1 //===- SymbolTable.cpp ----------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Symbol table is a bag of all known symbols. We put all symbols of 11 // all input files to the symbol table. The symbol table is basically 12 // a hash table with the logic to resolve symbol name conflicts using 13 // the symbol types. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "SymbolTable.h" 18 #include "Config.h" 19 #include "LinkerScript.h" 20 #include "Symbols.h" 21 #include "SyntheticSections.h" 22 #include "lld/Common/ErrorHandler.h" 23 #include "lld/Common/Memory.h" 24 #include "lld/Common/Strings.h" 25 #include "llvm/ADT/STLExtras.h" 26 27 using namespace llvm; 28 using namespace llvm::object; 29 using namespace llvm::ELF; 30 31 using namespace lld; 32 using namespace lld::elf; 33 34 SymbolTable *elf::Symtab; 35 36 static InputFile *getFirstElf() { 37 if (!ObjectFiles.empty()) 38 return ObjectFiles[0]; 39 if (!SharedFiles.empty()) 40 return SharedFiles[0]; 41 return nullptr; 42 } 43 44 // All input object files must be for the same architecture 45 // (e.g. it does not make sense to link x86 object files with 46 // MIPS object files.) This function checks for that error. 47 template <class ELFT> static bool isCompatible(InputFile *F) { 48 if (!isa<ELFFileBase<ELFT>>(F) && !isa<BitcodeFile>(F)) 49 return true; 50 51 if (F->EKind == Config->EKind && F->EMachine == Config->EMachine) { 52 if (Config->EMachine != EM_MIPS) 53 return true; 54 if (isMipsN32Abi(F) == Config->MipsN32Abi) 55 return true; 56 } 57 58 if (!Config->Emulation.empty()) 59 error(toString(F) + " is incompatible with " + Config->Emulation); 60 else 61 error(toString(F) + " is incompatible with " + toString(getFirstElf())); 62 return false; 63 } 64 65 // Add symbols in File to the symbol table. 66 template <class ELFT> void SymbolTable::addFile(InputFile *File) { 67 if (!isCompatible<ELFT>(File)) 68 return; 69 70 // Binary file 71 if (auto *F = dyn_cast<BinaryFile>(File)) { 72 BinaryFiles.push_back(F); 73 F->parse<ELFT>(); 74 return; 75 } 76 77 // .a file 78 if (auto *F = dyn_cast<ArchiveFile>(File)) { 79 F->parse<ELFT>(); 80 return; 81 } 82 83 // Lazy object file 84 if (auto *F = dyn_cast<LazyObjFile>(File)) { 85 F->parse<ELFT>(); 86 return; 87 } 88 89 if (Config->Trace) 90 message(toString(File)); 91 92 // .so file 93 if (auto *F = dyn_cast<SharedFile<ELFT>>(File)) { 94 // DSOs are uniquified not by filename but by soname. 95 F->parseSoName(); 96 if (errorCount() || !SoNames.insert(F->SoName).second) 97 return; 98 SharedFiles.push_back(F); 99 F->parseRest(); 100 return; 101 } 102 103 // LLVM bitcode file 104 if (auto *F = dyn_cast<BitcodeFile>(File)) { 105 BitcodeFiles.push_back(F); 106 F->parse<ELFT>(ComdatGroups); 107 return; 108 } 109 110 // Regular object file 111 ObjectFiles.push_back(File); 112 cast<ObjFile<ELFT>>(File)->parse(ComdatGroups); 113 } 114 115 // This function is where all the optimizations of link-time 116 // optimization happens. When LTO is in use, some input files are 117 // not in native object file format but in the LLVM bitcode format. 118 // This function compiles bitcode files into a few big native files 119 // using LLVM functions and replaces bitcode symbols with the results. 120 // Because all bitcode files that consist of a program are passed 121 // to the compiler at once, it can do whole-program optimization. 122 template <class ELFT> void SymbolTable::addCombinedLTOObject() { 123 if (BitcodeFiles.empty()) 124 return; 125 126 // Compile bitcode files and replace bitcode symbols. 