1 //===- Target.cpp ---------------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Machine-specific things, such as applying relocations, creation of 11 // GOT or PLT entries, etc., are handled in this file. 12 // 13 // Refer the ELF spec for the single letter variables, S, A or P, used 14 // in this file. 15 // 16 // Some functions defined in this file has "relaxTls" as part of their names. 17 // They do peephole optimization for TLS variables by rewriting instructions. 18 // They are not part of the ABI but optional optimization, so you can skip 19 // them if you are not interested in how TLS variables are optimized. 20 // See the following paper for the details. 21 // 22 // Ulrich Drepper, ELF Handling For Thread-Local Storage 23 // http://www.akkadia.org/drepper/tls.pdf 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "Target.h" 28 #include "Error.h" 29 #include "InputFiles.h" 30 #include "OutputSections.h" 31 #include "Symbols.h" 32 #include "Thunks.h" 33 34 #include "llvm/ADT/ArrayRef.h" 35 #include "llvm/Object/ELF.h" 36 #include "llvm/Support/Endian.h" 37 #include "llvm/Support/ELF.h" 38 39 using namespace llvm; 40 using namespace llvm::object; 41 using namespace llvm::support::endian; 42 using namespace llvm::ELF; 43 44 namespace lld { 45 namespace elf { 46 47 TargetInfo *Target; 48 49 static void or32le(uint8_t *P, int32_t V) { write32le(P, read32le(P) | V); } 50 51 StringRef getRelName(uint32_t Type) { 52 return getELFRelocationTypeName(Config->EMachine, Type); 53 } 54 55 template <unsigned N> static void checkInt(int64_t V, uint32_t Type) { 56 if (!isInt<N>(V)) 57 error("relocation " + getRelName(Type) + " out of range"); 58 } 59 60 template <unsigned N> static void checkUInt(uint64_t V, uint32_t Type) { 61 if (!isUInt<N>(V)) 62 error("relocation " + getRelName(Type) + " out of range"); 63 } 64 65 template <unsigned N> static void checkIntUInt(uint64_t V, uint32_t Type) { 66 if (!isInt<N>(V) && !isUInt<N>(V)) 67 error("relocation " + getRelName(Type) + " out of range"); 68 } 69 70 template <unsigned N> static void checkAlignment(uint64_t V, uint32_t Type) { 71 if ((V & (N - 1)) != 0) 72 error("improper alignment for relocation " + getRelName(Type)); 73 } 74 75 static void errorDynRel(uint32_t Type) { 76 error("relocation " + getRelName(Type) + 77 " cannot be used against shared object; recompile with -fPIC."); 78 } 79 80 namespace { 81 class X86TargetInfo final : public TargetInfo { 82 public: 83 X86TargetInfo(); 84 RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; 85 uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override; 86 void writeGotPltHeader(uint8_t *Buf) const override; 87 uint32_t getDynRel(uint32_t Type) const override; 88 bool isTlsLocalDynamicRel(uint32_t Type) const override; 89 bool isTlsGlobalDynamicRel(uint32_t Type) const override; 90 bool isTlsInitialExecRel(uint32_t Type) const override; 91 void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; 92 void writePltHeader(uint8_t *Buf) const override; 93 void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, 94 int32_t Index, unsigned RelOff) const override; 95 void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 96 97 RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data, 98 RelExpr Expr) const override; 99 void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 100 void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 101 void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 102 void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 103 }; 104 105 template <class ELFT> class X86_64TargetInfo final : public TargetInfo { 106 public: 107 X86_64TargetInfo(); 108 RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; 109 uint32_t getDynRel(uint32_t Type) const override; 110 bool isTlsLocalDynamicRel(uint32_t Type) const override; 111 bool isTlsGlobalDynamicRel(uint32_t Type) const override; 112 bool isTlsInitialExecRel(uint32_t Type) const override; 113 void writeGotPltHeader(uint8_t *Buf) const override; 114 void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; 115 void writePltHeader(uint8_t *Buf) const override; 116 void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, 117 int32_t Index, unsigned RelOff) const override; 118 void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 119 120 RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data, 121 RelExpr Expr) const override; 122 void relaxGot(uint8_t *Loc, uint64_t Val) const override; 123 void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 124 void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 125 void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 126 void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 127 128 private: 129 void relaxGotNoPic(uint8_t *Loc, uint64_t Val, uint8_t Op, 130 uint8_t ModRm) const; 131 }; 132 133 class PPCTargetInfo final : public TargetInfo { 134 public: 135 PPCTargetInfo(); 136 void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 137 RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; 138 }; 139 140 class PPC64TargetInfo final : public TargetInfo { 141 public: 142 PPC64TargetInfo(); 143 RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; 144 void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, 145 int32_t Index, unsigned RelOff) const override; 146 void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 147 }; 148 149 class AArch64TargetInfo final : public TargetInfo { 150 public: 151 AArch64TargetInfo(); 152 RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; 153 uint32_t getDynRel(uint32_t Type) const override; 154 bool isTlsInitialExecRel(uint32_t Type) const override; 155 void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; 156 void writePltHeader(uint8_t *Buf) const override; 157 void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, 158 int32_t Index, unsigned RelOff) const override; 159 bool usesOnlyLowPageBits(uint32_t Type) const override; 160 void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 161 RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data, 162 RelExpr Expr) const override; 163 void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 164 void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 165 void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 166 }; 167 168 class AMDGPUTargetInfo final : public TargetInfo { 169 public: 170 AMDGPUTargetInfo(); 171 void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 172 RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; 173 }; 174 175 class ARMTargetInfo final : public TargetInfo { 176 public: 177 ARMTargetInfo(); 178 RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; 179 uint32_t getDynRel(uint32_t Type) const override; 180 uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override; 181 bool isTlsLocalDynamicRel(uint32_t Type) const override; 182 bool isTlsGlobalDynamicRel(uint32_t Type) const override; 183 bool isTlsInitialExecRel(uint32_t Type) const override; 184 void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; 185 void writePltHeader(uint8_t *Buf) const override; 186 void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, 187 int32_t Index, unsigned RelOff) const override; 188 RelExpr getThunkExpr(RelExpr Expr, uint32_t RelocType, 189 const InputFile &File, 190 const SymbolBody &S) const override; 191 void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 192 }; 193 194 template <class ELFT> class MipsTargetInfo final : public TargetInfo { 195 public: 196 MipsTargetInfo(); 197 RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; 198 uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override; 199 uint32_t getDynRel(uint32_t Type) const override; 200 bool isTlsLocalDynamicRel(uint32_t Type) const override; 201 bool isTlsGlobalDynamicRel(uint32_t Type) const override; 202 void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; 203 void writePltHeader(uint8_t *Buf) const override; 204 void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, 205 int32_t Index, unsigned RelOff) const override; 206 RelExpr getThunkExpr(RelExpr Expr, uint32_t RelocType, 207 const InputFile &File, 208 const SymbolBody &S) const override; 209 void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 210 bool usesOnlyLowPageBits(uint32_t Type) const override; 211 }; 212 } // anonymous namespace 213 214 TargetInfo *createTarget() { 215 switch (Config->EMachine) { 216 case EM_386: 217 case EM_IAMCU: 218 return new X86TargetInfo(); 219 case EM_AARCH64: 220 return new AArch64TargetInfo(); 221 case EM_AMDGPU: 222 return new AMDGPUTargetInfo(); 223 case EM_ARM: 224 return new ARMTargetInfo(); 225 case EM_MIPS: 226 switch (Config->EKind) { 227 case ELF32LEKind: 228 return new MipsTargetInfo<ELF32LE>(); 229 case ELF32BEKind: 230 return new MipsTargetInfo<ELF32BE>(); 231 case ELF64LEKind: 232 return new MipsTargetInfo<ELF64LE>(); 233 case ELF64BEKind: 234 return new MipsTargetInfo<ELF64BE>(); 235 default: 236 fatal("unsupported MIPS target"); 237 } 238 case EM_PPC: 239 return new PPCTargetInfo(); 240 case EM_PPC64: 241 return new PPC64TargetInfo(); 242 case EM_X86_64: 243 if (Config->EKind == ELF32LEKind) 244 return new X86_64TargetInfo<ELF32LE>(); 245 return new X86_64TargetInfo<ELF64LE>(); 246 } 247 fatal("unknown target machine"); 248 } 249 250 TargetInfo::~TargetInfo() {} 251 252 uint64_t TargetInfo::getImplicitAddend(const uint8_t *Buf, 253 uint32_t Type) const { 254 return 0; 255 } 256 257 bool TargetInfo::usesOnlyLowPageBits(uint32_t Type) const { return false; } 258 259 RelExpr TargetInfo::getThunkExpr(RelExpr