1 //===- Target.cpp ---------------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Machine-specific things, such as applying relocations, creation of 11 // GOT or PLT entries, etc., are handled in this file. 12 // 13 // Refer the ELF spec for the single letter varaibles, S, A or P, used 14 // in this file. 15 // 16 // Some functions defined in this file has "relaxTls" as part of their names. 17 // They do peephole optimization for TLS variables by rewriting instructions. 18 // They are not part of the ABI but optional optimization, so you can skip 19 // them if you are not interested in how TLS variables are optimized. 20 // See the following paper for the details. 21 // 22 // Ulrich Drepper, ELF Handling For Thread-Local Storage 23 // http://www.akkadia.org/drepper/tls.pdf 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "Target.h" 28 #include "Error.h" 29 #include "InputFiles.h" 30 #include "OutputSections.h" 31 #include "Symbols.h" 32 #include "Thunks.h" 33 34 #include "llvm/ADT/ArrayRef.h" 35 #include "llvm/Object/ELF.h" 36 #include "llvm/Support/Endian.h" 37 #include "llvm/Support/ELF.h" 38 39 using namespace llvm; 40 using namespace llvm::object; 41 using namespace llvm::support::endian; 42 using namespace llvm::ELF; 43 44 namespace lld { 45 namespace elf { 46 47 TargetInfo *Target; 48 49 static void or32le(uint8_t *P, int32_t V) { write32le(P, read32le(P) | V); } 50 51 StringRef getRelName(uint32_t Type) { 52 return getELFRelocationTypeName(Config->EMachine, Type); 53 } 54 55 template <unsigned N> static void checkInt(int64_t V, uint32_t Type) { 56 if (!isInt<N>(V)) 57 error("relocation " + getRelName(Type) + " out of range"); 58 } 59 60 template <unsigned N> static void checkUInt(uint64_t V, uint32_t Type) { 61 if (!isUInt<N>(V)) 62 error("relocation " + getRelName(Type) + " out of range"); 63 } 64 65 template <unsigned N> static void checkIntUInt(uint64_t V, uint32_t Type) { 66 if (!isInt<N>(V) && !isUInt<N>(V)) 67 error("relocation " + getRelName(Type) + " out of range"); 68 } 69 70 template <unsigned N> static void checkAlignment(uint64_t V, uint32_t Type) { 71 if ((V & (N - 1)) != 0) 72 error("improper alignment for relocation " + getRelName(Type)); 73 } 74 75 static void errorDynRel(uint32_t Type) { 76 error("relocation " + getRelName(Type) + 77 " cannot be used against shared object; recompile with -fPIC."); 78 } 79 80 namespace { 81 class X86TargetInfo final : public TargetInfo { 82 public: 83 X86TargetInfo(); 84 RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; 85 uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override; 86 void writeGotPltHeader(uint8_t *Buf) const override; 87 uint32_t getDynRel(uint32_t Type) const override; 88 bool isTlsLocalDynamicRel(uint32_t Type) const override; 89 bool isTlsGlobalDynamicRel(uint32_t Type) const override; 90 bool isTlsInitialExecRel(uint32_t Type) const override; 91 void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; 92 void writePltHeader(uint8_t *Buf) const override; 93 void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, 94 int32_t Index, unsigned RelOff) const override; 95 void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 96 97 RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data, 98 RelExpr Expr) const override; 99 void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 100 void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 101 void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 102 void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 103 }; 104 105 template <class ELFT> class X86_64TargetInfo final : public TargetInfo { 106 public: 107 X86_64TargetInfo(); 108 RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; 109 uint32_t getDynRel(uint32_t Type) const override; 110 bool isTlsLocalDynamicRel(uint32_t Type) const override; 111 bool isTlsGlobalDynamicRel(uint32_t Type) const override; 112 bool isTlsInitialExecRel(uint32_t Type) const override; 113 void writeGotPltHeader(uint8_t *Buf) const override; 114 void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; 115 void writePltHeader(uint8_t *Buf) const override; 116 void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, 117 int32_t Index, unsigned RelOff) const override; 118 void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 119 120 RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data, 121 RelExpr Expr) const override; 122 void relaxGot(uint8_t *Loc, uint64_t Val) const override; 123 void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 124 void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 125 void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 126 void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 127 128 private: 129 void relaxGotNoPic(uint8_t *Loc, uint64_t Val, uint8_t Op, 130 uint8_t ModRm) const; 131 }; 132 133 class PPCTargetInfo final : public TargetInfo { 134 public: 135 PPCTargetInfo(); 136 void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 137 RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; 138 }; 139 140 class PPC64TargetInfo final : public TargetInfo { 141 public: 142 PPC64TargetInfo(); 143 RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; 144 void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, 145 int32_t Index, unsigned RelOff) const override; 146 void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 147 }; 148 149 class AArch64TargetInfo final : public TargetInfo { 150 public: 151 AArch64TargetInfo(); 152 RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; 153 uint32_t getDynRel(uint32_t Type) const override; 154 bool isTlsInitialExecRel(uint32_t Type) const override; 155 void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; 156 void writePltHeader(uint8_t *Buf) const override; 157 void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, 158 int32_t Index, unsigned RelOff) const override; 159 bool usesOnlyLowPageBits(uint32_t Type) const override; 160 void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 161 RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data, 162 RelExpr Expr) const override; 163 void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 164 void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 165 void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 166 }; 167 168 class AMDGPUTargetInfo final : public TargetInfo { 169 public: 170 AMDGPUTargetInfo(); 171 void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 172 RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; 173 }; 174 175 class ARMTargetInfo final : public TargetInfo { 176 public: 177 ARMTargetInfo(); 178 RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; 179 uint32_t getDynRel(uint32_t Type) const override; 180 uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override; 181 bool isTlsLocalDynamicRel(uint32_t Type) const override; 182 bool isTlsGlobalDynamicRel(uint32_t Type) const override; 183 bool isTlsInitialExecRel(uint32_t Type) const override; 184 void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; 185 void writePltHeader(uint8_t *Buf) const override; 186 void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, 187 int32_t Index, unsigned RelOff) const override; 188 RelExpr getThunkExpr(RelExpr Expr, uint32_t RelocType, 189 const InputFile &File, 190 const SymbolBody &S) const override; 191 void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 192 }; 193 194 template <class ELFT> class MipsTargetInfo final : public TargetInfo { 195 public: 196 MipsTargetInfo(); 197 RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override; 198 uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override; 199 uint32_t getDynRel(uint32_t Type) const override; 200 bool isTlsLocalDynamicRel(uint32_t Type) const override; 201 bool isTlsGlobalDynamicRel(uint32_t Type) const override; 202 void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; 203 void writePltHeader(uint8_t *Buf) const override; 204 void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr, 205 int32_t Index, unsigned RelOff) const override; 206 RelExpr getThunkExpr(RelExpr Expr, uint32_t RelocType, 207 const InputFile &File, 208 const SymbolBody &S) const override; 209 void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; 210 bool usesOnlyLowPageBits(uint32_t Type) const override; 211 }; 212 } // anonymous namespace 213 214 TargetInfo *createTarget() { 215 switch (Config->EMachine) { 216 case EM_386: 217 return new X86TargetInfo(); 218 case EM_AARCH64: 219 return new AArch64TargetInfo(); 220 case EM_AMDGPU: 221 return new AMDGPUTargetInfo(); 222 case EM_ARM: 223 return new ARMTargetInfo(); 224 case EM_MIPS: 225 switch (Config->EKind) { 226 case ELF32LEKind: 227 return new MipsTargetInfo<ELF32LE>(); 228 case ELF32BEKind: 229 return new MipsTargetInfo<ELF32BE>(); 230 case ELF64LEKind: 231 return new MipsTargetInfo<ELF64LE>(); 232 case ELF64BEKind: 233 return new MipsTargetInfo<ELF64BE>(); 234 default: 235 fatal("unsupported MIPS target"); 236 } 237 case EM_PPC: 238 return new PPCTargetInfo(); 239 case EM_PPC64: 240 return new PPC64TargetInfo(); 241 case EM_X86_64: 242 if (Config->EKind == ELF32LEKind) 243 return new X86_64TargetInfo<ELF32LE>(); 244 return new X86_64TargetInfo<ELF64LE>(); 245 } 246 fatal("unknown target machine"); 247 } 248 249 TargetInfo::~TargetInfo() {} 250 251 