127 LTO.reset(new BitcodeCompiler); 128 for (BitcodeFile *F : BitcodeFiles) 129 LTO->add(*F); 130 131 for (InputFile *File : LTO->compile()) { 132 DenseSet<CachedHashStringRef> DummyGroups; 133 cast<ObjFile<ELFT>>(File)->parse(DummyGroups); 134 ObjectFiles.push_back(File); 135 } 136 } 137 138 template <class ELFT> 139 Defined *SymbolTable::addAbsolute(StringRef Name, uint8_t Visibility, 140 uint8_t Binding) { 141 Symbol *Sym = addRegular<ELFT>(Name, Visibility, STT_NOTYPE, 0, 0, Binding, 142 nullptr, nullptr); 143 return cast<Defined>(Sym); 144 } 145 146 // Set a flag for --trace-symbol so that we can print out a log message 147 // if a new symbol with the same name is inserted into the symbol table. 148 void SymbolTable::trace(StringRef Name) { 149 SymMap.insert({CachedHashStringRef(Name), -1}); 150 } 151 152 // Rename SYM as __wrap_SYM. The original symbol is preserved as __real_SYM. 153 // Used to implement --wrap. 154 template <class ELFT> void SymbolTable::addSymbolWrap(StringRef Name) { 155 Symbol *Sym = find(Name); 156 if (!Sym) 157 return; 158 Symbol *Real = addUndefined<ELFT>(Saver.save("__real_" + Name)); 159 Symbol *Wrap = addUndefined<ELFT>(Saver.save("__wrap_" + Name)); 160 WrappedSymbols.push_back({Sym, Real, Wrap}); 161 162 // We want to tell LTO not to inline symbols to be overwritten 163 // because LTO doesn't know the final symbol contents after renaming. 164 Real->CanInline = false; 165 Sym->CanInline = false; 166 167 // Tell LTO not to eliminate these symbols. 168 Sym->IsUsedInRegularObj = true; 169 Wrap->IsUsedInRegularObj = true; 170 } 171 172 // Apply symbol renames created by -wrap. The renames are created 173 // before LTO in addSymbolWrap() to have a chance to inform LTO (if 174 // LTO is running) not to include these symbols in IPO. Now that the 175 // symbols are finalized, we can perform the replacement. 176 void SymbolTable::applySymbolWrap() { 177 // This function rotates 3 symbols: 178 // 179 // __real_sym becomes sym 180 // sym becomes __wrap_sym 181 // __wrap_sym becomes __real_sym 182 // 183 // The last part is special in that we don't want to change what references to 184 // __wrap_sym point to, we just want have __real_sym in the symbol table. 185 186 for (WrappedSymbol &W : WrappedSymbols) { 187 // First, make a copy of __real_sym. 188 Symbol *Real = nullptr; 189 if (W.Real->isDefined()) { 190 Real = (Symbol *)make<SymbolUnion>(); 191 memcpy(Real, W.Real, sizeof(SymbolUnion)); 192 } 193 194 // Replace __real_sym with sym and sym with __wrap_sym. 195 memcpy(W.Real, W.Sym, sizeof(SymbolUnion)); 196 memcpy(W.Sym, W.Wrap, sizeof(SymbolUnion)); 197 198 // We now have two copies of __wrap_sym. Drop one. 199 W.Wrap->IsUsedInRegularObj = false; 200 201 if (Real) 202 SymVector.push_back(Real); 203 } 204 } 205 206 static uint8_t getMinVisibility(uint8_t VA, uint8_t VB) { 207 if (VA == STV_DEFAULT) 208 return VB; 209 if (VB == STV_DEFAULT) 210 return VA; 211 return std::min(VA, VB); 212 } 213 214 // Find an existing symbol or create and insert a new one. 215 std::pair<Symbol *, bool> SymbolTable::insert(StringRef Name) { 216 // <name>@@<version> means the symbol is the default version. In that 217 // case <name>@@<version> will be used to resolve references to <name>. 218 // 219 // Since this is a hot path, the following string search code is 220 // optimized for speed. StringRef::find(char) is much faster than 221 // StringRef::find(StringRef). 222 size_t Pos = Name.find('@'); 223 if (Pos != StringRef::npos && Pos + 1 < Name.size() && Name[Pos + 1] == '@') 224 Name = Name.take_front(Pos); 225 226 auto P = SymMap.insert({CachedHashStringRef(Name), (int)SymVector.size()}); 227 int &SymIndex = P.first->second; 228 bool IsNew = P.second; 229 bool Traced = false; 230 231 if (SymIndex == -1) { 232 SymIndex = SymVector.size(); 233 IsNew = Traced = true; 234 } 235 236 Symbol *Sym; 237 if (IsNew) { 238 Sym = (Symbol *)make<SymbolUnion>(); 239 Sym->InVersionScript = false; 240 Sym->Visibility = STV_DEFAULT; 241 Sym->IsUsedInRegularObj = false; 242 Sym->ExportDynamic = false; 243 Sym->CanInline = true; 244 Sym->Traced = Traced; 245 Sym->VersionId = Config->DefaultSymbolVersion; 246 SymVector.push_back(Sym); 247 } else { 248 Sym = SymVector[SymIndex]; 249 } 250 return {Sym, IsNew}; 251 } 252 253 // Find an existing symbol or create and insert a new one, then apply the given 254 // attributes. 