1715               0xf240 |                     // opcode
1716                   ((Val >> 1) & 0x0400) |  // i
1717                   ((Val >> 12) & 0x000f)); // imm4
1718     write16le(Loc + 2,
1719               (read16le(Loc + 2) & 0x8f00) | // opcode
1720                   ((Val << 4) & 0x7000) |    // imm3
1721                   (Val & 0x00ff));           // imm8
1722     break;
1723   default:
1724     fatal("unrecognized reloc " + Twine(Type));
1725   }
1726 }
1727 
1728 uint64_t ARMTargetInfo::getImplicitAddend(const uint8_t *Buf,
1729                                           uint32_t Type) const {
1730   switch (Type) {
1731   default:
1732     return 0;
1733   case R_ARM_ABS32:
1734   case R_ARM_BASE_PREL:
1735   case R_ARM_GOTOFF32:
1736   case R_ARM_GOT_BREL:
1737   case R_ARM_GOT_PREL:
1738   case R_ARM_REL32:
1739     return SignExtend64<32>(read32le(Buf));
1740   case R_ARM_PREL31:
1741     return SignExtend64<31>(read32le(Buf));
1742   case R_ARM_CALL:
1743   case R_ARM_JUMP24:
1744   case R_ARM_PC24:
1745   case R_ARM_PLT32:
1746     return SignExtend64<26>(read32le(Buf) << 2);
1747   case R_ARM_THM_JUMP11:
1748     return SignExtend64<12>(read16le(Buf) << 1);
1749   case R_ARM_THM_JUMP19: {
1750     // Encoding T3: A = S:J2:J1:imm10:imm6:0
1751     uint16_t Hi = read16le(Buf);
1752     uint16_t Lo = read16le(Buf + 2);
1753     return SignExtend64<20>(((Hi & 0x0400) << 10) | // S
1754                             ((Lo & 0x0800) << 8) |  // J2
1755                             ((Lo & 0x2000) << 5) |  // J1
1756                             ((Hi & 0x003f) << 12) | // imm6
1757                             ((Lo & 0x07ff) << 1));  // imm11:0
1758   }
1759   case R_ARM_THM_CALL:
1760   case R_ARM_THM_JUMP24: {
1761     // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0
1762     // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S)
1763     // FIXME: I1 and I2 require v6T2ops
1764     uint16_t Hi = read16le(Buf);
1765     uint16_t Lo = read16le(Buf + 2);
1766     return SignExtend64<24>(((Hi & 0x0400) << 14) |                    // S
1767                             (~((Lo ^ (Hi << 3)) << 10) & 0x00800000) | // I1
1768                             (~((Lo ^ (Hi << 1)) << 11) & 0x00400000) | // I2
1769                             ((Hi & 0x003ff) << 12) |                   // imm0
1770                             ((Lo & 0x007ff) << 1)); // imm11:0
1771   }
1772   // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and
1773   // MOVT is in the range -32768 <= A < 32768
1774   case R_ARM_MOVW_ABS_NC:
1775   case R_ARM_MOVT_ABS:
1776   case R_ARM_MOVW_PREL_NC:
1777   case R_ARM_MOVT_PREL: {
1778     uint64_t Val = read32le(Buf) & 0x000f0fff;
1779     return SignExtend64<16>(((Val & 0x000f0000) >> 4) | (Val & 0x00fff));
1780   }
1781   case R_ARM_THM_MOVW_ABS_NC:
1782   case R_ARM_THM_MOVT_ABS:
1783   case R_ARM_THM_MOVW_PREL_NC:
1784   case R_ARM_THM_MOVT_PREL: {
1785     // Encoding T3: A = imm4:i:imm3:imm8