uint64_t TargetInfo::getImplicitAddend(const uint8_t *Buf, 252 uint32_t Type) const { 253 return 0; 254 } 255 256 bool TargetInfo::usesOnlyLowPageBits(uint32_t Type) const { return false; } 257 258 RelExpr TargetInfo::getThunkExpr(RelExpr Expr, uint32_t RelocType, 259 const InputFile &File, 260 const SymbolBody &S) const { 261 return Expr; 262 } 263 264 bool TargetInfo::isTlsInitialExecRel(uint32_t Type) const { return false; } 265 266 bool TargetInfo::isTlsLocalDynamicRel(uint32_t Type) const { return false; } 267 268 bool TargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const { 269 return false; 270 } 271 272 RelExpr TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data, 273 RelExpr Expr) const { 274 return Expr; 275 } 276 277 void TargetInfo::relaxGot(uint8_t *Loc, uint64_t Val) const { 278 llvm_unreachable("Should not have claimed to be relaxable"); 279 } 280 281 void TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, 282 uint64_t Val) const { 283 llvm_unreachable("Should not have claimed to be relaxable"); 284 } 285 286 void TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, 287 uint64_t Val) const { 288 llvm_unreachable("Should not have claimed to be relaxable"); 289 } 290 291 void TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, 292 uint64_t Val) const { 293 llvm_unreachable("Should not have claimed to be relaxable"); 294 } 295 296 void TargetInfo::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, 297 uint64_t Val) const { 298 llvm_unreachable("Should not have claimed to be relaxable"); 299 } 300 301 X86TargetInfo::X86TargetInfo() { 302 CopyRel = R_386_COPY; 303 GotRel = R_386_GLOB_DAT; 304 PltRel = R_386_JUMP_SLOT; 305 IRelativeRel = R_386_IRELATIVE; 306 RelativeRel = R_386_RELATIVE; 307 TlsGotRel = R_386_TLS_TPOFF; 308 TlsModuleIndexRel = R_386_TLS_DTPMOD32; 309 TlsOffsetRel = R_386_TLS_DTPOFF32; 310 GotEntrySize = 4; 311 GotPltEntrySize = 4; 312 PltEntrySize = 16; 313 PltHeaderSize = 16; 314 TlsGdRelaxSkip = 2; 315 } 316 317 RelExpr X86TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const { 318 switch (Type) { 319 default: 320 return R_ABS; 321 case R_386_TLS_GD: 322 return R_TLSGD; 323 case R_386_TLS_LDM: 324 return R_TLSLD; 325 case R_386_PLT32: 326 return R_PLT_PC; 327 case R_386_PC32: 328 return R_PC; 329 case R_386_GOTPC: 330 return R_GOTONLY_PC; 331 case R_386_TLS_IE: 332 return R_GOT; 333 case R_386_GOT32: 334 case R_386_GOT32X: 335 case R_386_TLS_GOTIE: 336 return R_GOT_FROM_END; 337 case R_386_GOTOFF: 338 return R_GOTREL; 339 case R_386_TLS_LE: 340 return R_TLS; 341 case R_386_TLS_LE_32: 342 return R_NEG_TLS; 343 } 344 } 345 346 RelExpr X86TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data, 347 RelExpr Expr) const { 348 switch (Expr) { 349 default: 350 return Expr; 351 case R_RELAX_TLS_GD_TO_IE: 352 return R_RELAX_TLS_GD_TO_IE_END; 353 case R_RELAX_TLS_GD_TO_LE: 354 return R_RELAX_TLS_GD_TO_LE_NEG; 355 } 356 } 357 358 void X86TargetInfo::writeGotPltHeader(uint8_t *Buf) const { 359 write32le(Buf, Out<ELF32LE>::Dynamic->getVA()); 360 } 361 362 void X86TargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &S) const { 363 // Entries in .got.plt initially points back to the corresponding 364 // PLT entries with a fixed offset to skip the first instruction. 365 write32le(Buf, S.getPltVA<ELF32LE>() + 6); 366 } 367 368 uint32_t X86TargetInfo::getDynRel(uint32_t Type) const { 369 if (Type == R_386_TLS_LE) 370 return R_386_TLS_TPOFF; 371 if (Type == R_386_TLS_LE_32) 372 return R_386_TLS_TPOFF32; 373 return Type; 374 } 375 376 bool X86TargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const { 377 return Type == R_386_TLS_GD; 378 } 379 380 bool X86TargetInfo::isTlsLocalDynamicRel(uint32_t Type) const { 381 return Type == R_386_TLS_LDO_32 || Type == R_386_TLS_LDM; 382 } 383 384 bool X86TargetInfo::isTlsInitialExecRel(uint32_t Type) const { 385 return Type == R_386_TLS_IE || Type == R_386_TLS_GOTIE; 386 } 387 388 void X86TargetInfo::writePltHeader(uint8_t *Buf) const { 389 // Executable files and shared object files have 390 // separate procedure linkage tables. 391 if (Config->Pic) { 392 const uint8_t V[] = { 393 0xff, 0xb3, 0x04, 0x00, 0x00, 0x00, // pushl 4(%ebx) 394 0xff, 0xa3, 0x08, 0x00, 0x00, 0x00, // jmp *8(%ebx) 395 0x90, 0x90, 0x90, 0x90 // nop; nop; nop; nop 396 }; 397 memcpy(Buf, V, sizeof(V)); 398 return; 399 } 400 401 const uint8_t PltData[] = { 402 0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushl (GOT+4) 403 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *(GOT+8) 404 0x90, 0x90, 0x90, 0x90 // nop; nop; nop; nop 405 }; 406 memcpy(Buf, PltData, sizeof(PltData)); 407 uint32_t Got = Out<ELF32LE>::GotPlt->getVA(); 408 write32le(Buf + 2, Got + 4); 409 write32le(Buf + 8, Got + 8); 410 } 411 412 void X86TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, 413 uint64_t PltEntryAddr, int32_t Index, 414 unsigned RelOff) const { 415 const uint8_t Inst[] = { 416 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, // jmp *foo_in_GOT|*foo@GOT(%ebx) 417 0x68, 0x00, 0x00, 0x00, 0x00, // pushl $reloc_offset 418 0xe9, 0x00, 0x00, 0x00, 0x00 // jmp .PLT0@PC 419 }; 420 memcpy(Buf, Inst, sizeof(Inst)); 421 422 // jmp *foo@GOT(%ebx) or jmp *foo_in_GOT 423 Buf[1] = Config->Pic ? 0xa3 : 0x25; 424 uint32_t Got = Out<ELF32LE>::GotPlt->getVA(); 425 write32le(Buf + 2, Config->Shared ? GotEntryAddr - Got : GotEntryAddr); 426 write32le(Buf + 7, RelOff); 427 write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16); 428 } 429 430 uint64_t X86TargetInfo::getImplicitAddend(const uint8_t *Buf, 431 uint32_t Type) const { 432 switch (Type) { 433 default: 434 return 0; 435 case R_386_32: 436 case R_386_GOT32: 437 case R_386_GOT32X: 438 case R_386_GOTOFF: 439 case R_386_GOTPC: 440 case R_386_PC32: 441 case R_386_PLT32: 442 return read32le(Buf); 443 } 444 } 445 446 void X86TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, 447 uint64_t Val) const { 448 checkInt<32>(Val, Type); 449 write32le(Loc, Val); 450 } 451 452 void X86TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, 453 uint64_t Val) const { 454 // Convert 455 // leal x@tlsgd(, %ebx, 1), 456 // call __tls_get_addr@plt 457 // to 458 // movl %gs:0,%eax 459 // subl $x@ntpoff,%eax 460 const uint8_t Inst[] = { 461 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax 462 0x81, 0xe8, 0x00, 0x00, 0x00, 0x00 // subl 0(%ebx), %eax 463 }; 464 memcpy(Loc - 3, Inst, sizeof(Inst)); 465 relocateOne(Loc + 5, R_386_32, Val); 466 } 467 468 void X86TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, 469 uint64_t Val) const { 470 // Convert 471 // leal x@tlsgd(, %ebx, 1), 472 // call __tls_get_addr@plt 473 // to 474 // movl %gs:0, %eax 475 // addl x@gotntpoff(%ebx), %eax 476 const uint8_t Inst[] = { 477 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax 478 0x03, 0x83, 0x00, 0x00, 0x00, 0x00 // addl 0(%ebx), %eax 479 }; 480 memcpy(Loc - 3, Inst, sizeof(Inst)); 481 relocateOne(Loc + 5, R_386_32, Val); 482 } 483 484 // In some conditions, relocations can be optimized to avoid using GOT. 485 // This function does that for Initial Exec to Local Exec case. 486 void X86TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, 487 uint64_t Val) const { 488 // Ulrich's document section 6.2 says that @gotntpoff can 489 // be used with MOVL or ADDL instructions. 490 // @indntpoff is similar to @gotntpoff, but for use in 491 // position dependent code. 492 uint8_t Reg = (Loc[-1] >> 3) & 7; 493 494 if (Type == R_386_TLS_IE) { 495 if (Loc[-1] == 0xa1) { 496 // "movl foo@indntpoff,%eax" -> "movl $foo,%eax" 497 // This case is different from the generic case below because 498 // this is a 5 byte instruction while below is 6 bytes. 499 Loc[-1] = 0xb8; 500 } else if (Loc[-2] == 0x8b) { 501 // "movl foo@indntpoff,%reg" -> "movl $foo,%reg" 502 Loc[-2] = 0xc7; 503 Loc[-1] = 0xc0 | Reg; 504 } else { 505 // "addl foo@indntpoff,%reg" -> "addl $foo,%reg" 506 Loc[-2] = 0x81; 507 Loc[-1] = 0xc0 | Reg; 508 } 509 } else { 510 assert(Type == R_386_TLS_GOTIE); 511 if (Loc[-2] == 0x8b) { 512 // "movl foo@gottpoff(%rip),%reg" -> "movl $foo,%reg" 513 Loc[-2] = 0xc7; 514 Loc[-1] = 0xc0 | Reg; 515 } else { 516 // "addl foo@gotntpoff(%rip),%reg" -> "leal foo(%reg),%reg" 517 Loc[-2] = 0x8d; 518 Loc[-1] = 0x80 | (Reg << 3) | Reg; 519 } 520 } 521 relocateOne(Loc, R_386_TLS_LE, Val); 522 } 523 524 void X86TargetInfo::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, 525 uint64_t Val) const { 526 if (Type == R_386_TLS_LDO_32) { 527 relocateOne(Loc, R_386_TLS_LE, Val); 528 return; 529 } 530 531 // Convert 532 // leal foo(%reg),%eax 533 // call ___tls_get_addr 534 // to 535 // movl %gs:0,%eax 536 // nop 537 // leal 0(%esi,1),%esi 538 const uint8_t Inst[] = { 539 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0,%eax 540 0x90, // nop 541 0x8d, 0x74, 0x26, 0x00 // leal 0(%esi,1),%esi 542 }; 543 memcpy(Loc - 2, Inst, sizeof(Inst)); 544 } 545 546 template <class ELFT> X86_64TargetInfo<ELFT>::X86_64TargetInfo() { 547 CopyRel = R_X86_64_COPY; 548 GotRel = R_X86_64_GLOB_DAT; 549 PltRel = R_X86_64_JUMP_SLOT; 550 RelativeRel = R_X86_64_RELATIVE; 551 IRelativeRel = R_X86_64_IRELATIVE; 552 TlsGotRel = R_X86_64_TPOFF64; 553 TlsModuleIndexRel = R_X86_64_DTPMOD64; 554 TlsOffsetRel = R_X86_64_DTPOFF64; 555 GotEntrySize = 8; 556 GotPltEntrySize = 8; 557 PltEntrySize = 16; 558 PltHeaderSize = 16; 559 TlsGdRelaxSkip = 2; 560 } 561 562 template <class ELFT> 563 RelExpr X86_64TargetInfo<ELFT>::getRelExpr(uint32_t Type, 564 const SymbolBody &S) const { 565 switch (Type) { 566 default: 567 return R_ABS; 568 case R_X86_64_TPOFF32: 569 return R_TLS; 570 case R_X86_64_TLSLD: 571 return R_TLSLD_PC; 572 case R_X86_64_TLSGD: 573 return R_TLSGD_PC; 574 case R_X86_64_SIZE32: 575 case R_X86_64_SIZE64: 576 return R_SIZE; 577 case R_X86_64_PLT32: 578 return R_PLT_PC; 579 case R_X86_64_PC32: 580 case R_X86_64_PC64: 581 return R_PC; 582 case R_X86_64_GOT32: 583 return R_GOT_FROM_END; 584 case R_X86_64_GOTPCREL: 585 case R_X86_64_GOTPCRELX: 586 case R_X86_64_REX_GOTPCRELX: 587 case R_X86_64_GOTTPOFF: 588 return R_GOT_PC; 589 } 590 } 591 592 template <class ELFT> 593 void X86_64TargetInfo<ELFT>::writeGotPltHeader(uint8_t *Buf) const { 594 // The first entry holds the value of _DYNAMIC. It is not clear why that is 595 // required, but it is documented in the psabi and the glibc dynamic linker 596 // seems to use it (note that this is relevant for linking ld.so, not any 597 // other program). 