255 std::pair<Symbol *, bool> SymbolTable::insert(StringRef Name, uint8_t Type, 256 uint8_t Visibility, 257 bool CanOmitFromDynSym, 258 InputFile *File) { 259 Symbol *S; 260 bool WasInserted; 261 std::tie(S, WasInserted) = insert(Name); 262 263 // Merge in the new symbol's visibility. 264 S->Visibility = getMinVisibility(S->Visibility, Visibility); 265 266 if (!CanOmitFromDynSym && (Config->Shared || Config->ExportDynamic)) 267 S->ExportDynamic = true; 268 269 if (!File || File->kind() == InputFile::ObjKind) 270 S->IsUsedInRegularObj = true; 271 272 if (!WasInserted && S->Type != Symbol::UnknownType && 273 ((Type == STT_TLS) != S->isTls())) { 274 error("TLS attribute mismatch: " + toString(*S) + "\n>>> defined in " + 275 toString(S->File) + "\n>>> defined in " + toString(File)); 276 } 277 278 return {S, WasInserted}; 279 } 280 281 template <class ELFT> Symbol *SymbolTable::addUndefined(StringRef Name) { 282 return addUndefined<ELFT>(Name, STB_GLOBAL, STV_DEFAULT, 283 /*Type*/ 0, 284 /*CanOmitFromDynSym*/ false, /*File*/ nullptr); 285 } 286 287 static uint8_t getVisibility(uint8_t StOther) { return StOther & 3; } 288 289 template <class ELFT> 290 Symbol *SymbolTable::addUndefined(StringRef Name, uint8_t Binding, 291 uint8_t StOther, uint8_t Type, 292 bool CanOmitFromDynSym, InputFile *File) { 293 Symbol *S; 294 bool WasInserted; 295 uint8_t Visibility = getVisibility(StOther); 296 std::tie(S, WasInserted) = 297 insert(Name, Type, Visibility, CanOmitFromDynSym, File); 298 // An undefined symbol with non default visibility must be satisfied 299 // in the same DSO. 300 if (WasInserted || (isa<SharedSymbol>(S) && Visibility != STV_DEFAULT)) { 301 replaceSymbol<Undefined>(S, File, Name, Binding, StOther, Type); 302 return S; 303 } 304 if (S->isShared() || S->isLazy() || (S->isUndefined() && Binding != STB_WEAK)) 305 S->Binding = Binding; 306 if (Binding != STB_WEAK) { 307 if (auto *SS = dyn_cast<SharedSymbol>(S)) 308 if (!Config->GcSections) 309 SS->getFile<ELFT>()->IsNeeded = true; 310 } 311 if (auto *L = dyn_cast<Lazy>(S)) { 312 // An undefined weak will not fetch archive members. See comment on Lazy in 313 // Symbols.h for the details. 314 if (Binding == STB_WEAK) 315 L->Type = Type; 316 else if (InputFile *F = L->fetch()) 317 addFile<ELFT>(F); 318 } 319 return S; 320 } 321 322 // Using .symver foo,foo@@VER unfortunately creates two symbols: foo and 323 // foo@@VER. We want to effectively ignore foo, so give precedence to 324 // foo@@VER. 325 // FIXME: If users can transition to using 326 // .symver foo,foo@@@VER 327 // we can delete this hack. 328 static int compareVersion(Symbol *S, StringRef Name) { 329 bool A = Name.contains("@@"); 330 bool B = S->getName().contains("@@"); 331 if (A && !B) 332 return 1; 333 if (!A && B) 334 return -1; 335 return 0; 336 } 337 338 // We have a new defined symbol with the specified binding. Return 1 if the new 339 // symbol should win, -1 if the new symbol should lose, or 0 if both symbols are 340 // strong defined symbols. 341 static int compareDefined(Symbol *S, bool WasInserted, uint8_t Binding, 342 StringRef Name) { 343 if (WasInserted) 344 return 1; 345 if (!S->isDefined()) 346 return 1; 347 if (int R = compareVersion(S, Name)) 348 return R; 349 if (Binding == STB_WEAK) 350 return -1; 351 if (S->isWeak()) 352 return 1; 353 return 0; 354 } 355 356 // We have a new non-common defined symbol with the specified binding. Return 1 357 // if the new symbol should win, -1 if the new symbol should lose, or 0 if there 358 // is a conflict. If the new symbol wins, also update the binding. 