Expr, uint32_t RelocType, 260 const InputFile &File, 261 const SymbolBody &S) const { 262 return Expr; 263 } 264 265 bool TargetInfo::isTlsInitialExecRel(uint32_t Type) const { return false; } 266 267 bool TargetInfo::isTlsLocalDynamicRel(uint32_t Type) const { return false; } 268 269 bool TargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const { 270 return false; 271 } 272 273 RelExpr TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data, 274 RelExpr Expr) const { 275 return Expr; 276 } 277 278 void TargetInfo::relaxGot(uint8_t *Loc, uint64_t Val) const { 279 llvm_unreachable("Should not have claimed to be relaxable"); 280 } 281 282 void TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, 283 uint64_t Val) const { 284 llvm_unreachable("Should not have claimed to be relaxable"); 285 } 286 287 void TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, 288 uint64_t Val) const { 289 llvm_unreachable("Should not have claimed to be relaxable"); 290 } 291 292 void TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, 293 uint64_t Val) const { 294 llvm_unreachable("Should not have claimed to be relaxable"); 295 } 296 297 void TargetInfo::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, 298 uint64_t Val) const { 299 llvm_unreachable("Should not have claimed to be relaxable"); 300 } 301 302 X86TargetInfo::X86TargetInfo() { 303 CopyRel = R_386_COPY; 304 GotRel = R_386_GLOB_DAT; 305 PltRel = R_386_JUMP_SLOT; 306 IRelativeRel = R_386_IRELATIVE; 307 RelativeRel = R_386_RELATIVE; 308 TlsGotRel = R_386_TLS_TPOFF; 309 TlsModuleIndexRel = R_386_TLS_DTPMOD32; 310 TlsOffsetRel = R_386_TLS_DTPOFF32; 311 GotEntrySize = 4; 312 GotPltEntrySize = 4; 313 PltEntrySize = 16; 314 PltHeaderSize = 16; 315 TlsGdRelaxSkip = 2; 316 } 317 318 RelExpr X86TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const { 319 switch (Type) { 320 default: 321 return R_ABS; 322 case R_386_TLS_GD: 323 return R_TLSGD; 324 case R_386_TLS_LDM: 325 return R_TLSLD; 326 case R_386_PLT32: 327 return R_PLT_PC; 328 case R_386_PC32: 329 return R_PC; 330 case R_386_GOTPC: 331 return R_GOTONLY_PC_FROM_END; 332 case R_386_TLS_IE: 333 return R_GOT; 334 case R_386_GOT32: 335 case R_386_GOT32X: 336 case R_386_TLS_GOTIE: 337 return R_GOT_FROM_END; 338 case R_386_GOTOFF: 339 return R_GOTREL_FROM_END; 340 case R_386_TLS_LE: 341 return R_TLS; 342 case R_386_TLS_LE_32: 343 return R_NEG_TLS; 344 } 345 } 346 347 RelExpr X86TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data, 348 RelExpr Expr) const { 349 switch (Expr) { 350 default: 351 return Expr; 352 case R_RELAX_TLS_GD_TO_IE: 353 return R_RELAX_TLS_GD_TO_IE_END; 354 case R_RELAX_TLS_GD_TO_LE: 355 return R_RELAX_TLS_GD_TO_LE_NEG; 356 } 357 } 358 359 void X86TargetInfo::writeGotPltHeader(uint8_t *Buf) const { 360 write32le(Buf, Out<ELF32LE>::Dynamic->getVA()); 361 } 362 363 void X86TargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &S) const { 364 // Entries in .got.plt initially points back to the corresponding 365 // PLT entries with a fixed offset to skip the first instruction. 366 write32le(Buf, S.getPltVA<ELF32LE>() + 6); 367 } 368 369 uint32_t X86TargetInfo::getDynRel(uint32_t Type) const { 370 if (Type == R_386_TLS_LE) 371 return R_386_TLS_TPOFF; 372 if (Type == R_386_TLS_LE_32) 373 return R_386_TLS_TPOFF32; 374 return Type; 375 } 376 377 bool X86TargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const { 378 return Type == R_386_TLS_GD; 379 } 380 381 bool X86TargetInfo::isTlsLocalDynamicRel(uint32_t Type) const { 382 return Type == R_386_TLS_LDO_32 || Type == R_386_TLS_LDM; 383 } 384 385 bool X86TargetInfo::isTlsInitialExecRel(uint32_t Type) const { 386 return Type == R_386_TLS_IE || Type == R_386_TLS_GOTIE; 387 } 388 389 void X86TargetInfo::writePltHeader(uint8_t *Buf) const { 390 // Executable files and shared object files have 391 // separate procedure linkage tables. 392 if (Config->Pic) { 393 const uint8_t V[] = { 394 0xff, 0xb3, 0x04, 0x00, 0x00, 0x00, // pushl 4(%ebx) 395 0xff, 0xa3, 0x08, 0x00, 0x00, 0x00, // jmp *8(%ebx) 396 0x90, 0x90, 0x90, 0x90 // nop; nop; nop; nop 397 }; 398 memcpy(Buf, V, sizeof(V)); 399 return; 400 } 401 402 const uint8_t PltData[] = { 403 0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushl (GOT+4) 404 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *(GOT+8) 405 0x90, 0x90, 0x90, 0x90 // nop; nop; nop; nop 406 }; 407 memcpy(Buf, PltData, sizeof(PltData)); 408 uint32_t Got = Out<ELF32LE>::GotPlt->getVA(); 409 write32le(Buf + 2, Got + 4); 410 write32le(Buf + 8, Got + 8); 411 } 412 413 void X86TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, 414 uint64_t PltEntryAddr, int32_t Index, 415 unsigned RelOff) const { 416 const uint8_t Inst[] = { 417 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, // jmp *foo_in_GOT|*foo@GOT(%ebx) 418 0x68, 0x00, 0x00, 0x00, 0x00, // pushl $reloc_offset 419 0xe9, 0x00, 0x00, 0x00, 0x00 // jmp .PLT0@PC 420 }; 421 memcpy(Buf, Inst, sizeof(Inst)); 422 423 // jmp *foo@GOT(%ebx) or jmp *foo_in_GOT 424 Buf[1] = Config->Pic ? 0xa3 : 0x25; 425 uint32_t Got = Out<ELF32LE>::GotPlt->getVA(); 426 write32le(Buf + 2, Config->Shared ? GotEntryAddr - Got : GotEntryAddr); 427 write32le(Buf + 7, RelOff); 428 write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16); 429 } 430 431 uint64_t X86TargetInfo::getImplicitAddend(const uint8_t *Buf, 432 uint32_t Type) const { 433 switch (Type) { 434 default: 435 return 0; 436 case R_386_32: 437 case R_386_GOT32: 438 case R_386_GOT32X: 439 case R_386_GOTOFF: 440 case R_386_GOTPC: 441 case R_386_PC32: 442 case R_386_PLT32: 443 case R_386_TLS_LE: 444 return read32le(Buf); 445 } 446 } 447 448 void X86TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, 449 uint64_t Val) const { 450 checkInt<32>(Val, Type); 451 write32le(Loc, Val); 452 } 453 454 void X86TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, 455 uint64_t Val) const { 456 // Convert 457 // leal x@tlsgd(, %ebx, 1), 458 // call __tls_get_addr@plt 459 // to 460 // movl %gs:0,%eax 461 // subl $x@ntpoff,%eax 462 const uint8_t Inst[] = { 463 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax 464 0x81, 0xe8, 0x00, 0x00, 0x00, 0x00 // subl 0(%ebx), %eax 465 }; 466 memcpy(Loc - 3, Inst, sizeof(Inst)); 467 relocateOne(Loc + 5, R_386_32, Val); 468 } 469 470 void X86TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, 471 uint64_t Val) const { 472 // Convert 473 // leal x@tlsgd(, %ebx, 1), 474 // call __tls_get_addr@plt 475 // to 476 // movl %gs:0, %eax 477 // addl x@gotntpoff(%ebx), %eax 478 const uint8_t Inst[] = { 479 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax 480 0x03, 0x83, 0x00, 0x00, 0x00, 0x00 // addl 0(%ebx), %eax 481 }; 482 memcpy(Loc - 3, Inst, sizeof(Inst)); 483 relocateOne(Loc + 5, R_386_32, Val); 484 } 485 486 // In some conditions, relocations can be optimized to avoid using GOT. 487 // This function does that for Initial Exec to Local Exec case. 488 void X86TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, 489 uint64_t Val) const { 490 // Ulrich's document section 6.2 says that @gotntpoff can 491 // be used with MOVL or ADDL instructions. 492 // @indntpoff is similar to @gotntpoff, but for use in 493 // position dependent code. 494 uint8_t Reg = (Loc[-1] >> 3) & 7; 495 496 if (Type == R_386_TLS_IE) { 497 if (Loc[-1] == 0xa1) { 498 // "movl foo@indntpoff,%eax" -> "movl $foo,%eax" 499 // This case is different from the generic case below because 500 // this is a 5 byte instruction while below is 6 bytes. 501 Loc[-1] = 0xb8; 502 } else if (Loc[-2] == 0x8b) { 503 // "movl foo@indntpoff,%reg" -> "movl $foo,%reg" 504 Loc[-2] = 0xc7; 505 Loc[-1] = 0xc0 | Reg; 506 } else { 507 // "addl foo@indntpoff,%reg" -> "addl $foo,%reg" 508 Loc[-2] = 0x81; 509 Loc[-1] = 0xc0 | Reg; 510 } 511 } else { 512 assert(Type == R_386_TLS_GOTIE); 513 if (Loc[-2] == 0x8b) { 514 // "movl foo@gottpoff(%rip),%reg" -> "movl $foo,%reg" 515 Loc[-2] = 0xc7; 516 Loc[-1] = 0xc0 | Reg; 517 } else { 518 // "addl foo@gotntpoff(%rip),%reg" -> "leal foo(%reg),%reg" 519 Loc[-2] = 0x8d; 520 Loc[-1] = 0x80 | (Reg << 3) | Reg; 521 } 522 } 523 relocateOne(Loc, R_386_TLS_LE, Val); 524 } 525 526 void X86TargetInfo::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, 527 uint64_t Val) const { 528 if (Type == R_386_TLS_LDO_32) { 529 relocateOne(Loc, R_386_TLS_LE, Val); 530 return; 531 } 532 533 // Convert 534 // leal foo(%reg),%eax 535 // call ___tls_get_addr 536 // to 537 // movl %gs:0,%eax 538 // nop 539 // leal 0(%esi,1),%esi 540 const uint8_t Inst[] = { 541 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0,%eax 542 0x90, // nop 543 0x8d, 0x74, 0x26, 0x00 // leal 0(%esi,1),%esi 544 }; 545 memcpy(Loc - 2, Inst, sizeof(Inst)); 546 } 547 548 template <class ELFT> X86_64TargetInfo<ELFT>::X86_64TargetInfo() { 549 CopyRel = R_X86_64_COPY; 550 GotRel = R_X86_64_GLOB_DAT; 551 PltRel = R_X86_64_JUMP_SLOT; 552 RelativeRel = R_X86_64_RELATIVE; 553 IRelativeRel = R_X86_64_IRELATIVE; 554 TlsGotRel = R_X86_64_TPOFF64; 555 TlsModuleIndexRel = R_X86_64_DTPMOD64; 556 TlsOffsetRel = R_X86_64_DTPOFF64; 557 GotEntrySize = 8; 558 GotPltEntrySize = 8; 559 PltEntrySize = 16; 560 PltHeaderSize = 16; 561 TlsGdRelaxSkip = 2; 562 } 563 564 template <class ELFT> 565 RelExpr X86_64TargetInfo<ELFT>::getRelExpr(uint32_t Type, 566 const SymbolBody &S) const { 567 switch (Type) { 568 default: 569 return R_ABS; 570 case R_X86_64_TPOFF32: 571 return R_TLS; 572 case R_X86_64_TLSLD: 573 return R_TLSLD_PC; 574 case R_X86_64_TLSGD: 575 return R_TLSGD_PC; 576 case R_X86_64_SIZE32: 577 case R_X86_64_SIZE64: 578 return R_SIZE; 579 case R_X86_64_PLT32: 580 return R_PLT_PC; 581 case R_X86_64_PC32: 582 case R_X86_64_PC64: 583 return R_PC; 584 case R_X86_64_GOT32: 585 return R_GOT_FROM_END; 586 case R_X86_64_GOTPCREL: 587 case R_X86_64_GOTPCRELX: 588 case R_X86_64_REX_GOTPCRELX: 589 case R_X86_64_GOTTPOFF: 590 return R_GOT_PC; 591 } 592 } 593 594 template <class ELFT> 595 void X86_64TargetInfo<ELFT>::writeGotPltHeader(uint8_t *Buf) const { 596 // The first entry holds the value of _DYNAMIC. It is not clear why that is 597 // required, but it is documented in the psabi and the glibc dynamic linker 598 // seems to use it (note that this is relevant for linking ld.so, not any 599 // other program). 