xref: /llvm-project-15.0.7/lld/ELF/Target.cpp (revision 286adee5)
1 //===- Target.cpp ---------------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Machine-specific things, such as applying relocations, creation of
11 // GOT or PLT entries, etc., are handled in this file.
12 //
13 // Refer the ELF spec for the single letter variables, S, A or P, used
14 // in this file.
15 //
16 // Some functions defined in this file has "relaxTls" as part of their names.
17 // They do peephole optimization for TLS variables by rewriting instructions.
18 // They are not part of the ABI but optional optimization, so you can skip
19 // them if you are not interested in how TLS variables are optimized.
20 // See the following paper for the details.
21 //
22 //   Ulrich Drepper, ELF Handling For Thread-Local Storage
23 //   http://www.akkadia.org/drepper/tls.pdf
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "Target.h"
28 #include "Error.h"
29 #include "InputFiles.h"
30 #include "OutputSections.h"
31 #include "Symbols.h"
32 #include "SyntheticSections.h"
33 #include "Thunks.h"
34 #include "Writer.h"
35 #include "lld/Support/Memory.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/Object/ELF.h"
38 #include "llvm/Support/ELF.h"
39 #include "llvm/Support/Endian.h"
40 
41 using namespace llvm;
42 using namespace llvm::object;
43 using namespace llvm::support::endian;
44 using namespace llvm::ELF;
45 
46 namespace lld {
47 namespace elf {
48 
49 TargetInfo *Target;
50 
51 static void or32le(uint8_t *P, int32_t V) { write32le(P, read32le(P) | V); }
52 static void or32be(uint8_t *P, int32_t V) { write32be(P, read32be(P) | V); }
53 
54 std::string toString(uint32_t Type) {
55   return getELFRelocationTypeName(Config->EMachine, Type);
56 }
57 
58 template <unsigned N>
59 static void checkInt(uint8_t *Loc, int64_t V, uint32_t Type) {
60   if (!isInt<N>(V))
61     error(getErrorLocation(Loc) + "relocation " + toString(Type) +
62           " out of range");
63 }
64 
65 template <unsigned N>
66 static void checkUInt(uint8_t *Loc, uint64_t V, uint32_t Type) {
67   if (!isUInt<N>(V))
68     error(getErrorLocation(Loc) + "relocation " + toString(Type) +
69           " out of range");
70 }
71 
72 template <unsigned N>
73 static void checkIntUInt(uint8_t *Loc, uint64_t V, uint32_t Type) {
74   if (!isInt<N>(V) && !isUInt<N>(V))
75     error(getErrorLocation(Loc) + "relocation " + toString(Type) +
76           " out of range");
77 }
78 
79 template <unsigned N>
80 static void checkAlignment(uint8_t *Loc, uint64_t V, uint32_t Type) {
81   if ((V & (N - 1)) != 0)
82     error(getErrorLocation(Loc) + "improper alignment for relocation " +
83           toString(Type));
84 }
85 
86 namespace {
87 class X86TargetInfo final : public TargetInfo {
88 public:
89   X86TargetInfo();
90   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
91   uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override;
92   void writeGotPltHeader(uint8_t *Buf) const override;
93   uint32_t getDynRel(uint32_t Type) const override;
94   bool isTlsLocalDynamicRel(uint32_t Type) const override;
95   bool isTlsGlobalDynamicRel(uint32_t Type) const override;
96   bool isTlsInitialExecRel(uint32_t Type) const override;
97   void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
98   void writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const override;
99   void writePltHeader(uint8_t *Buf) const override;
100   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
101                 int32_t Index, unsigned RelOff) const override;
102   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
103 
104   RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
105                           RelExpr Expr) const override;
106   void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
107   void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
108   void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
109   void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
110 };
111 
112 template <class ELFT> class X86_64TargetInfo final : public TargetInfo {
113 public:
114   X86_64TargetInfo();
115   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
116   bool isPicRel(uint32_t Type) const override;
117   bool isTlsLocalDynamicRel(uint32_t Type) const override;
118   bool isTlsGlobalDynamicRel(uint32_t Type) const override;
119   bool isTlsInitialExecRel(uint32_t Type) const override;
120   void writeGotPltHeader(uint8_t *Buf) const override;
121   void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
122   void writePltHeader(uint8_t *Buf) const override;
123   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
124                 int32_t Index, unsigned RelOff) const override;
125   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
126 
127   RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
128                           RelExpr Expr) const override;
129   void relaxGot(uint8_t *Loc, uint64_t Val) const override;
130   void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
131   void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
132   void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
133   void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
134 
135 private:
136   void relaxGotNoPic(uint8_t *Loc, uint64_t Val, uint8_t Op,
137                      uint8_t ModRm) const;
138 };
139 
140 class PPCTargetInfo final : public TargetInfo {
141 public:
142   PPCTargetInfo();
143   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
144   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
145 };
146 
147 class PPC64TargetInfo final : public TargetInfo {
148 public:
149   PPC64TargetInfo();
150   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
151   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
152                 int32_t Index, unsigned RelOff) const override;
153   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
154 };
155 
156 class AArch64TargetInfo final : public TargetInfo {
157 public:
158   AArch64TargetInfo();
159   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
160   bool isPicRel(uint32_t Type) const override;
161   bool isTlsInitialExecRel(uint32_t Type) const override;
162   void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
163   void writePltHeader(uint8_t *Buf) const override;
164   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
165                 int32_t Index, unsigned RelOff) const override;
166   bool usesOnlyLowPageBits(uint32_t Type) const override;
167   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
168   RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
169                           RelExpr Expr) const override;
170   void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
171   void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
172   void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
173 };
174 
175 class AMDGPUTargetInfo final : public TargetInfo {
176 public:
177   AMDGPUTargetInfo();
178   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
179   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
180 };
181 
182 class ARMTargetInfo final : public TargetInfo {
183 public:
184   ARMTargetInfo();
185   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
186   bool isPicRel(uint32_t Type) const override;
187   uint32_t getDynRel(uint32_t Type) const override;
188   uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override;
189   bool isTlsLocalDynamicRel(uint32_t Type) const override;
190   bool isTlsGlobalDynamicRel(uint32_t Type) const override;
191   bool isTlsInitialExecRel(uint32_t Type) const override;
192   void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
193   void writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const override;
194   void writePltHeader(uint8_t *Buf) const override;
195   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
196                 int32_t Index, unsigned RelOff) const override;
197   RelExpr getThunkExpr(RelExpr Expr, uint32_t RelocType, const InputFile &File,
198                        const SymbolBody &S) const override;
199   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
200 };
201 
202 template <class ELFT> class MipsTargetInfo final : public TargetInfo {
203 public:
204   MipsTargetInfo();
205   RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
206   uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override;
207   bool isPicRel(uint32_t Type) const override;
208   uint32_t getDynRel(uint32_t Type) const override;
209   bool isTlsLocalDynamicRel(uint32_t Type) const override;
210   bool isTlsGlobalDynamicRel(uint32_t Type) const override;
211   void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
212   void writePltHeader(uint8_t *Buf) const override;
213   void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
214                 int32_t Index, unsigned RelOff) const override;
215   RelExpr getThunkExpr(RelExpr Expr, uint32_t RelocType, const InputFile &File,
216                        const SymbolBody &S) const override;
217   void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
218   bool usesOnlyLowPageBits(uint32_t Type) const override;
219 };
220 } // anonymous namespace
221 
222 TargetInfo *createTarget() {
223   switch (Config->EMachine) {
224   case EM_386:
225   case EM_IAMCU:
226     return make<X86TargetInfo>();
227   case EM_AARCH64:
228     return make<AArch64TargetInfo>();
229   case EM_AMDGPU:
230     return make<AMDGPUTargetInfo>();
231   case EM_ARM:
232     return make<ARMTargetInfo>();
233   case EM_MIPS:
234     switch (Config->EKind) {
235     case ELF32LEKind:
236       return make<MipsTargetInfo<ELF32LE>>();
237     case ELF32BEKind:
238       return make<MipsTargetInfo<ELF32BE>>();
239     case ELF64LEKind:
240       return make<MipsTargetInfo<ELF64LE>>();
241     case ELF64BEKind:
242       return make<MipsTargetInfo<ELF64BE>>();
243     default:
244       fatal("unsupported MIPS target");
245     }
246   case EM_PPC:
247     return make<PPCTargetInfo>();
248   case EM_PPC64:
249     return make<PPC64TargetInfo>();
250   case EM_X86_64:
251     if (Config->EKind == ELF32LEKind)
252       return make<X86_64TargetInfo<ELF32LE>>();
253     return make<X86_64TargetInfo<ELF64LE>>();
254   }
255   fatal("unknown target machine");
256 }
257 
258 TargetInfo::~TargetInfo() {}
259 
260 uint64_t TargetInfo::getImplicitAddend(const uint8_t *Buf,
261                                        uint32_t Type) const {
262   return 0;
263 }
264 
265 bool TargetInfo::usesOnlyLowPageBits(uint32_t Type) const { return false; }
266 
267 RelExpr TargetInfo::getThunkExpr(RelExpr Expr, uint32_t RelocType,
268                                  const InputFile &File,
269                                  const SymbolBody &S) const {
270   return Expr;
271 }
272 
273 bool TargetInfo::isTlsInitialExecRel(uint32_t Type) const { return false; }
274 
275 bool TargetInfo::isTlsLocalDynamicRel(uint32_t Type) const { return false; }
276 
277 bool TargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const { return false; }
278 
279 void TargetInfo::writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const {
280   writeGotPlt(Buf, S);
281 }
282 
283 RelExpr TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
284                                     RelExpr Expr) const {
285   return Expr;
286 }
287 
288 void TargetInfo::relaxGot(uint8_t *Loc, uint64_t Val) const {
289   llvm_unreachable("Should not have claimed to be relaxable");
290 }
291 
292 void TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
293                                 uint64_t Val) const {
294   llvm_unreachable("Should not have claimed to be relaxable");
295 }
296 
297 void TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
298                                 uint64_t Val) const {
299   llvm_unreachable("Should not have claimed to be relaxable");
300 }
301 
302 void TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
303                                 uint64_t Val) const {
304   llvm_unreachable("Should not have claimed to be relaxable");
305 }
306 
307 void TargetInfo::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type,
308                                 uint64_t Val) const {
309   llvm_unreachable("Should not have claimed to be relaxable");
310 }
311 
312 X86TargetInfo::X86TargetInfo() {
313   CopyRel = R_386_COPY;
314   GotRel = R_386_GLOB_DAT;
315   PltRel = R_386_JUMP_SLOT;
316   IRelativeRel = R_386_IRELATIVE;
317   RelativeRel = R_386_RELATIVE;
318   TlsGotRel = R_386_TLS_TPOFF;
319   TlsModuleIndexRel = R_386_TLS_DTPMOD32;
320   TlsOffsetRel = R_386_TLS_DTPOFF32;
321   GotEntrySize = 4;
322   GotPltEntrySize = 4;
323   PltEntrySize = 16;
324   PltHeaderSize = 16;
325   TlsGdRelaxSkip = 2;
326 }
327 
328 RelExpr X86TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
329   switch (Type) {
330   default:
331     return R_ABS;
332   case R_386_TLS_GD:
333     return R_TLSGD;
334   case R_386_TLS_LDM:
335     return R_TLSLD;
336   case R_386_PLT32:
337     return R_PLT_PC;
338   case R_386_PC16:
339   case R_386_PC32:
340     return R_PC;
341   case R_386_GOTPC:
342     return R_GOTONLY_PC_FROM_END;
343   case R_386_TLS_IE:
344     return R_GOT;
345   case R_386_GOT32:
346   case R_386_GOT32X:
347   case R_386_TLS_GOTIE:
348     return R_GOT_FROM_END;
349   case R_386_GOTOFF:
350     return R_GOTREL_FROM_END;
351   case R_386_TLS_LE:
352     return R_TLS;
353   case R_386_TLS_LE_32:
354     return R_NEG_TLS;
355   }
356 }
357 
358 RelExpr X86TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
359                                        RelExpr Expr) const {
360   switch (Expr) {
361   default:
362     return Expr;
363   case R_RELAX_TLS_GD_TO_IE:
364     return R_RELAX_TLS_GD_TO_IE_END;
365   case R_RELAX_TLS_GD_TO_LE:
366     return R_RELAX_TLS_GD_TO_LE_NEG;
367   }
368 }
369 
370 void X86TargetInfo::writeGotPltHeader(uint8_t *Buf) const {
371   write32le(Buf, In<ELF32LE>::Dynamic->getVA());
372 }
373 
374 void X86TargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &S) const {
375   // Entries in .got.plt initially points back to the corresponding
376   // PLT entries with a fixed offset to skip the first instruction.