1786     uint16_t Hi = read16le(Buf);
1787     uint16_t Lo = read16le(Buf + 2);
1788     return SignExtend64<16>(((Hi & 0x000f) << 12) | // imm4
1789                             ((Hi & 0x0400) << 1) |  // i
1790                             ((Lo & 0x7000) >> 4) |  // imm3
1791                             (Lo & 0x00ff));         // imm8
1792   }
1793   }
1794 }
1795 
1796 template <class ELFT> MipsTargetInfo<ELFT>::MipsTargetInfo() {
1797   GotPltHeaderEntriesNum = 2;
1798   PageSize = 65536;
1799   GotEntrySize = sizeof(typename ELFT::uint);
1800   GotPltEntrySize = sizeof(typename ELFT::uint);
1801   PltEntrySize = 16;
1802   PltHeaderSize = 32;
1803   CopyRel = R_MIPS_COPY;
1804   PltRel = R_MIPS_JUMP_SLOT;
1805   if (ELFT::Is64Bits) {
1806     RelativeRel = (R_MIPS_64 << 8) | R_MIPS_REL32;
1807     TlsGotRel = R_MIPS_TLS_TPREL64;
1808     TlsModuleIndexRel = R_MIPS_TLS_DTPMOD64;
1809     TlsOffsetRel = R_MIPS_TLS_DTPREL64;
1810   } else {
1811     RelativeRel = R_MIPS_REL32;
1812     TlsGotRel = R_MIPS_TLS_TPREL32;
1813     TlsModuleIndexRel = R_MIPS_TLS_DTPMOD32;
1814     TlsOffsetRel = R_MIPS_TLS_DTPREL32;
1815   }
1816 }
1817 
1818 template <class ELFT>
1819 RelExpr MipsTargetInfo<ELFT>::getRelExpr(uint32_t Type,
1820                                          const SymbolBody &S) const {
1821   if (ELFT::Is64Bits)
1822     // See comment in the calculateMips64RelChain.
1823     Type &= 0xff;
1824   switch (Type) {
1825   default:
1826     return R_ABS;
1827   case R_MIPS_JALR:
1828     return R_HINT;
1829   case R_MIPS_GPREL16:
1830   case R_MIPS_GPREL32:
1831     return R_GOTREL;
1832   case R_MIPS_26:
1833     return R_PLT;
1834   case R_MIPS_HI16:
1835   case R_MIPS_LO16:
1836   case R_MIPS_GOT_OFST:
1837     // MIPS _gp_disp designates offset between start of function and 'gp'
1838     // pointer into GOT. __gnu_local_gp is equal to the current value of
1839     // the 'gp'. Therefore any relocations against them do not require
1840     // dynamic relocation.
1841     if (&S == ElfSym<ELFT>::MipsGpDisp)
1842       return R_PC;
1843     return R_ABS;
1844   case R_MIPS_PC32:
1845   case R_MIPS_PC16:
1846   case R_MIPS_PC19_S2:
1847   case R_MIPS_PC21_S2:
1848   case R_MIPS_PC26_S2:
1849   case R_MIPS_PCHI16:
1850   case R_MIPS_PCLO16:
1851     return R_PC;
1852   case R_MIPS_GOT16:
1853     if (S.isLocal())
1854       return R_MIPS_GOT_LOCAL_PAGE;
1855   // fallthrough
1856   case R_MIPS_CALL16:
1857   case R_MIPS_GOT_DISP:
1858   case R_MIPS_TLS_GOTTPREL:
1859     return R_MIPS_GOT_OFF;
1860   case R_MIPS_GOT_PAGE:
1861     return R_MIPS_GOT_LOCAL_PAGE;
1862   case R_MIPS_TLS_GD:
1863     return R_MIPS_TLSGD;
1864   case R_MIPS_TLS_LDM:
1865     return R_MIPS_TLSLD;
1866   }
1867 }
1868 
1869 template <class ELFT>
1870 uint32_t MipsTargetInfo<ELFT>::getDynRel(uint32_t Type) const {
1871   if (Type == R_MIPS_32 || Type == R_MIPS_64)
1872     return RelativeRel;
1873   // Keep it going with a dummy value so that we can find more reloc errors.