600 write64le(Buf, Out<ELFT>::Dynamic->getVA()); 601 } 602 603 template <class ELFT> 604 void X86_64TargetInfo<ELFT>::writeGotPlt(uint8_t *Buf, 605 const SymbolBody &S) const { 606 // See comments in X86TargetInfo::writeGotPlt. 607 write32le(Buf, S.getPltVA<ELFT>() + 6); 608 } 609 610 template <class ELFT> 611 void X86_64TargetInfo<ELFT>::writePltHeader(uint8_t *Buf) const { 612 const uint8_t PltData[] = { 613 0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushq GOT+8(%rip) 614 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *GOT+16(%rip) 615 0x0f, 0x1f, 0x40, 0x00 // nopl 0x0(rax) 616 }; 617 memcpy(Buf, PltData, sizeof(PltData)); 618 uint64_t Got = Out<ELFT>::GotPlt->getVA(); 619 uint64_t Plt = Out<ELFT>::Plt->getVA(); 620 write32le(Buf + 2, Got - Plt + 2); // GOT+8 621 write32le(Buf + 8, Got - Plt + 4); // GOT+16 622 } 623 624 template <class ELFT> 625 void X86_64TargetInfo<ELFT>::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, 626 uint64_t PltEntryAddr, int32_t Index, 627 unsigned RelOff) const { 628 const uint8_t Inst[] = { 629 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmpq *got(%rip) 630 0x68, 0x00, 0x00, 0x00, 0x00, // pushq <relocation index> 631 0xe9, 0x00, 0x00, 0x00, 0x00 // jmpq plt[0] 632 }; 633 memcpy(Buf, Inst, sizeof(Inst)); 634 635 write32le(Buf + 2, GotEntryAddr - PltEntryAddr - 6); 636 write32le(Buf + 7, Index); 637 write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16); 638 } 639 640 template <class ELFT> 641 uint32_t X86_64TargetInfo<ELFT>::getDynRel(uint32_t Type) const { 642 if (Type == R_X86_64_PC32 || Type == R_X86_64_32) 643 errorDynRel(Type); 644 return Type; 645 } 646 647 template <class ELFT> 648 bool X86_64TargetInfo<ELFT>::isTlsInitialExecRel(uint32_t Type) const { 649 return Type == R_X86_64_GOTTPOFF; 650 } 651 652 template <class ELFT> 653 bool X86_64TargetInfo<ELFT>::isTlsGlobalDynamicRel(uint32_t Type) const { 654 return Type == R_X86_64_TLSGD; 655 } 656 657 template <class ELFT> 658 bool X86_64TargetInfo<ELFT>::isTlsLocalDynamicRel(uint32_t Type) const { 659 return Type == R_X86_64_DTPOFF32 || Type == R_X86_64_DTPOFF64 || 660 Type == R_X86_64_TLSLD; 661 } 662 663 template <class ELFT> 664 void X86_64TargetInfo<ELFT>::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, 665 uint64_t Val) const { 666 // Convert 667 // .byte 0x66 668 // leaq x@tlsgd(%rip), %rdi 669 // .word 0x6666 670 // rex64 671 // call __tls_get_addr@plt 672 // to 673 // mov %fs:0x0,%rax 674 // lea x@tpoff,%rax 675 const uint8_t Inst[] = { 676 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax 677 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff,%rax 678 }; 679 memcpy(Loc - 4, Inst, sizeof(Inst)); 680 // The original code used a pc relative relocation and so we have to 681 // compensate for the -4 in had in the addend. 682 relocateOne(Loc + 8, R_X86_64_TPOFF32, Val + 4); 683 } 684 685 template <class ELFT> 686 void X86_64TargetInfo<ELFT>::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, 687 uint64_t Val) const { 688 // Convert 689 // .byte 0x66 690 // leaq x@tlsgd(%rip), %rdi 691 // .word 0x6666 692 // rex64 693 // call __tls_get_addr@plt 694 // to 695 // mov %fs:0x0,%rax 696 // addq x@tpoff,%rax 697 const uint8_t Inst[] = { 698 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax 699 0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00 // addq x@tpoff,%rax 700 }; 701 memcpy(Loc - 4, Inst, sizeof(Inst)); 702 // Both code sequences are PC relatives, but since we are moving the constant 703 // forward by 8 bytes we have to subtract the value by 8. 704 relocateOne(Loc + 8, R_X86_64_PC32, Val - 8); 705 } 706 707 // In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to 708 // R_X86_64_TPOFF32 so that it does not use GOT. 709 template <class ELFT> 710 void X86_64TargetInfo<ELFT>::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, 711 uint64_t Val) const { 712 uint8_t *Inst = Loc - 3; 713 uint8_t Reg = Loc[-1] >> 3; 714 uint8_t *RegSlot = Loc - 1; 715 716 // Note that ADD with RSP or R12 is converted to ADD instead of LEA 717 // because LEA with these registers needs 4 bytes to encode and thus 718 // wouldn't fit the space. 719 720 if (memcmp(Inst, "\x48\x03\x25", 3) == 0) { 721 // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp" 722 memcpy(Inst, "\x48\x81\xc4", 3); 723 } else if (memcmp(Inst, "\x4c\x03\x25", 3) == 0) { 724 // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12" 725 memcpy(Inst, "\x49\x81\xc4", 3); 726 } else if (memcmp(Inst, "\x4c\x03", 2) == 0) { 727 // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]" 728 memcpy(Inst, "\x4d\x8d", 2); 729 *RegSlot = 0x80 | (Reg << 3) | Reg; 730 } else if (memcmp(Inst, "\x48\x03", 2) == 0) { 731 // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg" 732 memcpy(Inst, "\x48\x8d", 2); 733 *RegSlot = 0x80 | (Reg << 3) | Reg; 734 } else if (memcmp(Inst, "\x4c\x8b", 2) == 0) { 735 // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]" 736 memcpy(Inst, "\x49\xc7", 2); 737 *RegSlot = 0xc0 | Reg; 738 } else if (memcmp(Inst, "\x48\x8b", 2) == 0) { 739 // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg" 740 memcpy(Inst, "\x48\xc7", 2); 741 *RegSlot = 0xc0 | Reg; 742 } else { 743 fatal("R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only"); 744 } 745 746 // The original code used a PC relative relocation. 747 // Need to compensate for the -4 it had in the addend. 748 relocateOne(Loc, R_X86_64_TPOFF32, Val + 4); 749 } 750 751 template <class ELFT> 752 void X86_64TargetInfo<ELFT>::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, 753 uint64_t Val) const { 754 // Convert 755 // leaq bar@tlsld(%rip), %rdi 756 // callq __tls_get_addr@PLT 757 // leaq bar@dtpoff(%rax), %rcx 758 // to 759 // .word 0x6666 760 // .byte 0x66 761 // mov %fs:0,%rax 762 // leaq bar@tpoff(%rax), %rcx 763 if (Type == R_X86_64_DTPOFF64) { 764 write64le(Loc, Val); 765 return; 766 } 767 if (Type == R_X86_64_DTPOFF32) { 768 relocateOne(Loc, R_X86_64_TPOFF32, Val); 769 return; 770 } 771 772 const uint8_t Inst[] = { 773 0x66, 0x66, // .word 0x6666 774 0x66, // .byte 0x66 775 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax 776 }; 777 memcpy(Loc - 3, Inst, sizeof(Inst)); 778 } 779 780 template <class ELFT> 781 void X86_64TargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint32_t Type, 782 uint64_t Val) const { 783 switch (Type) { 784 case R_X86_64_32: 785 checkUInt<32>(Val, Type); 786 write32le(Loc, Val); 787 break; 788 case R_X86_64_32S: 789 case R_X86_64_TPOFF32: 790 case R_X86_64_GOT32: 791 case R_X86_64_GOTPCREL: 792 case R_X86_64_GOTPCRELX: 793 case R_X86_64_REX_GOTPCRELX: 794 case R_X86_64_PC32: 795 case R_X86_64_GOTTPOFF: 796 case R_X86_64_PLT32: 797 case R_X86_64_TLSGD: 798 case R_X86_64_TLSLD: 799 case R_X86_64_DTPOFF32: 800 case R_X86_64_SIZE32: 801 checkInt<32>(Val, Type); 802 write32le(Loc, Val); 803 break; 804 case R_X86_64_64: 805 case R_X86_64_DTPOFF64: 806 case R_X86_64_SIZE64: 807 case R_X86_64_PC64: 808 write64le(Loc, Val); 809 break; 810 default: 811 fatal("unrecognized reloc " + Twine(Type)); 812 } 813 } 814 815 template <class ELFT> 816 RelExpr X86_64TargetInfo<ELFT>::adjustRelaxExpr(uint32_t Type, 817 const uint8_t *Data, 818 RelExpr RelExpr) const { 819 if (Type != R_X86_64_GOTPCRELX && Type != R_X86_64_REX_GOTPCRELX) 820 return RelExpr; 821 const uint8_t Op = Data[-2]; 822 const uint8_t ModRm = Data[-1]; 823 // FIXME: When PIC is disabled and foo is defined locally in the 824 // lower 32 bit address space, memory operand in mov can be converted into 825 // immediate operand. Otherwise, mov must be changed to lea. We support only 826 // latter relaxation at this moment. 827 if (Op == 0x8b) 828 return R_RELAX_GOT_PC; 829 // Relax call and jmp. 830 if (Op == 0xff && (ModRm == 0x15 || ModRm == 0x25)) 831 return R_RELAX_GOT_PC; 832 833 // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor. 834 // If PIC then no relaxation is available. 835 // We also don't relax test/binop instructions without REX byte, 836 // they are 32bit operations and not common to have. 837 assert(Type == R_X86_64_REX_GOTPCRELX); 838 return Config->Pic ? RelExpr : R_RELAX_GOT_PC_NOPIC; 839 } 840 841 // A subset of relaxations can only be applied for no-PIC. This method 842 // handles such relaxations. Instructions encoding information was taken from: 843 // "Intel 64 and IA-32 Architectures Software Developer's Manual V2" 844 // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/ 845 // 64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf) 846 template <class ELFT> 847 void X86_64TargetInfo<ELFT>::relaxGotNoPic(uint8_t *Loc, uint64_t Val, 848 uint8_t Op, uint8_t ModRm) const { 849 const uint8_t Rex = Loc[-3]; 850 // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg". 851 if (Op == 0x85) { 852 // See "TEST-Logical Compare" (4-428 Vol. 2B), 853 // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension). 