598 write64le(Buf, Out<ELFT>::Dynamic->getVA()); 599 } 600 601 template <class ELFT> 602 void X86_64TargetInfo<ELFT>::writeGotPlt(uint8_t *Buf, 603 const SymbolBody &S) const { 604 // See comments in X86TargetInfo::writeGotPlt. 605 write32le(Buf, S.getPltVA<ELFT>() + 6); 606 } 607 608 template <class ELFT> 609 void X86_64TargetInfo<ELFT>::writePltHeader(uint8_t *Buf) const { 610 const uint8_t PltData[] = { 611 0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushq GOT+8(%rip) 612 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *GOT+16(%rip) 613 0x0f, 0x1f, 0x40, 0x00 // nopl 0x0(rax) 614 }; 615 memcpy(Buf, PltData, sizeof(PltData)); 616 uint64_t Got = Out<ELFT>::GotPlt->getVA(); 617 uint64_t Plt = Out<ELFT>::Plt->getVA(); 618 write32le(Buf + 2, Got - Plt + 2); // GOT+8 619 write32le(Buf + 8, Got - Plt + 4); // GOT+16 620 } 621 622 template <class ELFT> 623 void X86_64TargetInfo<ELFT>::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, 624 uint64_t PltEntryAddr, int32_t Index, 625 unsigned RelOff) const { 626 const uint8_t Inst[] = { 627 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmpq *got(%rip) 628 0x68, 0x00, 0x00, 0x00, 0x00, // pushq <relocation index> 629 0xe9, 0x00, 0x00, 0x00, 0x00 // jmpq plt[0] 630 }; 631 memcpy(Buf, Inst, sizeof(Inst)); 632 633 write32le(Buf + 2, GotEntryAddr - PltEntryAddr - 6); 634 write32le(Buf + 7, Index); 635 write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16); 636 } 637 638 template <class ELFT> 639 uint32_t X86_64TargetInfo<ELFT>::getDynRel(uint32_t Type) const { 640 if (Type == R_X86_64_PC32 || Type == R_X86_64_32) 641 errorDynRel(Type); 642 return Type; 643 } 644 645 template <class ELFT> 646 bool X86_64TargetInfo<ELFT>::isTlsInitialExecRel(uint32_t Type) const { 647 return Type == R_X86_64_GOTTPOFF; 648 } 649 650 template <class ELFT> 651 bool X86_64TargetInfo<ELFT>::isTlsGlobalDynamicRel(uint32_t Type) const { 652 return Type == R_X86_64_TLSGD; 653 } 654 655 template <class ELFT> 656 bool X86_64TargetInfo<ELFT>::isTlsLocalDynamicRel(uint32_t Type) const { 657 return Type == R_X86_64_DTPOFF32 || Type == R_X86_64_DTPOFF64 || 658 Type == R_X86_64_TLSLD; 659 } 660 661 template <class ELFT> 662 void X86_64TargetInfo<ELFT>::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, 663 uint64_t Val) const { 664 // Convert 665 // .byte 0x66 666 // leaq x@tlsgd(%rip), %rdi 667 // .word 0x6666 668 // rex64 669 // call __tls_get_addr@plt 670 // to 671 // mov %fs:0x0,%rax 672 // lea x@tpoff,%rax 673 const uint8_t Inst[] = { 674 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax 675 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff,%rax 676 }; 677 memcpy(Loc - 4, Inst, sizeof(Inst)); 678 // The original code used a pc relative relocation and so we have to 679 // compensate for the -4 in had in the addend. 680 relocateOne(Loc + 8, R_X86_64_TPOFF32, Val + 4); 681 } 682 683 template <class ELFT> 684 void X86_64TargetInfo<ELFT>::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, 685 uint64_t Val) const { 686 // Convert 687 // .byte 0x66 688 // leaq x@tlsgd(%rip), %rdi 689 // .word 0x6666 690 // rex64 691 // call __tls_get_addr@plt 692 // to 693 // mov %fs:0x0,%rax 694 // addq x@tpoff,%rax 695 const uint8_t Inst[] = { 696 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax 697 0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00 // addq x@tpoff,%rax 698 }; 699 memcpy(Loc - 4, Inst, sizeof(Inst)); 700 // Both code sequences are PC relatives, but since we are moving the constant 701 // forward by 8 bytes we have to subtract the value by 8. 702 relocateOne(Loc + 8, R_X86_64_PC32, Val - 8); 703 } 704 705 // In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to 706 // R_X86_64_TPOFF32 so that it does not use GOT. 707 template <class ELFT> 708 void X86_64TargetInfo<ELFT>::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, 709 uint64_t Val) const { 710 uint8_t *Inst = Loc - 3; 711 uint8_t Reg = Loc[-1] >> 3; 712 uint8_t *RegSlot = Loc - 1; 713 714 // Note that ADD with RSP or R12 is converted to ADD instead of LEA 715 // because LEA with these registers needs 4 bytes to encode and thus 716 // wouldn't fit the space. 717 718 if (memcmp(Inst, "\x48\x03\x25", 3) == 0) { 719 // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp" 720 memcpy(Inst, "\x48\x81\xc4", 3); 721 } else if (memcmp(Inst, "\x4c\x03\x25", 3) == 0) { 722 // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12" 723 memcpy(Inst, "\x49\x81\xc4", 3); 724 } else if (memcmp(Inst, "\x4c\x03", 2) == 0) { 725 // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]" 726 memcpy(Inst, "\x4d\x8d", 2); 727 *RegSlot = 0x80 | (Reg << 3) | Reg; 728 } else if (memcmp(Inst, "\x48\x03", 2) == 0) { 729 // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg" 730 memcpy(Inst, "\x48\x8d", 2); 731 *RegSlot = 0x80 | (Reg << 3) | Reg; 732 } else if (memcmp(Inst, "\x4c\x8b", 2) == 0) { 733 // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]" 734 memcpy(Inst, "\x49\xc7", 2); 735 *RegSlot = 0xc0 | Reg; 736 } else if (memcmp(Inst, "\x48\x8b", 2) == 0) { 737 // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg" 738 memcpy(Inst, "\x48\xc7", 2); 739 *RegSlot = 0xc0 | Reg; 740 } else { 741 fatal("R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only"); 742 } 743 744 // The original code used a PC relative relocation. 745 // Need to compensate for the -4 it had in the addend. 746 relocateOne(Loc, R_X86_64_TPOFF32, Val + 4); 747 } 748 749 template <class ELFT> 750 void X86_64TargetInfo<ELFT>::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, 751 uint64_t Val) const { 752 // Convert 753 // leaq bar@tlsld(%rip), %rdi 754 // callq __tls_get_addr@PLT 755 // leaq bar@dtpoff(%rax), %rcx 756 // to 757 // .word 0x6666 758 // .byte 0x66 759 // mov %fs:0,%rax 760 // leaq bar@tpoff(%rax), %rcx 761 if (Type == R_X86_64_DTPOFF64) { 762 write64le(Loc, Val); 763 return; 764 } 765 if (Type == R_X86_64_DTPOFF32) { 766 relocateOne(Loc, R_X86_64_TPOFF32, Val); 767 return; 768 } 769 770 const uint8_t Inst[] = { 771 0x66, 0x66, // .word 0x6666 772 0x66, // .byte 0x66 773 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax 774 }; 775 memcpy(Loc - 3, Inst, sizeof(Inst)); 776 } 777 778 template <class ELFT> 779 void X86_64TargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint32_t Type, 780 uint64_t Val) const { 781 switch (Type) { 782 case R_X86_64_32: 783 checkUInt<32>(Val, Type); 784 write32le(Loc, Val); 785 break; 786 case R_X86_64_32S: 787 case R_X86_64_TPOFF32: 788 case R_X86_64_GOT32: 789 case R_X86_64_GOTPCREL: 790 case R_X86_64_GOTPCRELX: 791 case R_X86_64_REX_GOTPCRELX: 792 case R_X86_64_PC32: 793 case R_X86_64_GOTTPOFF: 794 case R_X86_64_PLT32: 795 case R_X86_64_TLSGD: 796 case R_X86_64_TLSLD: 797 case R_X86_64_DTPOFF32: 798 case R_X86_64_SIZE32: 799 checkInt<32>(Val, Type); 800 write32le(Loc, Val); 801 break; 802 case R_X86_64_64: 803 case R_X86_64_DTPOFF64: 804 case R_X86_64_SIZE64: 805 case R_X86_64_PC64: 806 write64le(Loc, Val); 807 break; 808 default: 809 fatal("unrecognized reloc " + Twine(Type)); 810 } 811 } 812 813 template <class ELFT> 814 RelExpr X86_64TargetInfo<ELFT>::adjustRelaxExpr(uint32_t Type, 815 const uint8_t *Data, 816 RelExpr RelExpr) const { 817 if (Type != R_X86_64_GOTPCRELX && Type != R_X86_64_REX_GOTPCRELX) 818 return RelExpr; 819 const uint8_t Op = Data[-2]; 820 const uint8_t ModRm = Data[-1]; 821 // FIXME: When PIC is disabled and foo is defined locally in the 822 // lower 32 bit address space, memory operand in mov can be converted into 823 // immediate operand. Otherwise, mov must be changed to lea. We support only 824 // latter relaxation at this moment. 825 if (Op == 0x8b) 826 return R_RELAX_GOT_PC; 827 // Relax call and jmp. 828 if (Op == 0xff && (ModRm == 0x15 || ModRm == 0x25)) 829 return R_RELAX_GOT_PC; 830 831 // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor. 832 // If PIC then no relaxation is available. 