1 //===- SymbolTable.cpp ----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Symbol table is a bag of all known symbols. We put all symbols of 10 // all input files to the symbol table. The symbol table is basically 11 // a hash table with the logic to resolve symbol name conflicts using 12 // the symbol types. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "SymbolTable.h" 17 #include "Config.h" 18 #include "LinkerScript.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "lld/Common/ErrorHandler.h" 22 #include "lld/Common/Memory.h" 23 #include "lld/Common/Strings.h" 24 #include "llvm/ADT/STLExtras.h" 25 26 using namespace llvm; 27 using namespace llvm::object; 28 using namespace llvm::ELF; 29 30 using namespace lld; 31 using namespace lld::elf; 32 33 SymbolTable *elf::Symtab; 34 35 static InputFile *getFirstElf() { 36 if (!ObjectFiles.empty()) 37 return ObjectFiles[0]; 38 if (!SharedFiles.empty()) 39 return SharedFiles[0]; 40 return BitcodeFiles[0]; 41 } 42 43 // All input object files must be for the same architecture 44 // (e.g. it does not make sense to link x86 object files with 45 // MIPS object files.) This function checks for that error. 46 static bool isCompatible(InputFile *F) { 47 if (!F->isElf() && !isa<BitcodeFile>(F)) 48 return true; 49 50 if (F->EKind == Config->EKind && F->EMachine == Config->EMachine) { 51 if (Config->EMachine != EM_MIPS) 52 return true; 53 if (isMipsN32Abi(F) == Config->MipsN32Abi) 54 return true; 55 } 56 57 if (!Config->Emulation.empty()) 58 error(toString(F) + " is incompatible with " + Config->Emulation); 59 else 60 error(toString(F) + " is incompatible with " + toString(getFirstElf())); 61 return false; 62 } 63 64 // Add symbols in File to the symbol table. 65 template <class ELFT> void SymbolTable::addFile(InputFile *File) { 66 if (!isCompatible(File)) 67 return; 68 69 // Binary file 70 if (auto *F = dyn_cast<BinaryFile>(File)) { 71 BinaryFiles.push_back(F); 72 F->parse(); 73 return; 74 } 75 76 // .a file 77 if (auto *F = dyn_cast<ArchiveFile>(File)) { 78 F->parse<ELFT>(); 79 return; 80 } 81 82 // Lazy object file 83 if (auto *F = dyn_cast<LazyObjFile>(File)) { 84 LazyObjFiles.push_back(F); 85 F->parse<ELFT>(); 86 return; 87 } 88 89 if (Config->Trace) 90 message(toString(File)); 91 92 // .so file 93 if (auto *F = dyn_cast<SharedFile<ELFT>>(File)) { 94 // DSOs are uniquified not by filename but by soname. 95 F->parseDynamic(); 96 if (errorCount()) 97 return; 98 99 // If a DSO appears more than once on the command line with and without 100 // --as-needed, --no-as-needed takes precedence over --as-needed because a 101 // user can add an extra DSO with --no-as-needed to force it to be added to 102 // the dependency list. 103 DenseMap<StringRef, InputFile *>::iterator It; 104 bool WasInserted; 105 std::tie(It, WasInserted) = SoNames.try_emplace(F->SoName, F); 106 cast<SharedFile<ELFT>>(It->second)->IsNeeded |= F->IsNeeded; 107 if (!WasInserted) 108 return; 109 110 SharedFiles.push_back(F); 111 F->parseRest(); 112 return; 113 } 114 115 // LLVM bitcode file 116 if (auto *F = dyn_cast<BitcodeFile>(File)) { 117 BitcodeFiles.push_back(F); 118 F->parse<ELFT>(ComdatGroups); 119 return; 120 } 121 122 // Regular object file 123 ObjectFiles.push_back(File); 124 cast<ObjFile<ELFT>>(File)->parse(ComdatGroups); 125 } 126 127 // This function is where all the optimizations of link-time 128 // optimization happens. When LTO is in use, some input files are 129 // not in native object file format but in the LLVM bitcode format. 130 // This function compiles bitcode files into a few big native files 131 // using LLVM functions and replaces bitcode symbols with the results. 132 // Because all bitcode files that the program consists of are passed 133 // to the compiler at once, it can do whole-program optimization. 