854 855 // ModR/M byte has form XX YYY ZZZ, where 856 // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1). 857 // XX has different meanings: 858 // 00: The operand's memory address is in reg1. 859 // 01: The operand's memory address is reg1 + a byte-sized displacement. 860 // 10: The operand's memory address is reg1 + a word-sized displacement. 861 // 11: The operand is reg1 itself. 862 // If an instruction requires only one operand, the unused reg2 field 863 // holds extra opcode bits rather than a register code 864 // 0xC0 == 11 000 000 binary. 865 // 0x38 == 00 111 000 binary. 866 // We transfer reg2 to reg1 here as operand. 867 // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3). 868 Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3; // ModR/M byte. 869 870 // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32 871 // See "TEST-Logical Compare" (4-428 Vol. 2B). 872 Loc[-2] = 0xf7; 873 874 // Move R bit to the B bit in REX byte. 875 // REX byte is encoded as 0100WRXB, where 876 // 0100 is 4bit fixed pattern. 877 // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the 878 // default operand size is used (which is 32-bit for most but not all 879 // instructions). 880 // REX.R This 1-bit value is an extension to the MODRM.reg field. 881 // REX.X This 1-bit value is an extension to the SIB.index field. 882 // REX.B This 1-bit value is an extension to the MODRM.rm field or the 883 // SIB.base field. 884 // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A). 885 Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2; 886 relocateOne(Loc, R_X86_64_PC32, Val); 887 return; 888 } 889 890 // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub 891 // or xor operations. 892 893 // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg". 894 // Logic is close to one for test instruction above, but we also 895 // write opcode extension here, see below for details. 896 Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3 | (Op & 0x3c); // ModR/M byte. 897 898 // Primary opcode is 0x81, opcode extension is one of: 899 // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB, 900 // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP. 901 // This value was wrote to MODRM.reg in a line above. 902 // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15), 903 // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for 904 // descriptions about each operation. 905 Loc[-2] = 0x81; 906 Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2; 907 relocateOne(Loc, R_X86_64_PC32, Val); 908 } 909 910 template <class ELFT> 911 void X86_64TargetInfo<ELFT>::relaxGot(uint8_t *Loc, uint64_t Val) const { 912 const uint8_t Op = Loc[-2]; 913 const uint8_t ModRm = Loc[-1]; 914 915 // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg". 916 if (Op == 0x8b) { 917 Loc[-2] = 0x8d; 918 relocateOne(Loc, R_X86_64_PC32, Val); 919 return; 920 } 921 922 if (Op != 0xff) { 923 // We are relaxing a rip relative to an absolute, so compensate 924 // for the old -4 addend. 925 assert(!Config->Pic); 926 relaxGotNoPic(Loc, Val + 4, Op, ModRm); 927 return; 928 } 929 930 // Convert call/jmp instructions. 931 if (ModRm == 0x15) { 932 // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo". 933 // Instead we convert to "addr32 call foo" where addr32 is an instruction 934 // prefix. That makes result expression to be a single instruction. 935 Loc[-2] = 0x67; // addr32 prefix 936 Loc[-1] = 0xe8; // call 937 relocateOne(Loc, R_X86_64_PC32, Val); 938 return; 939 } 940 941 // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop". 942 // jmp doesn't return, so it is fine to use nop here, it is just a stub. 943 assert(ModRm == 0x25); 944 Loc[-2] = 0xe9; // jmp 945 Loc[3] = 0x90; // nop 946 relocateOne(Loc - 1, R_X86_64_PC32, Val + 1); 947 } 948 949 // Relocation masks following the #lo(value), #hi(value), #ha(value), 950 // #higher(value), #highera(value), #highest(value), and #highesta(value) 951 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi 952 // document. 953 static uint16_t applyPPCLo(uint64_t V) { return V; } 954 static uint16_t applyPPCHi(uint64_t V) { return V >> 16; } 955 static uint16_t applyPPCHa(uint64_t V) { return (V + 0x8000) >> 16; } 956 static uint16_t applyPPCHigher(uint64_t V) { return V >> 32; } 957 static uint16_t applyPPCHighera(uint64_t V) { return (V + 0x8000) >> 32; } 958 static uint16_t applyPPCHighest(uint64_t V) { return V >> 48; } 959 static uint16_t applyPPCHighesta(uint64_t V) { return (V + 0x8000) >> 48; } 960 961 PPCTargetInfo::PPCTargetInfo() {} 962 963 void PPCTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, 964 uint64_t Val) const { 965 switch (Type) { 966 case R_PPC_ADDR16_HA: 967 write16be(Loc, applyPPCHa(Val)); 968 break; 969 case R_PPC_ADDR16_LO: 970 write16be(Loc, applyPPCLo(Val)); 971 break; 972 default: 973 fatal("unrecognized reloc " + Twine(Type)); 974 } 975 } 976 977 RelExpr PPCTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const { 978 return R_ABS; 979 } 980 981 PPC64TargetInfo::PPC64TargetInfo() { 982 PltRel = GotRel = R_PPC64_GLOB_DAT; 983 RelativeRel = R_PPC64_RELATIVE; 984 GotEntrySize = 8; 985 GotPltEntrySize = 8; 986 PltEntrySize = 32; 987 PltHeaderSize = 0; 988 989 // We need 64K pages (at least under glibc/Linux, the loader won't 990 // set different permissions on a finer granularity than that). 991 MaxPageSize = 65536; 992 993 // The PPC64 ELF ABI v1 spec, says: 994 // 995 // It is normally desirable to put segments with different characteristics 996 // in separate 256 Mbyte portions of the address space, to give the 997 // operating system full paging flexibility in the 64-bit address space. 998 // 999 // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers 1000 // use 0x10000000 as the starting address. 1001 DefaultImageBase = 0x10000000; 1002 } 1003 1004 static uint64_t PPC64TocOffset = 0x8000; 1005 1006 uint64_t getPPC64TocBase() { 1007 // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The 1008 // TOC starts where the first of these sections starts. We always create a 1009 // .got when we see a relocation that uses it, so for us the start is always 1010 // the .got. 1011 uint64_t TocVA = Out<ELF64BE>::Got->getVA(); 1012 1013 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000 1014 // thus permitting a full 64 Kbytes segment. Note that the glibc startup 1015 // code (crt1.o) assumes that you can get from the TOC base to the 1016 // start of the .toc section with only a single (signed) 16-bit relocation. 1017 return TocVA + PPC64TocOffset; 1018 } 1019 1020 RelExpr PPC64TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const { 1021 switch (Type) { 1022 default: 1023 return R_ABS; 1024 case R_PPC64_TOC16: 1025 case R_PPC64_TOC16_DS: 1026 case R_PPC64_TOC16_HA: 1027 case R_PPC64_TOC16_HI: 1028 case R_PPC64_TOC16_LO: 1029 case R_PPC64_TOC16_LO_DS: 1030 return R_GOTREL; 1031 case R_PPC64_TOC: 1032 return R_PPC_TOC; 1033 case R_PPC64_REL24: 1034 return R_PPC_PLT_OPD; 1035 } 1036 } 1037 1038 void PPC64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, 1039 uint64_t PltEntryAddr, int32_t Index, 1040 unsigned RelOff) const { 1041 uint64_t Off = GotEntryAddr - getPPC64TocBase(); 1042 1043 // FIXME: What we should do, in theory, is get the offset of the function 1044 // descriptor in the .opd section, and use that as the offset from %r2 (the 1045 // TOC-base pointer). Instead, we have the GOT-entry offset, and that will 1046 // be a pointer to the function descriptor in the .opd section. Using 1047 // this scheme is simpler, but requires an extra indirection per PLT dispatch. 1048 1049 write32be(Buf, 0xf8410028); // std %r2, 40(%r1) 1050 write32be(Buf + 4, 0x3d620000 | applyPPCHa(Off)); // addis %r11, %r2, X@ha 1051 write32be(Buf + 8, 0xe98b0000 | applyPPCLo(Off)); // ld %r12, X@l(%r11) 1052 write32be(Buf + 12, 0xe96c0000); // ld %r11,0(%r12) 1053 write32be(Buf + 16, 0x7d6903a6); // mtctr %r11 1054 write32be(Buf + 20, 0xe84c0008); // ld %r2,8(%r12) 1055 write32be(Buf + 24, 0xe96c0010); // ld %r11,16(%r12) 1056 write32be(Buf + 28, 0x4e800420); // bctr 1057 } 1058 1059 static std::pair<uint32_t, uint64_t> toAddr16Rel(uint32_t Type, uint64_t Val) { 1060 uint64_t V = Val - PPC64TocOffset; 1061 switch (Type) { 1062 case R_PPC64_TOC16: return {R_PPC64_ADDR16, V}; 1063 case R_PPC64_TOC16_DS: return {R_PPC64_ADDR16_DS, V}; 1064 case R_PPC64_TOC16_HA: return {R_PPC64_ADDR16_HA, V}; 1065 case R_PPC64_TOC16_HI: return {R_PPC64_ADDR16_HI, V}; 1066 case R_PPC64_TOC16_LO: return {R_PPC64_ADDR16_LO, V}; 1067 case R_PPC64_TOC16_LO_DS: return {R_PPC64_ADDR16_LO_DS, V}; 1068 default: return {Type, Val}; 1069 } 1070 } 1071 1072 void PPC64TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, 1073 uint64_t Val) const { 1074 // For a TOC-relative relocation, proceed in terms of the corresponding 1075 // ADDR16 relocation type. 1076 std::tie(Type, Val) = toAddr16Rel(Type, Val); 1077 1078 switch (Type) { 1079 case R_PPC64_ADDR14: { 1080 checkAlignment<4>(Val, Type); 1081 // Preserve the AA/LK bits in the branch instruction 1082 uint8_t AALK = Loc[3]; 1083 write16be(Loc + 2, (AALK & 3) | (Val & 0xfffc)); 1084 break; 1085 } 1086 case R_PPC64_ADDR16: 1087 checkInt<16>(Val, Type); 1088 write16be(Loc, Val); 1089 break; 1090 case R_PPC64_ADDR16_DS: 1091 checkInt<16>(Val, Type); 1092 write16be(Loc, (read16be(Loc) & 3) | (Val & ~3)); 1093 break; 1094 case R_PPC64_ADDR16_HA: 1095 case R_PPC64_REL16_HA: 1096 write16be(Loc, applyPPCHa(Val)); 1097 break; 1098 case R_PPC64_ADDR16_HI: 1099 case R_PPC64_REL16_HI: 1100 