359 static int compareDefinedNonCommon(Symbol *S, bool WasInserted, uint8_t Binding, 360 bool IsAbsolute, uint64_t Value, 361 StringRef Name) { 362 if (int Cmp = compareDefined(S, WasInserted, Binding, Name)) 363 return Cmp; 364 if (auto *R = dyn_cast<Defined>(S)) { 365 if (R->Section && isa<BssSection>(R->Section)) { 366 // Non-common symbols take precedence over common symbols. 367 if (Config->WarnCommon) 368 warn("common " + S->getName() + " is overridden"); 369 return 1; 370 } 371 if (R->Section == nullptr && Binding == STB_GLOBAL && IsAbsolute && 372 R->Value == Value) 373 return -1; 374 } 375 return 0; 376 } 377 378 Symbol *SymbolTable::addCommon(StringRef N, uint64_t Size, uint32_t Alignment, 379 uint8_t Binding, uint8_t StOther, uint8_t Type, 380 InputFile *File) { 381 Symbol *S; 382 bool WasInserted; 383 std::tie(S, WasInserted) = insert(N, Type, getVisibility(StOther), 384 /*CanOmitFromDynSym*/ false, File); 385 int Cmp = compareDefined(S, WasInserted, Binding, N); 386 if (Cmp > 0) { 387 auto *Bss = make<BssSection>("COMMON", Size, Alignment); 388 Bss->File = File; 389 Bss->Live = !Config->GcSections; 390 InputSections.push_back(Bss); 391 392 replaceSymbol<Defined>(S, File, N, Binding, StOther, Type, 0, Size, Bss); 393 } else if (Cmp == 0) { 394 auto *D = cast<Defined>(S); 395 auto *Bss = dyn_cast_or_null<BssSection>(D->Section); 396 if (!Bss) { 397 // Non-common symbols take precedence over common symbols. 398 if (Config->WarnCommon) 399 warn("common " + S->getName() + " is overridden"); 400 return S; 401 } 402 403 if (Config->WarnCommon) 404 warn("multiple common of " + D->getName()); 405 406 Bss->Alignment = std::max(Bss->Alignment, Alignment); 407 if (Size > Bss->Size) { 408 D->File = Bss->File = File; 409 D->Size = Bss->Size = Size; 410 } 411 } 412 return S; 413 } 414 415 static void warnOrError(const Twine &Msg) { 416 if (Config->AllowMultipleDefinition) 417 warn(Msg); 418 else 419 error(Msg); 420 } 421 422 static void reportDuplicate(Symbol *Sym, InputFile *NewFile) { 423 warnOrError("duplicate symbol: " + toString(*Sym) + "\n>>> defined in " + 424 toString(Sym->File) + "\n>>> defined in " + toString(NewFile)); 425 } 426 427 template <class ELFT> 428 static void reportDuplicate(Symbol *Sym, InputSectionBase *ErrSec, 429 typename ELFT::uint ErrOffset) { 430 Defined *D = cast<Defined>(Sym); 431 if (!D->Section || !ErrSec) { 432 reportDuplicate(Sym, ErrSec ? ErrSec->File : nullptr); 433 return; 434 } 435 436 // Construct and print an error message in the form of: 437 // 438 // ld.lld: error: duplicate symbol: foo 439 // >>> defined at bar.c:30 440 // >>> bar.o (/home/alice/src/bar.o) 441 // >>> defined at baz.c:563 442 // >>> baz.o in archive libbaz.a 443 auto *Sec1 = cast<InputSectionBase>(D->Section); 444 std::string Src1 = Sec1->getSrcMsg<ELFT>(*Sym, D->Value); 445 std::string Obj1 = Sec1->getObjMsg(D->Value); 446 std::string Src2 = ErrSec->getSrcMsg<ELFT>(*Sym, ErrOffset); 447 std::string Obj2 = ErrSec->getObjMsg(ErrOffset); 448 449 std::string Msg = "duplicate symbol: " + toString(*Sym) + "\n>>> defined at "; 450 if (!Src1.empty()) 451 Msg += Src1 + "\n>>> "; 452 Msg += Obj1 + "\n>>> defined at "; 453 if (!Src2.empty()) 454 Msg += Src2 + "\n>>> "; 455 Msg += Obj2; 456 warnOrError(Msg); 457 } 458 459 template <typename ELFT> 460 Symbol *SymbolTable::addRegular(StringRef Name, uint8_t StOther, uint8_t Type, 461 uint64_t Value, uint64_t Size, uint8_t Binding, 462 SectionBase *Section, InputFile *File) { 463 Symbol *S; 464 bool WasInserted; 465 std::tie(S, WasInserted) = insert(Name, Type, getVisibility(StOther), 466 /*CanOmitFromDynSym*/ false, File); 467 int Cmp = compareDefinedNonCommon(S, WasInserted, Binding, Section == nullptr, 468 Value, Name); 469 if (Cmp > 0) 470 