134 template <class ELFT> void SymbolTable::addCombinedLTOObject() { 135 if (BitcodeFiles.empty()) 136 return; 137 138 // Compile bitcode files and replace bitcode symbols. 139 LTO.reset(new BitcodeCompiler); 140 for (BitcodeFile *F : BitcodeFiles) 141 LTO->add(*F); 142 143 for (InputFile *File : LTO->compile()) { 144 DenseSet<CachedHashStringRef> DummyGroups; 145 auto *Obj = cast<ObjFile<ELFT>>(File); 146 Obj->parse(DummyGroups); 147 for (Symbol *Sym : Obj->getGlobalSymbols()) 148 Sym->parseSymbolVersion(); 149 ObjectFiles.push_back(File); 150 } 151 } 152 153 // Set a flag for --trace-symbol so that we can print out a log message 154 // if a new symbol with the same name is inserted into the symbol table. 155 void SymbolTable::trace(StringRef Name) { 156 SymMap.insert({CachedHashStringRef(Name), -1}); 157 } 158 159 void SymbolTable::wrap(Symbol *Sym, Symbol *Real, Symbol *Wrap) { 160 // Swap symbols as instructed by -wrap. 161 int &Idx1 = SymMap[CachedHashStringRef(Sym->getName())]; 162 int &Idx2 = SymMap[CachedHashStringRef(Real->getName())]; 163 int &Idx3 = SymMap[CachedHashStringRef(Wrap->getName())]; 164 165 Idx2 = Idx1; 166 Idx1 = Idx3; 167 168 // Now renaming is complete. No one refers Real symbol. We could leave 169 // Real as-is, but if Real is written to the symbol table, that may 170 // contain irrelevant values. So, we copy all values from Sym to Real. 171 StringRef S = Real->getName(); 172 memcpy(Real, Sym, sizeof(SymbolUnion)); 173 Real->setName(S); 174 } 175 176 static uint8_t getMinVisibility(uint8_t VA, uint8_t VB) { 177 if (VA == STV_DEFAULT) 178 return VB; 179 if (VB == STV_DEFAULT) 180 return VA; 181 return std::min(VA, VB); 182 } 183 184 // Find an existing symbol or create and insert a new one. 185 std::pair<Symbol *, bool> SymbolTable::insertName(StringRef Name) { 186 // <name>@@<version> means the symbol is the default version. In that 187 // case <name>@@<version> will be used to resolve references to <name>. 188 // 189 // Since this is a hot path, the following string search code is 190 // optimized for speed. StringRef::find(char) is much faster than 191 // StringRef::find(StringRef). 192 size_t Pos = Name.find('@'); 193 if (Pos != StringRef::npos && Pos + 1 < Name.size() && Name[Pos + 1] == '@') 194 Name = Name.take_front(Pos); 195 196 auto P = SymMap.insert({CachedHashStringRef(Name), (int)SymVector.size()}); 197 int &SymIndex = P.first->second; 198 bool IsNew = P.second; 199 bool Traced = false; 200 201 if (SymIndex == -1) { 202 SymIndex = SymVector.size(); 203 IsNew = true; 204 Traced = true; 205 } 206 207 if (!IsNew) 208 return {SymVector[SymIndex], false}; 209 210 auto *Sym = reinterpret_cast<Symbol *>(make<SymbolUnion>()); 211 Sym->SymbolKind = Symbol::PlaceholderKind; 212 Sym->Visibility = STV_DEFAULT; 213 Sym->IsUsedInRegularObj = false; 214 Sym->ExportDynamic = false; 215 Sym->CanInline = true; 216 Sym->Traced = Traced; 217 Sym->VersionId = Config->DefaultSymbolVersion; 218 SymVector.push_back(Sym); 219 return {Sym, true}; 220 } 221 222 // Find an existing symbol or create and insert a new one, then apply the given 223 // attributes. 224 std::pair<Symbol *, bool> SymbolTable::insert(StringRef Name, 225 uint8_t Visibility, 226 bool CanOmitFromDynSym, 227 InputFile *File) { 228 Symbol *S; 229 bool WasInserted; 230 std::tie(S, WasInserted) = insertName(Name); 231 232 // Merge in the new symbol's visibility. 