write16be(Loc, applyPPCHi(Val)); 1101 break; 1102 case R_PPC64_ADDR16_HIGHER: 1103 write16be(Loc, applyPPCHigher(Val)); 1104 break; 1105 case R_PPC64_ADDR16_HIGHERA: 1106 write16be(Loc, applyPPCHighera(Val)); 1107 break; 1108 case R_PPC64_ADDR16_HIGHEST: 1109 write16be(Loc, applyPPCHighest(Val)); 1110 break; 1111 case R_PPC64_ADDR16_HIGHESTA: 1112 write16be(Loc, applyPPCHighesta(Val)); 1113 break; 1114 case R_PPC64_ADDR16_LO: 1115 write16be(Loc, applyPPCLo(Val)); 1116 break; 1117 case R_PPC64_ADDR16_LO_DS: 1118 case R_PPC64_REL16_LO: 1119 write16be(Loc, (read16be(Loc) & 3) | (applyPPCLo(Val) & ~3)); 1120 break; 1121 case R_PPC64_ADDR32: 1122 case R_PPC64_REL32: 1123 checkInt<32>(Val, Type); 1124 write32be(Loc, Val); 1125 break; 1126 case R_PPC64_ADDR64: 1127 case R_PPC64_REL64: 1128 case R_PPC64_TOC: 1129 write64be(Loc, Val); 1130 break; 1131 case R_PPC64_REL24: { 1132 uint32_t Mask = 0x03FFFFFC; 1133 checkInt<24>(Val, Type); 1134 write32be(Loc, (read32be(Loc) & ~Mask) | (Val & Mask)); 1135 break; 1136 } 1137 default: 1138 fatal("unrecognized reloc " + Twine(Type)); 1139 } 1140 } 1141 1142 AArch64TargetInfo::AArch64TargetInfo() { 1143 CopyRel = R_AARCH64_COPY; 1144 RelativeRel = R_AARCH64_RELATIVE; 1145 IRelativeRel = R_AARCH64_IRELATIVE; 1146 GotRel = R_AARCH64_GLOB_DAT; 1147 PltRel = R_AARCH64_JUMP_SLOT; 1148 TlsDescRel = R_AARCH64_TLSDESC; 1149 TlsGotRel = R_AARCH64_TLS_TPREL64; 1150 GotEntrySize = 8; 1151 GotPltEntrySize = 8; 1152 PltEntrySize = 16; 1153 PltHeaderSize = 32; 1154 MaxPageSize = 65536; 1155 1156 // It doesn't seem to be documented anywhere, but tls on aarch64 uses variant 1157 // 1 of the tls structures and the tcb size is 16. 1158 TcbSize = 16; 1159 } 1160 1161 RelExpr AArch64TargetInfo::getRelExpr(uint32_t Type, 1162 const SymbolBody &S) const { 1163 switch (Type) { 1164 default: 1165 return R_ABS; 1166 case R_AARCH64_TLSDESC_ADR_PAGE21: 1167 return R_TLSDESC_PAGE; 1168 case R_AARCH64_TLSDESC_LD64_LO12_NC: 1169 case R_AARCH64_TLSDESC_ADD_LO12_NC: 1170 return R_TLSDESC; 1171 case R_AARCH64_TLSDESC_CALL: 1172 return R_HINT; 1173 case R_AARCH64_TLSLE_ADD_TPREL_HI12: 1174 case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: 1175 return R_TLS; 1176 case R_AARCH64_CALL26: 1177 case R_AARCH64_CONDBR19: 1178 case R_AARCH64_JUMP26: 1179 case R_AARCH64_TSTBR14: 1180 return R_PLT_PC; 1181 case R_AARCH64_PREL16: 1182 case R_AARCH64_PREL32: 1183 case R_AARCH64_PREL64: 1184 case R_AARCH64_ADR_PREL_LO21: 1185 return R_PC; 1186 case R_AARCH64_ADR_PREL_PG_HI21: 1187 return R_PAGE_PC; 1188 case R_AARCH64_LD64_GOT_LO12_NC: 1189 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: 1190 return R_GOT; 1191 case R_AARCH64_ADR_GOT_PAGE: 1192 case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: 1193 return R_GOT_PAGE_PC; 1194 } 1195 } 1196 1197 RelExpr AArch64TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data, 1198 RelExpr Expr) const { 1199 if (Expr == R_RELAX_TLS_GD_TO_IE) { 1200 if (Type == R_AARCH64_TLSDESC_ADR_PAGE21) 1201 return R_RELAX_TLS_GD_TO_IE_PAGE_PC; 1202 return R_RELAX_TLS_GD_TO_IE_ABS; 1203 } 1204 return Expr; 1205 } 1206 1207 bool AArch64TargetInfo::usesOnlyLowPageBits(uint32_t Type) const { 1208 switch (Type) { 1209 default: 1210 return false; 1211 case R_AARCH64_ADD_ABS_LO12_NC: 1212 case R_AARCH64_LD64_GOT_LO12_NC: 1213 case R_AARCH64_LDST128_ABS_LO12_NC: 1214 case R_AARCH64_LDST16_ABS_LO12_NC: 1215 case R_AARCH64_LDST32_ABS_LO12_NC: 1216 case R_AARCH64_LDST64_ABS_LO12_NC: 1217 case R_AARCH64_LDST8_ABS_LO12_NC: 1218 case R_AARCH64_TLSDESC_ADD_LO12_NC: 1219 case R_AARCH64_TLSDESC_LD64_LO12_NC: 1220 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: 1221 return true; 1222 } 1223 } 1224 1225 bool AArch64TargetInfo::isTlsInitialExecRel(uint32_t Type) const { 1226 return Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 || 1227 Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC; 1228 } 1229 1230 uint32_t AArch64TargetInfo::getDynRel(uint32_t Type) const { 1231 if (Type == R_AARCH64_ABS32 || Type == R_AARCH64_ABS64) 1232 return Type; 1233 // Keep it going with a dummy value so that we can find more reloc errors. 1234 errorDynRel(Type); 1235 return R_AARCH64_ABS32; 1236 } 1237 1238 void AArch64TargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &) const { 1239 write64le(Buf, Out<ELF64LE>::Plt->getVA()); 1240 } 1241 1242 static uint64_t getAArch64Page(uint64_t Expr) { 1243 return Expr & (~static_cast<uint64_t>(0xFFF)); 1244 } 1245 1246 void AArch64TargetInfo::writePltHeader(uint8_t *Buf) const { 1247 const uint8_t PltData[] = { 1248 0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]! 1249 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[2])) 1250 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.plt.got[2]))] 1251 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.plt.got[2])) 1252 0x20, 0x02, 0x1f, 0xd6, // br x17 1253 0x1f, 0x20, 0x03, 0xd5, // nop 1254 0x1f, 0x20, 0x03, 0xd5, // nop 1255 0x1f, 0x20, 0x03, 0xd5 // nop 1256 }; 1257 memcpy(Buf, PltData, sizeof(PltData)); 1258 1259 uint64_t Got = Out<ELF64LE>::GotPlt->getVA(); 1260 uint64_t Plt = Out<ELF64LE>::Plt->getVA(); 1261 relocateOne(Buf + 4, R_AARCH64_ADR_PREL_PG_HI21, 1262 getAArch64Page(Got + 16) - getAArch64Page(Plt + 4)); 1263 relocateOne(Buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, Got + 16); 1264 relocateOne(Buf + 12, R_AARCH64_ADD_ABS_LO12_NC, Got + 16); 1265 } 1266 1267 void AArch64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, 1268 uint64_t PltEntryAddr, int32_t Index, 1269 unsigned RelOff) const { 1270 const uint8_t Inst[] = { 1271 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[n])) 1272 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.plt.got[n]))] 1273 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.plt.got[n])) 1274 0x20, 0x02, 0x1f, 0xd6 // br x17 1275 }; 1276 memcpy(Buf, Inst, sizeof(Inst)); 1277 1278 relocateOne(Buf, R_AARCH64_ADR_PREL_PG_HI21, 1279 getAArch64Page(GotEntryAddr) - getAArch64Page(PltEntryAddr)); 1280 relocateOne(Buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, GotEntryAddr); 1281 relocateOne(Buf + 8, R_AARCH64_ADD_ABS_LO12_NC, GotEntryAddr); 1282 } 1283 1284 static void updateAArch64Addr(uint8_t *L, uint64_t Imm) { 1285 uint32_t ImmLo = (Imm & 0x3) << 29; 1286 uint32_t ImmHi = (Imm & 0x1FFFFC) << 3; 1287 uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3); 1288 write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi); 1289 } 1290 1291 static inline void updateAArch64Add(uint8_t *L, uint64_t Imm) { 1292 or32le(L, (Imm & 0xFFF) << 10); 1293 } 1294 1295 void AArch64TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, 1296 uint64_t Val) const { 1297 switch (Type) { 1298 case R_AARCH64_ABS16: 1299 case R_AARCH64_PREL16: 1300 checkIntUInt<16>(Val, Type); 1301 write16le(Loc, Val); 1302 break; 1303 case R_AARCH64_ABS32: 1304 case R_AARCH64_PREL32: 1305 checkIntUInt<32>(Val, Type); 1306 write32le(Loc, Val); 1307 break; 1308 case R_AARCH64_ABS64: 1309 case R_AARCH64_PREL64: 1310 write64le(Loc, Val); 1311 break; 1312 case R_AARCH64_ADD_ABS_LO12_NC: 1313 // This relocation stores 12 bits and there's no instruction 1314 // to do it. Instead, we do a 32 bits store of the value 1315 // of r_addend bitwise-or'ed Loc. This assumes that the addend 1316 // bits in Loc are zero. 1317 or32le(Loc, (Val & 0xFFF) << 10); 1318 break; 1319 case R_AARCH64_ADR_GOT_PAGE: 1320 case R_AARCH64_ADR_PREL_PG_HI21: 1321 case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: 1322 case R_AARCH64_TLSDESC_ADR_PAGE21: 1323 checkInt<33>(Val, Type); 1324 updateAArch64Addr(Loc, Val >> 12); 1325 break; 1326 case R_AARCH64_ADR_PREL_LO21: 1327 checkInt<21>(Val, Type); 1328 updateAArch64Addr(Loc, Val); 1329 break; 1330 case R_AARCH64_CALL26: 1331 case R_AARCH64_JUMP26: 1332 checkInt<28>(Val, Type); 1333 or32le(Loc, (Val & 0x0FFFFFFC) >> 2); 1334 break; 1335 case R_AARCH64_CONDBR19: 1336 checkInt<21>(Val, Type); 1337 or32le(Loc, (Val & 0x1FFFFC) << 3); 1338 break; 1339 case R_AARCH64_LD64_GOT_LO12_NC: 1340 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: 1341 case R_AARCH64_TLSDESC_LD64_LO12_NC: 1342 checkAlignment<8>(Val, Type); 1343 or32le(Loc, (Val & 0xFF8) << 7); 1344 break; 1345 case R_AARCH64_LDST128_ABS_LO12_NC: 1346 or32le(Loc, (Val & 0x0FF8) << 6); 1347 break; 1348 case R_AARCH64_LDST16_ABS_LO12_NC: 1349 or32le(Loc, (Val & 0x0FFC) << 9); 1350 break; 1351 case R_AARCH64_LDST8_ABS_LO12_NC: 1352 or32le(Loc, (Val & 0xFFF) << 10); 1353 break; 1354 case R_AARCH64_LDST32_ABS_LO12_NC: 1355 or32le(Loc, (Val & 0xFFC) << 8); 1356 break; 1357 case R_AARCH64_LDST64_ABS_LO12_NC: 1358 or32le(Loc, (Val & 0xFF8) << 7); 1359 break; 1360 case R_AARCH64_MOVW_UABS_G0_NC: 1361 or32le(Loc, (Val & 0xFFFF) << 5); 1362 break; 1363 case R_AARCH64_MOVW_UABS_G1_NC: 1364 or32le(Loc, (Val & 0xFFFF0000) >> 11); 1365 break; 1366 case R_AARCH64_MOVW_UABS_G2_NC: 1367 or32le(Loc, (Val & 0xFFFF00000000) >> 27); 1368 break; 1369 case R_AARCH64_MOVW_UABS_G3: 1370 or32le(Loc, (Val & 0xFFFF000000000000) >> 43); 1371 break; 1372 case R_AARCH64_TSTBR14: 1373 checkInt<16>(Val, Type); 1374 or32le(Loc, (Val & 0xFFFC) << 3); 1375 break; 1376 case R_AARCH64_TLSLE_ADD_TPREL_HI12: 1377 checkInt<24>(Val, Type); 1378 updateAArch64Add(Loc, Val >> 12); 1379 break; 1380 case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: 1381 case R_AARCH64_TLSDESC_ADD_LO12_NC: 1382 updateAArch64Add(Loc, Val); 1383 break; 1384 default: 1385 fatal("unrecognized reloc " + Twine(Type)); 1386 } 1387 } 1388 1389 void AArch64TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, 1390 uint64_t