replaceSymbol<Defined>(S, File, Name, Binding, StOther, Type, Value, Size, 471 Section); 472 else if (Cmp == 0) 473 reportDuplicate<ELFT>(S, dyn_cast_or_null<InputSectionBase>(Section), 474 Value); 475 return S; 476 } 477 478 template <typename ELFT> 479 void SymbolTable::addShared(StringRef Name, SharedFile<ELFT> *File, 480 const typename ELFT::Sym &Sym, uint32_t Alignment, 481 const typename ELFT::Verdef *Verdef) { 482 // DSO symbols do not affect visibility in the output, so we pass STV_DEFAULT 483 // as the visibility, which will leave the visibility in the symbol table 484 // unchanged. 485 Symbol *S; 486 bool WasInserted; 487 std::tie(S, WasInserted) = insert(Name, Sym.getType(), STV_DEFAULT, 488 /*CanOmitFromDynSym*/ true, File); 489 // Make sure we preempt DSO symbols with default visibility. 490 if (Sym.getVisibility() == STV_DEFAULT) 491 S->ExportDynamic = true; 492 493 // An undefined symbol with non default visibility must be satisfied 494 // in the same DSO. 495 if (WasInserted || ((S->isUndefined() || S->isLazy()) && 496 S->getVisibility() == STV_DEFAULT)) { 497 uint8_t Binding = S->Binding; 498 replaceSymbol<SharedSymbol>(S, File, Name, Sym.getBinding(), Sym.st_other, 499 Sym.getType(), Sym.st_value, Sym.st_size, 500 Alignment, Verdef); 501 if (!WasInserted) { 502 S->Binding = Binding; 503 if (!S->isWeak() && !Config->GcSections) 504 File->IsNeeded = true; 505 } 506 } 507 } 508 509 Symbol *SymbolTable::addBitcode(StringRef Name, uint8_t Binding, 510 uint8_t StOther, uint8_t Type, 511 bool CanOmitFromDynSym, BitcodeFile *F) { 512 Symbol *S; 513 bool WasInserted; 514 std::tie(S, WasInserted) = 515 insert(Name, Type, getVisibility(StOther), CanOmitFromDynSym, F); 516 int Cmp = compareDefinedNonCommon(S, WasInserted, Binding, 517 /*IsAbs*/ false, /*Value*/ 0, Name); 518 if (Cmp > 0) 519 replaceSymbol<Defined>(S, F, Name, Binding, StOther, Type, 0, 0, nullptr); 520 else if (Cmp == 0) 521 reportDuplicate(S, F); 522 return S; 523 } 524 525 Symbol *SymbolTable::find(StringRef Name) { 526 auto It = SymMap.find(CachedHashStringRef(Name)); 527 if (It == SymMap.end()) 528 return nullptr; 529 if (It->second == -1) 530 return nullptr; 531 return SymVector[It->second]; 532 } 533 534 template <class ELFT> 535 Symbol *SymbolTable::addLazyArchive(StringRef Name, ArchiveFile *F, 536 const object::Archive::Symbol Sym) { 537 Symbol *S; 538 bool WasInserted; 539 std::tie(S, WasInserted) = insert(Name); 540 if (WasInserted) { 541 replaceSymbol<LazyArchive>(S, F, Sym, Symbol::UnknownType); 542 return S; 543 } 544 if (!S->isUndefined()) 545 return S; 546 547 // An undefined weak will not fetch archive members. See comment on Lazy in 548 // Symbols.h for the details. 549 if (S->isWeak()) { 550 replaceSymbol<LazyArchive>(S, F, Sym, S->Type); 551 S->Binding = STB_WEAK; 552 return S; 553 } 554 std::pair<MemoryBufferRef, uint64_t> MBInfo = F->getMember(&Sym); 555 if (!MBInfo.first.getBuffer().empty()) 556 addFile<ELFT>(createObjectFile(MBInfo.first, F->getName(), MBInfo.second)); 557 return S; 558 } 559 560 template <class ELFT> 561 void SymbolTable::addLazyObject(StringRef Name, LazyObjFile &Obj) { 562 Symbol *S; 563 bool WasInserted; 564 std::tie(S, WasInserted) = insert(Name); 565 if (WasInserted) { 566 replaceSymbol<LazyObject>(S, &Obj, Name, Symbol::UnknownType); 567 return; 568 } 569 if (!S->isUndefined()) 570 return; 571 572 // See comment for addLazyArchive above. 573 if (S->isWeak()) 574 replaceSymbol<LazyObject>(S, &Obj, Name, S->Type); 575 else if (InputFile *F = Obj.fetch()) 576 addFile<ELFT>(F); 577 } 578 579 // If we already saw this symbol, force loading its file. 580 template <class ELFT> void SymbolTable::fetchIfLazy(StringRef Name) { 581 if (Symbol *B = find(Name)) { 582 // Mark the symbol not to be eliminated by LTO 583 // even if it is a bitcode symbol. 