233 S->Visibility = getMinVisibility(S->Visibility, Visibility); 234 235 if (!CanOmitFromDynSym && (Config->Shared || Config->ExportDynamic)) 236 S->ExportDynamic = true; 237 238 if (!File || File->kind() == InputFile::ObjKind) 239 S->IsUsedInRegularObj = true; 240 241 return {S, WasInserted}; 242 } 243 244 static uint8_t getVisibility(uint8_t StOther) { return StOther & 3; } 245 246 template <class ELFT> 247 Symbol *SymbolTable::addUndefined(StringRef Name, uint8_t Binding, 248 uint8_t StOther, uint8_t Type, 249 bool CanOmitFromDynSym, InputFile *File) { 250 Symbol *S; 251 bool WasInserted; 252 uint8_t Visibility = getVisibility(StOther); 253 std::tie(S, WasInserted) = insert(Name, Visibility, CanOmitFromDynSym, File); 254 255 // An undefined symbol with non default visibility must be satisfied 256 // in the same DSO. 257 if (WasInserted || (isa<SharedSymbol>(S) && Visibility != STV_DEFAULT)) { 258 replaceSymbol<Undefined>(S, File, Name, Binding, StOther, Type); 259 return S; 260 } 261 262 if (S->isShared() || S->isLazy() || (S->isUndefined() && Binding != STB_WEAK)) 263 S->Binding = Binding; 264 265 if (S->isLazy()) { 266 // An undefined weak will not fetch archive members. See comment on Lazy in 267 // Symbols.h for the details. 268 if (Binding == STB_WEAK) { 269 S->Type = Type; 270 return S; 271 } 272 273 // Do extra check for --warn-backrefs. 274 // 275 // --warn-backrefs is an option to prevent an undefined reference from 276 // fetching an archive member written earlier in the command line. It can be 277 // used to keep compatibility with GNU linkers to some degree. 278 // I'll explain the feature and why you may find it useful in this comment. 279 // 280 // lld's symbol resolution semantics is more relaxed than traditional Unix 281 // linkers. For example, 282 // 283 // ld.lld foo.a bar.o 284 // 285 // succeeds even if bar.o contains an undefined symbol that has to be 286 // resolved by some object file in foo.a. Traditional Unix linkers don't 287 // allow this kind of backward reference, as they visit each file only once 288 // from left to right in the command line while resolving all undefined 289 // symbols at the moment of visiting. 290 // 291 // In the above case, since there's no undefined symbol when a linker visits 292 // foo.a, no files are pulled out from foo.a, and because the linker forgets 293 // about foo.a after visiting, it can't resolve undefined symbols in bar.o 294 // that could have been resolved otherwise. 295 // 296 // That lld accepts more relaxed form means that (besides it'd make more 297 // sense) you can accidentally write a command line or a build file that 298 // works only with lld, even if you have a plan to distribute it to wider 299 // users who may be using GNU linkers. With --warn-backrefs, you can detect 300 // a library order that doesn't work with other Unix linkers. 301 // 302 // The option is also useful to detect cyclic dependencies between static 303 // archives. Again, lld accepts 304 // 305 // ld.lld foo.a bar.a 306 // 307 // even if foo.a and bar.a depend on each other. With --warn-backrefs, it is 308 // handled as an error. 309 // 310 // Here is how the option works. We assign a group ID to each file. A file 311 // with a smaller group ID can pull out object files from an archive file 312 // with an equal or greater group ID. Otherwise, it is a reverse dependency 313 // and an error. 314 // 315 // A file outside --{start,end}-group gets a fresh ID when instantiated. All 316 // files within the same --{start,end}-group get the same group ID. E.g. 317 // 318 // ld.lld A B --start-group C D --end-group E 319 // 320 // A forms group 0. B form group 1. C and D (including their member object 321 // files) form group 2. E forms group 3. I think that you can see how this 322 // group assignment rule simulates the traditional linker's semantics. 323 bool Backref = 324 Config->WarnBackrefs && File && S->File->GroupId < File->GroupId; 325 fetchLazy<ELFT>(S); 326 327 // We don't report backward references to weak symbols as they can be 328 // overridden later. 