833 // We also don't relax test/binop instructions without REX byte, 834 // they are 32bit operations and not common to have. 835 assert(Type == R_X86_64_REX_GOTPCRELX); 836 return Config->Pic ? RelExpr : R_RELAX_GOT_PC_NOPIC; 837 } 838 839 // A subset of relaxations can only be applied for no-PIC. This method 840 // handles such relaxations. Instructions encoding information was taken from: 841 // "Intel 64 and IA-32 Architectures Software Developer's Manual V2" 842 // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/ 843 // 64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf) 844 template <class ELFT> 845 void X86_64TargetInfo<ELFT>::relaxGotNoPic(uint8_t *Loc, uint64_t Val, 846 uint8_t Op, uint8_t ModRm) const { 847 const uint8_t Rex = Loc[-3]; 848 // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg". 849 if (Op == 0x85) { 850 // See "TEST-Logical Compare" (4-428 Vol. 2B), 851 // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension). 852 853 // ModR/M byte has form XX YYY ZZZ, where 854 // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1). 855 // XX has different meanings: 856 // 00: The operand's memory address is in reg1. 857 // 01: The operand's memory address is reg1 + a byte-sized displacement. 858 // 10: The operand's memory address is reg1 + a word-sized displacement. 859 // 11: The operand is reg1 itself. 860 // If an instruction requires only one operand, the unused reg2 field 861 // holds extra opcode bits rather than a register code 862 // 0xC0 == 11 000 000 binary. 863 // 0x38 == 00 111 000 binary. 864 // We transfer reg2 to reg1 here as operand. 865 // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3). 866 Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3; // ModR/M byte. 867 868 // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32 869 // See "TEST-Logical Compare" (4-428 Vol. 2B). 870 Loc[-2] = 0xf7; 871 872 // Move R bit to the B bit in REX byte. 873 // REX byte is encoded as 0100WRXB, where 874 // 0100 is 4bit fixed pattern. 875 // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the 876 // default operand size is used (which is 32-bit for most but not all 877 // instructions). 878 // REX.R This 1-bit value is an extension to the MODRM.reg field. 879 // REX.X This 1-bit value is an extension to the SIB.index field. 880 // REX.B This 1-bit value is an extension to the MODRM.rm field or the 881 // SIB.base field. 882 // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A). 883 Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2; 884 relocateOne(Loc, R_X86_64_PC32, Val); 885 return; 886 } 887 888 // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub 889 // or xor operations. 890 891 // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg". 892 // Logic is close to one for test instruction above, but we also 893 // write opcode extension here, see below for details. 894 Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3 | (Op & 0x3c); // ModR/M byte. 895 896 // Primary opcode is 0x81, opcode extension is one of: 897 // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB, 898 // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP. 899 // This value was wrote to MODRM.reg in a line above. 900 // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15), 901 // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for 902 // descriptions about each operation. 903 Loc[-2] = 0x81; 904 Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2; 905 relocateOne(Loc, R_X86_64_PC32, Val); 906 } 907 908 template <class ELFT> 909 void X86_64TargetInfo<ELFT>::relaxGot(uint8_t *Loc, uint64_t Val) const { 910 const uint8_t Op = Loc[-2]; 911 const uint8_t ModRm = Loc[-1]; 912 913 // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg". 914 if (Op == 0x8b) { 915 Loc[-2] = 0x8d; 916 relocateOne(Loc, R_X86_64_PC32, Val); 917 return; 918 } 919 920 if (Op != 0xff) { 921 // We are relaxing a rip relative to an absolute, so compensate 922 // for the old -4 addend. 923 assert(!Config->Pic); 924 relaxGotNoPic(Loc, Val + 4, Op, ModRm); 925 return; 926 } 927 928 // Convert call/jmp instructions. 929 if (ModRm == 0x15) { 930 // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo". 931 // Instead we convert to "addr32 call foo" where addr32 is an instruction 932 // prefix. That makes result expression to be a single instruction. 933 Loc[-2] = 0x67; // addr32 prefix 934 Loc[-1] = 0xe8; // call 935 relocateOne(Loc, R_X86_64_PC32, Val); 936 return; 937 } 938 939 // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop". 940 // jmp doesn't return, so it is fine to use nop here, it is just a stub. 941 assert(ModRm == 0x25); 942 Loc[-2] = 0xe9; // jmp 943 Loc[3] = 0x90; // nop 944 relocateOne(Loc - 1, R_X86_64_PC32, Val + 1); 945 } 946 947 // Relocation masks following the #lo(value), #hi(value), #ha(value), 948 // #higher(value), #highera(value), #highest(value), and #highesta(value) 949 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi 950 // document. 951 static uint16_t applyPPCLo(uint64_t V) { return V; } 952 static uint16_t applyPPCHi(uint64_t V) { return V >> 16; } 953 static uint16_t applyPPCHa(uint64_t V) { return (V + 0x8000) >> 16; } 954 static uint16_t applyPPCHigher(uint64_t V) { return V >> 32; } 955 static uint16_t applyPPCHighera(uint64_t V) { return (V + 0x8000) >> 32; } 956 static uint16_t applyPPCHighest(uint64_t V) { return V >> 48; } 957 static uint16_t applyPPCHighesta(uint64_t V) { return (V + 0x8000) >> 48; } 958 959 PPCTargetInfo::PPCTargetInfo() {} 960 961 void PPCTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, 962 uint64_t Val) const { 963 switch (Type) { 964 case R_PPC_ADDR16_HA: 965 write16be(Loc, applyPPCHa(Val)); 966 break; 967 case R_PPC_ADDR16_LO: 968 write16be(Loc, applyPPCLo(Val)); 969 break; 970 default: 971 fatal("unrecognized reloc " + Twine(Type)); 972 } 973 } 974 975 RelExpr PPCTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const { 976 return R_ABS; 977 } 978 979 PPC64TargetInfo::PPC64TargetInfo() { 980 PltRel = GotRel = R_PPC64_GLOB_DAT; 981 RelativeRel = R_PPC64_RELATIVE; 982 GotEntrySize = 8; 983 GotPltEntrySize = 8; 984 PltEntrySize = 32; 985 PltHeaderSize = 0; 986 987 // We need 64K pages (at least under glibc/Linux, the loader won't 988 // set different permissions on a finer granularity than that). 989 PageSize = 65536; 990 991 // The PPC64 ELF ABI v1 spec, says: 992 // 993 // It is normally desirable to put segments with different characteristics 994 // in separate 256 Mbyte portions of the address space, to give the 995 // operating system full paging flexibility in the 64-bit address space. 996 // 997 // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers 998 // use 0x10000000 as the starting address. 999 DefaultImageBase = 0x10000000; 1000 } 1001 1002 static uint64_t PPC64TocOffset = 0x8000; 1003 1004 uint64_t getPPC64TocBase() { 1005 // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The 1006 // TOC starts where the first of these sections starts. We always create a 1007 // .got when we see a relocation that uses it, so for us the start is always 1008 // the .got. 1009 uint64_t TocVA = Out<ELF64BE>::Got->getVA(); 1010 1011 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000 1012 // thus permitting a full 64 Kbytes segment. Note that the glibc startup 1013 // code (crt1.o) assumes that you can get from the TOC base to the 1014 // start of the .toc section with only a single (signed) 16-bit relocation. 1015 return TocVA + PPC64TocOffset; 1016 } 1017 1018 RelExpr PPC64TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const { 1019 switch (Type) { 1020 default: 1021 return R_ABS; 1022 case R_PPC64_TOC16: 1023 case R_PPC64_TOC16_DS: 1024 case R_PPC64_TOC16_HA: 1025 case R_PPC64_TOC16_HI: 1026 case R_PPC64_TOC16_LO: 1027 case R_PPC64_TOC16_LO_DS: 1028 return R_GOTREL; 1029 case R_PPC64_TOC: 1030 return R_PPC_TOC; 1031 case R_PPC64_REL24: 1032 return R_PPC_PLT_OPD; 1033 } 1034 } 1035 1036 void PPC64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, 1037 uint64_t PltEntryAddr, int32_t Index, 1038 unsigned RelOff) const { 1039 uint64_t Off = GotEntryAddr - getPPC64TocBase(); 1040 1041 // FIXME: What we should do, in theory, is get the offset of the function 1042 // descriptor in the .opd section, and use that as the offset from %r2 (the 1043 // TOC-base pointer). Instead, we have the GOT-entry offset, and that will 1044 // be a pointer to the function descriptor in the .opd section. Using 1045 // this scheme is simpler, but requires an extra indirection per PLT dispatch. 