Val) const { 1391 // TLSDESC Global-Dynamic relocation are in the form: 1392 // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21] 1393 // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12_NC] 1394 // add x0, x0, :tlsdesc_los:v [_AARCH64_TLSDESC_ADD_LO12_NC] 1395 // .tlsdesccall [R_AARCH64_TLSDESC_CALL] 1396 // blr x1 1397 // And it can optimized to: 1398 // movz x0, #0x0, lsl #16 1399 // movk x0, #0x10 1400 // nop 1401 // nop 1402 checkUInt<32>(Val, Type); 1403 1404 switch (Type) { 1405 case R_AARCH64_TLSDESC_ADD_LO12_NC: 1406 case R_AARCH64_TLSDESC_CALL: 1407 write32le(Loc, 0xd503201f); // nop 1408 return; 1409 case R_AARCH64_TLSDESC_ADR_PAGE21: 1410 write32le(Loc, 0xd2a00000 | (((Val >> 16) & 0xffff) << 5)); // movz 1411 return; 1412 case R_AARCH64_TLSDESC_LD64_LO12_NC: 1413 write32le(Loc, 0xf2800000 | ((Val & 0xffff) << 5)); // movk 1414 return; 1415 default: 1416 llvm_unreachable("unsupported relocation for TLS GD to LE relaxation"); 1417 } 1418 } 1419 1420 void AArch64TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, 1421 uint64_t Val) const { 1422 // TLSDESC Global-Dynamic relocation are in the form: 1423 // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21] 1424 // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12_NC] 1425 // add x0, x0, :tlsdesc_los:v [_AARCH64_TLSDESC_ADD_LO12_NC] 1426 // .tlsdesccall [R_AARCH64_TLSDESC_CALL] 1427 // blr x1 1428 // And it can optimized to: 1429 // adrp x0, :gottprel:v 1430 // ldr x0, [x0, :gottprel_lo12:v] 1431 // nop 1432 // nop 1433 1434 switch (Type) { 1435 case R_AARCH64_TLSDESC_ADD_LO12_NC: 1436 case R_AARCH64_TLSDESC_CALL: 1437 write32le(Loc, 0xd503201f); // nop 1438 break; 1439 case R_AARCH64_TLSDESC_ADR_PAGE21: 1440 write32le(Loc, 0x90000000); // adrp 1441 relocateOne(Loc, R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, Val); 1442 break; 1443 case R_AARCH64_TLSDESC_LD64_LO12_NC: 1444 write32le(Loc, 0xf9400000); // ldr 1445 relocateOne(Loc, R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, Val); 1446 break; 1447 default: 1448 llvm_unreachable("unsupported relocation for TLS GD to LE relaxation"); 1449 } 1450 } 1451 1452 void AArch64TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, 1453 uint64_t Val) const { 1454 checkUInt<32>(Val, Type); 1455 1456 if (Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) { 1457 // Generate MOVZ. 1458 uint32_t RegNo = read32le(Loc) & 0x1f; 1459 write32le(Loc, (0xd2a00000 | RegNo) | (((Val >> 16) & 0xffff) << 5)); 1460 return; 1461 } 1462 if (Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) { 1463 // Generate MOVK. 1464 uint32_t RegNo = read32le(Loc) & 0x1f; 1465 write32le(Loc, (0xf2800000 | RegNo) | ((Val & 0xffff) << 5)); 1466 return; 1467 } 1468 llvm_unreachable("invalid relocation for TLS IE to LE relaxation"); 1469 } 1470 1471 AMDGPUTargetInfo::AMDGPUTargetInfo() { 1472 RelativeRel = R_AMDGPU_REL64; 1473 GotRel = R_AMDGPU_ABS64; 1474 GotEntrySize = 8; 1475 } 1476 1477 void AMDGPUTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, 1478 uint64_t Val) const { 1479 switch (Type) { 1480 case R_AMDGPU_ABS32: 1481 case R_AMDGPU_GOTPCREL: 1482 case R_AMDGPU_GOTPCREL32_LO: 1483 case R_AMDGPU_REL32: 1484 case R_AMDGPU_REL32_LO: 1485 write32le(Loc, Val); 1486 break; 1487 case R_AMDGPU_GOTPCREL32_HI: 1488 case R_AMDGPU_REL32_HI: 1489 write32le(Loc, Val >> 32); 1490 break; 1491 default: 1492 fatal("unrecognized reloc " + Twine(Type)); 1493 } 1494 } 1495 1496 RelExpr AMDGPUTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const { 1497 switch (Type) { 1498 case R_AMDGPU_ABS32: 1499 return R_ABS; 1500 case R_AMDGPU_REL32: 1501 case R_AMDGPU_REL32_LO: 1502 case R_AMDGPU_REL32_HI: 1503 return R_PC; 1504 case R_AMDGPU_GOTPCREL: 1505 case R_AMDGPU_GOTPCREL32_LO: 1506 case R_AMDGPU_GOTPCREL32_HI: 1507 return R_GOT_PC; 1508 default: 1509 fatal("do not know how to handle relocation " + Twine(Type)); 1510 } 1511 } 1512 1513 ARMTargetInfo::ARMTargetInfo() { 1514 CopyRel = R_ARM_COPY; 1515 RelativeRel = R_ARM_RELATIVE; 1516 IRelativeRel = R_ARM_IRELATIVE; 1517 GotRel = R_ARM_GLOB_DAT; 1518 PltRel = R_ARM_JUMP_SLOT; 1519 TlsGotRel = R_ARM_TLS_TPOFF32; 1520 TlsModuleIndexRel = R_ARM_TLS_DTPMOD32; 1521 TlsOffsetRel = R_ARM_TLS_DTPOFF32; 1522 GotEntrySize = 4; 1523 GotPltEntrySize = 4; 1524 PltEntrySize = 16; 1525 PltHeaderSize = 20; 1526 // ARM uses Variant 1 TLS 1527 TcbSize = 8; 1528 NeedsThunks = true; 1529 } 1530 1531 RelExpr ARMTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const { 1532 switch (Type) { 1533 default: 1534 return R_ABS; 1535 case R_ARM_THM_JUMP11: 1536 return R_PC; 1537 case R_ARM_CALL: 1538 case R_ARM_JUMP24: 1539 case R_ARM_PC24: 1540 case R_ARM_PLT32: 1541 case R_ARM_THM_JUMP19: 1542 case R_ARM_THM_JUMP24: 1543 case R_ARM_THM_CALL: 1544 return R_PLT_PC; 1545 case R_ARM_GOTOFF32: 1546 // (S + A) - GOT_ORG 1547 return R_GOTREL; 1548 case R_ARM_GOT_BREL: 1549 // GOT(S) + A - GOT_ORG 1550 return R_GOT_OFF; 1551 case R_ARM_GOT_PREL: 1552 case R_ARM_TLS_IE32: 1553 // GOT(S) + A - P 1554 return R_GOT_PC; 1555 case R_ARM_TARGET1: 1556 return Config->Target1Rel ? R_PC : R_ABS; 1557 case R_ARM_TLS_GD32: 1558 return R_TLSGD_PC; 1559 case R_ARM_TLS_LDM32: 1560 return R_TLSLD_PC; 1561 case R_ARM_BASE_PREL: 1562 // B(S) + A - P 1563 // FIXME: currently B(S) assumed to be .got, this may not hold for all 1564 // platforms. 1565 return R_GOTONLY_PC; 1566 case R_ARM_MOVW_PREL_NC: 1567 case R_ARM_MOVT_PREL: 1568 case R_ARM_PREL31: 1569 case R_ARM_REL32: 1570 case R_ARM_THM_MOVW_PREL_NC: 1571 case R_ARM_THM_MOVT_PREL: 1572 return R_PC; 1573 case R_ARM_TLS_LE32: 1574 return R_TLS; 1575 } 1576 } 1577 1578 uint32_t ARMTargetInfo::getDynRel(uint32_t Type) const { 1579 if (Type == R_ARM_TARGET1 && !Config->Target1Rel) 1580 return R_ARM_ABS32; 1581 if (Type == R_ARM_ABS32) 1582 return Type; 1583 // Keep it going with a dummy value so that we can find more reloc errors. 1584 errorDynRel(Type); 1585 return R_ARM_ABS32; 1586 } 1587 1588 void ARMTargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &) const { 1589 write32le(Buf, Out<ELF32LE>::Plt->getVA()); 1590 } 1591 1592 void ARMTargetInfo::writePltHeader(uint8_t *Buf) const { 1593 const uint8_t PltData[] = { 1594 0x04, 0xe0, 0x2d, 0xe5, // str lr, [sp,#-4]! 1595 0x04, 0xe0, 0x9f, 0xe5, // ldr lr, L2 1596 0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr 1597 0x08, 0xf0, 0xbe, 0xe5, // ldr pc, [lr, #8] 1598 0x00, 0x00, 0x00, 0x00, // L2: .word &(.got.plt) - L1 - 8 1599 }; 1600 memcpy(Buf, PltData, sizeof(PltData)); 1601 uint64_t GotPlt = Out<ELF32LE>::GotPlt->getVA(); 1602 uint64_t L1 = Out<ELF32LE>::Plt->getVA() + 8; 1603 write32le(Buf + 16, GotPlt - L1 - 8); 1604 } 1605 1606 void ARMTargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, 1607 uint64_t PltEntryAddr, int32_t Index, 1608 unsigned RelOff) const { 1609 // FIXME: Using simple code sequence with simple relocations. 1610 // There is a more optimal sequence but it requires support for the group 1611 // relocations. See ELF for the ARM Architecture Appendix A.3 1612 const uint8_t PltData[] = { 1613 0x04, 0xc0, 0x9f, 0xe5, // ldr ip, L2 1614 0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc 1615 0x00, 0xf0, 0x9c, 0xe5, // ldr pc, [ip] 1616 0x00, 0x00, 0x00, 0x00, // L2: .word Offset(&(.plt.got) - L1 - 8 1617 }; 1618 memcpy(Buf, PltData, sizeof(PltData)); 1619 uint64_t L1 = PltEntryAddr + 4; 1620 write32le(Buf + 12, GotEntryAddr - L1 - 8); 1621 } 1622 1623 RelExpr ARMTargetInfo::getThunkExpr(RelExpr Expr, uint32_t RelocType, 1624 const InputFile &File, 1625 const SymbolBody &S) const { 1626 // A state change from ARM to Thumb and vice versa must go through an 1627 // interworking thunk if the relocation type is not R_ARM_CALL or 1628 // R_ARM_THM_CALL. 1629 switch (RelocType) { 1630 case R_ARM_PC24: 1631 case R_ARM_PLT32: 1632 case R_ARM_JUMP24: 1633 // Source is ARM, all PLT entries are ARM so no interworking required. 1634 // Otherwise we need to interwork if Symbol has bit 0 set (Thumb). 1635 if (Expr == R_PC && ((S.getVA<ELF32LE>() & 1) == 1)) 1636 return R_THUNK_PC; 1637 break; 1638 case R_ARM_THM_JUMP19: 1639 case R_ARM_THM_JUMP24: 1640 // Source is Thumb, all PLT entries are ARM so interworking is required. 1641 // Otherwise we need to interwork if Symbol has bit 0 clear (ARM). 