377   write32le(Buf, S.getPltVA<ELF32LE>() + 6);
378 }
379 
380 void X86TargetInfo::writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const {
381   // An x86 entry is the address of the ifunc resolver function.
382   write32le(Buf, S.getVA<ELF32LE>());
383 }
384 
385 uint32_t X86TargetInfo::getDynRel(uint32_t Type) const {
386   if (Type == R_386_TLS_LE)
387     return R_386_TLS_TPOFF;
388   if (Type == R_386_TLS_LE_32)
389     return R_386_TLS_TPOFF32;
390   return Type;
391 }
392 
393 bool X86TargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const {
394   return Type == R_386_TLS_GD;
395 }
396 
397 bool X86TargetInfo::isTlsLocalDynamicRel(uint32_t Type) const {
398   return Type == R_386_TLS_LDO_32 || Type == R_386_TLS_LDM;
399 }
400 
401 bool X86TargetInfo::isTlsInitialExecRel(uint32_t Type) const {
402   return Type == R_386_TLS_IE || Type == R_386_TLS_GOTIE;
403 }
404 
405 void X86TargetInfo::writePltHeader(uint8_t *Buf) const {
406   // Executable files and shared object files have
407   // separate procedure linkage tables.
408   if (Config->Pic) {
409     const uint8_t V[] = {
410         0xff, 0xb3, 0x04, 0x00, 0x00, 0x00, // pushl 4(%ebx)
411         0xff, 0xa3, 0x08, 0x00, 0x00, 0x00, // jmp   *8(%ebx)
412         0x90, 0x90, 0x90, 0x90              // nop; nop; nop; nop
413     };
414     memcpy(Buf, V, sizeof(V));
415     return;
416   }
417 
418   const uint8_t PltData[] = {
419       0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushl (GOT+4)
420       0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp   *(GOT+8)
421       0x90, 0x90, 0x90, 0x90              // nop; nop; nop; nop
422   };
423   memcpy(Buf, PltData, sizeof(PltData));
424   uint32_t Got = In<ELF32LE>::GotPlt->getVA();
425   write32le(Buf + 2, Got + 4);
426   write32le(Buf + 8, Got + 8);
427 }
428 
429 void X86TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
430                              uint64_t PltEntryAddr, int32_t Index,
431                              unsigned RelOff) const {
432   const uint8_t Inst[] = {
433       0xff, 0x00, 0x00, 0x00, 0x00, 0x00, // jmp *foo_in_GOT|*foo@GOT(%ebx)
434       0x68, 0x00, 0x00, 0x00, 0x00,       // pushl $reloc_offset
435       0xe9, 0x00, 0x00, 0x00, 0x00        // jmp .PLT0@PC
436   };
437   memcpy(Buf, Inst, sizeof(Inst));
438 
439   // jmp *foo@GOT(%ebx) or jmp *foo_in_GOT
440   Buf[1] = Config->Pic ? 0xa3 : 0x25;
441   uint32_t Got = In<ELF32LE>::GotPlt->getVA();
442   write32le(Buf + 2, Config->Shared ? GotEntryAddr - Got : GotEntryAddr);
443   write32le(Buf + 7, RelOff);
444   write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16);
445 }
446 
447 uint64_t X86TargetInfo::getImplicitAddend(const uint8_t *Buf,
448                                           uint32_t Type) const {
449   switch (Type) {
450   default:
451     return 0;
452   case R_386_16:
453   case R_386_PC16:
454     return read16le(Buf);
455   case R_386_32:
456   case R_386_GOT32:
457   case R_386_GOT32X:
458   case R_386_GOTOFF:
459   case R_386_GOTPC:
460   case R_386_PC32:
461   case R_386_PLT32:
462   case R_386_TLS_LE:
463     return read32le(Buf);
464   }
465 }
466 
467 void X86TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
468                                 uint64_t Val) const {
469   checkInt<32>(Loc, Val, Type);
470 
471   // R_386_PC16 and R_386_16 are not part of the current i386 psABI. They are
472   // used by 16-bit x86 objects, like boot loaders.
473   if (Type == R_386_16 || Type == R_386_PC16) {
474     write16le(Loc, Val);
475     return;
476   }
477   write32le(Loc, Val);
478 }
479 
480 void X86TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
481                                    uint64_t Val) const {
482   // Convert
483   //   leal x@tlsgd(, %ebx, 1),
484   //   call __tls_get_addr@plt
485   // to
486   //   movl %gs:0,%eax
487   //   subl $x@ntpoff,%eax
488   const uint8_t Inst[] = {
489       0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
490       0x81, 0xe8, 0x00, 0x00, 0x00, 0x00  // subl 0(%ebx), %eax
491   };
492   memcpy(Loc - 3, Inst, sizeof(Inst));
493   relocateOne(Loc + 5, R_386_32, Val);
494 }
495 
496 void X86TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
497                                    uint64_t Val) const {
498   // Convert
499   //   leal x@tlsgd(, %ebx, 1),
500   //   call __tls_get_addr@plt
501   // to
502   //   movl %gs:0, %eax
503   //   addl x@gotntpoff(%ebx), %eax
504   const uint8_t Inst[] = {
505       0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
506       0x03, 0x83, 0x00, 0x00, 0x00, 0x00  // addl 0(%ebx), %eax
507   };
508   memcpy(Loc - 3, Inst, sizeof(Inst));
509   relocateOne(Loc + 5, R_386_32, Val);
510 }
511 
512 // In some conditions, relocations can be optimized to avoid using GOT.
513 // This function does that for Initial Exec to Local Exec case.
514 void X86TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
515                                    uint64_t Val) const {
516   // Ulrich's document section 6.2 says that @gotntpoff can
517   // be used with MOVL or ADDL instructions.
518   // @indntpoff is similar to @gotntpoff, but for use in
519   // position dependent code.
520   uint8_t Reg = (Loc[-1] >> 3) & 7;
521 
522   if (Type == R_386_TLS_IE) {
523     if (Loc[-1] == 0xa1) {
524       // "movl foo@indntpoff,%eax" -> "movl $foo,%eax"
525       // This case is different from the generic case below because
526       // this is a 5 byte instruction while below is 6 bytes.
527       Loc[-1] = 0xb8;
528     } else if (Loc[-2] == 0x8b) {
529       // "movl foo@indntpoff,%reg" -> "movl $foo,%reg"
530       Loc[-2] = 0xc7;
531       Loc[-1] = 0xc0 | Reg;
532     } else {
533       // "addl foo@indntpoff,%reg" -> "addl $foo,%reg"
534       Loc[-2] = 0x81;
535       Loc[-1] = 0xc0 | Reg;
536     }
537   } else {
538     assert(Type == R_386_TLS_GOTIE);
539     if (Loc[-2] == 0x8b) {
540       // "movl foo@gottpoff(%rip),%reg" -> "movl $foo,%reg"
541       Loc[-2] = 0xc7;
542       Loc[-1] = 0xc0 | Reg;
543     } else {
544       // "addl foo@gotntpoff(%rip),%reg" -> "leal foo(%reg),%reg"
545       Loc[-2] = 0x8d;
546       Loc[-1] = 0x80 | (Reg << 3) | Reg;
547     }
548   }
549   relocateOne(Loc, R_386_TLS_LE, Val);
550 }
551 
552 void X86TargetInfo::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type,
553                                    uint64_t Val) const {
554   if (Type == R_386_TLS_LDO_32) {
555     relocateOne(Loc, R_386_TLS_LE, Val);
556     return;
557   }
558 
559   // Convert
560   //   leal foo(%reg),%eax
561   //   call ___tls_get_addr
562   // to
563   //   movl %gs:0,%eax
564   //   nop
565   //   leal 0(%esi,1),%esi
566   const uint8_t Inst[] = {
567       0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0,%eax
568       0x90,                               // nop
569       0x8d, 0x74, 0x26, 0x00              // leal 0(%esi,1),%esi
570   };
571   memcpy(Loc - 2, Inst, sizeof(Inst));
572 }
573 
574 template <class ELFT> X86_64TargetInfo<ELFT>::X86_64TargetInfo() {
575   CopyRel = R_X86_64_COPY;
576   GotRel = R_X86_64_GLOB_DAT;
577   PltRel = R_X86_64_JUMP_SLOT;
578   RelativeRel = R_X86_64_RELATIVE;
579   IRelativeRel = R_X86_64_IRELATIVE;
580   TlsGotRel = R_X86_64_TPOFF64;
581   TlsModuleIndexRel = R_X86_64_DTPMOD64;
582   TlsOffsetRel = R_X86_64_DTPOFF64;
583   GotEntrySize = 8;
584   GotPltEntrySize = 8;
585   PltEntrySize = 16;
586   PltHeaderSize = 16;
587   TlsGdRelaxSkip = 2;
588   // Align to the large page size (known as a superpage or huge page).
589   // FreeBSD automatically promotes large, superpage-aligned allocations.
590   DefaultImageBase = 0x200000;
591 }
592 
593 template <class ELFT>
594 RelExpr X86_64TargetInfo<ELFT>::getRelExpr(uint32_t Type,
595                                            const SymbolBody &S) const {
596   switch (Type) {
597   default:
598     return R_ABS;
599   case R_X86_64_TPOFF32:
600     return R_TLS;
601   case R_X86_64_TLSLD:
602     return R_TLSLD_PC;
603   case R_X86_64_TLSGD:
604     return R_TLSGD_PC;
605   case R_X86_64_SIZE32:
606   case R_X86_64_SIZE64:
607     return R_SIZE;
608   case R_X86_64_PLT32:
609     return R_PLT_PC;
610   case R_X86_64_PC32:
611   case R_X86_64_PC64:
612     return R_PC;
613   case R_X86_64_GOT32:
614   case R_X86_64_GOT64:
615     return R_GOT_FROM_END;
616   case R_X86_64_GOTPCREL:
617   case R_X86_64_GOTPCRELX:
618   case R_X86_64_REX_GOTPCRELX:
619   case R_X86_64_GOTTPOFF:
620     return R_GOT_PC;
621   case R_X86_64_NONE:
622     return R_HINT;
623   }
624 }
625 
626 template <class ELFT>
627 void X86_64TargetInfo<ELFT>::writeGotPltHeader(uint8_t *Buf) const {
628   // The first entry holds the value of _DYNAMIC. It is not clear why that is
629   // required, but it is documented in the psabi and the glibc dynamic linker
630   // seems to use it (note that this is relevant for linking ld.so, not any
631   // other program).
632   write64le(Buf, In<ELFT>::Dynamic->getVA());
633 }
634 
635 template <class ELFT>
636 void X86_64TargetInfo<ELFT>::writeGotPlt(uint8_t *Buf,
637                                          const SymbolBody &S) const {
638   // See comments in X86TargetInfo::writeGotPlt.
639   write32le(Buf, S.getPltVA<ELFT>() + 6);
640 }
641 
642 template <class ELFT>
643 void X86_64TargetInfo<ELFT>::writePltHeader(uint8_t *Buf) const {
644   const uint8_t PltData[] = {
645       0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushq GOT+8(%rip)
646       0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *GOT+16(%rip)
647       0x0f, 0x1f, 0x40, 0x00              // nopl 0x0(rax)
648   };
649   memcpy(Buf, PltData, sizeof(PltData));
650   uint64_t Got = In<ELFT>::GotPlt->getVA();
651   uint64_t Plt = In<ELFT>::Plt->getVA();
652   write32le(Buf + 2, Got - Plt + 2); // GOT+8
653   write32le(Buf + 8, Got - Plt + 4); // GOT+16
654 }
655 
656 template <class ELFT>
657 void X86_64TargetInfo<ELFT>::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
658                                       uint64_t PltEntryAddr, int32_t Index,
659                                       unsigned RelOff) const {
660   const uint8_t Inst[] = {
661       0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmpq *got(%rip)
662       0x68, 0x00, 0x00, 0x00, 0x00,       // pushq <relocation index>
663       0xe9, 0x00, 0x00, 0x00, 0x00        // jmpq plt[0]
664   };
665   memcpy(Buf, Inst, sizeof(Inst));
666 
667   write32le(Buf + 2, GotEntryAddr - PltEntryAddr - 6);
668   write32le(Buf + 7, Index);
669   write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16);
670 }
671 
672 template <class ELFT>
673 bool X86_64TargetInfo<ELFT>::isPicRel(uint32_t Type) const {
674   return Type != R_X86_64_PC32 && Type != R_X86_64_32;
675 }
676 
677 template <class ELFT>
678 bool X86_64TargetInfo<ELFT>::isTlsInitialExecRel(uint32_t Type) const {
679   return Type == R_X86_64_GOTTPOFF;
680 }
681 
682 template <class ELFT>
683 bool X86_64TargetInfo<ELFT>::isTlsGlobalDynamicRel(uint32_t Type) const {
684   return Type == R_X86_64_TLSGD;
685 }
686 
687 template <class ELFT>
688 bool X86_64TargetInfo<ELFT>::isTlsLocalDynamicRel(uint32_t Type) const {
689   return Type == R_X86_64_DTPOFF32 || Type == R_X86_64_DTPOFF64 ||
690          Type == R_X86_64_TLSLD;
691 }
692 
693 template <class ELFT>
694 void X86_64TargetInfo<ELFT>::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
695                                             uint64_t Val) const {
696   // Convert
697   //   .byte 0x66
698   //   leaq x@tlsgd(%rip), %rdi
699   //   .word 0x6666
700   //   rex64
701   //   call __tls_get_addr@plt
702   // to
703   //   mov %fs:0x0,%rax
704   //   lea x@tpoff,%rax
705   const uint8_t Inst[] = {
706       0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax
707       0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00              // lea x@tpoff,%rax
708   };
709   memcpy(Loc - 4, Inst, sizeof(Inst));
710   // The original code used a pc relative relocation and so we have to
711   // compensate for the -4 in had in the addend.