1046 1047 write32be(Buf, 0xf8410028); // std %r2, 40(%r1) 1048 write32be(Buf + 4, 0x3d620000 | applyPPCHa(Off)); // addis %r11, %r2, X@ha 1049 write32be(Buf + 8, 0xe98b0000 | applyPPCLo(Off)); // ld %r12, X@l(%r11) 1050 write32be(Buf + 12, 0xe96c0000); // ld %r11,0(%r12) 1051 write32be(Buf + 16, 0x7d6903a6); // mtctr %r11 1052 write32be(Buf + 20, 0xe84c0008); // ld %r2,8(%r12) 1053 write32be(Buf + 24, 0xe96c0010); // ld %r11,16(%r12) 1054 write32be(Buf + 28, 0x4e800420); // bctr 1055 } 1056 1057 static std::pair<uint32_t, uint64_t> toAddr16Rel(uint32_t Type, uint64_t Val) { 1058 uint64_t V = Val - PPC64TocOffset; 1059 switch (Type) { 1060 case R_PPC64_TOC16: return {R_PPC64_ADDR16, V}; 1061 case R_PPC64_TOC16_DS: return {R_PPC64_ADDR16_DS, V}; 1062 case R_PPC64_TOC16_HA: return {R_PPC64_ADDR16_HA, V}; 1063 case R_PPC64_TOC16_HI: return {R_PPC64_ADDR16_HI, V}; 1064 case R_PPC64_TOC16_LO: return {R_PPC64_ADDR16_LO, V}; 1065 case R_PPC64_TOC16_LO_DS: return {R_PPC64_ADDR16_LO_DS, V}; 1066 default: return {Type, Val}; 1067 } 1068 } 1069 1070 void PPC64TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, 1071 uint64_t Val) const { 1072 // For a TOC-relative relocation, proceed in terms of the corresponding 1073 // ADDR16 relocation type. 1074 std::tie(Type, Val) = toAddr16Rel(Type, Val); 1075 1076 switch (Type) { 1077 case R_PPC64_ADDR14: { 1078 checkAlignment<4>(Val, Type); 1079 // Preserve the AA/LK bits in the branch instruction 1080 uint8_t AALK = Loc[3]; 1081 write16be(Loc + 2, (AALK & 3) | (Val & 0xfffc)); 1082 break; 1083 } 1084 case R_PPC64_ADDR16: 1085 checkInt<16>(Val, Type); 1086 write16be(Loc, Val); 1087 break; 1088 case R_PPC64_ADDR16_DS: 1089 checkInt<16>(Val, Type); 1090 write16be(Loc, (read16be(Loc) & 3) | (Val & ~3)); 1091 break; 1092 case R_PPC64_ADDR16_HA: 1093 case R_PPC64_REL16_HA: 1094 write16be(Loc, applyPPCHa(Val)); 1095 break; 1096 case R_PPC64_ADDR16_HI: 1097 case R_PPC64_REL16_HI: 1098 write16be(Loc, applyPPCHi(Val)); 1099 break; 1100 case R_PPC64_ADDR16_HIGHER: 1101 write16be(Loc, applyPPCHigher(Val)); 1102 break; 1103 case R_PPC64_ADDR16_HIGHERA: 1104 write16be(Loc, applyPPCHighera(Val)); 1105 break; 1106 case R_PPC64_ADDR16_HIGHEST: 1107 write16be(Loc, applyPPCHighest(Val)); 1108 break; 1109 case R_PPC64_ADDR16_HIGHESTA: 1110 write16be(Loc, applyPPCHighesta(Val)); 1111 break; 1112 case R_PPC64_ADDR16_LO: 1113 write16be(Loc, applyPPCLo(Val)); 1114 break; 1115 case R_PPC64_ADDR16_LO_DS: 1116 case R_PPC64_REL16_LO: 1117 write16be(Loc, (read16be(Loc) & 3) | (applyPPCLo(Val) & ~3)); 1118 break; 1119 case R_PPC64_ADDR32: 1120 case R_PPC64_REL32: 1121 checkInt<32>(Val, Type); 1122 write32be(Loc, Val); 1123 break; 1124 case R_PPC64_ADDR64: 1125 case R_PPC64_REL64: 1126 case R_PPC64_TOC: 1127 write64be(Loc, Val); 1128 break; 1129 case R_PPC64_REL24: { 1130 uint32_t Mask = 0x03FFFFFC; 1131 checkInt<24>(Val, Type); 1132 write32be(Loc, (read32be(Loc) & ~Mask) | (Val & Mask)); 1133 break; 1134 } 1135 default: 1136 fatal("unrecognized reloc " + Twine(Type)); 1137 } 1138 } 1139 1140 AArch64TargetInfo::AArch64TargetInfo() { 1141 CopyRel = R_AARCH64_COPY; 1142 RelativeRel = R_AARCH64_RELATIVE; 1143 IRelativeRel = R_AARCH64_IRELATIVE; 1144 GotRel = R_AARCH64_GLOB_DAT; 1145 PltRel = R_AARCH64_JUMP_SLOT; 1146 TlsDescRel = R_AARCH64_TLSDESC; 1147 TlsGotRel = R_AARCH64_TLS_TPREL64; 1148 GotEntrySize = 8; 1149 GotPltEntrySize = 8; 1150 PltEntrySize = 16; 1151 PltHeaderSize = 32; 1152 1153 // It doesn't seem to be documented anywhere, but tls on aarch64 uses variant 1154 // 1 of the tls structures and the tcb size is 16. 1155 TcbSize = 16; 1156 } 1157 1158 RelExpr AArch64TargetInfo::getRelExpr(uint32_t Type, 1159 const SymbolBody &S) const { 1160 switch (Type) { 1161 default: 1162 return R_ABS; 1163 case R_AARCH64_TLSDESC_ADR_PAGE21: 1164 return R_TLSDESC_PAGE; 1165 case R_AARCH64_TLSDESC_LD64_LO12_NC: 1166 case R_AARCH64_TLSDESC_ADD_LO12_NC: 1167 return R_TLSDESC; 1168 case R_AARCH64_TLSDESC_CALL: 1169 return R_HINT; 1170 case R_AARCH64_TLSLE_ADD_TPREL_HI12: 1171 case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: 1172 return R_TLS; 1173 case R_AARCH64_CALL26: 1174 case R_AARCH64_CONDBR19: 1175 case R_AARCH64_JUMP26: 1176 case R_AARCH64_TSTBR14: 1177 return R_PLT_PC; 1178 case R_AARCH64_PREL16: 1179 case R_AARCH64_PREL32: 1180 case R_AARCH64_PREL64: 1181 case R_AARCH64_ADR_PREL_LO21: 1182 return R_PC; 1183 case R_AARCH64_ADR_PREL_PG_HI21: 1184 return R_PAGE_PC; 1185 case R_AARCH64_LD64_GOT_LO12_NC: 1186 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: 1187 return R_GOT; 1188 case R_AARCH64_ADR_GOT_PAGE: 1189 case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: 1190 return R_GOT_PAGE_PC; 1191 } 1192 } 1193 1194 RelExpr AArch64TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data, 1195 RelExpr Expr) const { 1196 if (Expr == R_RELAX_TLS_GD_TO_IE) { 1197 if (Type == R_AARCH64_TLSDESC_ADR_PAGE21) 1198 return R_RELAX_TLS_GD_TO_IE_PAGE_PC; 1199 return R_RELAX_TLS_GD_TO_IE_ABS; 1200 } 1201 return Expr; 1202 } 1203 1204 bool AArch64TargetInfo::usesOnlyLowPageBits(uint32_t Type) const { 1205 switch (Type) { 1206 default: 1207 return false; 1208 case R_AARCH64_ADD_ABS_LO12_NC: 1209 case R_AARCH64_LD64_GOT_LO12_NC: 1210 case R_AARCH64_LDST128_ABS_LO12_NC: 1211 case R_AARCH64_LDST16_ABS_LO12_NC: 1212 case R_AARCH64_LDST32_ABS_LO12_NC: 1213 case R_AARCH64_LDST64_ABS_LO12_NC: 1214 case R_AARCH64_LDST8_ABS_LO12_NC: 1215 case R_AARCH64_TLSDESC_ADD_LO12_NC: 1216 case R_AARCH64_TLSDESC_LD64_LO12_NC: 1217 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: 1218 return true; 1219 } 1220 } 1221 1222 bool AArch64TargetInfo::isTlsInitialExecRel(uint32_t Type) const { 1223 return Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 || 1224 Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC; 1225 } 1226 1227 uint32_t AArch64TargetInfo::getDynRel(uint32_t Type) const { 1228 if (Type == R_AARCH64_ABS32 || Type == R_AARCH64_ABS64) 1229 return Type; 1230 // Keep it going with a dummy value so that we can find more reloc errors. 1231 errorDynRel(Type); 1232 return R_AARCH64_ABS32; 1233 } 1234 1235 void AArch64TargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &) const { 1236 write64le(Buf, Out<ELF64LE>::Plt->getVA()); 1237 } 1238 1239 static uint64_t getAArch64Page(uint64_t Expr) { 1240 return Expr & (~static_cast<uint64_t>(0xFFF)); 1241 } 1242 1243 void AArch64TargetInfo::writePltHeader(uint8_t *Buf) const { 1244 const uint8_t PltData[] = { 1245 0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]! 1246 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[2])) 1247 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.plt.got[2]))] 1248 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.plt.got[2])) 1249 0x20, 0x02, 0x1f, 0xd6, // br x17 1250 0x1f, 0x20, 0x03, 0xd5, // nop 1251 0x1f, 0x20, 0x03, 0xd5, // nop 1252 0x1f, 0x20, 0x03, 0xd5 // nop 1253 }; 1254 memcpy(Buf, PltData, sizeof(PltData)); 1255 1256 uint64_t Got = Out<ELF64LE>::GotPlt->getVA(); 1257 uint64_t Plt = Out<ELF64LE>::Plt->getVA(); 1258 relocateOne(Buf + 4, R_AARCH64_ADR_PREL_PG_HI21, 1259 getAArch64Page(Got + 16) - getAArch64Page(Plt + 4)); 1260 relocateOne(Buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, Got + 16); 1261 relocateOne(Buf + 12, R_AARCH64_ADD_ABS_LO12_NC, Got + 16); 1262 } 1263 1264 void AArch64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, 1265 uint64_t PltEntryAddr, int32_t Index, 1266 unsigned RelOff) const { 1267 const uint8_t Inst[] = { 1268 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[n])) 1269 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.plt.got[n]))] 1270 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.plt.got[n])) 1271 0x20, 0x02, 0x1f, 0xd6 // br x17 1272 }; 1273 memcpy(Buf, Inst, sizeof(Inst)); 1274 1275 relocateOne(Buf, R_AARCH64_ADR_PREL_PG_HI21, 1276 getAArch64Page(GotEntryAddr) - getAArch64Page(PltEntryAddr)); 1277 relocateOne(Buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, GotEntryAddr); 1278 relocateOne(Buf + 8, R_AARCH64_ADD_ABS_LO12_NC, GotEntryAddr); 1279 } 1280 1281 static void updateAArch64Addr(uint8_t *L, uint64_t Imm) { 1282 uint32_t ImmLo = (Imm & 0x3) << 29; 1283 uint32_t ImmHi = (Imm & 0x1FFFFC) << 3; 1284 uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3); 1285 write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi); 1286 } 1287 1288 static inline void updateAArch64Add(uint8_t *L, uint64_t Imm) { 1289 or32le(L, (Imm & 0xFFF) << 10); 1290 } 1291 1292 void AArch64TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, 1293 uint64_t Val) const { 1294 switch (Type) { 1295 case R_AARCH64_ABS16: 1296 case R_AARCH64_PREL16: 1297 checkIntUInt<16>(Val, Type); 1298 write16le(Loc, Val); 1299 break; 1300 case R_AARCH64_ABS32: 1301 case R_AARCH64_PREL32: 1302 checkIntUInt<32>(Val, Type); 1303 write32le(Loc, Val); 1304 break; 1305 case R_AARCH64_ABS64: 1306 case R_AARCH64_PREL64: 1307 write64le(Loc, Val); 1308 break; 1309 case R_AARCH64_ADD_ABS_LO12_NC: 1310 // This relocation stores 12 bits and there's no instruction 1311 // to do it. Instead, we do a 32 bits store of the value 1312 // of r_addend bitwise-or'ed Loc. This assumes that the addend 1313 // bits in Loc are zero. 1314 or32le(Loc, (Val & 0xFFF) << 10); 1315 break; 1316 case R_AARCH64_ADR_GOT_PAGE: 1317 case R_AARCH64_ADR_PREL_PG_HI21: 1318 case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: 1319 case R_AARCH64_TLSDESC_ADR_PAGE21: 1320 checkInt<33>(Val, Type); 1321 updateAArch64Addr(Loc, Val >> 12); 1322 break; 1323 case R_AARCH64_ADR_PREL_LO21: 1324 checkInt<21>(Val, Type); 1325 updateAArch64Addr(Loc, Val); 1326 break; 1327 case R_AARCH64_CALL26: 1328 case R_AARCH64_JUMP26: 1329 checkInt<28>(Val, Type); 1330 or32le(Loc, (Val & 0x0FFFFFFC) >> 2); 1331 break; 1332 case R_AARCH64_CONDBR19: 1333 checkInt<21>(Val, Type); 1334 or32le(Loc, (Val & 0x1FFFFC) << 3); 1335 break; 1336 case R_AARCH64_LD64_GOT_LO12_NC: 1337 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: 1338 case R_AARCH64_TLSDESC_LD64_LO12_NC: 1339 checkAlignment<8>(Val, Type); 1340 or32le(Loc, (Val & 0xFF8) << 7); 1341 break; 1342 case R_AARCH64_LDST128_ABS_LO12_NC: 1343 or32le(Loc, (Val & 0x0FF8) << 6); 1344 break; 1345 case R_AARCH64_LDST16_ABS_LO12_NC: 1346 or32le(Loc, (Val & 0x0FFC) << 9); 1347 break; 1348 case R_AARCH64_LDST8_ABS_LO12_NC: 1349 or32le(Loc, (Val & 0xFFF) << 10); 1350 break; 