1642 if (Expr == R_PLT_PC) 1643 return R_THUNK_PLT_PC; 1644 if ((S.getVA<ELF32LE>() & 1) == 0) 1645 return R_THUNK_PC; 1646 break; 1647 } 1648 return Expr; 1649 } 1650 1651 void ARMTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, 1652 uint64_t Val) const { 1653 switch (Type) { 1654 case R_ARM_NONE: 1655 break; 1656 case R_ARM_ABS32: 1657 case R_ARM_BASE_PREL: 1658 case R_ARM_GOTOFF32: 1659 case R_ARM_GOT_BREL: 1660 case R_ARM_GOT_PREL: 1661 case R_ARM_REL32: 1662 case R_ARM_TARGET1: 1663 case R_ARM_TLS_GD32: 1664 case R_ARM_TLS_IE32: 1665 case R_ARM_TLS_LDM32: 1666 case R_ARM_TLS_LDO32: 1667 case R_ARM_TLS_LE32: 1668 write32le(Loc, Val); 1669 break; 1670 case R_ARM_PREL31: 1671 checkInt<31>(Val, Type); 1672 write32le(Loc, (read32le(Loc) & 0x80000000) | (Val & ~0x80000000)); 1673 break; 1674 case R_ARM_CALL: 1675 // R_ARM_CALL is used for BL and BLX instructions, depending on the 1676 // value of bit 0 of Val, we must select a BL or BLX instruction 1677 if (Val & 1) { 1678 // If bit 0 of Val is 1 the target is Thumb, we must select a BLX. 1679 // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1' 1680 checkInt<26>(Val, Type); 1681 write32le(Loc, 0xfa000000 | // opcode 1682 ((Val & 2) << 23) | // H 1683 ((Val >> 2) & 0x00ffffff)); // imm24 1684 break; 1685 } 1686 if ((read32le(Loc) & 0xfe000000) == 0xfa000000) 1687 // BLX (always unconditional) instruction to an ARM Target, select an 1688 // unconditional BL. 1689 write32le(Loc, 0xeb000000 | (read32le(Loc) & 0x00ffffff)); 1690 // fall through as BL encoding is shared with B 1691 case R_ARM_JUMP24: 1692 case R_ARM_PC24: 1693 case R_ARM_PLT32: 1694 checkInt<26>(Val, Type); 1695 write32le(Loc, (read32le(Loc) & ~0x00ffffff) | ((Val >> 2) & 0x00ffffff)); 1696 break; 1697 case R_ARM_THM_JUMP11: 1698 checkInt<12>(Val, Type); 1699 write16le(Loc, (read32le(Loc) & 0xf800) | ((Val >> 1) & 0x07ff)); 1700 break; 1701 case R_ARM_THM_JUMP19: 1702 // Encoding T3: Val = S:J2:J1:imm6:imm11:0 1703 checkInt<21>(Val, Type); 1704 write16le(Loc, 1705 (read16le(Loc) & 0xfbc0) | // opcode cond 1706 ((Val >> 10) & 0x0400) | // S 1707 ((Val >> 12) & 0x003f)); // imm6 1708 write16le(Loc + 2, 1709 0x8000 | // opcode 1710 ((Val >> 8) & 0x0800) | // J2 1711 ((Val >> 5) & 0x2000) | // J1 1712 ((Val >> 1) & 0x07ff)); // imm11 1713 break; 1714 case R_ARM_THM_CALL: 1715 // R_ARM_THM_CALL is used for BL and BLX instructions, depending on the 1716 // value of bit 0 of Val, we must select a BL or BLX instruction 1717 if ((Val & 1) == 0) { 1718 // Ensure BLX destination is 4-byte aligned. As BLX instruction may 1719 // only be two byte aligned. This must be done before overflow check 1720 Val = alignTo(Val, 4); 1721 } 1722 // Bit 12 is 0 for BLX, 1 for BL 1723 write16le(Loc + 2, (read16le(Loc + 2) & ~0x1000) | (Val & 1) << 12); 1724 // Fall through as rest of encoding is the same as B.W 1725 case R_ARM_THM_JUMP24: 1726 // Encoding B T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0 1727 // FIXME: Use of I1 and I2 require v6T2ops 1728 checkInt<25>(Val, Type); 1729 write16le(Loc, 1730 0xf000 | // opcode 1731 ((Val >> 14) & 0x0400) | // S 1732 ((Val >> 12) & 0x03ff)); // imm10 1733 write16le(Loc + 2, 1734 (read16le(Loc + 2) & 0xd000) | // opcode 1735 (((~(Val >> 10)) ^ (Val >> 11)) & 0x2000) | // J1 1736 (((~(Val >> 11)) ^ (Val >> 13)) & 0x0800) | // J2 1737 ((Val >> 1) & 0x07ff)); // imm11 1738 break; 1739 case R_ARM_MOVW_ABS_NC: 1740 case R_ARM_MOVW_PREL_NC: 1741 write32le(Loc, (read32le(Loc) & ~0x000f0fff) | ((Val & 0xf000) << 4) | 1742 (Val & 0x0fff)); 1743 break; 1744 case R_ARM_MOVT_ABS: 1745 case R_ARM_MOVT_PREL: 1746 checkInt<32>(Val, Type); 1747 write32le(Loc, (read32le(Loc) & ~0x000f0fff) | 1748 (((Val >> 16) & 0xf000) << 4) | ((Val >> 16) & 0xfff)); 1749 break; 1750 case R_ARM_THM_MOVT_ABS: 1751 case R_ARM_THM_MOVT_PREL: 1752 // Encoding T1: A = imm4:i:imm3:imm8 1753 checkInt<32>(Val, Type); 1754 write16le(Loc, 1755 0xf2c0 | // opcode 1756 ((Val >> 17) & 0x0400) | // i 1757 ((Val >> 28) & 0x000f)); // imm4 1758 write16le(Loc + 2, 1759 (read16le(Loc + 2) & 0x8f00) | // opcode 1760 ((Val >> 12) & 0x7000) | // imm3 1761 ((Val >> 16) & 0x00ff)); // imm8 1762 break; 1763 case R_ARM_THM_MOVW_ABS_NC: 1764 case R_ARM_THM_MOVW_PREL_NC: 1765 // Encoding T3: A = imm4:i:imm3:imm8 1766 write16le(Loc, 1767 0xf240 | // opcode 1768 ((Val >> 1) & 0x0400) | // i 1769 ((Val >> 12) & 0x000f)); // imm4 1770 write16le(Loc + 2, 1771 (read16le(Loc + 2) & 0x8f00) | // opcode 1772 ((Val << 4) & 0x7000) | // imm3 1773 (Val & 0x00ff)); // imm8 1774 break; 1775 default: 1776 fatal("unrecognized reloc " + Twine(Type)); 1777 } 1778 } 1779 1780 uint64_t ARMTargetInfo::getImplicitAddend(const uint8_t *Buf, 1781 uint32_t Type) const { 1782 switch (Type) { 1783 default: 1784 return 0; 1785 case R_ARM_ABS32: 1786 case R_ARM_BASE_PREL: 1787 case R_ARM_GOTOFF32: 1788 case R_ARM_GOT_BREL: 1789 case R_ARM_GOT_PREL: 1790 case R_ARM_REL32: 1791 case R_ARM_TARGET1: 1792 case R_ARM_TLS_GD32: 1793 case R_ARM_TLS_LDM32: 1794 case R_ARM_TLS_LDO32: 1795 case R_ARM_TLS_IE32: 1796 case R_ARM_TLS_LE32: 1797 return SignExtend64<32>(read32le(Buf)); 1798 case R_ARM_PREL31: 1799 return SignExtend64<31>(read32le(Buf)); 1800 case R_ARM_CALL: 1801 case R_ARM_JUMP24: 1802 case R_ARM_PC24: 1803 case R_ARM_PLT32: 1804 return SignExtend64<26>(read32le(Buf) << 2); 1805 case R_ARM_THM_JUMP11: 1806 return SignExtend64<12>(read16le(Buf) << 1); 1807 case R_ARM_THM_JUMP19: { 1808 // Encoding T3: A = S:J2:J1:imm10:imm6:0 1809 uint16_t Hi = read16le(Buf); 1810 uint16_t Lo = read16le(Buf + 2); 1811 return SignExtend64<20>(((Hi & 0x0400) << 10) | // S 1812 ((Lo & 0x0800) << 8) | // J2 1813 ((Lo & 0x2000) << 5) | // J1 1814 ((Hi & 0x003f) << 12) | // imm6 1815 ((Lo & 0x07ff) << 1)); // imm11:0 1816 } 1817 case R_ARM_THM_CALL: 1818 case R_ARM_THM_JUMP24: { 1819 // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0 1820 // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S) 1821 // FIXME: I1 and I2 require v6T2ops 1822 uint16_t Hi = read16le(Buf); 1823 uint16_t Lo = read16le(Buf + 2); 1824 return SignExtend64<24>(((Hi & 0x0400) << 14) | // S 1825 (~((Lo ^ (Hi << 3)) << 10) & 0x00800000) | // I1 1826 (~((Lo ^ (Hi << 1)) << 11) & 0x00400000) | // I2 1827 ((Hi & 0x003ff) << 12) | // imm0 1828 ((Lo & 0x007ff) << 1)); // imm11:0 1829 } 1830 // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and 1831 // MOVT is in the range -32768 <= A < 32768 1832 case R_ARM_MOVW_ABS_NC: 1833 case R_ARM_MOVT_ABS: 1834 case R_ARM_MOVW_PREL_NC: 1835 case R_ARM_MOVT_PREL: { 1836 uint64_t Val = read32le(Buf) & 0x000f0fff; 1837 return SignExtend64<16>(((Val & 0x000f0000) >> 4) | (Val & 0x00fff)); 1838 } 1839 case R_ARM_THM_MOVW_ABS_NC: 1840 case R_ARM_THM_MOVT_ABS: 1841 case R_ARM_THM_MOVW_PREL_NC: 1842 case R_ARM_THM_MOVT_PREL: { 1843 // Encoding T3: A = imm4:i:imm3:imm8 1844 uint16_t Hi = read16le(Buf); 1845 uint16_t Lo = read16le(Buf + 2); 1846 return SignExtend64<16>(((Hi & 0x000f) << 12) | // imm4 1847 ((Hi & 0x0400) << 1) | // i 1848 ((Lo & 0x7000) >> 4) | // imm3 1849 (Lo & 0x00ff)); // imm8 1850 } 1851 } 1852 } 1853 1854 bool ARMTargetInfo::isTlsLocalDynamicRel(uint32_t Type) const { 1855 return Type == R_ARM_TLS_LDO32 || Type == R_ARM_TLS_LDM32; 1856 } 1857 1858 bool ARMTargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const { 1859 return Type == R_ARM_TLS_GD32; 1860 } 1861 1862 bool ARMTargetInfo::isTlsInitialExecRel(uint32_t Type) const { 1863 return Type == R_ARM_TLS_IE32; 1864 } 1865 1866 template <class ELFT> MipsTargetInfo<ELFT>::MipsTargetInfo() { 1867 GotPltHeaderEntriesNum = 2; 1868 MaxPageSize = 65536; 1869 GotEntrySize = sizeof(typename ELFT::uint); 1870 GotPltEntrySize = sizeof(typename ELFT::uint); 1871 PltEntrySize = 16; 1872 PltHeaderSize = 32; 1873 CopyRel = R_MIPS_COPY; 1874 PltRel = R_MIPS_JUMP_SLOT; 1875 NeedsThunks = true; 1876 if (ELFT::Is64Bits) { 1877 RelativeRel = (R_MIPS_64 << 8) | R_MIPS_REL32; 1878 TlsGotRel = R_MIPS_TLS_TPREL64; 1879 TlsModuleIndexRel = R_MIPS_TLS_DTPMOD64; 1880 TlsOffsetRel = R_MIPS_TLS_DTPREL64; 1881 } else { 1882 RelativeRel = R_MIPS_REL32; 1883 TlsGotRel = R_MIPS_TLS_TPREL32; 1884 TlsModuleIndexRel = R_MIPS_TLS_DTPMOD32; 1885 TlsOffsetRel = R_MIPS_TLS_DTPREL32; 1886 } 1887 } 1888 1889 template <class ELFT> 1890 RelExpr MipsTargetInfo<ELFT>::getRelExpr(uint32_t Type, 1891 const SymbolBody &S) const { 1892 if (ELFT::Is64Bits) 1893 // See comment in the calculateMips64RelChain. 1894 Type &= 0xff; 1895 switch (Type) { 1896 default: 1897 return R_ABS; 1898 case R_MIPS_JALR: 1899 return R_HINT; 1900 case R_MIPS_GPREL16: 1901 case R_MIPS_GPREL32: 1902 return R_GOTREL; 1903 case R_MIPS_26: 1904 return R_PLT; 1905 case R_MIPS_HI16: 1906 case R_MIPS_LO16: 1907 case R_MIPS_GOT_OFST: 1908 // MIPS _gp_disp designates offset between start of function and 'gp' 1909 // pointer into GOT. __gnu_local_gp is equal to the current value of 1910 // the 'gp'. Therefore any relocations against them do not require 1911 // dynamic relocation. 1912 if (&S == ElfSym<ELFT>::MipsGpDisp) 1913 return R_PC; 1914 return R_ABS; 1915 case R_MIPS_PC32: 1916 case R_MIPS_PC16: 1917 case R_MIPS_PC19_S2: 1918 case R_MIPS_PC21_S2: 1919 case R_MIPS_PC26_S2: 1920 case R_MIPS_PCHI16: 1921 case R_MIPS_PCLO16: 1922 return R_PC; 1923 case R_MIPS_GOT16: 1924 if (S.isLocal()) 1925 return R_MIPS_GOT_LOCAL_PAGE; 1926 // fallthrough 1927 case R_MIPS_CALL16: 1928 case R_MIPS_CALL_HI16: 1929 case R_MIPS_CALL_LO16: 1930 case R_MIPS_GOT_DISP: 1931 case R_MIPS_GOT_HI16: 1932 case R_MIPS_GOT_LO16: 1933 case R_MIPS_TLS_GOTTPREL: 1934 return R_MIPS_GOT_OFF; 1935 case R_MIPS_GOT_PAGE: 1936 return R_MIPS_GOT_LOCAL_PAGE; 1937 case R_MIPS_TLS_GD: 1938 return R_MIPS_TLSGD; 1939 case R_MIPS_TLS_LDM: 1940 return R_MIPS_TLSLD; 1941 } 1942 } 1943 1944 template <class ELFT> 1945 uint32_t MipsTargetInfo<ELFT>::getDynRel(uint32_t Type) const { 1946 if (Type == R_MIPS_32 || Type == R_MIPS_64) 1947 return RelativeRel; 1948 // Keep it going with a dummy value so that we can find more reloc errors. 