1874   errorDynRel(Type);
1875   return R_MIPS_32;
1876 }
1877 
1878 template <class ELFT>
1879 bool MipsTargetInfo<ELFT>::isTlsLocalDynamicRel(uint32_t Type) const {
1880   return Type == R_MIPS_TLS_LDM;
1881 }
1882 
1883 template <class ELFT>
1884 bool MipsTargetInfo<ELFT>::isTlsGlobalDynamicRel(uint32_t Type) const {
1885   return Type == R_MIPS_TLS_GD;
1886 }
1887 
1888 template <class ELFT>
1889 void MipsTargetInfo<ELFT>::writeGotPlt(uint8_t *Buf, const SymbolBody &) const {
1890   write32<ELFT::TargetEndianness>(Buf, Out<ELFT>::Plt->getVA());
1891 }
1892 
1893 static uint16_t mipsHigh(uint64_t V) { return (V + 0x8000) >> 16; }
1894 
1895 template <endianness E, uint8_t BSIZE, uint8_t SHIFT>
1896 static int64_t getPcRelocAddend(const uint8_t *Loc) {
1897   uint32_t Instr = read32<E>(Loc);
1898   uint32_t Mask = 0xffffffff >> (32 - BSIZE);
1899   return SignExtend64<BSIZE + SHIFT>((Instr & Mask) << SHIFT);
1900 }
1901 
1902 template <endianness E, uint8_t BSIZE, uint8_t SHIFT>
1903 static void applyMipsPcReloc(uint8_t *Loc, uint32_t Type, uint64_t V) {
1904   uint32_t Mask = 0xffffffff >> (32 - BSIZE);
1905   uint32_t Instr = read32<E>(Loc);
1906   if (SHIFT > 0)
1907     checkAlignment<(1 << SHIFT)>(V, Type);
1908   checkInt<BSIZE + SHIFT>(V, Type);
1909   write32<E>(Loc, (Instr & ~Mask) | ((V >> SHIFT) & Mask));
1910 }
1911 
1912 template <endianness E>
1913 static void writeMipsHi16(uint8_t *Loc, uint64_t V) {
1914   uint32_t Instr = read32<E>(Loc);
1915   write32<E>(Loc, (Instr & 0xffff0000) | mipsHigh(V));
1916 }
1917 
1918 template <endianness E>
1919 static void writeMipsLo16(uint8_t *Loc, uint64_t V) {
1920   uint32_t Instr = read32<E>(Loc);
1921   write32<E>(Loc, (Instr & 0xffff0000) | (V & 0xffff));
1922 }
1923 
1924 template <class ELFT>
1925 void MipsTargetInfo<ELFT>::writePltHeader(uint8_t *Buf) const {
1926   const endianness E = ELFT::TargetEndianness;
1927   write32<E>(Buf, 0x3c1c0000);      // lui   $28, %hi(&GOTPLT[0])
1928   write32<E>(Buf + 4, 0x8f990000);  // lw    $25, %lo(&GOTPLT[0])($28)
1929   write32<E>(Buf + 8, 0x279c0000);  // addiu $28, $28, %lo(&GOTPLT[0])
1930   write32<E>(Buf + 12, 0x031cc023); // subu  $24, $24, $28
1931   write32<E>(Buf + 16, 0x03e07825); // move  $15, $31
1932   write32<E>(Buf + 20, 0x0018c082); // srl   $24, $24, 2
1933   write32<E>(Buf + 24, 0x0320f809); // jalr  $25
1934   write32<E>(Buf + 28, 0x2718fffe); // subu  $24, $24, 2
1935   uint64_t Got = Out<ELFT>::GotPlt->getVA();
1936   writeMipsHi16<E>(Buf, Got);
1937   writeMipsLo16<E>(Buf + 4, Got);
1938   writeMipsLo16<E>(Buf + 8, Got);
1939 }
1940 
1941 template <class ELFT>
1942 void MipsTargetInfo<ELFT>::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
1943                                     uint64_t PltEntryAddr, int32_t Index,
1944                                     unsigned RelOff) const {
1945   const endianness E = ELFT::TargetEndianness;
1946   write32<E>(Buf, 0x3c0f0000);      // lui   $15, %hi(.got.plt entry)
1947   write32<E>(Buf + 4, 0x8df90000);  // l[wd] $25, %lo(.got.plt entry)($15)
1948   write32<E>(Buf + 8, 0x03200008);  // jr    $25
1949   write32<E>(Buf + 12, 0x25f80000); // addiu $24, $15, %lo(.got.plt entry)
1950   writeMipsHi16<E>(Buf, GotEntryAddr);
1951   writeMipsLo16<E>(Buf + 4, GotEntryAddr);
1952   writeMipsLo16<E>(Buf + 12, GotEntryAddr);
1953 }
1954 
1955 template <class ELFT>
1956 RelExpr MipsTargetInfo<ELFT>::getThunkExpr(RelExpr Expr, uint32_t Type,
1957                                            const InputFile &File,
1958                                            const SymbolBody &S) const {
1959   // Any MIPS PIC code function is invoked with its address in register $t9.