584 B->IsUsedInRegularObj = true; 585 if (auto *L = dyn_cast_or_null<Lazy>(B)) 586 if (InputFile *File = L->fetch()) 587 addFile<ELFT>(File); 588 } 589 } 590 591 // This function takes care of the case in which shared libraries depend on 592 // the user program (not the other way, which is usual). Shared libraries 593 // may have undefined symbols, expecting that the user program provides 594 // the definitions for them. An example is BSD's __progname symbol. 595 // We need to put such symbols to the main program's .dynsym so that 596 // shared libraries can find them. 597 // Except this, we ignore undefined symbols in DSOs. 598 template <class ELFT> void SymbolTable::scanShlibUndefined() { 599 for (InputFile *F : SharedFiles) { 600 for (StringRef U : cast<SharedFile<ELFT>>(F)->getUndefinedSymbols()) { 601 Symbol *Sym = find(U); 602 if (!Sym || !Sym->isDefined()) 603 continue; 604 Sym->ExportDynamic = true; 605 606 // If -dynamic-list is given, the default version is set to 607 // VER_NDX_LOCAL, which prevents a symbol to be exported via .dynsym. 608 // Set to VER_NDX_GLOBAL so the symbol will be handled as if it were 609 // specified by -dynamic-list. 610 Sym->VersionId = VER_NDX_GLOBAL; 611 } 612 } 613 } 614 615 // Initialize DemangledSyms with a map from demangled symbols to symbol 616 // objects. Used to handle "extern C++" directive in version scripts. 617 // 618 // The map will contain all demangled symbols. That can be very large, 619 // and in LLD we generally want to avoid do anything for each symbol. 620 // Then, why are we doing this? Here's why. 621 // 622 // Users can use "extern C++ {}" directive to match against demangled 623 // C++ symbols. For example, you can write a pattern such as 624 // "llvm::*::foo(int, ?)". Obviously, there's no way to handle this 625 // other than trying to match a pattern against all demangled symbols. 626 // So, if "extern C++" feature is used, we need to demangle all known 627 // symbols. 628 StringMap<std::vector<Symbol *>> &SymbolTable::getDemangledSyms() { 629 if (!DemangledSyms) { 630 DemangledSyms.emplace(); 631 for (Symbol *Sym : SymVector) { 632 if (!Sym->isDefined()) 633 continue; 634 if (Optional<std::string> S = demangleItanium(Sym->getName())) 635 (*DemangledSyms)[*S].push_back(Sym); 636 else 637 (*DemangledSyms)[Sym->getName()].push_back(Sym); 638 } 639 } 640 return *DemangledSyms; 641 } 642 643 std::vector<Symbol *> SymbolTable::findByVersion(SymbolVersion Ver) { 644 if (Ver.IsExternCpp) 645 return getDemangledSyms().lookup(Ver.Name); 646 if (Symbol *B = find(Ver.Name)) 647 if (B->isDefined()) 648 return {B}; 649 return {}; 650 } 651 652 std::vector<Symbol *> SymbolTable::findAllByVersion(SymbolVersion Ver) { 653 std::vector<Symbol *> Res; 654 StringMatcher M(Ver.Name); 655 656 if (Ver.IsExternCpp) { 657 for (auto &P : getDemangledSyms()) 658 if (M.match(P.first())) 659 Res.insert(Res.end(), P.second.begin(), P.second.end()); 660 return Res; 661 } 662 663 for (Symbol *Sym : SymVector) 664 if (Sym->isDefined() && M.match(Sym->getName())) 665 Res.push_back(Sym); 666 return Res; 667 } 668 669 // If there's only one anonymous version definition in a version 670 // script file, the script does not actually define any symbol version, 671 // but just specifies symbols visibilities. 672 void SymbolTable::handleAnonymousVersion() { 673 for (SymbolVersion &Ver : Config->VersionScriptGlobals) 674 assignExactVersion(Ver, VER_NDX_GLOBAL, "global"); 675 for (SymbolVersion &Ver : Config->VersionScriptGlobals) 676 assignWildcardVersion(Ver, VER_NDX_GLOBAL); 677 for (SymbolVersion &Ver : Config->VersionScriptLocals) 678 assignExactVersion(Ver, VER_NDX_LOCAL, "local"); 679 for (SymbolVersion &Ver : Config->VersionScriptLocals) 680 assignWildcardVersion(Ver, VER_NDX_LOCAL); 681 } 682 683 // Handles -dynamic-list. 684 void SymbolTable::handleDynamicList() { 685 for (SymbolVersion &Ver : Config->DynamicList) { 686 std::vector<Symbol *> Syms; 687 if (Ver.HasWildcard) 688 Syms = findByVersion(Ver); 689 else 690 Syms = findAllByVersion(Ver); 691 692 for (Symbol *B : Syms) { 693 if (!Config->Shared) 694 B->ExportDynamic = true; 695 else if (B->includeInDynsym()) 696 B->IsPreemptible = true; 697 } 698 } 699 } 700 701 // Set symbol versions to symbols. This function handles patterns 702 // containing no wildcard characters. 