712   relocateOne(Loc + 8, R_X86_64_TPOFF32, Val + 4);
713 }
714 
715 template <class ELFT>
716 void X86_64TargetInfo<ELFT>::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
717                                             uint64_t Val) const {
718   // Convert
719   //   .byte 0x66
720   //   leaq x@tlsgd(%rip), %rdi
721   //   .word 0x6666
722   //   rex64
723   //   call __tls_get_addr@plt
724   // to
725   //   mov %fs:0x0,%rax
726   //   addq x@tpoff,%rax
727   const uint8_t Inst[] = {
728       0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax
729       0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00              // addq x@tpoff,%rax
730   };
731   memcpy(Loc - 4, Inst, sizeof(Inst));
732   // Both code sequences are PC relatives, but since we are moving the constant
733   // forward by 8 bytes we have to subtract the value by 8.
734   relocateOne(Loc + 8, R_X86_64_PC32, Val - 8);
735 }
736 
737 // In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to
738 // R_X86_64_TPOFF32 so that it does not use GOT.
739 template <class ELFT>
740 void X86_64TargetInfo<ELFT>::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
741                                             uint64_t Val) const {
742   uint8_t *Inst = Loc - 3;
743   uint8_t Reg = Loc[-1] >> 3;
744   uint8_t *RegSlot = Loc - 1;
745 
746   // Note that ADD with RSP or R12 is converted to ADD instead of LEA
747   // because LEA with these registers needs 4 bytes to encode and thus
748   // wouldn't fit the space.
749 
750   if (memcmp(Inst, "\x48\x03\x25", 3) == 0) {
751     // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp"
752     memcpy(Inst, "\x48\x81\xc4", 3);
753   } else if (memcmp(Inst, "\x4c\x03\x25", 3) == 0) {
754     // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12"
755     memcpy(Inst, "\x49\x81\xc4", 3);
756   } else if (memcmp(Inst, "\x4c\x03", 2) == 0) {
757     // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]"
758     memcpy(Inst, "\x4d\x8d", 2);
759     *RegSlot = 0x80 | (Reg << 3) | Reg;
760   } else if (memcmp(Inst, "\x48\x03", 2) == 0) {
761     // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg"
762     memcpy(Inst, "\x48\x8d", 2);
763     *RegSlot = 0x80 | (Reg << 3) | Reg;
764   } else if (memcmp(Inst, "\x4c\x8b", 2) == 0) {
765     // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]"
766     memcpy(Inst, "\x49\xc7", 2);
767     *RegSlot = 0xc0 | Reg;
768   } else if (memcmp(Inst, "\x48\x8b", 2) == 0) {
769     // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg"
770     memcpy(Inst, "\x48\xc7", 2);
771     *RegSlot = 0xc0 | Reg;
772   } else {
773     fatal(getErrorLocation(Loc - 3) +
774           "R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only");
775   }
776 
777   // The original code used a PC relative relocation.
778   // Need to compensate for the -4 it had in the addend.
779   relocateOne(Loc, R_X86_64_TPOFF32, Val + 4);
780 }
781 
782 template <class ELFT>
783 void X86_64TargetInfo<ELFT>::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type,
784                                             uint64_t Val) const {
785   // Convert
786   //   leaq bar@tlsld(%rip), %rdi
787   //   callq __tls_get_addr@PLT
788   //   leaq bar@dtpoff(%rax), %rcx
789   // to
790   //   .word 0x6666
791   //   .byte 0x66
792   //   mov %fs:0,%rax
793   //   leaq bar@tpoff(%rax), %rcx
794   if (Type == R_X86_64_DTPOFF64) {
795     write64le(Loc, Val);
796     return;
797   }
798   if (Type == R_X86_64_DTPOFF32) {
799     relocateOne(Loc, R_X86_64_TPOFF32, Val);
800     return;
801   }
802 
803   const uint8_t Inst[] = {
804       0x66, 0x66,                                          // .word 0x6666
805       0x66,                                                // .byte 0x66
806       0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax
807   };
808   memcpy(Loc - 3, Inst, sizeof(Inst));
809 }
810 
811 template <class ELFT>
812 void X86_64TargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint32_t Type,
813                                          uint64_t Val) const {
814   switch (Type) {
815   case R_X86_64_32:
816     checkUInt<32>(Loc, Val, Type);
817     write32le(Loc, Val);
818     break;
819   case R_X86_64_32S:
820   case R_X86_64_TPOFF32:
821   case R_X86_64_GOT32:
822   case R_X86_64_GOTPCREL:
823   case R_X86_64_GOTPCRELX:
824   case R_X86_64_REX_GOTPCRELX:
825   case R_X86_64_PC32:
826   case R_X86_64_GOTTPOFF:
827   case R_X86_64_PLT32:
828   case R_X86_64_TLSGD:
829   case R_X86_64_TLSLD:
830   case R_X86_64_DTPOFF32:
831   case R_X86_64_SIZE32:
832     checkInt<32>(Loc, Val, Type);
833     write32le(Loc, Val);
834     break;
835   case R_X86_64_64:
836   case R_X86_64_DTPOFF64:
837   case R_X86_64_GLOB_DAT:
838   case R_X86_64_PC64:
839   case R_X86_64_SIZE64:
840   case R_X86_64_GOT64:
841     write64le(Loc, Val);
842     break;
843   default:
844     fatal(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
845   }
846 }
847 
848 template <class ELFT>
849 RelExpr X86_64TargetInfo<ELFT>::adjustRelaxExpr(uint32_t Type,
850                                                 const uint8_t *Data,
851                                                 RelExpr RelExpr) const {
852   if (Type != R_X86_64_GOTPCRELX && Type != R_X86_64_REX_GOTPCRELX)
853     return RelExpr;
854   const uint8_t Op = Data[-2];
855   const uint8_t ModRm = Data[-1];
856   // FIXME: When PIC is disabled and foo is defined locally in the
857   // lower 32 bit address space, memory operand in mov can be converted into
858   // immediate operand. Otherwise, mov must be changed to lea. We support only
859   // latter relaxation at this moment.
860   if (Op == 0x8b)
861     return R_RELAX_GOT_PC;
862   // Relax call and jmp.
863   if (Op == 0xff && (ModRm == 0x15 || ModRm == 0x25))
864     return R_RELAX_GOT_PC;
865 
866   // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor.
867   // If PIC then no relaxation is available.
868   // We also don't relax test/binop instructions without REX byte,
869   // they are 32bit operations and not common to have.
870   assert(Type == R_X86_64_REX_GOTPCRELX);
871   return Config->Pic ? RelExpr : R_RELAX_GOT_PC_NOPIC;
872 }
873 
874 // A subset of relaxations can only be applied for no-PIC. This method
875 // handles such relaxations. Instructions encoding information was taken from:
876 // "Intel 64 and IA-32 Architectures Software Developer's Manual V2"
877 // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
878 //    64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf)
879 template <class ELFT>
880 void X86_64TargetInfo<ELFT>::relaxGotNoPic(uint8_t *Loc, uint64_t Val,
881                                            uint8_t Op, uint8_t ModRm) const {
882   const uint8_t Rex = Loc[-3];
883   // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg".
884   if (Op == 0x85) {
885     // See "TEST-Logical Compare" (4-428 Vol. 2B),
886     // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension).
887 
888     // ModR/M byte has form XX YYY ZZZ, where
889     // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1).
890     // XX has different meanings:
891     // 00: The operand's memory address is in reg1.
892     // 01: The operand's memory address is reg1 + a byte-sized displacement.
893     // 10: The operand's memory address is reg1 + a word-sized displacement.
894     // 11: The operand is reg1 itself.
895     // If an instruction requires only one operand, the unused reg2 field
896     // holds extra opcode bits rather than a register code
897     // 0xC0 == 11 000 000 binary.
898     // 0x38 == 00 111 000 binary.
899     // We transfer reg2 to reg1 here as operand.
900     // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3).
901     Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3; // ModR/M byte.
902 
903     // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32
904     // See "TEST-Logical Compare" (4-428 Vol. 2B).
905     Loc[-2] = 0xf7;
906 
907     // Move R bit to the B bit in REX byte.
908     // REX byte is encoded as 0100WRXB, where
909     // 0100 is 4bit fixed pattern.
910     // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the
911     //   default operand size is used (which is 32-bit for most but not all
912     //   instructions).
913     // REX.R This 1-bit value is an extension to the MODRM.reg field.
914     // REX.X This 1-bit value is an extension to the SIB.index field.
915     // REX.B This 1-bit value is an extension to the MODRM.rm field or the
916     // SIB.base field.
917     // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A).
918     Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2;
919     relocateOne(Loc, R_X86_64_PC32, Val);
920     return;
921   }
922 
923   // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub
924   // or xor operations.
925 
926   // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg".
927   // Logic is close to one for test instruction above, but we also
928   // write opcode extension here, see below for details.
929   Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3 | (Op & 0x3c); // ModR/M byte.
930 
931   // Primary opcode is 0x81, opcode extension is one of:
932   // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB,
933   // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP.
934   // This value was wrote to MODRM.reg in a line above.
935   // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15),
936   // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for
937   // descriptions about each operation.
938   Loc[-2] = 0x81;
939   Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2;
940   relocateOne(Loc, R_X86_64_PC32, Val);
941 }
942 
943 template <class ELFT>
944 void X86_64TargetInfo<ELFT>::relaxGot(uint8_t *Loc, uint64_t Val) const {
945   const uint8_t Op = Loc[-2];
946   const uint8_t ModRm = Loc[-1];
947 
948   // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg".
949   if (Op == 0x8b) {
950     Loc[-2] = 0x8d;
951     relocateOne(Loc, R_X86_64_PC32, Val);
952     return;
953   }
954 
955   if (Op != 0xff) {
956     // We are relaxing a rip relative to an absolute, so compensate
957     // for the old -4 addend.
958     assert(!Config->Pic);
959     relaxGotNoPic(Loc, Val + 4, Op, ModRm);
960     return;
961   }
962 
963   // Convert call/jmp instructions.
964   if (ModRm == 0x15) {
965     // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo".
966     // Instead we convert to "addr32 call foo" where addr32 is an instruction
967     // prefix. That makes result expression to be a single instruction.
968     Loc[-2] = 0x67; // addr32 prefix
969     Loc[-1] = 0xe8; // call
970     relocateOne(Loc, R_X86_64_PC32, Val);
971     return;
972   }
973 
974   // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop".
975   // jmp doesn't return, so it is fine to use nop here, it is just a stub.
976   assert(ModRm == 0x25);
977   Loc[-2] = 0xe9; // jmp
978   Loc[3] = 0x90;  // nop
979   relocateOne(Loc - 1, R_X86_64_PC32, Val + 1);
980 }
981 
982 // Relocation masks following the #lo(value), #hi(value), #ha(value),
983 // #higher(value), #highera(value), #highest(value), and #highesta(value)
984 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
985 // document.