1351 case R_AARCH64_LDST32_ABS_LO12_NC: 1352 or32le(Loc, (Val & 0xFFC) << 8); 1353 break; 1354 case R_AARCH64_LDST64_ABS_LO12_NC: 1355 or32le(Loc, (Val & 0xFF8) << 7); 1356 break; 1357 case R_AARCH64_TSTBR14: 1358 checkInt<16>(Val, Type); 1359 or32le(Loc, (Val & 0xFFFC) << 3); 1360 break; 1361 case R_AARCH64_TLSLE_ADD_TPREL_HI12: 1362 checkInt<24>(Val, Type); 1363 updateAArch64Add(Loc, Val >> 12); 1364 break; 1365 case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: 1366 case R_AARCH64_TLSDESC_ADD_LO12_NC: 1367 updateAArch64Add(Loc, Val); 1368 break; 1369 default: 1370 fatal("unrecognized reloc " + Twine(Type)); 1371 } 1372 } 1373 1374 void AArch64TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, 1375 uint64_t Val) const { 1376 // TLSDESC Global-Dynamic relocation are in the form: 1377 // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21] 1378 // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12_NC] 1379 // add x0, x0, :tlsdesc_los:v [_AARCH64_TLSDESC_ADD_LO12_NC] 1380 // .tlsdesccall [R_AARCH64_TLSDESC_CALL] 1381 // blr x1 1382 // And it can optimized to: 1383 // movz x0, #0x0, lsl #16 1384 // movk x0, #0x10 1385 // nop 1386 // nop 1387 checkUInt<32>(Val, Type); 1388 1389 switch (Type) { 1390 case R_AARCH64_TLSDESC_ADD_LO12_NC: 1391 case R_AARCH64_TLSDESC_CALL: 1392 write32le(Loc, 0xd503201f); // nop 1393 return; 1394 case R_AARCH64_TLSDESC_ADR_PAGE21: 1395 write32le(Loc, 0xd2a00000 | (((Val >> 16) & 0xffff) << 5)); // movz 1396 return; 1397 case R_AARCH64_TLSDESC_LD64_LO12_NC: 1398 write32le(Loc, 0xf2800000 | ((Val & 0xffff) << 5)); // movk 1399 return; 1400 default: 1401 llvm_unreachable("unsupported relocation for TLS GD to LE relaxation"); 1402 } 1403 } 1404 1405 void AArch64TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, 1406 uint64_t Val) const { 1407 // TLSDESC Global-Dynamic relocation are in the form: 1408 // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21] 1409 // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12_NC] 1410 // add x0, x0, :tlsdesc_los:v [_AARCH64_TLSDESC_ADD_LO12_NC] 1411 // .tlsdesccall [R_AARCH64_TLSDESC_CALL] 1412 // blr x1 1413 // And it can optimized to: 1414 // adrp x0, :gottprel:v 1415 // ldr x0, [x0, :gottprel_lo12:v] 1416 // nop 1417 // nop 1418 1419 switch (Type) { 1420 case R_AARCH64_TLSDESC_ADD_LO12_NC: 1421 case R_AARCH64_TLSDESC_CALL: 1422 write32le(Loc, 0xd503201f); // nop 1423 break; 1424 case R_AARCH64_TLSDESC_ADR_PAGE21: 1425 write32le(Loc, 0x90000000); // adrp 1426 relocateOne(Loc, R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, Val); 1427 break; 1428 case R_AARCH64_TLSDESC_LD64_LO12_NC: 1429 write32le(Loc, 0xf9400000); // ldr 1430 relocateOne(Loc, R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, Val); 1431 break; 1432 default: 1433 llvm_unreachable("unsupported relocation for TLS GD to LE relaxation"); 1434 } 1435 } 1436 1437 void AArch64TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, 1438 uint64_t Val) const { 1439 checkUInt<32>(Val, Type); 1440 1441 if (Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) { 1442 // Generate MOVZ. 1443 uint32_t RegNo = read32le(Loc) & 0x1f; 1444 write32le(Loc, (0xd2a00000 | RegNo) | (((Val >> 16) & 0xffff) << 5)); 1445 return; 1446 } 1447 if (Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) { 1448 // Generate MOVK. 1449 uint32_t RegNo = read32le(Loc) & 0x1f; 1450 write32le(Loc, (0xf2800000 | RegNo) | ((Val & 0xffff) << 5)); 1451 return; 1452 } 1453 llvm_unreachable("invalid relocation for TLS IE to LE relaxation"); 1454 } 1455 1456 AMDGPUTargetInfo::AMDGPUTargetInfo() { 1457 GotRel = R_AMDGPU_ABS64; 1458 GotEntrySize = 8; 1459 } 1460 1461 void AMDGPUTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, 1462 uint64_t Val) const { 1463 switch (Type) { 1464 case R_AMDGPU_ABS32: 1465 case R_AMDGPU_GOTPCREL: 1466 case R_AMDGPU_REL32: 1467 write32le(Loc, Val); 1468 break; 1469 default: 1470 fatal("unrecognized reloc " + Twine(Type)); 1471 } 1472 } 1473 1474 RelExpr AMDGPUTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const { 1475 switch (Type) { 1476 case R_AMDGPU_ABS32: 1477 return R_ABS; 1478 case R_AMDGPU_REL32: 1479 return R_PC; 1480 case R_AMDGPU_GOTPCREL: 1481 return R_GOT_PC; 1482 default: 1483 fatal("do not know how to handle relocation " + Twine(Type)); 1484 } 1485 } 1486 1487 ARMTargetInfo::ARMTargetInfo() { 1488 CopyRel = R_ARM_COPY; 1489 RelativeRel = R_ARM_RELATIVE; 1490 IRelativeRel = R_ARM_IRELATIVE; 1491 GotRel = R_ARM_GLOB_DAT; 1492 PltRel = R_ARM_JUMP_SLOT; 1493 TlsGotRel = R_ARM_TLS_TPOFF32; 1494 TlsModuleIndexRel = R_ARM_TLS_DTPMOD32; 1495 TlsOffsetRel = R_ARM_TLS_DTPOFF32; 1496 GotEntrySize = 4; 1497 GotPltEntrySize = 4; 1498 PltEntrySize = 16; 1499 PltHeaderSize = 20; 1500 // ARM uses Variant 1 TLS 1501 TcbSize = 8; 1502 NeedsThunks = true; 1503 } 1504 1505 RelExpr ARMTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const { 1506 switch (Type) { 1507 default: 1508 return R_ABS; 1509 case R_ARM_THM_JUMP11: 1510 return R_PC; 1511 case R_ARM_CALL: 1512 case R_ARM_JUMP24: 1513 case R_ARM_PC24: 1514 case R_ARM_PLT32: 1515 case R_ARM_THM_JUMP19: 1516 case R_ARM_THM_JUMP24: 1517 case R_ARM_THM_CALL: 1518 return R_PLT_PC; 1519 case R_ARM_GOTOFF32: 1520 // (S + A) - GOT_ORG 1521 return R_GOTREL; 1522 case R_ARM_GOT_BREL: 1523 // GOT(S) + A - GOT_ORG 1524 return R_GOT_OFF; 1525 case R_ARM_GOT_PREL: 1526 case R_ARM_TLS_IE32: 1527 // GOT(S) + A - P 1528 return R_GOT_PC; 1529 case R_ARM_TLS_GD32: 1530 return R_TLSGD_PC; 1531 case R_ARM_TLS_LDM32: 1532 return R_TLSLD_PC; 1533 case R_ARM_BASE_PREL: 1534 // B(S) + A - P 1535 // FIXME: currently B(S) assumed to be .got, this may not hold for all 1536 // platforms. 1537 return R_GOTONLY_PC; 1538 case R_ARM_MOVW_PREL_NC: 1539 case R_ARM_MOVT_PREL: 1540 case R_ARM_PREL31: 1541 case R_ARM_REL32: 1542 case R_ARM_THM_MOVW_PREL_NC: 1543 case R_ARM_THM_MOVT_PREL: 1544 return R_PC; 1545 case R_ARM_TLS_LE32: 1546 return R_TLS; 1547 } 1548 } 1549 1550 uint32_t ARMTargetInfo::getDynRel(uint32_t Type) const { 1551 if (Type == R_ARM_ABS32) 1552 return Type; 1553 // Keep it going with a dummy value so that we can find more reloc errors. 1554 errorDynRel(Type); 1555 return R_ARM_ABS32; 1556 } 1557 1558 void ARMTargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &) const { 1559 write32le(Buf, Out<ELF32LE>::Plt->getVA()); 1560 } 1561 1562 void ARMTargetInfo::writePltHeader(uint8_t *Buf) const { 1563 const uint8_t PltData[] = { 1564 0x04, 0xe0, 0x2d, 0xe5, // str lr, [sp,#-4]! 1565 0x04, 0xe0, 0x9f, 0xe5, // ldr lr, L2 1566 0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr 1567 0x08, 0xf0, 0xbe, 0xe5, // ldr pc, [lr, #8] 1568 0x00, 0x00, 0x00, 0x00, // L2: .word &(.got.plt) - L1 - 8 1569 }; 1570 memcpy(Buf, PltData, sizeof(PltData)); 1571 uint64_t GotPlt = Out<ELF32LE>::GotPlt->getVA(); 1572 uint64_t L1 = Out<ELF32LE>::Plt->getVA() + 8; 1573 write32le(Buf + 16, GotPlt - L1 - 8); 1574 } 1575 1576 void ARMTargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, 1577 uint64_t PltEntryAddr, int32_t Index, 1578 unsigned RelOff) const { 1579 // FIXME: Using simple code sequence with simple relocations. 1580 // There is a more optimal sequence but it requires support for the group 1581 // relocations. See ELF for the ARM Architecture Appendix A.3 1582 const uint8_t PltData[] = { 1583 0x04, 0xc0, 0x9f, 0xe5, // ldr ip, L2 1584 0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc 1585 0x00, 0xf0, 0x9c, 0xe5, // ldr pc, [ip] 1586 0x00, 0x00, 0x00, 0x00, // L2: .word Offset(&(.plt.got) - L1 - 8 1587 }; 1588 memcpy(Buf, PltData, sizeof(PltData)); 1589 uint64_t L1 = PltEntryAddr + 4; 1590 write32le(Buf + 12, GotEntryAddr - L1 - 8); 1591 } 1592 1593 RelExpr ARMTargetInfo::getThunkExpr(RelExpr Expr, uint32_t RelocType, 1594 const InputFile &File, 1595 const SymbolBody &S) const { 1596 // A state change from ARM to Thumb and vice versa must go through an 1597 // interworking thunk if the relocation type is not R_ARM_CALL or 1598 // R_ARM_THM_CALL. 1599 switch (RelocType) { 1600 case R_ARM_PC24: 1601 case R_ARM_PLT32: 1602 case R_ARM_JUMP24: 1603 // Source is ARM, all PLT entries are ARM so no interworking required. 1604 // Otherwise we need to interwork if Symbol has bit 0 set (Thumb). 1605 if (Expr == R_PC && ((S.getVA<ELF32LE>() & 1) == 1)) 1606 return R_THUNK_PC; 1607 break; 1608 case R_ARM_THM_JUMP19: 1609 case R_ARM_THM_JUMP24: 1610 // Source is Thumb, all PLT entries are ARM so interworking is required. 1611 // Otherwise we need to interwork if Symbol has bit 0 clear (ARM). 