703 void SymbolTable::assignExactVersion(SymbolVersion Ver, uint16_t VersionId, 704 StringRef VersionName) { 705 if (Ver.HasWildcard) 706 return; 707 708 // Get a list of symbols which we need to assign the version to. 709 std::vector<Symbol *> Syms = findByVersion(Ver); 710 if (Syms.empty()) { 711 if (Config->NoUndefinedVersion) 712 error("version script assignment of '" + VersionName + "' to symbol '" + 713 Ver.Name + "' failed: symbol not defined"); 714 return; 715 } 716 717 // Assign the version. 718 for (Symbol *Sym : Syms) { 719 // Skip symbols containing version info because symbol versions 720 // specified by symbol names take precedence over version scripts. 721 // See parseSymbolVersion(). 722 if (Sym->getName().contains('@')) 723 continue; 724 725 if (Sym->InVersionScript) 726 warn("duplicate symbol '" + Ver.Name + "' in version script"); 727 Sym->VersionId = VersionId; 728 Sym->InVersionScript = true; 729 } 730 } 731 732 void SymbolTable::assignWildcardVersion(SymbolVersion Ver, uint16_t VersionId) { 733 if (!Ver.HasWildcard) 734 return; 735 736 // Exact matching takes precendence over fuzzy matching, 737 // so we set a version to a symbol only if no version has been assigned 738 // to the symbol. This behavior is compatible with GNU. 739 for (Symbol *B : findAllByVersion(Ver)) 740 if (B->VersionId == Config->DefaultSymbolVersion) 741 B->VersionId = VersionId; 742 } 743 744 // This function processes version scripts by updating VersionId 745 // member of symbols. 746 void SymbolTable::scanVersionScript() { 747 // Handle edge cases first. 748 handleAnonymousVersion(); 749 handleDynamicList(); 750 751 // Now we have version definitions, so we need to set version ids to symbols. 752 // Each version definition has a glob pattern, and all symbols that match 753 // with the pattern get that version. 754 755 // First, we assign versions to exact matching symbols, 756 // i.e. version definitions not containing any glob meta-characters. 757 for (VersionDefinition &V : Config->VersionDefinitions) 758 for (SymbolVersion &Ver : V.Globals) 759 assignExactVersion(Ver, V.Id, V.Name); 760 761 // Next, we assign versions to fuzzy matching symbols, 762 // i.e. version definitions containing glob meta-characters. 763 // Note that because the last match takes precedence over previous matches, 764 // we iterate over the definitions in the reverse order. 765 for (VersionDefinition &V : llvm::reverse(Config->VersionDefinitions)) 766 for (SymbolVersion &Ver : V.Globals) 767 assignWildcardVersion(Ver, V.Id); 768 769 // Symbol themselves might know their versions because symbols 770 // can contain versions in the form of <name>@<version>. 771 // Let them parse and update their names to exclude version suffix. 