986 static uint16_t applyPPCLo(uint64_t V) { return V; }
987 static uint16_t applyPPCHi(uint64_t V) { return V >> 16; }
988 static uint16_t applyPPCHa(uint64_t V) { return (V + 0x8000) >> 16; }
989 static uint16_t applyPPCHigher(uint64_t V) { return V >> 32; }
990 static uint16_t applyPPCHighera(uint64_t V) { return (V + 0x8000) >> 32; }
991 static uint16_t applyPPCHighest(uint64_t V) { return V >> 48; }
992 static uint16_t applyPPCHighesta(uint64_t V) { return (V + 0x8000) >> 48; }
993 
994 PPCTargetInfo::PPCTargetInfo() {}
995 
996 void PPCTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
997                                 uint64_t Val) const {
998   switch (Type) {
999   case R_PPC_ADDR16_HA:
1000     write16be(Loc, applyPPCHa(Val));
1001     break;
1002   case R_PPC_ADDR16_LO:
1003     write16be(Loc, applyPPCLo(Val));
1004     break;
1005   case R_PPC_ADDR32:
1006   case R_PPC_REL32:
1007     write32be(Loc, Val);
1008     break;
1009   case R_PPC_REL24:
1010     or32be(Loc, Val & 0x3FFFFFC);
1011     break;
1012   default:
1013     fatal(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
1014   }
1015 }
1016 
1017 RelExpr PPCTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
1018   switch (Type) {
1019   case R_PPC_REL24:
1020   case R_PPC_REL32:
1021     return R_PC;
1022   default:
1023     return R_ABS;
1024   }
1025 }
1026 
1027 PPC64TargetInfo::PPC64TargetInfo() {
1028   PltRel = GotRel = R_PPC64_GLOB_DAT;
1029   RelativeRel = R_PPC64_RELATIVE;
1030   GotEntrySize = 8;
1031   GotPltEntrySize = 8;
1032   PltEntrySize = 32;
1033   PltHeaderSize = 0;
1034 
1035   // We need 64K pages (at least under glibc/Linux, the loader won't
1036   // set different permissions on a finer granularity than that).
1037   DefaultMaxPageSize = 65536;
1038 
1039   // The PPC64 ELF ABI v1 spec, says:
1040   //
1041   //   It is normally desirable to put segments with different characteristics
1042   //   in separate 256 Mbyte portions of the address space, to give the
1043   //   operating system full paging flexibility in the 64-bit address space.
1044   //
1045   // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
1046   // use 0x10000000 as the starting address.
1047   DefaultImageBase = 0x10000000;
1048 }
1049 
1050 static uint64_t PPC64TocOffset = 0x8000;
1051 
1052 uint64_t getPPC64TocBase() {
1053   // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The
1054   // TOC starts where the first of these sections starts. We always create a
1055   // .got when we see a relocation that uses it, so for us the start is always
1056   // the .got.
1057   uint64_t TocVA = In<ELF64BE>::Got->getVA();
1058 
1059   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
1060   // thus permitting a full 64 Kbytes segment. Note that the glibc startup
1061   // code (crt1.o) assumes that you can get from the TOC base to the
1062   // start of the .toc section with only a single (signed) 16-bit relocation.
1063   return TocVA + PPC64TocOffset;
1064 }
1065 
1066 RelExpr PPC64TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
1067   switch (Type) {
1068   default:
1069     return R_ABS;
1070   case R_PPC64_TOC16:
1071   case R_PPC64_TOC16_DS:
1072   case R_PPC64_TOC16_HA:
1073   case R_PPC64_TOC16_HI:
1074   case R_PPC64_TOC16_LO:
1075   case R_PPC64_TOC16_LO_DS:
1076     return R_GOTREL;
1077   case R_PPC64_TOC:
1078     return R_PPC_TOC;
1079   case R_PPC64_REL24:
1080     return R_PPC_PLT_OPD;
1081   }
1082 }
1083 
1084 void PPC64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
1085                                uint64_t PltEntryAddr, int32_t Index,
1086                                unsigned RelOff) const {
1087   uint64_t Off = GotEntryAddr - getPPC64TocBase();
1088 
1089   // FIXME: What we should do, in theory, is get the offset of the function
1090   // descriptor in the .opd section, and use that as the offset from %r2 (the
1091   // TOC-base pointer). Instead, we have the GOT-entry offset, and that will
1092   // be a pointer to the function descriptor in the .opd section. Using
1093   // this scheme is simpler, but requires an extra indirection per PLT dispatch.
1094 
1095   write32be(Buf, 0xf8410028);                       // std %r2, 40(%r1)
1096   write32be(Buf + 4, 0x3d620000 | applyPPCHa(Off)); // addis %r11, %r2, X@ha
1097   write32be(Buf + 8, 0xe98b0000 | applyPPCLo(Off)); // ld %r12, X@l(%r11)
1098   write32be(Buf + 12, 0xe96c0000);                  // ld %r11,0(%r12)
1099   write32be(Buf + 16, 0x7d6903a6);                  // mtctr %r11
1100   write32be(Buf + 20, 0xe84c0008);                  // ld %r2,8(%r12)
1101   write32be(Buf + 24, 0xe96c0010);                  // ld %r11,16(%r12)
1102   write32be(Buf + 28, 0x4e800420);                  // bctr
1103 }
1104 
1105 static std::pair<uint32_t, uint64_t> toAddr16Rel(uint32_t Type, uint64_t Val) {
1106   uint64_t V = Val - PPC64TocOffset;
1107   switch (Type) {
1108   case R_PPC64_TOC16:
1109     return {R_PPC64_ADDR16, V};
1110   case R_PPC64_TOC16_DS:
1111     return {R_PPC64_ADDR16_DS, V};
1112   case R_PPC64_TOC16_HA:
1113     return {R_PPC64_ADDR16_HA, V};
1114   case R_PPC64_TOC16_HI:
1115     return {R_PPC64_ADDR16_HI, V};
1116   case R_PPC64_TOC16_LO:
1117     return {R_PPC64_ADDR16_LO, V};
1118   case R_PPC64_TOC16_LO_DS:
1119     return {R_PPC64_ADDR16_LO_DS, V};
1120   default:
1121     return {Type, Val};
1122   }
1123 }
1124 
1125 void PPC64TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
1126                                   uint64_t Val) const {
1127   // For a TOC-relative relocation, proceed in terms of the corresponding
1128   // ADDR16 relocation type.
1129   std::tie(Type, Val) = toAddr16Rel(Type, Val);
1130 
1131   switch (Type) {
1132   case R_PPC64_ADDR14: {
1133     checkAlignment<4>(Loc, Val, Type);
1134     // Preserve the AA/LK bits in the branch instruction
1135     uint8_t AALK = Loc[3];
1136     write16be(Loc + 2, (AALK & 3) | (Val & 0xfffc));
1137     break;
1138   }
1139   case R_PPC64_ADDR16:
1140     checkInt<16>(Loc, Val, Type);
1141     write16be(Loc, Val);
1142     break;
1143   case R_PPC64_ADDR16_DS:
1144     checkInt<16>(Loc, Val, Type);
1145     write16be(Loc, (read16be(Loc) & 3) | (Val & ~3));
1146     break;
1147   case R_PPC64_ADDR16_HA:
1148   case R_PPC64_REL16_HA:
1149     write16be(Loc, applyPPCHa(Val));
1150     break;
1151   case R_PPC64_ADDR16_HI:
1152   case R_PPC64_REL16_HI:
1153     write16be(Loc, applyPPCHi(Val));
1154     break;
1155   case R_PPC64_ADDR16_HIGHER:
1156     write16be(Loc, applyPPCHigher(Val));
1157     break;
1158   case R_PPC64_ADDR16_HIGHERA:
1159     write16be(Loc, applyPPCHighera(Val));
1160     break;
1161   case R_PPC64_ADDR16_HIGHEST:
1162     write16be(Loc, applyPPCHighest(Val));
1163     break;
1164   case R_PPC64_ADDR16_HIGHESTA:
1165     write16be(Loc, applyPPCHighesta(Val));
1166     break;
1167   case R_PPC64_ADDR16_LO:
1168     write16be(Loc, applyPPCLo(Val));
1169     break;
1170   case R_PPC64_ADDR16_LO_DS:
1171   case R_PPC64_REL16_LO:
1172     write16be(Loc, (read16be(Loc) & 3) | (applyPPCLo(Val) & ~3));
1173     break;
1174   case R_PPC64_ADDR32:
1175   case R_PPC64_REL32:
1176     checkInt<32>(Loc, Val, Type);
1177     write32be(Loc, Val);
1178     break;
1179   case R_PPC64_ADDR64:
1180   case R_PPC64_REL64:
1181   case R_PPC64_TOC:
1182     write64be(Loc, Val);
1183     break;
1184   case R_PPC64_REL24: {
1185     uint32_t Mask = 0x03FFFFFC;
1186     checkInt<24>(Loc, Val, Type);
1187     write32be(Loc, (read32be(Loc) & ~Mask) | (Val & Mask));
1188     break;
1189   }
1190   default:
1191     fatal(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
1192   }
1193 }
1194 
1195 AArch64TargetInfo::AArch64TargetInfo() {
1196   CopyRel = R_AARCH64_COPY;
1197   RelativeRel = R_AARCH64_RELATIVE;
1198   IRelativeRel = R_AARCH64_IRELATIVE;
1199   GotRel = R_AARCH64_GLOB_DAT;
1200   PltRel = R_AARCH64_JUMP_SLOT;
1201   TlsDescRel = R_AARCH64_TLSDESC;
1202   TlsGotRel = R_AARCH64_TLS_TPREL64;
1203   GotEntrySize = 8;
1204   GotPltEntrySize = 8;
1205   PltEntrySize = 16;
1206   PltHeaderSize = 32;
1207   DefaultMaxPageSize = 65536;
1208 
1209   // It doesn't seem to be documented anywhere, but tls on aarch64 uses variant
1210   // 1 of the tls structures and the tcb size is 16.
1211   TcbSize = 16;
1212 }
1213 
1214 RelExpr AArch64TargetInfo::getRelExpr(uint32_t Type,
1215                                       const SymbolBody &S) const {
1216   switch (Type) {
1217   default:
1218     return R_ABS;
1219   case R_AARCH64_TLSDESC_ADR_PAGE21:
1220     return R_TLSDESC_PAGE;
1221   case R_AARCH64_TLSDESC_LD64_LO12_NC:
1222   case R_AARCH64_TLSDESC_ADD_LO12_NC:
1223     return R_TLSDESC;
1224   case R_AARCH64_TLSDESC_CALL:
1225     return R_TLSDESC_CALL;
1226   case R_AARCH64_TLSLE_ADD_TPREL_HI12:
1227   case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
1228     return R_TLS;
1229   case R_AARCH64_CALL26:
1230   case R_AARCH64_CONDBR19:
1231   case R_AARCH64_JUMP26:
1232   case R_AARCH64_TSTBR14:
1233     return R_PLT_PC;
1234   case R_AARCH64_PREL16:
1235   case R_AARCH64_PREL32:
1236   case R_AARCH64_PREL64:
1237   case R_AARCH64_ADR_PREL_LO21:
1238     return R_PC;
1239   case R_AARCH64_ADR_PREL_PG_HI21:
1240     return R_PAGE_PC;
1241   case R_AARCH64_LD64_GOT_LO12_NC:
1242   case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
1243     return R_GOT;
1244   case R_AARCH64_ADR_GOT_PAGE:
1245   case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
1246     return R_GOT_PAGE_PC;
1247   }
1248 }
1249 
1250 RelExpr AArch64TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
1251                                            RelExpr Expr) const {
1252   if (Expr == R_RELAX_TLS_GD_TO_IE) {
1253     if (Type == R_AARCH64_TLSDESC_ADR_PAGE21)
1254       return R_RELAX_TLS_GD_TO_IE_PAGE_PC;
1255     return R_RELAX_TLS_GD_TO_IE_ABS;
1256   }
1257   return Expr;
1258 }
1259 
1260 bool AArch64TargetInfo::usesOnlyLowPageBits(uint32_t Type) const {
1261   switch (Type) {
1262   default:
1263     return false;
1264   case R_AARCH64_ADD_ABS_LO12_NC:
1265   case R_AARCH64_LD64_GOT_LO12_NC:
1266   case R_AARCH64_LDST128_ABS_LO12_NC:
1267   case R_AARCH64_LDST16_ABS_LO12_NC:
1268   case R_AARCH64_LDST32_ABS_LO12_NC:
1269   case R_AARCH64_LDST64_ABS_LO12_NC:
1270   case R_AARCH64_LDST8_ABS_LO12_NC:
1271   case R_AARCH64_TLSDESC_ADD_LO12_NC:
1272   case R_AARCH64_TLSDESC_LD64_LO12_NC:
1273   case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
1274     return true;
1275   }
1276 }
1277 
1278 bool AArch64TargetInfo::isTlsInitialExecRel(uint32_t Type) const {
1279   return Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 ||
1280          Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC;
1281 }
1282 
1283 bool AArch64TargetInfo::isPicRel(uint32_t Type) const {
1284   return Type == R_AARCH64_ABS32 || Type == R_AARCH64_ABS64;
1285 }
1286 
1287 void AArch64TargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &) const {
1288   write64le(Buf, In<ELF64LE>::Plt->getVA());
1289 }
1290 
1291 // Page(Expr) is the page address of the expression Expr, defined
1292 // as (Expr & ~0xFFF). (This applies even if the machine page size
1293 // supported by the platform has a different value.)