1612 if (Expr == R_PLT_PC) 1613 return R_THUNK_PLT_PC; 1614 if ((S.getVA<ELF32LE>() & 1) == 0) 1615 return R_THUNK_PC; 1616 break; 1617 } 1618 return Expr; 1619 } 1620 1621 void ARMTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, 1622 uint64_t Val) const { 1623 switch (Type) { 1624 case R_ARM_NONE: 1625 break; 1626 case R_ARM_ABS32: 1627 case R_ARM_BASE_PREL: 1628 case R_ARM_GOTOFF32: 1629 case R_ARM_GOT_BREL: 1630 case R_ARM_GOT_PREL: 1631 case R_ARM_REL32: 1632 case R_ARM_TLS_GD32: 1633 case R_ARM_TLS_IE32: 1634 case R_ARM_TLS_LDM32: 1635 case R_ARM_TLS_LDO32: 1636 case R_ARM_TLS_LE32: 1637 write32le(Loc, Val); 1638 break; 1639 case R_ARM_PREL31: 1640 checkInt<31>(Val, Type); 1641 write32le(Loc, (read32le(Loc) & 0x80000000) | (Val & ~0x80000000)); 1642 break; 1643 case R_ARM_CALL: 1644 // R_ARM_CALL is used for BL and BLX instructions, depending on the 1645 // value of bit 0 of Val, we must select a BL or BLX instruction 1646 if (Val & 1) { 1647 // If bit 0 of Val is 1 the target is Thumb, we must select a BLX. 1648 // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1' 1649 checkInt<26>(Val, Type); 1650 write32le(Loc, 0xfa000000 | // opcode 1651 ((Val & 2) << 23) | // H 1652 ((Val >> 2) & 0x00ffffff)); // imm24 1653 break; 1654 } 1655 if ((read32le(Loc) & 0xfe000000) == 0xfa000000) 1656 // BLX (always unconditional) instruction to an ARM Target, select an 1657 // unconditional BL. 1658 write32le(Loc, 0xeb000000 | (read32le(Loc) & 0x00ffffff)); 1659 // fall through as BL encoding is shared with B 1660 case R_ARM_JUMP24: 1661 case R_ARM_PC24: 1662 case R_ARM_PLT32: 1663 checkInt<26>(Val, Type); 1664 write32le(Loc, (read32le(Loc) & ~0x00ffffff) | ((Val >> 2) & 0x00ffffff)); 1665 break; 1666 case R_ARM_THM_JUMP11: 1667 checkInt<12>(Val, Type); 1668 write16le(Loc, (read32le(Loc) & 0xf800) | ((Val >> 1) & 0x07ff)); 1669 break; 1670 case R_ARM_THM_JUMP19: 1671 // Encoding T3: Val = S:J2:J1:imm6:imm11:0 1672 checkInt<21>(Val, Type); 1673 write16le(Loc, 1674 (read16le(Loc) & 0xfbc0) | // opcode cond 1675 ((Val >> 10) & 0x0400) | // S 1676 ((Val >> 12) & 0x003f)); // imm6 1677 write16le(Loc + 2, 1678 0x8000 | // opcode 1679 ((Val >> 8) & 0x0800) | // J2 1680 ((Val >> 5) & 0x2000) | // J1 1681 ((Val >> 1) & 0x07ff)); // imm11 1682 break; 1683 case R_ARM_THM_CALL: 1684 // R_ARM_THM_CALL is used for BL and BLX instructions, depending on the 1685 // value of bit 0 of Val, we must select a BL or BLX instruction 1686 if ((Val & 1) == 0) { 1687 // Ensure BLX destination is 4-byte aligned. As BLX instruction may 1688 // only be two byte aligned. This must be done before overflow check 1689 Val = alignTo(Val, 4); 1690 } 1691 // Bit 12 is 0 for BLX, 1 for BL 1692 write16le(Loc + 2, (read16le(Loc + 2) & ~0x1000) | (Val & 1) << 12); 1693 // Fall through as rest of encoding is the same as B.W 1694 case R_ARM_THM_JUMP24: 1695 // Encoding B T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0 1696 // FIXME: Use of I1 and I2 require v6T2ops 1697 checkInt<25>(Val, Type); 1698 write16le(Loc, 1699 0xf000 | // opcode 1700 ((Val >> 14) & 0x0400) | // S 1701 ((Val >> 12) & 0x03ff)); // imm10 1702 write16le(Loc + 2, 1703 (read16le(Loc + 2) & 0xd000) | // opcode 1704 (((~(Val >> 10)) ^ (Val >> 11)) & 0x2000) | // J1 1705 (((~(Val >> 11)) ^ (Val >> 13)) & 0x0800) | // J2 1706 ((Val >> 1) & 0x07ff)); // imm11 1707 break; 1708 case R_ARM_MOVW_ABS_NC: 1709 case R_ARM_MOVW_PREL_NC: 1710 write32le(Loc, (read32le(Loc) & ~0x000f0fff) | ((Val & 0xf000) << 4) | 1711 (Val & 0x0fff)); 1712 break; 1713 case R_ARM_MOVT_ABS: 1714 case R_ARM_MOVT_PREL: 1715 checkInt<32>(Val, Type); 1716 write32le(Loc, (read32le(Loc) & ~0x000f0fff) | 1717 (((Val >> 16) & 0xf000) << 4) | ((Val >> 16) & 0xfff)); 1718 break; 1719 case R_ARM_THM_MOVT_ABS: 1720 case R_ARM_THM_MOVT_PREL: 1721 // Encoding T1: A = imm4:i:imm3:imm8 1722 checkInt<32>(Val, Type); 1723 write16le(Loc, 1724 0xf2c0 | // opcode 1725 ((Val >> 17) & 0x0400) | // i 1726 ((Val >> 28) & 0x000f)); // imm4 1727 write16le(Loc + 2, 1728 (read16le(Loc + 2) & 0x8f00) | // opcode 1729 ((Val >> 12) & 0x7000) | // imm3 1730 ((Val >> 16) & 0x00ff)); // imm8 1731 break; 1732 case R_ARM_THM_MOVW_ABS_NC: 1733 case R_ARM_THM_MOVW_PREL_NC: 1734 // Encoding T3: A = imm4:i:imm3:imm8 1735 write16le(Loc, 1736 0xf240 | // opcode 1737 ((Val >> 1) & 0x0400) | // i 1738 ((Val >> 12) & 0x000f)); // imm4 1739 write16le(Loc + 2, 1740 (read16le(Loc + 2) & 0x8f00) | // opcode 1741 ((Val << 4) & 0x7000) | // imm3 1742 (Val & 0x00ff)); // imm8 1743 break; 1744 default: 1745 fatal("unrecognized reloc " + Twine(Type)); 1746 } 1747 } 1748 1749 uint64_t ARMTargetInfo::getImplicitAddend(const uint8_t *Buf, 1750 uint32_t Type) const { 1751 switch (Type) { 1752 default: 1753 return 0; 1754 case R_ARM_ABS32: 1755 case R_ARM_BASE_PREL: 1756 case R_ARM_GOTOFF32: 1757 case R_ARM_GOT_BREL: 1758 case R_ARM_GOT_PREL: 1759 case R_ARM_REL32: 1760 case R_ARM_TLS_GD32: 1761 case R_ARM_TLS_LDM32: 1762 case R_ARM_TLS_LDO32: 1763 case R_ARM_TLS_IE32: 1764 case R_ARM_TLS_LE32: 1765 return SignExtend64<32>(read32le(Buf)); 1766 case R_ARM_PREL31: 1767 return SignExtend64<31>(read32le(Buf)); 1768 case R_ARM_CALL: 1769 case R_ARM_JUMP24: 1770 case R_ARM_PC24: 1771 case R_ARM_PLT32: 1772 return SignExtend64<26>(read32le(Buf) << 2); 1773 case R_ARM_THM_JUMP11: 1774 return SignExtend64<12>(read16le(Buf) << 1); 1775 case R_ARM_THM_JUMP19: { 1776 // Encoding T3: A = S:J2:J1:imm10:imm6:0 1777 uint16_t Hi = read16le(Buf); 1778 uint16_t Lo = read16le(Buf + 2); 1779 return SignExtend64<20>(((Hi & 0x0400) << 10) | // S 1780 ((Lo & 0x0800) << 8) | // J2 1781 ((Lo & 0x2000) << 5) | // J1 1782 ((Hi & 0x003f) << 12) | // imm6 1783 ((Lo & 0x07ff) << 1)); // imm11:0 1784 } 1785 case R_ARM_THM_CALL: 1786 case R_ARM_THM_JUMP24: { 1787 // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0 1788 // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S) 1789 // FIXME: I1 and I2 require v6T2ops 1790 uint16_t Hi = read16le(Buf); 1791 uint16_t Lo = read16le(Buf + 2); 1792 return SignExtend64<24>(((Hi & 0x0400) << 14) | // S 1793 (~((Lo ^ (Hi << 3)) << 10) & 0x00800000) | // I1 1794 (~((Lo ^ (Hi << 1)) << 11) & 0x00400000) | // I2 1795 ((Hi & 0x003ff) << 12) | // imm0 1796 ((Lo & 0x007ff) << 1)); // imm11:0 1797 } 1798 // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and 1799 // MOVT is in the range -32768 <= A < 32768 1800 case R_ARM_MOVW_ABS_NC: 1801 case R_ARM_MOVT_ABS: 1802 case R_ARM_MOVW_PREL_NC: 1803 case R_ARM_MOVT_PREL: { 1804 uint64_t Val = read32le(Buf) & 0x000f0fff; 1805 return SignExtend64<16>(((Val & 0x000f0000) >> 4) | (Val & 0x00fff)); 1806 } 1807 case R_ARM_THM_MOVW_ABS_NC: 1808 case R_ARM_THM_MOVT_ABS: 1809 case R_ARM_THM_MOVW_PREL_NC: 1810 case R_ARM_THM_MOVT_PREL: { 1811 // Encoding T3: A = imm4:i:imm3:imm8 1812 uint16_t Hi = read16le(Buf); 1813 uint16_t Lo = read16le(Buf + 2); 1814 return SignExtend64<16>(((Hi & 0x000f) << 12) | // imm4 1815 ((Hi & 0x0400) << 1) | // i 1816 ((Lo & 0x7000) >> 4) | // imm3 1817 (Lo & 0x00ff)); // imm8 1818 } 1819 } 1820 } 1821 1822 bool ARMTargetInfo::isTlsLocalDynamicRel(uint32_t Type) const { 1823 return Type == R_ARM_TLS_LDO32 || Type == R_ARM_TLS_LDM32; 1824 } 1825 1826 bool ARMTargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const { 1827 return Type == R_ARM_TLS_GD32; 1828 } 1829 1830 bool ARMTargetInfo::isTlsInitialExecRel(uint32_t Type) const { 1831 return Type == R_ARM_TLS_IE32; 1832 } 1833 1834 template <class ELFT> MipsTargetInfo<ELFT>::MipsTargetInfo() { 1835 GotPltHeaderEntriesNum = 2; 1836 PageSize = 65536; 1837 GotEntrySize = sizeof(typename ELFT::uint); 1838 GotPltEntrySize = sizeof(typename ELFT::uint); 1839 PltEntrySize = 16; 1840 PltHeaderSize = 32; 1841 CopyRel = R_MIPS_COPY; 1842 PltRel = R_MIPS_JUMP_SLOT; 1843 NeedsThunks = true; 1844 if (ELFT::Is64Bits) { 1845 RelativeRel = (R_MIPS_64 << 8) | R_MIPS_REL32; 1846 TlsGotRel = R_MIPS_TLS_TPREL64; 1847 TlsModuleIndexRel = R_MIPS_TLS_DTPMOD64; 1848 TlsOffsetRel = R_MIPS_TLS_DTPREL64; 1849 } else { 1850 RelativeRel = R_MIPS_REL32; 1851 TlsGotRel = R_MIPS_TLS_TPREL32; 1852 TlsModuleIndexRel = R_MIPS_TLS_DTPMOD32; 1853 TlsOffsetRel = R_MIPS_TLS_DTPREL32; 1854 } 1855 } 1856 1857 template <class ELFT> 1858 RelExpr MipsTargetInfo<ELFT>::getRelExpr(uint32_t Type, 1859 const SymbolBody &S) const { 1860 if (ELFT::Is64Bits) 1861 // See comment in the calculateMips64RelChain. 1862 Type &= 0xff; 1863 switch (Type) { 1864 default: 1865 return R_ABS; 1866 case R_MIPS_JALR: 1867 return R_HINT; 1868 case R_MIPS_GPREL16: 1869 case R_MIPS_GPREL32: 1870 return R_GOTREL; 1871 case R_MIPS_26: 1872 return R_PLT; 1873 case R_MIPS_HI16: 1874 case R_MIPS_LO16: 1875 case R_MIPS_GOT_OFST: 1876 // MIPS _gp_disp designates offset between start of function and 'gp' 1877 // pointer into GOT. __gnu_local_gp is equal to the current value of 1878 // the 'gp'. Therefore any relocations against them do not require 1879 // dynamic relocation. 1880 if (&S == ElfSym<ELFT>::MipsGpDisp) 1881 return R_PC; 1882 return R_ABS; 1883 case R_MIPS_PC32: 1884 case R_MIPS_PC16: 1885 case R_MIPS_PC19_S2: 1886 case R_MIPS_PC21_S2: 1887 case R_MIPS_PC26_S2: 1888 case R_MIPS_PCHI16: 1889 case R_MIPS_PCLO16: 1890 return R_PC; 1891 case R_MIPS_GOT16: 1892 if (S.isLocal()) 1893 return R_MIPS_GOT_LOCAL_PAGE; 1894 // fallthrough 1895 case R_MIPS_CALL16: 1896 case R_MIPS_GOT_DISP: 1897 case R_MIPS_TLS_GOTTPREL: 1898 return R_MIPS_GOT_OFF; 1899 case R_MIPS_GOT_PAGE: 1900 return R_MIPS_GOT_LOCAL_PAGE; 1901 case R_MIPS_TLS_GD: 1902 return R_MIPS_TLSGD; 1903 case R_MIPS_TLS_LDM: 1904 return R_MIPS_TLSLD; 1905 } 1906 } 1907 1908 template <class ELFT> 1909 uint32_t MipsTargetInfo<ELFT>::getDynRel(uint32_t Type) const { 1910 if (Type == R_MIPS_32 || Type == R_MIPS_64) 1911 return RelativeRel; 1912 // Keep it going with a dummy value so that we can find more reloc errors. 