1960   // So if we have a branch instruction from non-PIC code to the PIC one
1961   // we cannot make the jump directly and need to create a small stubs
1962   // to save the target function address.
1963   // See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1964   if (Type != R_MIPS_26)
1965     return Expr;
1966   auto *F = dyn_cast<ELFFileBase<ELFT>>(&File);
1967   if (!F)
1968     return Expr;
1969   // If current file has PIC code, LA25 stub is not required.
1970   if (F->getObj().getHeader()->e_flags & EF_MIPS_PIC)
1971     return Expr;
1972   auto *D = dyn_cast<DefinedRegular<ELFT>>(&S);
1973   if (!D || !D->Section)
1974     return Expr;
1975   // LA25 is required if target file has PIC code
1976   // or target symbol is a PIC symbol.
1977   const ELFFile<ELFT> &DefFile = D->Section->getFile()->getObj();
1978   bool PicFile = DefFile.getHeader()->e_flags & EF_MIPS_PIC;
1979   bool PicSym = (D->StOther & STO_MIPS_MIPS16) == STO_MIPS_PIC;
1980   return (PicFile || PicSym) ? R_THUNK_ABS : Expr;
1981 }
1982 
1983 template <class ELFT>
1984 uint64_t MipsTargetInfo<ELFT>::getImplicitAddend(const uint8_t *Buf,
1985                                                  uint32_t Type) const {
1986   const endianness E = ELFT::TargetEndianness;
1987   switch (Type) {
1988   default:
1989     return 0;
1990   case R_MIPS_32:
1991   case R_MIPS_GPREL32:
1992     return read32<E>(Buf);
1993   case R_MIPS_26:
1994     // FIXME (simon): If the relocation target symbol is not a PLT entry
1995     // we should use another expression for calculation:
1996     // ((A << 2) | (P & 0xf0000000)) >> 2
1997     return SignExtend64<28>(read32<E>(Buf) << 2);
1998   case R_MIPS_GPREL16:
1999   case R_MIPS_LO16:
2000   case R_MIPS_PCLO16:
2001   case R_MIPS_TLS_DTPREL_HI16:
2002   case R_MIPS_TLS_DTPREL_LO16:
2003   case R_MIPS_TLS_TPREL_HI16:
2004   case R_MIPS_TLS_TPREL_LO16:
2005     return SignExtend64<16>(read32<E>(Buf));
2006   case R_MIPS_PC16:
2007     return getPcRelocAddend<E, 16, 2>(Buf);
2008   case R_MIPS_PC19_S2:
2009     return getPcRelocAddend<E, 19, 2>(Buf);
2010   case R_MIPS_PC21_S2:
2011     return getPcRelocAddend<E, 21, 2>(Buf);
2012   case R_MIPS_PC26_S2:
2013     return getPcRelocAddend<E, 26, 2>(Buf);
2014   case R_MIPS_PC32:
2015     return getPcRelocAddend<E, 32, 0>(Buf);
2016   }
2017 }
2018 
2019 static std::pair<uint32_t, uint64_t> calculateMips64RelChain(uint32_t Type,
2020                                                              uint64_t Val) {
2021   // MIPS N64 ABI packs multiple relocations into the single relocation
2022   // record. In general, all up to three relocations can have arbitrary
2023   // types. In fact, Clang and GCC uses only a few combinations. For now,
2024   // we support two of them. That is allow to pass at least all LLVM
2025   // test suite cases.