1949 errorDynRel(Type); 1950 return R_MIPS_32; 1951 } 1952 1953 template <class ELFT> 1954 bool MipsTargetInfo<ELFT>::isTlsLocalDynamicRel(uint32_t Type) const { 1955 return Type == R_MIPS_TLS_LDM; 1956 } 1957 1958 template <class ELFT> 1959 bool MipsTargetInfo<ELFT>::isTlsGlobalDynamicRel(uint32_t Type) const { 1960 return Type == R_MIPS_TLS_GD; 1961 } 1962 1963 template <class ELFT> 1964 void MipsTargetInfo<ELFT>::writeGotPlt(uint8_t *Buf, const SymbolBody &) const { 1965 write32<ELFT::TargetEndianness>(Buf, Out<ELFT>::Plt->getVA()); 1966 } 1967 1968 template <endianness E, uint8_t BSIZE, uint8_t SHIFT> 1969 static int64_t getPcRelocAddend(const uint8_t *Loc) { 1970 uint32_t Instr = read32<E>(Loc); 1971 uint32_t Mask = 0xffffffff >> (32 - BSIZE); 1972 return SignExtend64<BSIZE + SHIFT>((Instr & Mask) << SHIFT); 1973 } 1974 1975 template <endianness E, uint8_t BSIZE, uint8_t SHIFT> 1976 static void applyMipsPcReloc(uint8_t *Loc, uint32_t Type, uint64_t V) { 1977 uint32_t Mask = 0xffffffff >> (32 - BSIZE); 1978 uint32_t Instr = read32<E>(Loc); 1979 if (SHIFT > 0) 1980 checkAlignment<(1 << SHIFT)>(V, Type); 1981 checkInt<BSIZE + SHIFT>(V, Type); 1982 write32<E>(Loc, (Instr & ~Mask) | ((V >> SHIFT) & Mask)); 1983 } 1984 1985 template <endianness E> 1986 static void writeMipsHi16(uint8_t *Loc, uint64_t V) { 1987 uint32_t Instr = read32<E>(Loc); 1988 uint16_t Res = ((V + 0x8000) >> 16) & 0xffff; 1989 write32<E>(Loc, (Instr & 0xffff0000) | Res); 1990 } 1991 1992 template <endianness E> 1993 static void writeMipsHigher(uint8_t *Loc, uint64_t V) { 1994 uint32_t Instr = read32<E>(Loc); 1995 uint16_t Res = ((V + 0x80008000) >> 32) & 0xffff; 1996 write32<E>(Loc, (Instr & 0xffff0000) | Res); 1997 } 1998 1999 template <endianness E> 2000 static void writeMipsHighest(uint8_t *Loc, uint64_t V) { 2001 uint32_t Instr = read32<E>(Loc); 2002 uint16_t Res = ((V + 0x800080008000) >> 48) & 0xffff; 2003 write32<E>(Loc, (Instr & 0xffff0000) | Res); 2004 } 2005 2006 template <endianness E> 2007 static void writeMipsLo16(uint8_t *Loc, uint64_t V) { 2008 uint32_t Instr = read32<E>(Loc); 2009 write32<E>(Loc, (Instr & 0xffff0000) | (V & 0xffff)); 2010 } 2011 2012 template <class ELFT> static bool isMipsR6() { 2013 const auto &FirstObj = cast<ELFFileBase<ELFT>>(*Config->FirstElf); 2014 uint32_t Arch = FirstObj.getObj().getHeader()->e_flags & EF_MIPS_ARCH; 2015 return Arch == EF_MIPS_ARCH_32R6 || Arch == EF_MIPS_ARCH_64R6; 2016 } 2017 2018 template <class ELFT> 2019 void MipsTargetInfo<ELFT>::writePltHeader(uint8_t *Buf) const { 2020 const endianness E = ELFT::TargetEndianness; 2021 write32<E>(Buf, 0x3c1c0000); // lui $28, %hi(&GOTPLT[0]) 2022 write32<E>(Buf + 4, 0x8f990000); // lw $25, %lo(&GOTPLT[0])($28) 2023 write32<E>(Buf + 8, 0x279c0000); // addiu $28, $28, %lo(&GOTPLT[0]) 2024 write32<E>(Buf + 12, 0x031cc023); // subu $24, $24, $28 2025 write32<E>(Buf + 16, 0x03e07825); // move $15, $31 2026 write32<E>(Buf + 20, 0x0018c082); // srl $24, $24, 2 2027 write32<E>(Buf + 24, 0x0320f809); // jalr $25 2028 write32<E>(Buf + 28, 0x2718fffe); // subu $24, $24, 2 2029 uint64_t Got = Out<ELFT>::GotPlt->getVA(); 2030 writeMipsHi16<E>(Buf, Got); 2031 writeMipsLo16<E>(Buf + 4, Got); 2032 writeMipsLo16<E>(Buf + 8, Got); 2033 } 2034 2035 template <class ELFT> 2036 void MipsTargetInfo<ELFT>::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, 2037 uint64_t PltEntryAddr, int32_t Index, 2038 unsigned RelOff) const { 2039 const endianness E = ELFT::TargetEndianness; 2040 write32<E>(Buf, 0x3c0f0000); // lui $15, %hi(.got.plt entry) 2041 write32<E>(Buf + 4, 0x8df90000); // l[wd] $25, %lo(.got.plt entry)($15) 2042 // jr $25 2043 write32<E>(Buf + 8, isMipsR6<ELFT>() ? 0x03200009 : 0x03200008); 2044 write32<E>(Buf + 12, 0x25f80000); // addiu $24, $15, %lo(.got.plt entry) 2045 writeMipsHi16<E>(Buf, GotEntryAddr); 2046 writeMipsLo16<E>(Buf + 4, GotEntryAddr); 2047 writeMipsLo16<E>(Buf + 12, GotEntryAddr); 2048 } 2049 2050 template <class ELFT> 2051 RelExpr MipsTargetInfo<ELFT>::getThunkExpr(RelExpr Expr, uint32_t Type, 2052 const InputFile &File, 2053 const SymbolBody &S) const { 2054 // Any MIPS PIC code function is invoked with its address in register $t9. 2055 // So if we have a branch instruction from non-PIC code to the PIC one 2056 // we cannot make the jump directly and need to create a small stubs 2057 // to save the target function address. 2058 // See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 2059 if (Type != R_MIPS_26) 2060 return Expr; 2061 auto *F = dyn_cast<ELFFileBase<ELFT>>(&File); 2062 if (!F) 2063 return Expr; 2064 // If current file has PIC code, LA25 stub is not required. 2065 if (F->getObj().getHeader()->e_flags & EF_MIPS_PIC) 2066 return Expr; 2067 auto *D = dyn_cast<DefinedRegular<ELFT>>(&S); 2068 // LA25 is required if target file has PIC code 2069 // or target symbol is a PIC symbol. 2070 return D && D->isMipsPIC() ? R_THUNK_ABS : Expr; 2071 } 2072 2073 template <class ELFT> 2074 uint64_t MipsTargetInfo<ELFT>::getImplicitAddend(const uint8_t *Buf, 2075 uint32_t Type) const { 2076 const endianness E = ELFT::TargetEndianness; 2077 switch (Type) { 2078 default: 2079 return 0; 2080 case R_MIPS_32: 2081 case R_MIPS_GPREL32: 2082 case R_MIPS_TLS_DTPREL32: 2083 case R_MIPS_TLS_TPREL32: 2084 return read32<E>(Buf); 2085 case R_MIPS_26: 2086 // FIXME (simon): If the relocation target symbol is not a PLT entry 2087 // we should use another expression for calculation: 2088 // ((A << 2) | (P & 0xf0000000)) >> 2 2089 return SignExtend64<28>((read32<E>(Buf) & 0x3ffffff) << 2); 2090 case R_MIPS_GPREL16: 2091 case R_MIPS_LO16: 2092 case R_MIPS_PCLO16: 2093 case R_MIPS_TLS_DTPREL_HI16: 2094 case R_MIPS_TLS_DTPREL_LO16: 2095 case R_MIPS_TLS_TPREL_HI16: 2096 case R_MIPS_TLS_TPREL_LO16: 2097 return SignExtend64<16>(read32<E>(Buf)); 2098 case R_MIPS_PC16: 2099 return getPcRelocAddend<E, 16, 2>(Buf); 2100 case R_MIPS_PC19_S2: 2101 return getPcRelocAddend<E, 19, 2>(Buf); 2102 case R_MIPS_PC21_S2: 2103 return getPcRelocAddend<E, 21, 2>(Buf); 2104 case R_MIPS_PC26_S2: 2105 return getPcRelocAddend<E, 26, 2>(Buf); 2106 case R_MIPS_PC32: 2107 return getPcRelocAddend<E, 32, 0>(Buf); 2108 } 2109 } 2110 2111 static std::pair<uint32_t, uint64_t> calculateMips64RelChain(uint32_t Type, 2112 uint64_t Val) { 2113 // MIPS N64 ABI packs multiple relocations into the single relocation 2114 // record. In general, all up to three relocations can have arbitrary 2115 // types. In fact, Clang and GCC uses only a few combinations. For now, 2116 // we support two of them. That is allow to pass at least all LLVM 2117 // test suite cases. 2118 // <any relocation> / R_MIPS_SUB / R_MIPS_HI16 | R_MIPS_LO16 2119 // <any relocation> / R_MIPS_64 / R_MIPS_NONE 2120 // The first relocation is a 'real' relocation which is calculated 2121 // using the corresponding symbol's value. The second and the third 2122 // relocations used to modify result of the first one: extend it to 2123 // 64-bit, extract high or low part etc. For details, see part 2.9 Relocation 2124 // at the https://dmz-portal.mips.com/mw/images/8/82/007-4658-001.pdf 2125 uint32_t Type2 = (Type >> 8) & 0xff; 2126 uint32_t Type3 = (Type >> 16) & 0xff; 2127 if (Type2 == R_MIPS_NONE && Type3 == R_MIPS_NONE) 2128 return std::make_pair(Type, Val); 2129 if (Type2 == R_MIPS_64 && Type3 == R_MIPS_NONE) 2130 return std::make_pair(Type2, Val); 2131 if (Type2 == R_MIPS_SUB && (Type3 == R_MIPS_HI16 || Type3 == R_MIPS_LO16)) 2132 return std::make_pair(Type3, -Val); 2133 error("unsupported relocations combination " + Twine(Type)); 2134 return std::make_pair(Type & 0xff, Val); 2135 } 2136 2137 template <class ELFT> 2138 void MipsTargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint32_t Type, 2139 uint64_t Val) const { 2140 const endianness E = ELFT::TargetEndianness; 2141 // Thread pointer and DRP offsets from the start of TLS data area. 2142 // https://www.linux-mips.org/wiki/NPTL 2143 if (Type == R_MIPS_TLS_DTPREL_HI16 || Type == R_MIPS_TLS_DTPREL_LO16 || 2144 Type == R_MIPS_TLS_DTPREL32 || Type == R_MIPS_TLS_DTPREL64) 2145 Val -= 0x8000; 2146 else if (Type == R_MIPS_TLS_TPREL_HI16 || Type == R_MIPS_TLS_TPREL_LO16 || 2147 Type == R_MIPS_TLS_TPREL32 || Type == R_MIPS_TLS_TPREL64) 2148 Val -= 0x7000; 2149 if (ELFT::Is64Bits) 2150 std::tie(Type, Val) = calculateMips64RelChain(Type, Val); 2151 switch (Type) { 2152 case R_MIPS_32: 2153 case R_MIPS_GPREL32: 2154 case R_MIPS_TLS_DTPREL32: 2155 case R_MIPS_TLS_TPREL32: 2156 write32<E>(Loc, Val); 2157 break; 2158 case R_MIPS_64: 2159 case R_MIPS_TLS_DTPREL64: 2160 case R_MIPS_TLS_TPREL64: 2161 write64<E>(Loc, Val); 2162 break; 2163 case R_MIPS_26: 2164 write32<E>(Loc, (read32<E>(Loc) & ~0x3ffffff) | ((Val >> 2) & 0x3ffffff)); 2165 break; 2166 case R_MIPS_GOT_DISP: 2167 case R_MIPS_GOT_PAGE: 2168 case R_MIPS_GOT16: 2169 case R_MIPS_GPREL16: 2170 case R_MIPS_TLS_GD: 2171 case R_MIPS_TLS_LDM: 2172 checkInt<16>(Val, Type); 2173 // fallthrough 2174 case R_MIPS_CALL16: 2175 case R_MIPS_CALL_LO16: 2176 case R_MIPS_GOT_LO16: 2177 case R_MIPS_GOT_OFST: 2178 case R_MIPS_LO16: 2179 case R_MIPS_PCLO16: 2180 case R_MIPS_TLS_DTPREL_LO16: 2181 case R_MIPS_TLS_GOTTPREL: 2182 case R_MIPS_TLS_TPREL_LO16: 2183 writeMipsLo16<E>(Loc, Val); 2184 break; 2185 case R_MIPS_CALL_HI16: 2186 case R_MIPS_GOT_HI16: 2187 case R_MIPS_HI16: 2188 case R_MIPS_PCHI16: 2189 case R_MIPS_TLS_DTPREL_HI16: 2190 case R_MIPS_TLS_TPREL_HI16: 2191 writeMipsHi16<E>(Loc, Val); 2192 break; 2193 case R_MIPS_HIGHER: 2194 writeMipsHigher<E>(Loc, Val); 2195 break; 2196 case R_MIPS_HIGHEST: 2197 writeMipsHighest<E>(Loc, Val); 2198 break; 2199 case R_MIPS_JALR: 2200 // Ignore this optimization relocation for now 2201 break; 2202 case R_MIPS_PC16: 2203 applyMipsPcReloc<E, 16, 2>(Loc, Type, Val); 2204 break; 2205 case R_MIPS_PC19_S2: 2206 applyMipsPcReloc<E, 19, 2>(Loc, Type, Val); 2207 break; 2208 case R_MIPS_PC21_S2: 2209 applyMipsPcReloc<E, 21, 2>(Loc, Type, Val); 2210 break; 2211 case R_MIPS_PC26_S2: 2212 applyMipsPcReloc<E, 26, 2>(Loc, Type, Val); 2213 break; 2214 case R_MIPS_PC32: 2215 applyMipsPcReloc<E, 32, 0>(Loc, Type, Val); 2216 break; 2217 default: 2218 fatal("unrecognized reloc " + Twine(Type)); 2219 } 2220 } 2221 2222 template <class ELFT> 2223 bool MipsTargetInfo<ELFT>::usesOnlyLowPageBits(uint32_t Type) const { 2224 return Type == R_MIPS_LO16 || Type == R_MIPS_GOT_OFST; 2225 } 2226 } 2227 } 2228