772 for (Symbol *Sym : SymVector) 773 Sym->parseSymbolVersion(); 774 } 775 776 template void SymbolTable::addSymbolWrap<ELF32LE>(StringRef); 777 template void SymbolTable::addSymbolWrap<ELF32BE>(StringRef); 778 template void SymbolTable::addSymbolWrap<ELF64LE>(StringRef); 779 template void SymbolTable::addSymbolWrap<ELF64BE>(StringRef); 780 781 template Symbol *SymbolTable::addUndefined<ELF32LE>(StringRef); 782 template Symbol *SymbolTable::addUndefined<ELF32BE>(StringRef); 783 template Symbol *SymbolTable::addUndefined<ELF64LE>(StringRef); 784 template Symbol *SymbolTable::addUndefined<ELF64BE>(StringRef); 785 786 template Symbol *SymbolTable::addUndefined<ELF32LE>(StringRef, uint8_t, uint8_t, 787 uint8_t, bool, InputFile *); 788 template Symbol *SymbolTable::addUndefined<ELF32BE>(StringRef, uint8_t, uint8_t, 789 uint8_t, bool, InputFile *); 790 template Symbol *SymbolTable::addUndefined<ELF64LE>(StringRef, uint8_t, uint8_t, 791 uint8_t, bool, InputFile *); 792 template Symbol *SymbolTable::addUndefined<ELF64BE>(StringRef, uint8_t, uint8_t, 793 uint8_t, bool, InputFile *); 794 795 template void SymbolTable::addCombinedLTOObject<ELF32LE>(); 796 template void SymbolTable::addCombinedLTOObject<ELF32BE>(); 797 template void SymbolTable::addCombinedLTOObject<ELF64LE>(); 798 template void SymbolTable::addCombinedLTOObject<ELF64BE>(); 799 800 template Symbol *SymbolTable::addRegular<ELF32LE>(StringRef, uint8_t, uint8_t, 801 uint64_t, uint64_t, uint8_t, 802 SectionBase *, InputFile *); 803 template Symbol *SymbolTable::addRegular<ELF32BE>(StringRef, uint8_t, uint8_t, 804 uint64_t, uint64_t, uint8_t, 805 SectionBase *, InputFile *); 806 template Symbol *SymbolTable::addRegular<ELF64LE>(StringRef, uint8_t, uint8_t, 807 uint64_t, uint64_t, uint8_t, 808 SectionBase *, InputFile *); 809 template Symbol *SymbolTable::addRegular<ELF64BE>(StringRef, uint8_t, uint8_t, 810 uint64_t, uint64_t, uint8_t, 811 SectionBase *, InputFile *); 812 813 template Defined *SymbolTable::addAbsolute<ELF32LE>(StringRef, uint8_t, 814 uint8_t); 815 template Defined *SymbolTable::addAbsolute<ELF32BE>(StringRef, uint8_t, 816 uint8_t); 817 template Defined *SymbolTable::addAbsolute<ELF64LE>(StringRef, uint8_t, 818 uint8_t); 819 template Defined *SymbolTable::addAbsolute<ELF64BE>(StringRef, uint8_t, 820 uint8_t); 821 822 template Symbol * 823 SymbolTable::addLazyArchive<ELF32LE>(StringRef, ArchiveFile *, 824 const object::Archive::Symbol); 825 template Symbol * 826 SymbolTable::addLazyArchive<ELF32BE>(StringRef, ArchiveFile *, 827 const object::Archive::Symbol); 828 template Symbol * 829 SymbolTable::addLazyArchive<ELF64LE>(StringRef, ArchiveFile *, 830 const object::Archive::Symbol); 831 template Symbol * 832 SymbolTable::addLazyArchive<ELF64BE>(StringRef, ArchiveFile *, 833 const object::Archive::Symbol); 834 835 template void SymbolTable::addLazyObject<ELF32LE>(StringRef, LazyObjFile &); 836 template void SymbolTable::addLazyObject<ELF32BE>(StringRef, LazyObjFile &); 837 template void SymbolTable::addLazyObject<ELF64LE>(StringRef, LazyObjFile &); 838 template void SymbolTable::addLazyObject<ELF64BE>(StringRef, LazyObjFile &); 839 840 template void SymbolTable::addShared<ELF32LE>(StringRef, SharedFile<ELF32LE> *, 841 const typename ELF32LE::Sym &, 842 uint32_t Alignment, 843 const typename ELF32LE::Verdef *); 844 template void SymbolTable::addShared<ELF32BE>(StringRef, SharedFile<ELF32BE> *, 845 const typename ELF32BE::Sym &, 846 uint32_t Alignment, 847 const typename ELF32BE::Verdef *); 848 template void SymbolTable::addShared<ELF64LE>(StringRef, SharedFile<ELF64LE> *, 849 const typename ELF64LE::Sym &, 850 uint32_t Alignment, 851 const typename ELF64LE::Verdef *); 852 template void SymbolTable::addShared<ELF64BE>(StringRef, SharedFile<ELF64BE> *, 853 const typename ELF64BE::Sym &, 854 uint32_t Alignment, 855 const typename ELF64BE::Verdef *); 856 857 template void SymbolTable::fetchIfLazy<ELF32LE>(StringRef); 858 template void SymbolTable::fetchIfLazy<ELF32BE>(StringRef); 859 template void SymbolTable::fetchIfLazy<ELF64LE>(StringRef); 860 template void SymbolTable::fetchIfLazy<ELF64BE>(StringRef); 861 862 template void SymbolTable::scanShlibUndefined<ELF32LE>(); 863 template void SymbolTable::scanShlibUndefined<ELF32BE>(); 864 template void SymbolTable::scanShlibUndefined<ELF64LE>(); 865 template void SymbolTable::scanShlibUndefined<ELF64BE>(); 866