1913 errorDynRel(Type); 1914 return R_MIPS_32; 1915 } 1916 1917 template <class ELFT> 1918 bool MipsTargetInfo<ELFT>::isTlsLocalDynamicRel(uint32_t Type) const { 1919 return Type == R_MIPS_TLS_LDM; 1920 } 1921 1922 template <class ELFT> 1923 bool MipsTargetInfo<ELFT>::isTlsGlobalDynamicRel(uint32_t Type) const { 1924 return Type == R_MIPS_TLS_GD; 1925 } 1926 1927 template <class ELFT> 1928 void MipsTargetInfo<ELFT>::writeGotPlt(uint8_t *Buf, const SymbolBody &) const { 1929 write32<ELFT::TargetEndianness>(Buf, Out<ELFT>::Plt->getVA()); 1930 } 1931 1932 static uint16_t mipsHigh(uint64_t V) { return (V + 0x8000) >> 16; } 1933 1934 template <endianness E, uint8_t BSIZE, uint8_t SHIFT> 1935 static int64_t getPcRelocAddend(const uint8_t *Loc) { 1936 uint32_t Instr = read32<E>(Loc); 1937 uint32_t Mask = 0xffffffff >> (32 - BSIZE); 1938 return SignExtend64<BSIZE + SHIFT>((Instr & Mask) << SHIFT); 1939 } 1940 1941 template <endianness E, uint8_t BSIZE, uint8_t SHIFT> 1942 static void applyMipsPcReloc(uint8_t *Loc, uint32_t Type, uint64_t V) { 1943 uint32_t Mask = 0xffffffff >> (32 - BSIZE); 1944 uint32_t Instr = read32<E>(Loc); 1945 if (SHIFT > 0) 1946 checkAlignment<(1 << SHIFT)>(V, Type); 1947 checkInt<BSIZE + SHIFT>(V, Type); 1948 write32<E>(Loc, (Instr & ~Mask) | ((V >> SHIFT) & Mask)); 1949 } 1950 1951 template <endianness E> 1952 static void writeMipsHi16(uint8_t *Loc, uint64_t V) { 1953 uint32_t Instr = read32<E>(Loc); 1954 write32<E>(Loc, (Instr & 0xffff0000) | mipsHigh(V)); 1955 } 1956 1957 template <endianness E> 1958 static void writeMipsLo16(uint8_t *Loc, uint64_t V) { 1959 uint32_t Instr = read32<E>(Loc); 1960 write32<E>(Loc, (Instr & 0xffff0000) | (V & 0xffff)); 1961 } 1962 1963 template <class ELFT> static bool isMipsR6() { 1964 const auto &FirstObj = cast<ELFFileBase<ELFT>>(*Config->FirstElf); 1965 uint32_t Arch = FirstObj.getObj().getHeader()->e_flags & EF_MIPS_ARCH; 1966 return Arch == EF_MIPS_ARCH_32R6 || Arch == EF_MIPS_ARCH_64R6; 1967 } 1968 1969 template <class ELFT> 1970 void MipsTargetInfo<ELFT>::writePltHeader(uint8_t *Buf) const { 1971 const endianness E = ELFT::TargetEndianness; 1972 write32<E>(Buf, 0x3c1c0000); // lui $28, %hi(&GOTPLT[0]) 1973 write32<E>(Buf + 4, 0x8f990000); // lw $25, %lo(&GOTPLT[0])($28) 1974 write32<E>(Buf + 8, 0x279c0000); // addiu $28, $28, %lo(&GOTPLT[0]) 1975 write32<E>(Buf + 12, 0x031cc023); // subu $24, $24, $28 1976 write32<E>(Buf + 16, 0x03e07825); // move $15, $31 1977 write32<E>(Buf + 20, 0x0018c082); // srl $24, $24, 2 1978 write32<E>(Buf + 24, 0x0320f809); // jalr $25 1979 write32<E>(Buf + 28, 0x2718fffe); // subu $24, $24, 2 1980 uint64_t Got = Out<ELFT>::GotPlt->getVA(); 1981 writeMipsHi16<E>(Buf, Got); 1982 writeMipsLo16<E>(Buf + 4, Got); 1983 writeMipsLo16<E>(Buf + 8, Got); 1984 } 1985 1986 template <class ELFT> 1987 void MipsTargetInfo<ELFT>::writePlt(uint8_t *Buf, uint64_t GotEntryAddr, 1988 uint64_t PltEntryAddr, int32_t Index, 1989 unsigned RelOff) const { 1990 const endianness E = ELFT::TargetEndianness; 1991 write32<E>(Buf, 0x3c0f0000); // lui $15, %hi(.got.plt entry) 1992 write32<E>(Buf + 4, 0x8df90000); // l[wd] $25, %lo(.got.plt entry)($15) 1993 // jr $25 1994 write32<E>(Buf + 8, isMipsR6<ELFT>() ? 0x03200009 : 0x03200008); 1995 write32<E>(Buf + 12, 0x25f80000); // addiu $24, $15, %lo(.got.plt entry) 1996 writeMipsHi16<E>(Buf, GotEntryAddr); 1997 writeMipsLo16<E>(Buf + 4, GotEntryAddr); 1998 writeMipsLo16<E>(Buf + 12, GotEntryAddr); 1999 } 2000 2001 template <class ELFT> 2002 RelExpr MipsTargetInfo<ELFT>::getThunkExpr(RelExpr Expr, uint32_t Type, 2003 const InputFile &File, 2004 const SymbolBody &S) const { 2005 // Any MIPS PIC code function is invoked with its address in register $t9. 2006 // So if we have a branch instruction from non-PIC code to the PIC one 2007 // we cannot make the jump directly and need to create a small stubs 2008 // to save the target function address. 2009 // See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 2010 if (Type != R_MIPS_26) 2011 return Expr; 2012 auto *F = dyn_cast<ELFFileBase<ELFT>>(&File); 2013 if (!F) 2014 return Expr; 2015 // If current file has PIC code, LA25 stub is not required. 2016 if (F->getObj().getHeader()->e_flags & EF_MIPS_PIC) 2017 return Expr; 2018 auto *D = dyn_cast<DefinedRegular<ELFT>>(&S); 2019 if (!D || !D->Section) 2020 return Expr; 2021 // LA25 is required if target file has PIC code 2022 // or target symbol is a PIC symbol. 2023 const ELFFile<ELFT> &DefFile = D->Section->getFile()->getObj(); 2024 bool PicFile = DefFile.getHeader()->e_flags & EF_MIPS_PIC; 2025 bool PicSym = (D->StOther & STO_MIPS_MIPS16) == STO_MIPS_PIC; 2026 return (PicFile || PicSym) ? R_THUNK_ABS : Expr; 2027 } 2028 2029 template <class ELFT> 2030 uint64_t MipsTargetInfo<ELFT>::getImplicitAddend(const uint8_t *Buf, 2031 uint32_t Type) const { 2032 const endianness E = ELFT::TargetEndianness; 2033 switch (Type) { 2034 default: 2035 return 0; 2036 case R_MIPS_32: 2037 case R_MIPS_GPREL32: 2038 return read32<E>(Buf); 2039 case R_MIPS_26: 2040 // FIXME (simon): If the relocation target symbol is not a PLT entry 2041 // we should use another expression for calculation: 2042 // ((A << 2) | (P & 0xf0000000)) >> 2 2043 return SignExtend64<28>((read32<E>(Buf) & 0x3ffffff) << 2); 2044 case R_MIPS_GPREL16: 2045 case R_MIPS_LO16: 2046 case R_MIPS_PCLO16: 2047 case R_MIPS_TLS_DTPREL_HI16: 2048 case R_MIPS_TLS_DTPREL_LO16: 2049 case R_MIPS_TLS_TPREL_HI16: 2050 case R_MIPS_TLS_TPREL_LO16: 2051 return SignExtend64<16>(read32<E>(Buf)); 2052 case R_MIPS_PC16: 2053 return getPcRelocAddend<E, 16, 2>(Buf); 2054 case R_MIPS_PC19_S2: 2055 return getPcRelocAddend<E, 19, 2>(Buf); 2056 case R_MIPS_PC21_S2: 2057 return getPcRelocAddend<E, 21, 2>(Buf); 2058 case R_MIPS_PC26_S2: 2059 return getPcRelocAddend<E, 26, 2>(Buf); 2060 case R_MIPS_PC32: 2061 return getPcRelocAddend<E, 32, 0>(Buf); 2062 } 2063 } 2064 2065 static std::pair<uint32_t, uint64_t> calculateMips64RelChain(uint32_t Type, 2066 uint64_t Val) { 2067 // MIPS N64 ABI packs multiple relocations into the single relocation 2068 // record. In general, all up to three relocations can have arbitrary 2069 // types. In fact, Clang and GCC uses only a few combinations. For now, 2070 // we support two of them. That is allow to pass at least all LLVM 2071 // test suite cases. 2072 // <any relocation> / R_MIPS_SUB / R_MIPS_HI16 | R_MIPS_LO16 2073 // <any relocation> / R_MIPS_64 / R_MIPS_NONE 2074 // The first relocation is a 'real' relocation which is calculated 2075 // using the corresponding symbol's value. The second and the third 2076 // relocations used to modify result of the first one: extend it to 2077 // 64-bit, extract high or low part etc. For details, see part 2.9 Relocation 2078 // at the https://dmz-portal.mips.com/mw/images/8/82/007-4658-001.pdf 2079 uint32_t Type2 = (Type >> 8) & 0xff; 2080 uint32_t Type3 = (Type >> 16) & 0xff; 2081 if (Type2 == R_MIPS_NONE && Type3 == R_MIPS_NONE) 2082 return std::make_pair(Type, Val); 2083 if (Type2 == R_MIPS_64 && Type3 == R_MIPS_NONE) 2084 return std::make_pair(Type2, Val); 2085 if (Type2 == R_MIPS_SUB && (Type3 == R_MIPS_HI16 || Type3 == R_MIPS_LO16)) 2086 return std::make_pair(Type3, -Val); 2087 error("unsupported relocations combination " + Twine(Type)); 2088 return std::make_pair(Type & 0xff, Val); 2089 } 2090 2091 template <class ELFT> 2092 void MipsTargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint32_t Type, 2093 uint64_t Val) const { 2094 const endianness E = ELFT::TargetEndianness; 2095 // Thread pointer and DRP offsets from the start of TLS data area. 2096 // https://www.linux-mips.org/wiki/NPTL 2097 if (Type == R_MIPS_TLS_DTPREL_HI16 || Type == R_MIPS_TLS_DTPREL_LO16) 2098 Val -= 0x8000; 2099 else if (Type == R_MIPS_TLS_TPREL_HI16 || Type == R_MIPS_TLS_TPREL_LO16) 2100 Val -= 0x7000; 2101 if (ELFT::Is64Bits) 2102 std::tie(Type, Val) = calculateMips64RelChain(Type, Val); 2103 switch (Type) { 2104 case R_MIPS_32: 2105 case R_MIPS_GPREL32: 2106 write32<E>(Loc, Val); 2107 break; 2108 case R_MIPS_64: 2109 write64<E>(Loc, Val); 2110 break; 2111 case R_MIPS_26: 2112 write32<E>(Loc, (read32<E>(Loc) & ~0x3ffffff) | ((Val >> 2) & 0x3ffffff)); 2113 break; 2114 case R_MIPS_GOT_DISP: 2115 case R_MIPS_GOT_PAGE: 2116 case R_MIPS_GOT16: 2117 case R_MIPS_GPREL16: 2118 case R_MIPS_TLS_GD: 2119 case R_MIPS_TLS_LDM: 2120 checkInt<16>(Val, Type); 2121 // fallthrough 2122 case R_MIPS_CALL16: 2123 case R_MIPS_GOT_OFST: 2124 case R_MIPS_LO16: 2125 case R_MIPS_PCLO16: 2126 case R_MIPS_TLS_DTPREL_LO16: 2127 case R_MIPS_TLS_GOTTPREL: 2128 case R_MIPS_TLS_TPREL_LO16: 2129 writeMipsLo16<E>(Loc, Val); 2130 break; 2131 case R_MIPS_HI16: 2132 case R_MIPS_PCHI16: 2133 case R_MIPS_TLS_DTPREL_HI16: 2134 case R_MIPS_TLS_TPREL_HI16: 2135 writeMipsHi16<E>(Loc, Val); 2136 break; 2137 case R_MIPS_JALR: 2138 // Ignore this optimization relocation for now 2139 break; 2140 case R_MIPS_PC16: 2141 applyMipsPcReloc<E, 16, 2>(Loc, Type, Val); 2142 break; 2143 case R_MIPS_PC19_S2: 2144 applyMipsPcReloc<E, 19, 2>(Loc, Type, Val); 2145 break; 2146 case R_MIPS_PC21_S2: 2147 applyMipsPcReloc<E, 21, 2>(Loc, Type, Val); 2148 break; 2149 case R_MIPS_PC26_S2: 2150 applyMipsPcReloc<E, 26, 2>(Loc, Type, Val); 2151 break; 2152 case R_MIPS_PC32: 2153 applyMipsPcReloc<E, 32, 0>(Loc, Type, Val); 2154 break; 2155 default: 2156 fatal("unrecognized reloc " + Twine(Type)); 2157 } 2158 } 2159 2160 template <class ELFT> 2161 bool MipsTargetInfo<ELFT>::usesOnlyLowPageBits(uint32_t Type) const { 2162 return Type == R_MIPS_LO16 || Type == R_MIPS_GOT_OFST; 2163 } 2164 } 2165 } 2166