2026   // <any relocation> / R_MIPS_SUB / R_MIPS_HI16 | R_MIPS_LO16
2027   // <any relocation> / R_MIPS_64 / R_MIPS_NONE
2028   // The first relocation is a 'real' relocation which is calculated
2029   // using the corresponding symbol's value. The second and the third
2030   // relocations used to modify result of the first one: extend it to
2031   // 64-bit, extract high or low part etc. For details, see part 2.9 Relocation
2032   // at the https://dmz-portal.mips.com/mw/images/8/82/007-4658-001.pdf
2033   uint32_t Type2 = (Type >> 8) & 0xff;
2034   uint32_t Type3 = (Type >> 16) & 0xff;
2035   if (Type2 == R_MIPS_NONE && Type3 == R_MIPS_NONE)
2036     return std::make_pair(Type, Val);
2037   if (Type2 == R_MIPS_64 && Type3 == R_MIPS_NONE)
2038     return std::make_pair(Type2, Val);
2039   if (Type2 == R_MIPS_SUB && (Type3 == R_MIPS_HI16 || Type3 == R_MIPS_LO16))
2040     return std::make_pair(Type3, -Val);
2041   error("unsupported relocations combination " + Twine(Type));
2042   return std::make_pair(Type & 0xff, Val);
2043 }
2044 
2045 template <class ELFT>
2046 void MipsTargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint32_t Type,
2047                                        uint64_t Val) const {
2048   const endianness E = ELFT::TargetEndianness;
2049   // Thread pointer and DRP offsets from the start of TLS data area.
2050   // https://www.linux-mips.org/wiki/NPTL
2051   if (Type == R_MIPS_TLS_DTPREL_HI16 || Type == R_MIPS_TLS_DTPREL_LO16)
2052     Val -= 0x8000;
2053   else if (Type == R_MIPS_TLS_TPREL_HI16 || Type == R_MIPS_TLS_TPREL_LO16)
2054     Val -= 0x7000;
2055   if (ELFT::Is64Bits)
2056     std::tie(Type, Val) = calculateMips64RelChain(Type, Val);
2057   switch (Type) {
2058   case R_MIPS_32:
2059   case R_MIPS_GPREL32:
2060     write32<E>(Loc, Val);
2061     break;
2062   case R_MIPS_64:
2063     write64<E>(Loc, Val);
2064     break;
2065   case R_MIPS_26:
2066     write32<E>(Loc, (read32<E>(Loc) & ~0x3ffffff) | (Val >> 2));
2067     break;
2068   case R_MIPS_GOT_DISP:
2069   case R_MIPS_GOT_PAGE:
2070   case R_MIPS_GOT16:
2071   case R_MIPS_GPREL16:
2072   case R_MIPS_TLS_GD:
2073   case R_MIPS_TLS_LDM:
2074     checkInt<16>(Val, Type);
2075   // fallthrough
2076   case R_MIPS_CALL16:
2077   case R_MIPS_GOT_OFST:
2078   case R_MIPS_LO16:
2079   case R_MIPS_PCLO16:
2080   case R_MIPS_TLS_DTPREL_LO16:
2081   case R_MIPS_TLS_GOTTPREL:
2082   case R_MIPS_TLS_TPREL_LO16:
2083     writeMipsLo16<E>(Loc, Val);
2084     break;
2085   case R_MIPS_HI16:
2086   case R_MIPS_PCHI16:
2087   case R_MIPS_TLS_DTPREL_HI16:
2088   case R_MIPS_TLS_TPREL_HI16:
2089     writeMipsHi16<E>(Loc, Val);
2090     break;
2091   case R_MIPS_JALR:
2092     // Ignore this optimization relocation for now
2093     break;
2094   case R_MIPS_PC16:
2095     applyMipsPcReloc<E, 16, 2>(Loc, Type, Val);
2096     break;
2097   case R_MIPS_PC19_S2:
2098     applyMipsPcReloc<E, 19, 2>(Loc, Type, Val);
2099     break;
2100   case R_MIPS_PC21_S2:
2101     applyMipsPcReloc<E, 21, 2>(Loc, Type, Val);
2102     break;
2103   case R_MIPS_PC26_S2:
2104     applyMipsPcReloc<E, 26, 2>(Loc, Type, Val);
2105     break;
2106   case R_MIPS_PC32:
2107     applyMipsPcReloc<E, 32, 0>(Loc, Type, Val);
2108     break;
2109   default:
2110     fatal("unrecognized reloc " + Twine(Type));
2111   }
2112 }
2113 
2114 template <class ELFT>
2115 bool MipsTargetInfo<ELFT>::usesOnlyLowPageBits(uint32_t Type) const {
2116   return Type == R_MIPS_LO16 || Type == R_MIPS_GOT_OFST;
2117 }
2118 }
2119 }
2120