1294 uint64_t getAArch64Page(uint64_t Expr) {
1295   return Expr & (~static_cast<uint64_t>(0xFFF));
1296 }
1297 
1298 void AArch64TargetInfo::writePltHeader(uint8_t *Buf) const {
1299   const uint8_t PltData[] = {
1300       0xf0, 0x7b, 0xbf, 0xa9, // stp	x16, x30, [sp,#-16]!
1301       0x10, 0x00, 0x00, 0x90, // adrp	x16, Page(&(.plt.got[2]))
1302       0x11, 0x02, 0x40, 0xf9, // ldr	x17, [x16, Offset(&(.plt.got[2]))]
1303       0x10, 0x02, 0x00, 0x91, // add	x16, x16, Offset(&(.plt.got[2]))
1304       0x20, 0x02, 0x1f, 0xd6, // br	x17
1305       0x1f, 0x20, 0x03, 0xd5, // nop
1306       0x1f, 0x20, 0x03, 0xd5, // nop
1307       0x1f, 0x20, 0x03, 0xd5  // nop
1308   };
1309   memcpy(Buf, PltData, sizeof(PltData));
1310 
1311   uint64_t Got = In<ELF64LE>::GotPlt->getVA();
1312   uint64_t Plt = In<ELF64LE>::Plt->getVA();
1313   relocateOne(Buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
1314               getAArch64Page(Got + 16) - getAArch64Page(Plt + 4));
1315   relocateOne(Buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, Got + 16);
1316   relocateOne(Buf + 12, R_AARCH64_ADD_ABS_LO12_NC, Got + 16);
1317 }
1318 
1319 void AArch64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
1320                                  uint64_t PltEntryAddr, int32_t Index,
1321                                  unsigned RelOff) const {
1322   const uint8_t Inst[] = {
1323       0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[n]))
1324       0x11, 0x02, 0x40, 0xf9, // ldr  x17, [x16, Offset(&(.plt.got[n]))]
1325       0x10, 0x02, 0x00, 0x91, // add  x16, x16, Offset(&(.plt.got[n]))
1326       0x20, 0x02, 0x1f, 0xd6  // br   x17
1327   };
1328   memcpy(Buf, Inst, sizeof(Inst));
1329 
1330   relocateOne(Buf, R_AARCH64_ADR_PREL_PG_HI21,
1331               getAArch64Page(GotEntryAddr) - getAArch64Page(PltEntryAddr));
1332   relocateOne(Buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, GotEntryAddr);
1333   relocateOne(Buf + 8, R_AARCH64_ADD_ABS_LO12_NC, GotEntryAddr);
1334 }
1335 
1336 static void write32addr(uint8_t *L, uint64_t Imm) {
1337   uint32_t ImmLo = (Imm & 0x3) << 29;
1338   uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
1339   uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
1340   write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
1341 }
1342 
1343 // Return the bits [Start, End] from Val shifted Start bits.
1344 // For instance, getBits(0xF0, 4, 8) returns 0xF.
1345 static uint64_t getBits(uint64_t Val, int Start, int End) {
1346   uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
1347   return (Val >> Start) & Mask;
1348 }
1349 
1350 // Update the immediate field in a AARCH64 ldr, str, and add instruction.
1351 static void or32imm(uint8_t *L, uint64_t Imm) {
1352   or32le(L, (Imm & 0xFFF) << 10);
1353 }
1354 
1355 void AArch64TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
1356                                     uint64_t Val) const {
1357   switch (Type) {
1358   case R_AARCH64_ABS16:
1359   case R_AARCH64_PREL16:
1360     checkIntUInt<16>(Loc, Val, Type);
1361     write16le(Loc, Val);
1362     break;
1363   case R_AARCH64_ABS32:
1364   case R_AARCH64_PREL32:
1365     checkIntUInt<32>(Loc, Val, Type);
1366     write32le(Loc, Val);
1367     break;
1368   case R_AARCH64_ABS64:
1369   case R_AARCH64_GLOB_DAT:
1370   case R_AARCH64_PREL64:
1371     write64le(Loc, Val);
1372     break;
1373   case R_AARCH64_ADD_ABS_LO12_NC:
1374     or32imm(Loc, Val);
1375     break;
1376   case R_AARCH64_ADR_GOT_PAGE:
1377   case R_AARCH64_ADR_PREL_PG_HI21:
1378   case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
1379   case R_AARCH64_TLSDESC_ADR_PAGE21:
1380     checkInt<33>(Loc, Val, Type);
1381     write32addr(Loc, Val >> 12);
1382     break;
1383   case R_AARCH64_ADR_PREL_LO21:
1384     checkInt<21>(Loc, Val, Type);
1385     write32addr(Loc, Val);
1386     break;
1387   case R_AARCH64_CALL26:
1388   case R_AARCH64_JUMP26:
1389     checkInt<28>(Loc, Val, Type);
1390     or32le(Loc, (Val & 0x0FFFFFFC) >> 2);
1391     break;
1392   case R_AARCH64_CONDBR19:
1393     checkInt<21>(Loc, Val, Type);
1394     or32le(Loc, (Val & 0x1FFFFC) << 3);
1395     break;
1396   case R_AARCH64_LD64_GOT_LO12_NC:
1397   case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
1398   case R_AARCH64_TLSDESC_LD64_LO12_NC:
1399     checkAlignment<8>(Loc, Val, Type);
1400     or32le(Loc, (Val & 0xFF8) << 7);
1401     break;
1402   case R_AARCH64_LDST8_ABS_LO12_NC:
1403     or32imm(Loc, getBits(Val, 0, 11));
1404     break;
1405   case R_AARCH64_LDST16_ABS_LO12_NC:
1406     or32imm(Loc, getBits(Val, 1, 11));
1407     break;
1408   case R_AARCH64_LDST32_ABS_LO12_NC:
1409     or32imm(Loc, getBits(Val, 2, 11));
1410     break;
1411   case R_AARCH64_LDST64_ABS_LO12_NC:
1412     or32imm(Loc, getBits(Val, 3, 11));
1413     break;
1414   case R_AARCH64_LDST128_ABS_LO12_NC:
1415     or32imm(Loc, getBits(Val, 4, 11));
1416     break;
1417   case R_AARCH64_MOVW_UABS_G0_NC:
1418     or32le(Loc, (Val & 0xFFFF) << 5);
1419     break;
1420   case R_AARCH64_MOVW_UABS_G1_NC:
1421     or32le(Loc, (Val & 0xFFFF0000) >> 11);
1422     break;
1423   case R_AARCH64_MOVW_UABS_G2_NC:
1424     or32le(Loc, (Val & 0xFFFF00000000) >> 27);
1425     break;
1426   case R_AARCH64_MOVW_UABS_G3:
1427     or32le(Loc, (Val & 0xFFFF000000000000) >> 43);
1428     break;
1429   case R_AARCH64_TSTBR14:
1430     checkInt<16>(Loc, Val, Type);
1431     or32le(Loc, (Val & 0xFFFC) << 3);
1432     break;
1433   case R_AARCH64_TLSLE_ADD_TPREL_HI12:
1434     checkInt<24>(Loc, Val, Type);
1435     or32imm(Loc, Val >> 12);
1436     break;
1437   case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
1438   case R_AARCH64_TLSDESC_ADD_LO12_NC:
1439     or32imm(Loc, Val);
1440     break;
1441   default:
1442     fatal(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
1443   }
1444 }
1445 
1446 void AArch64TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
1447                                        uint64_t Val) const {
1448   // TLSDESC Global-Dynamic relocation are in the form:
1449   //   adrp    x0, :tlsdesc:v             [R_AARCH64_TLSDESC_ADR_PAGE21]
1450   //   ldr     x1, [x0, #:tlsdesc_lo12:v  [R_AARCH64_TLSDESC_LD64_LO12_NC]
1451   //   add     x0, x0, :tlsdesc_los:v     [_AARCH64_TLSDESC_ADD_LO12_NC]
1452   //   .tlsdesccall                       [R_AARCH64_TLSDESC_CALL]
1453   //   blr     x1
1454   // And it can optimized to:
1455   //   movz    x0, #0x0, lsl #16
1456   //   movk    x0, #0x10
1457   //   nop
1458   //   nop
1459   checkUInt<32>(Loc, Val, Type);
1460 
1461   switch (Type) {
1462   case R_AARCH64_TLSDESC_ADD_LO12_NC:
1463   case R_AARCH64_TLSDESC_CALL:
1464     write32le(Loc, 0xd503201f); // nop
1465     return;
1466   case R_AARCH64_TLSDESC_ADR_PAGE21:
1467     write32le(Loc, 0xd2a00000 | (((Val >> 16) & 0xffff) << 5)); // movz
1468     return;
1469   case R_AARCH64_TLSDESC_LD64_LO12_NC:
1470     write32le(Loc, 0xf2800000 | ((Val & 0xffff) << 5)); // movk
1471     return;
1472   default:
1473     llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
1474   }
1475 }
1476 
1477 void AArch64TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
1478                                        uint64_t Val) const {
1479   // TLSDESC Global-Dynamic relocation are in the form:
1480   //   adrp    x0, :tlsdesc:v             [R_AARCH64_TLSDESC_ADR_PAGE21]
1481   //   ldr     x1, [x0, #:tlsdesc_lo12:v  [R_AARCH64_TLSDESC_LD64_LO12_NC]
1482   //   add     x0, x0, :tlsdesc_los:v     [_AARCH64_TLSDESC_ADD_LO12_NC]
1483   //   .tlsdesccall                       [R_AARCH64_TLSDESC_CALL]
1484   //   blr     x1
1485   // And it can optimized to:
1486   //   adrp    x0, :gottprel:v
1487   //   ldr     x0, [x0, :gottprel_lo12:v]
1488   //   nop
1489   //   nop
1490 
1491   switch (Type) {
1492   case R_AARCH64_TLSDESC_ADD_LO12_NC:
1493   case R_AARCH64_TLSDESC_CALL:
1494     write32le(Loc, 0xd503201f); // nop
1495     break;
1496   case R_AARCH64_TLSDESC_ADR_PAGE21:
1497     write32le(Loc, 0x90000000); // adrp
1498     relocateOne(Loc, R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, Val);
1499     break;
1500   case R_AARCH64_TLSDESC_LD64_LO12_NC:
1501     write32le(Loc, 0xf9400000); // ldr
1502     relocateOne(Loc, R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, Val);
1503     break;
1504   default:
1505     llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
1506   }
1507 }
1508 
1509 void AArch64TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
1510                                        uint64_t Val) const {
1511   checkUInt<32>(Loc, Val, Type);
1512 
1513   if (Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) {
1514     // Generate MOVZ.
1515     uint32_t RegNo = read32le(Loc) & 0x1f;
1516     write32le(Loc, (0xd2a00000 | RegNo) | (((Val >> 16) & 0xffff) << 5));
1517     return;
1518   }
1519   if (Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) {
1520     // Generate MOVK.
1521     uint32_t RegNo = read32le(Loc) & 0x1f;
1522     write32le(Loc, (0xf2800000 | RegNo) | ((Val & 0xffff) << 5));
1523     return;
1524   }
1525   llvm_unreachable("invalid relocation for TLS IE to LE relaxation");
1526 }
1527 
1528 AMDGPUTargetInfo::AMDGPUTargetInfo() {
1529   RelativeRel = R_AMDGPU_REL64;
1530   GotRel = R_AMDGPU_ABS64;
1531   GotEntrySize = 8;
1532 }
1533 
1534 void AMDGPUTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
1535                                    uint64_t Val) const {
1536   switch (Type) {
1537   case R_AMDGPU_ABS32:
1538   case R_AMDGPU_GOTPCREL:
1539   case R_AMDGPU_GOTPCREL32_LO:
1540   case R_AMDGPU_REL32:
1541   case R_AMDGPU_REL32_LO:
1542     write32le(Loc, Val);
1543     break;
1544   case R_AMDGPU_ABS64:
1545     write64le(Loc, Val);
1546     break;
1547   case R_AMDGPU_GOTPCREL32_HI:
1548   case R_AMDGPU_REL32_HI:
1549     write32le(Loc, Val >> 32);
1550     break;
1551   default:
1552     fatal(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
1553   }
1554 }
1555 
1556 RelExpr AMDGPUTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
1557   switch (Type) {
1558   case R_AMDGPU_ABS32:
1559   case R_AMDGPU_ABS64:
1560     return R_ABS;
1561   case R_AMDGPU_REL32:
1562   case R_AMDGPU_REL32_LO:
1563   case R_AMDGPU_REL32_HI:
1564     return R_PC;
1565   case R_AMDGPU_GOTPCREL:
1566   case R_AMDGPU_GOTPCREL32_LO:
1567   case R_AMDGPU_GOTPCREL32_HI:
1568     return R_GOT_PC;
1569   default:
1570     fatal("do not know how to handle relocation " + Twine(Type));
1571   }
1572 }
1573 
1574 ARMTargetInfo::ARMTargetInfo() {
1575   CopyRel = R_ARM_COPY;
1576   RelativeRel = R_ARM_RELATIVE;
1577   IRelativeRel = R_ARM_IRELATIVE;
1578   GotRel = R_ARM_GLOB_DAT;
1579   PltRel = R_ARM_JUMP_SLOT;
1580   TlsGotRel = R_ARM_TLS_TPOFF32;
1581   TlsModuleIndexRel = R_ARM_TLS_DTPMOD32;
1582   TlsOffsetRel = R_ARM_TLS_DTPOFF32;
1583   GotEntrySize = 4;
1584   GotPltEntrySize = 4;
1585   PltEntrySize = 16;
1586   PltHeaderSize = 20;
1587   // ARM uses Variant 1 TLS
1588   TcbSize = 8;
1589   NeedsThunks = true;
1590 }
1591 
1592 RelExpr ARMTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
1593   switch (Type) {
1594   default:
1595     return R_ABS;
1596   case R_ARM_THM_JUMP11:
1597     return R_PC;
1598   case R_ARM_CALL:
1599   case R_ARM_JUMP24:
1600   case R_ARM_PC24:
1601   case R_ARM_PLT32:
1602   case R_ARM_PREL31:
1603   case R_ARM_THM_JUMP19:
1604   case R_ARM_THM_JUMP24:
1605   case R_ARM_THM_CALL:
1606     return R_PLT_PC;
1607   case R_ARM_GOTOFF32:
1608     // (S + A) - GOT_ORG
1609     return R_GOTREL;
1610   case R_ARM_GOT_BREL:
1611     // GOT(S) + A - GOT_ORG
1612     return R_GOT_OFF;
1613   case R_ARM_GOT_PREL:
1614   case R_ARM_TLS_IE32:
1615     // GOT(S) + A - P
1616     return R_GOT_PC;
1617   case R_ARM_TARGET1:
1618     return Config->Target1Rel ? R_PC : R_ABS;
1619   case R_ARM_TARGET2:
1620     if (Config->Target2 == Target2Policy::Rel)
1621       return R_PC;
1622     if (Config->Target2 == Target2Policy::Abs)
1623       return R_ABS;
1624     return R_GOT_PC;
1625   case R_ARM_TLS_GD32:
1626     return R_TLSGD_PC;
1627   case R_ARM_TLS_LDM32:
1628     return R_TLSLD_PC;
1629   case R_ARM_BASE_PREL:
1630     // B(S) + A - P
1631     // FIXME: currently B(S) assumed to be .got, this may not hold for all
1632     // platforms.
1633     return R_GOTONLY_PC;
1634   case R_ARM_MOVW_PREL_NC:
1635   case R_ARM_MOVT_PREL:
1636   case R_ARM_REL32:
1637   case R_ARM_THM_MOVW_PREL_NC:
1638   case R_ARM_THM_MOVT_PREL:
1639     return R_PC;
1640   case R_ARM_NONE:
1641     return R_HINT;
1642   case R_ARM_TLS_LE32:
1643     return R_TLS;
1644   }
1645 }
1646 
1647 bool ARMTargetInfo::isPicRel(uint32_t Type) const {
1648   return (Type == R_ARM_TARGET1 && !Config->Target1Rel) ||
1649          (Type == R_ARM_ABS32);
1650 }
1651 
1652 uint32_t ARMTargetInfo::getDynRel(uint32_t Type) const {
1653   if (Type == R_ARM_TARGET1 && !Config->Target1Rel)
1654     return R_ARM_ABS32;
1655   if (Type == R_ARM_ABS32)
1656     return Type;
1657   // Keep it going with a dummy value so that we can find more reloc errors.
1658   return R_ARM_ABS32;
1659 }
1660 
1661 void ARMTargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &) const {
1662   write32le(Buf, In<ELF32LE>::Plt->getVA());
1663 }
1664 
1665 void ARMTargetInfo::writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const {
1666   // An ARM entry is the address of the ifunc resolver function.
1667   write32le(Buf, S.getVA<ELF32LE>());
1668 }
1669 
1670 void ARMTargetInfo::writePltHeader(uint8_t *Buf) const {
1671   const uint8_t PltData[] = {
1672       0x04, 0xe0, 0x2d, 0xe5, //     str lr, [sp,#-4]!
1673       0x04, 0xe0, 0x9f, 0xe5, //     ldr lr, L2
1674       0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr
1675       0x08, 0xf0, 0xbe, 0xe5, //     ldr pc, [lr, #8]
1676       0x00, 0x00, 0x00, 0x00, // L2: .word   &(.got.plt) - L1 - 8
1677   };
1678   memcpy(Buf, PltData, sizeof(PltData));
1679   uint64_t GotPlt = In<ELF32LE>::GotPlt->getVA();
1680   uint64_t L1 = In<ELF32LE>::Plt->getVA() + 8;
1681   write32le(Buf + 16, GotPlt - L1 - 8);
1682 }
1683 
1684 void ARMTargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
1685                              uint64_t PltEntryAddr, int32_t Index,
1686                              unsigned RelOff) const {
1687   // FIXME: Using simple code sequence with simple relocations.
1688   // There is a more optimal sequence but it requires support for the group
1689   // relocations. See ELF for the ARM Architecture Appendix A.3
1690   const uint8_t PltData[] = {
1691       0x04, 0xc0, 0x9f, 0xe5, //     ldr ip, L2
1692       0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc
1693       0x00, 0xf0, 0x9c, 0xe5, //     ldr pc, [ip]
1694       0x00, 0x00, 0x00, 0x00, // L2: .word   Offset(&(.plt.got) - L1 - 8
1695   };
1696   memcpy(Buf, PltData, sizeof(PltData));
1697   uint64_t L1 = PltEntryAddr + 4;
1698   write32le(Buf + 12, GotEntryAddr - L1 - 8);
1699 }
1700 
1701 RelExpr ARMTargetInfo::getThunkExpr(RelExpr Expr, uint32_t RelocType,
1702                                     const InputFile &File,
1703                                     const SymbolBody &S) const {
1704   // If S is an undefined weak symbol we don't need a Thunk
1705   if (S.isUndefined())
1706     return Expr;
1707   // A state change from ARM to Thumb and vice versa must go through an
1708   // interworking thunk if the relocation type is not R_ARM_CALL or
1709   // R_ARM_THM_CALL.
1710   switch (RelocType) {
1711   case R_ARM_PC24:
1712   case R_ARM_PLT32:
1713   case R_ARM_JUMP24:
1714     // Source is ARM, all PLT entries are ARM so no interworking required.
1715     // Otherwise we need to interwork if Symbol has bit 0 set (Thumb).
1716     if (Expr == R_PC && ((S.getVA<ELF32LE>() & 1) == 1))
1717       return R_THUNK_PC;
1718     break;
1719   case R_ARM_THM_JUMP19:
1720   case R_ARM_THM_JUMP24:
1721     // Source is Thumb, all PLT entries are ARM so interworking is required.
1722     // Otherwise we need to interwork if Symbol has bit 0 clear (ARM).
1723     if (Expr == R_PLT_PC)
1724       return R_THUNK_PLT_PC;
1725     if ((S.getVA<ELF32LE>() & 1) == 0)
1726       return R_THUNK_PC;
1727     break;
1728   }
1729   return Expr;
1730 }
1731 
1732 void ARMTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
1733                                 uint64_t Val) const {
1734   switch (Type) {
1735   case R_ARM_ABS32:
1736   case R_ARM_BASE_PREL:
1737   case R_ARM_GLOB_DAT:
1738   case R_ARM_GOTOFF32:
1739   case R_ARM_GOT_BREL:
1740   case R_ARM_GOT_PREL:
1741   case R_ARM_REL32:
1742   case R_ARM_RELATIVE:
1743   case R_ARM_TARGET1:
1744   case R_ARM_TARGET2:
1745   case R_ARM_TLS_GD32:
1746   case R_ARM_TLS_IE32:
1747   case R_ARM_TLS_LDM32:
1748   case R_ARM_TLS_LDO32:
1749   case R_ARM_TLS_LE32:
1750   case R_ARM_TLS_TPOFF32:
1751     write32le(Loc, Val);
1752     break;
1753   case R_ARM_TLS_DTPMOD32:
1754     write32le(Loc, 1);
1755     break;
1756   case R_ARM_PREL31:
1757     checkInt<31>(Loc, Val, Type);
1758     write32le(Loc, (read32le(Loc) & 0x80000000) | (Val & ~0x80000000));
1759     break;
1760   case R_ARM_CALL:
1761     // R_ARM_CALL is used for BL and BLX instructions, depending on the
1762     // value of bit 0 of Val, we must select a BL or BLX instruction
1763     if (Val & 1) {
1764       // If bit 0 of Val is 1 the target is Thumb, we must select a BLX.
1765       // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1'
1766       checkInt<26>(Loc, Val, Type);
1767       write32le(Loc, 0xfa000000 |                    // opcode
1768                          ((Val & 2) << 23) |         // H
1769                          ((Val >> 2) & 0x00ffffff)); // imm24
1770       break;
1771     }
1772     if ((read32le(Loc) & 0xfe000000) == 0xfa000000)
1773       // BLX (always unconditional) instruction to an ARM Target, select an
1774       // unconditional BL.
1775       write32le(Loc, 0xeb000000 | (read32le(Loc) & 0x00ffffff));
1776   // fall through as BL encoding is shared with B
1777   case R_ARM_JUMP24:
1778   case R_ARM_PC24:
1779   case R_ARM_PLT32:
1780     checkInt<26>(Loc, Val, Type);
1781     write32le(Loc, (read32le(Loc) & ~0x00ffffff) | ((Val >> 2) & 0x00ffffff));
1782     break;
1783   case R_ARM_THM_JUMP11:
1784     checkInt<12>(Loc, Val, Type);
1785     write16le(Loc, (read32le(Loc) & 0xf800) | ((Val >> 1) & 0x07ff));
1786     break;
1787   case R_ARM_THM_JUMP19:
1788     // Encoding T3: Val = S:J2:J1:imm6:imm11:0
1789     checkInt<21>(Loc, Val, Type);
1790     write16le(Loc,
1791               (read16le(Loc) & 0xfbc0) |   // opcode cond
1792                   ((Val >> 10) & 0x0400) | // S
1793                   ((Val >> 12) & 0x003f)); // imm6
1794     write16le(Loc + 2,
1795               0x8000 |                    // opcode
1796                   ((Val >> 8) & 0x0800) | // J2
1797                   ((Val >> 5) & 0x2000) | // J1
1798                   ((Val >> 1) & 0x07ff)); // imm11
1799     break;
1800   case R_ARM_THM_CALL:
1801     // R_ARM_THM_CALL is used for BL and BLX instructions, depending on the
1802     // value of bit 0 of Val, we must select a BL or BLX instruction
1803     if ((Val & 1) == 0) {
1804       // Ensure BLX destination is 4-byte aligned. As BLX instruction may
1805       // only be two byte aligned. This must be done before overflow check
1806       Val = alignTo(Val, 4);
1807     }
1808     // Bit 12 is 0 for BLX, 1 for BL
1809     write16le(Loc + 2, (read16le(Loc + 2) & ~0x1000) | (Val & 1) << 12);
1810   // Fall through as rest of encoding is the same as B.W
1811   case R_ARM_THM_JUMP24:
1812     // Encoding B  T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0
1813     // FIXME: Use of I1 and I2 require v6T2ops
1814     checkInt<25>(Loc, Val, Type);
1815     write16le(Loc,
1816               0xf000 |                     // opcode
1817                   ((Val >> 14) & 0x0400) | // S
1818                   ((Val >> 12) & 0x03ff)); // imm10
1819     write16le(Loc + 2,
1820               (read16le(Loc + 2) & 0xd000) |                  // opcode
1821                   (((~(Val >> 10)) ^ (Val >> 11)) & 0x2000) | // J1
1822                   (((~(Val >> 11)) ^ (Val >> 13)) & 0x0800) | // J2
1823                   ((Val >> 1) & 0x07ff));                     // imm11
1824     break;
1825   case R_ARM_MOVW_ABS_NC:
1826   case R_ARM_MOVW_PREL_NC:
1827     write32le(Loc, (read32le(Loc) & ~0x000f0fff) | ((Val & 0xf000) << 4) |
1828                        (Val & 0x0fff));
1829     break;
1830   case R_ARM_MOVT_ABS:
1831   case R_ARM_MOVT_PREL:
1832     checkInt<32>(Loc, Val, Type);
1833     write32le(Loc, (read32le(Loc) & ~0x000f0fff) |
1834                        (((Val >> 16) & 0xf000) << 4) | ((Val >> 16) & 0xfff));
1835     break;
1836   case R_ARM_THM_MOVT_ABS:
1837   case R_ARM_THM_MOVT_PREL:
1838     // Encoding T1: A = imm4:i:imm3:imm8
1839     checkInt<32>(Loc, Val, Type);
1840     write16le(Loc,
1841               0xf2c0 |                     // opcode
1842                   ((Val >> 17) & 0x0400) | // i
1843                   ((Val >> 28) & 0x000f)); // imm4
1844     write16le(Loc + 2,
1845               (read16le(Loc + 2) & 0x8f00) | // opcode
1846                   ((Val >> 12) & 0x7000) |   // imm3
1847                   ((Val >> 16) & 0x00ff));   // imm8
1848     break;
1849   case R_ARM_THM_MOVW_ABS_NC:
1850   case R_ARM_THM_MOVW_PREL_NC:
1851     // Encoding T3: A = imm4:i:imm3:imm8
1852     write16le(Loc,
1853               0xf240 |                     // opcode
1854                   ((Val >> 1) & 0x0400) |  // i
1855                   ((Val >> 12) & 0x000f)); // imm4
1856     write16le(Loc + 2,
1857               (read16le(Loc + 2) & 0x8f00) | // opcode
1858                   ((Val << 4) & 0x7000) |    // imm3
1859                   (Val & 0x00ff));           // imm8
1860     break;
1861   default:
1862     fatal(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
1863   }
1864 }
1865 
1866 uint64_t ARMTargetInfo::getImplicitAddend(const uint8_t *Buf,
1867                                           uint32_t Type) const {
1868   switch (Type) {
1869   default:
1870     return 0;
1871   case R_ARM_ABS32:
1872   case R_ARM_BASE_PREL:
1873   case R_ARM_GOTOFF32:
1874   case R_ARM_GOT_BREL:
1875   case R_ARM_GOT_PREL:
1876   case R_ARM_REL32:
1877   case R_ARM_TARGET1:
1878   case R_ARM_TARGET2:
1879   case R_ARM_TLS_GD32:
1880   case R_ARM_TLS_LDM32:
1881   case R_ARM_TLS_LDO32:
1882   case R_ARM_TLS_IE32:
1883   case R_ARM_TLS_LE32:
1884     return SignExtend64<32>(read32le(Buf));
1885   case R_ARM_PREL31:
1886     return SignExtend64<31>(read32le(Buf));
1887   case R_ARM_CALL:
1888   case R_ARM_JUMP24:
1889   case R_ARM_PC24:
1890   case R_ARM_PLT32:
1891     return SignExtend64<26>(read32le(Buf) << 2);
1892   case R_ARM_THM_JUMP11:
1893     return SignExtend64<12>(read16le(Buf) << 1);
1894   case R_ARM_THM_JUMP19: {
1895     // Encoding T3: A = S:J2:J1:imm10:imm6:0
1896     uint16_t Hi = read16le(Buf);
1897     uint16_t Lo = read16le(Buf + 2);
1898     return SignExtend64<20>(((Hi & 0x0400) << 10) | // S
1899                             ((Lo & 0x0800) << 8) |  // J2
1900                             ((Lo & 0x2000) << 5) |  // J1
1901                             ((Hi & 0x003f) << 12) | // imm6
1902                             ((Lo & 0x07ff) << 1));  // imm11:0
1903   }
1904   case R_ARM_THM_CALL:
1905   case R_ARM_THM_JUMP24: {
1906     // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0
1907     // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S)
1908     // FIXME: I1 and I2 require v6T2ops
1909     uint16_t Hi = read16le(Buf);
1910     uint16_t Lo = read16le(Buf + 2);
1911     return SignExtend64<24>(((Hi & 0x0400) << 14) |                    // S
1912                             (~((Lo ^ (Hi << 3)) << 10) & 0x00800000) | // I1
1913                             (~((Lo ^ (Hi << 1)) << 11) & 0x00400000) | // I2
1914                             ((Hi & 0x003ff) << 12) |                   // imm0
1915                             ((Lo & 0x007ff) << 1)); // imm11:0
1916   }
1917   // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and
1918   // MOVT is in the range -32768 <= A < 32768
1919   case R_ARM_MOVW_ABS_NC:
1920   case R_ARM_MOVT_ABS:
1921   case R_ARM_MOVW_PREL_NC:
1922   case R_ARM_MOVT_PREL: {
1923     uint64_t Val = read32le(Buf) & 0x000f0fff;
1924     return SignExtend64<16>(((Val & 0x000f0000) >> 4) | (Val & 0x00fff));
1925   }
1926   case R_ARM_THM_MOVW_ABS_NC:
1927   case R_ARM_THM_MOVT_ABS:
1928   case R_ARM_THM_MOVW_PREL_NC:
1929   case R_ARM_THM_MOVT_PREL: {
1930     // Encoding T3: A = imm4:i:imm3:imm8
1931     uint16_t Hi = read16le(Buf);
1932     uint16_t Lo = read16le(Buf + 2);
1933     return SignExtend64<16>(((Hi & 0x000f) << 12) | // imm4
1934                             ((Hi & 0x0400) << 1) |  // i
1935                             ((Lo & 0x7000) >> 4) |  // imm3
1936                             (Lo & 0x00ff));         // imm8
1937   }
1938   }
1939 }
1940 
1941 bool ARMTargetInfo::isTlsLocalDynamicRel(uint32_t Type) const {
1942   return Type == R_ARM_TLS_LDO32 || Type == R_ARM_TLS_LDM32;
1943 }
1944 
1945 bool ARMTargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const {
1946   return Type == R_ARM_TLS_GD32;
1947 }
1948 
1949 bool ARMTargetInfo::isTlsInitialExecRel(uint32_t Type) const {
1950   return Type == R_ARM_TLS_IE32;
1951 }
1952 
1953 template <class ELFT> MipsTargetInfo<ELFT>::MipsTargetInfo() {
1954   GotPltHeaderEntriesNum = 2;
1955   DefaultMaxPageSize = 65536;
1956   GotEntrySize = sizeof(typename ELFT::uint);
1957   GotPltEntrySize = sizeof(typename ELFT::uint);
1958   PltEntrySize = 16;
1959   PltHeaderSize = 32;
1960   CopyRel = R_MIPS_COPY;
1961   PltRel = R_MIPS_JUMP_SLOT;
1962   NeedsThunks = true;
1963   if (ELFT::Is64Bits) {
1964     RelativeRel = (R_MIPS_64 << 8) | R_MIPS_REL32;
1965     TlsGotRel = R_MIPS_TLS_TPREL64;
1966     TlsModuleIndexRel = R_MIPS_TLS_DTPMOD64;
1967     TlsOffsetRel = R_MIPS_TLS_DTPREL64;
1968   } else {
1969     RelativeRel = R_MIPS_REL32;
1970     TlsGotRel = R_MIPS_TLS_TPREL32;
1971     TlsModuleIndexRel = R_MIPS_TLS_DTPMOD32;
1972     TlsOffsetRel = R_MIPS_TLS_DTPREL32;
1973   }
1974 }
1975 
1976 template <class ELFT>
1977 RelExpr MipsTargetInfo<ELFT>::getRelExpr(uint32_t Type,
1978                                          const SymbolBody &S) const {
1979   // See comment in the calculateMipsRelChain.
1980   if (ELFT::Is64Bits || Config->MipsN32Abi)
1981     Type &= 0xff;
1982   switch (Type) {
1983   default:
1984     return R_ABS;
1985   case R_MIPS_JALR:
1986     return R_HINT;
1987   case R_MIPS_GPREL16:
1988   case R_MIPS_GPREL32:
1989     return R_MIPS_GOTREL;
1990   case R_MIPS_26:
1991     return R_PLT;
1992   case R_MIPS_HI16:
1993   case R_MIPS_LO16:
1994   case R_MIPS_GOT_OFST:
1995     // R_MIPS_HI16/R_MIPS_LO16 relocations against _gp_disp calculate
1996     // offset between start of function and 'gp' value which by default
1997     // equal to the start of .got section. In that case we consider these
1998     // relocations as relative.
1999     if (&S == ElfSym<ELFT>::MipsGpDisp)
2000       return R_PC;
2001     return R_ABS;
2002   case R_MIPS_PC32:
2003   case R_MIPS_PC16:
2004   case R_MIPS_PC19_S2:
2005   case R_MIPS_PC21_S2:
2006   case R_MIPS_PC26_S2:
2007   case R_MIPS_PCHI16:
2008   case R_MIPS_PCLO16:
2009     return R_PC;
2010   case R_MIPS_GOT16:
2011     if (S.isLocal())
2012       return R_MIPS_GOT_LOCAL_PAGE;
2013   // fallthrough
2014   case R_MIPS_CALL16:
2015   case R_MIPS_GOT_DISP:
2016   case R_MIPS_TLS_GOTTPREL:
2017     return R_MIPS_GOT_OFF;
2018   case R_MIPS_CALL_HI16:
2019   case R_MIPS_CALL_LO16:
2020   case R_MIPS_GOT_HI16:
2021   case R_MIPS_GOT_LO16:
2022     return R_MIPS_GOT_OFF32;
2023   case R_MIPS_GOT_PAGE:
2024     return R_MIPS_GOT_LOCAL_PAGE;
2025   case R_MIPS_TLS_GD:
2026     return R_MIPS_TLSGD;
2027   case R_MIPS_TLS_LDM:
2028     return R_MIPS_TLSLD;
2029   }
2030 }
2031 
2032 template <class ELFT> bool MipsTargetInfo<ELFT>::isPicRel(uint32_t Type) const {
2033   return Type == R_MIPS_32 || Type == R_MIPS_64;
2034 }
2035 
2036 template <class ELFT>
2037 uint32_t MipsTargetInfo<ELFT>::getDynRel(uint32_t Type) const {
2038   return RelativeRel;
2039 }
2040 
2041 template <class ELFT>
2042 bool MipsTargetInfo<ELFT>::isTlsLocalDynamicRel(uint32_t Type) const {
2043   return Type == R_MIPS_TLS_LDM;
2044 }
2045 
2046 template <class ELFT>
2047 bool MipsTargetInfo<ELFT>::isTlsGlobalDynamicRel(uint32_t Type) const {
2048   return Type == R_MIPS_TLS_GD;
2049 }
2050 
2051 template <class ELFT>
2052 void MipsTargetInfo<ELFT>::writeGotPlt(uint8_t *Buf, const SymbolBody &) const {
2053   write32<ELFT::TargetEndianness>(Buf, In<ELFT>::Plt->getVA());
2054 }
2055 
2056 template <endianness E, uint8_t BSIZE, uint8_t SHIFT>
2057 static int64_t getPcRelocAddend(const uint8_t *Loc) {
2058   uint32_t Instr = read32<E>(Loc);
2059   uint32_t Mask = 0xffffffff >> (32 - BSIZE);
2060   return SignExtend64<BSIZE + SHIFT>((Instr & Mask) << SHIFT);
2061 }
2062 
2063 template <endianness E, uint8_t BSIZE, uint8_t SHIFT>
2064 static void applyMipsPcReloc(uint8_t *Loc, uint32_t Type, uint64_t V) {
2065   uint32_t Mask = 0xffffffff >> (32 - BSIZE);
2066   uint32_t Instr = read32<E>(Loc);
2067   if (SHIFT > 0)
2068     checkAlignment<(1 << SHIFT)>(Loc, V, Type);
2069   checkInt<BSIZE + SHIFT>(Loc, V, Type);
2070   write32<E>(Loc, (Instr & ~Mask) | ((V >> SHIFT) & Mask));
2071 }
2072 
2073 template <endianness E> static void writeMipsHi16(uint8_t *Loc, uint64_t V) {
2074   uint32_t Instr = read32<E>(Loc);
2075   uint16_t Res = ((V + 0x8000) >> 16) & 0xffff;
2076   write32<E>(Loc, (Instr & 0xffff0000) | Res);
2077 }
2078 
2079 template <endianness E> static void writeMipsHigher(uint8_t *Loc, uint64_t V) {
2080   uint32_t Instr = read32<E>(Loc);
2081   uint16_t Res = ((V + 0x80008000) >> 32) & 0xffff;
2082   write32<E>(Loc, (Instr & 0xffff0000) | Res);
2083 }
2084 
2085 template <endianness E> static void writeMipsHighest(uint8_t *Loc, uint64_t V) {
2086   uint32_t Instr = read32<E>(Loc);
2087   uint16_t Res = ((V + 0x800080008000) >> 48) & 0xffff;
2088   write32<E>(Loc, (Instr & 0xffff0000) | Res);
2089 }
2090 
2091 template <endianness E> static void writeMipsLo16(uint8_t *Loc, uint64_t V) {
2092   uint32_t Instr = read32<E>(Loc);
2093   write32<E>(Loc, (Instr & 0xffff0000) | (V & 0xffff));
2094 }
2095 
2096 template <class ELFT> static bool isMipsR6() {
2097   const auto &FirstObj = cast<ELFFileBase<ELFT>>(*Config->FirstElf);
2098   uint32_t Arch = FirstObj.getObj().getHeader()->e_flags & EF_MIPS_ARCH;
2099   return Arch == EF_MIPS_ARCH_32R6 || Arch == EF_MIPS_ARCH_64R6;
2100 }
2101 
2102 template <class ELFT>
2103 void MipsTargetInfo<ELFT>::writePltHeader(uint8_t *Buf) const {
2104   const endianness E = ELFT::TargetEndianness;
2105   if (Config->MipsN32Abi) {
2106     write32<E>(Buf, 0x3c0e0000);      // lui   $14, %hi(&GOTPLT[0])
2107     write32<E>(Buf + 4, 0x8dd90000);  // lw    $25, %lo(&GOTPLT[0])($14)
2108     write32<E>(Buf + 8, 0x25ce0000);  // addiu $14, $14, %lo(&GOTPLT[0])
2109     write32<E>(Buf + 12, 0x030ec023); // subu  $24, $24, $14
2110   } else {
2111     write32<E>(Buf, 0x3c1c0000);      // lui   $28, %hi(&GOTPLT[0])
2112     write32<E>(Buf + 4, 0x8f990000);  // lw    $25, %lo(&GOTPLT[0])($28)
2113     write32<E>(Buf + 8, 0x279c0000);  // addiu $28, $28, %lo(&GOTPLT[0])
2114     write32<E>(Buf + 12, 0x031cc023); // subu  $24, $24, $28
2115   }
2116   write32<E>(Buf + 16, 0x03e07825); // move  $15, $31
2117   write32<E>(Buf + 20, 0x0018c082); // srl   $24, $24, 2
2118   write32<E>(Buf + 24, 0x0320f809); // jalr  $25
2119   write32<E>(Buf + 28, 0x2718fffe); // subu  $24, $24, 2
2120   uint64_t Got = In<ELFT>::GotPlt->getVA();
2121   writeMipsHi16<E>(Buf, Got);
2122   writeMipsLo16<E>(Buf + 4, Got);
2123   writeMipsLo16<E>(Buf + 8, Got);
2124 }
2125 
2126 template <class ELFT>
2127 void MipsTargetInfo<ELFT>::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
2128                                     uint64_t PltEntryAddr, int32_t Index,
2129                                     unsigned RelOff) const {
2130   const endianness E = ELFT::TargetEndianness;
2131   write32<E>(Buf, 0x3c0f0000);     // lui   $15, %hi(.got.plt entry)
2132   write32<E>(Buf + 4, 0x8df90000); // l[wd] $25, %lo(.got.plt entry)($15)
2133                                    // jr    $25
2134   write32<E>(Buf + 8, isMipsR6<ELFT>() ? 0x03200009 : 0x03200008);
2135   write32<E>(Buf + 12, 0x25f80000); // addiu $24, $15, %lo(.got.plt entry)
2136   writeMipsHi16<E>(Buf, GotEntryAddr);
2137   writeMipsLo16<E>(Buf + 4, GotEntryAddr);
2138   writeMipsLo16<E>(Buf + 12, GotEntryAddr);
2139 }
2140 
2141 template <class ELFT>
2142 RelExpr MipsTargetInfo<ELFT>::getThunkExpr(RelExpr Expr, uint32_t Type,
2143                                            const InputFile &File,
2144                                            const SymbolBody &S) const {
2145   // Any MIPS PIC code function is invoked with its address in register $t9.
2146   // So if we have a branch instruction from non-PIC code to the PIC one
2147   // we cannot make the jump directly and need to create a small stubs
2148   // to save the target function address.
2149   // See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2150   if (Type != R_MIPS_26)
2151     return Expr;
2152   auto *F = dyn_cast<ELFFileBase<ELFT>>(&File);
2153   if (!F)
2154     return Expr;
2155   // If current file has PIC code, LA25 stub is not required.
2156   if (F->getObj().getHeader()->e_flags & EF_MIPS_PIC)
2157     return Expr;
2158   auto *D = dyn_cast<DefinedRegular<ELFT>>(&S);
2159   // LA25 is required if target file has PIC code
2160   // or target symbol is a PIC symbol.
2161   return D && D->isMipsPIC() ? R_THUNK_ABS : Expr;
2162 }
2163 
2164 template <class ELFT>
2165 uint64_t MipsTargetInfo<ELFT>::getImplicitAddend(const uint8_t *Buf,
2166                                                  uint32_t Type) const {
2167   const endianness E = ELFT::TargetEndianness;
2168   switch (Type) {
2169   default:
2170     return 0;
2171   case R_MIPS_32:
2172   case R_MIPS_GPREL32:
2173   case R_MIPS_TLS_DTPREL32:
2174   case R_MIPS_TLS_TPREL32:
2175     return read32<E>(Buf);
2176   case R_MIPS_26:
2177     // FIXME (simon): If the relocation target symbol is not a PLT entry
2178     // we should use another expression for calculation:
2179     // ((A << 2) | (P & 0xf0000000)) >> 2
2180     return SignExtend64<28>((read32<E>(Buf) & 0x3ffffff) << 2);
2181   case R_MIPS_GPREL16:
2182   case R_MIPS_LO16:
2183   case R_MIPS_PCLO16:
2184   case R_MIPS_TLS_DTPREL_HI16:
2185   case R_MIPS_TLS_DTPREL_LO16:
2186   case R_MIPS_TLS_TPREL_HI16:
2187   case R_MIPS_TLS_TPREL_LO16:
2188     return SignExtend64<16>(read32<E>(Buf));
2189   case R_MIPS_PC16:
2190     return getPcRelocAddend<E, 16, 2>(Buf);
2191   case R_MIPS_PC19_S2:
2192     return getPcRelocAddend<E, 19, 2>(Buf);
2193   case R_MIPS_PC21_S2:
2194     return getPcRelocAddend<E, 21, 2>(Buf);
2195   case R_MIPS_PC26_S2:
2196     return getPcRelocAddend<E, 26, 2>(Buf);
2197   case R_MIPS_PC32:
2198     return getPcRelocAddend<E, 32, 0>(Buf);
2199   }
2200 }
2201 
2202 static std::pair<uint32_t, uint64_t>
2203 calculateMipsRelChain(uint8_t *Loc, uint32_t Type, uint64_t Val) {
2204   // MIPS N64 ABI packs multiple relocations into the single relocation
2205   // record. In general, all up to three relocations can have arbitrary
2206   // types. In fact, Clang and GCC uses only a few combinations. For now,
2207   // we support two of them. That is allow to pass at least all LLVM
2208   // test suite cases.
2209   // <any relocation> / R_MIPS_SUB / R_MIPS_HI16 | R_MIPS_LO16
2210   // <any relocation> / R_MIPS_64 / R_MIPS_NONE
2211   // The first relocation is a 'real' relocation which is calculated
2212   // using the corresponding symbol's value. The second and the third
2213   // relocations used to modify result of the first one: extend it to
2214   // 64-bit, extract high or low part etc. For details, see part 2.9 Relocation
2215   // at the https://dmz-portal.mips.com/mw/images/8/82/007-4658-001.pdf
2216   uint32_t Type2 = (Type >> 8) & 0xff;
2217   uint32_t Type3 = (Type >> 16) & 0xff;
2218   if (Type2 == R_MIPS_NONE && Type3 == R_MIPS_NONE)
2219     return std::make_pair(Type, Val);
2220   if (Type2 == R_MIPS_64 && Type3 == R_MIPS_NONE)
2221     return std::make_pair(Type2, Val);
2222   if (Type2 == R_MIPS_SUB && (Type3 == R_MIPS_HI16 || Type3 == R_MIPS_LO16))
2223     return std::make_pair(Type3, -Val);
2224   error(getErrorLocation(Loc) + "unsupported relocations combination " +
2225         Twine(Type));
2226   return std::make_pair(Type & 0xff, Val);
2227 }
2228 
2229 template <class ELFT>
2230 void MipsTargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint32_t Type,
2231                                        uint64_t Val) const {
2232   const endianness E = ELFT::TargetEndianness;
2233   // Thread pointer and DRP offsets from the start of TLS data area.
2234   // https://www.linux-mips.org/wiki/NPTL
2235   if (Type == R_MIPS_TLS_DTPREL_HI16 || Type == R_MIPS_TLS_DTPREL_LO16 ||
2236       Type == R_MIPS_TLS_DTPREL32 || Type == R_MIPS_TLS_DTPREL64)
2237     Val -= 0x8000;
2238   else if (Type == R_MIPS_TLS_TPREL_HI16 || Type == R_MIPS_TLS_TPREL_LO16 ||
2239            Type == R_MIPS_TLS_TPREL32 || Type == R_MIPS_TLS_TPREL64)
2240     Val -= 0x7000;
2241   if (ELFT::Is64Bits || Config->MipsN32Abi)
2242     std::tie(Type, Val) = calculateMipsRelChain(Loc, Type, Val);
2243   switch (Type) {
2244   case R_MIPS_32:
2245   case R_MIPS_GPREL32:
2246   case R_MIPS_TLS_DTPREL32:
2247   case R_MIPS_TLS_TPREL32:
2248     write32<E>(Loc, Val);
2249     break;
2250   case R_MIPS_64:
2251   case R_MIPS_TLS_DTPREL64:
2252   case R_MIPS_TLS_TPREL64:
2253     write64<E>(Loc, Val);
2254     break;
2255   case R_MIPS_26:
2256     write32<E>(Loc, (read32<E>(Loc) & ~0x3ffffff) | ((Val >> 2) & 0x3ffffff));
2257     break;
2258   case R_MIPS_GOT_DISP:
2259   case R_MIPS_GOT_PAGE:
2260   case R_MIPS_GOT16:
2261   case R_MIPS_GPREL16:
2262   case R_MIPS_TLS_GD:
2263   case R_MIPS_TLS_LDM:
2264     checkInt<16>(Loc, Val, Type);
2265   // fallthrough
2266   case R_MIPS_CALL16:
2267   case R_MIPS_CALL_LO16:
2268   case R_MIPS_GOT_LO16:
2269   case R_MIPS_GOT_OFST:
2270   case R_MIPS_LO16:
2271   case R_MIPS_PCLO16:
2272   case R_MIPS_TLS_DTPREL_LO16:
2273   case R_MIPS_TLS_GOTTPREL:
2274   case R_MIPS_TLS_TPREL_LO16:
2275     writeMipsLo16<E>(Loc, Val);
2276     break;
2277   case R_MIPS_CALL_HI16:
2278   case R_MIPS_GOT_HI16:
2279   case R_MIPS_HI16:
2280   case R_MIPS_PCHI16:
2281   case R_MIPS_TLS_DTPREL_HI16:
2282   case R_MIPS_TLS_TPREL_HI16:
2283     writeMipsHi16<E>(Loc, Val);
2284     break;
2285   case R_MIPS_HIGHER:
2286     writeMipsHigher<E>(Loc, Val);
2287     break;
2288   case R_MIPS_HIGHEST:
2289     writeMipsHighest<E>(Loc, Val);
2290     break;
2291   case R_MIPS_JALR:
2292     // Ignore this optimization relocation for now
2293     break;
2294   case R_MIPS_PC16:
2295     applyMipsPcReloc<E, 16, 2>(Loc, Type, Val);
2296     break;
2297   case R_MIPS_PC19_S2:
2298     applyMipsPcReloc<E, 19, 2>(Loc, Type, Val);
2299     break;
2300   case R_MIPS_PC21_S2:
2301     applyMipsPcReloc<E, 21, 2>(Loc, Type, Val);
2302     break;
2303   case R_MIPS_PC26_S2:
2304     applyMipsPcReloc<E, 26, 2>(Loc, Type, Val);
2305     break;
2306   case R_MIPS_PC32:
2307     applyMipsPcReloc<E, 32, 0>(Loc, Type, Val);
2308     break;
2309   default:
2310     fatal(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
2311   }
2312 }
2313 
2314 template <class ELFT>
2315 bool MipsTargetInfo<ELFT>::usesOnlyLowPageBits(uint32_t Type) const {
2316   return Type == R_MIPS_LO16 || Type == R_MIPS_GOT_OFST;
2317 }
2318 }
2319 }
2320