329 if (Backref && !S->isWeak()) 330 warn("backward reference detected: " + Name + " in " + toString(File) + 331 " refers to " + toString(S->File)); 332 } 333 return S; 334 } 335 336 // Using .symver foo,foo@@VER unfortunately creates two symbols: foo and 337 // foo@@VER. We want to effectively ignore foo, so give precedence to 338 // foo@@VER. 339 // FIXME: If users can transition to using 340 // .symver foo,foo@@@VER 341 // we can delete this hack. 342 static int compareVersion(Symbol *S, StringRef Name) { 343 bool A = Name.contains("@@"); 344 bool B = S->getName().contains("@@"); 345 if (A && !B) 346 return 1; 347 if (!A && B) 348 return -1; 349 return 0; 350 } 351 352 // We have a new defined symbol with the specified binding. Return 1 if the new 353 // symbol should win, -1 if the new symbol should lose, or 0 if both symbols are 354 // strong defined symbols. 355 static int compareDefined(Symbol *S, bool WasInserted, uint8_t Binding, 356 StringRef Name) { 357 if (WasInserted) 358 return 1; 359 if (!S->isDefined()) 360 return 1; 361 if (int R = compareVersion(S, Name)) 362 return R; 363 if (Binding == STB_WEAK) 364 return -1; 365 if (S->isWeak()) 366 return 1; 367 return 0; 368 } 369 370 // We have a new non-common defined symbol with the specified binding. Return 1 371 // if the new symbol should win, -1 if the new symbol should lose, or 0 if there 372 // is a conflict. If the new symbol wins, also update the binding. 373 static int compareDefinedNonCommon(Symbol *S, bool WasInserted, uint8_t Binding, 374 bool IsAbsolute, uint64_t Value, 375 StringRef Name) { 376 if (int Cmp = compareDefined(S, WasInserted, Binding, Name)) 377 return Cmp; 378 if (auto *R = dyn_cast<Defined>(S)) { 379 if (R->Section && isa<BssSection>(R->Section)) { 380 // Non-common symbols take precedence over common symbols. 381 if (Config->WarnCommon) 382 warn("common " + S->getName() + " is overridden"); 383 return 1; 384 } 385 if (R->Section == nullptr && Binding == STB_GLOBAL && IsAbsolute && 386 R->Value == Value) 387 return -1; 388 } 389 return 0; 390 } 391 392 Symbol *SymbolTable::addCommon(StringRef N, uint64_t Size, uint32_t Alignment, 393 uint8_t Binding, uint8_t StOther, uint8_t Type, 394 InputFile &File) { 395 Symbol *S; 396 bool WasInserted; 397 std::tie(S, WasInserted) = insert(N, getVisibility(StOther), 398 /*CanOmitFromDynSym*/ false, &File); 399 400 int Cmp = compareDefined(S, WasInserted, Binding, N); 401 if (Cmp < 0) 402 return S; 403 404 if (Cmp > 0) { 405 auto *Bss = make<BssSection>("COMMON", Size, Alignment); 406 Bss->File = &File; 407 Bss->Live = !Config->GcSections; 408 InputSections.push_back(Bss); 409 410 replaceSymbol<Defined>(S, &File, N, Binding, StOther, Type, 0, Size, Bss); 411 return S; 412 } 413 414 auto *D = cast<Defined>(S); 415 auto *Bss = dyn_cast_or_null<BssSection>(D->Section); 416 if (!Bss) { 417 // Non-common symbols take precedence over common symbols. 418 if (Config->WarnCommon) 419 warn("common " + S->getName() + " is overridden"); 420 return S; 421 } 422 423 if (Config->WarnCommon) 424 warn("multiple common of " + D->getName()); 425 426 Bss->Alignment = std::max(Bss->Alignment, Alignment); 427 if (Size > Bss->Size) { 428 D->File = Bss->File = &File; 429 D->Size = Bss->Size = Size; 430 } 431 return S; 432 } 433 434 static void reportDuplicate(Symbol *Sym, InputFile *NewFile, 435 InputSectionBase *ErrSec, uint64_t ErrOffset) { 436 if (Config->AllowMultipleDefinition) 437 return; 438 439 Defined *D = cast<Defined>(Sym); 440 if (!D->Section || !ErrSec) { 441 error("duplicate symbol: " + toString(*Sym) + "\n>>> defined in " + 442 toString(Sym->File) + "\n>>> defined in " + toString(NewFile)); 443 return; 444 } 445 446 // Construct and print an error message in the form of: 447 // 448 // ld.lld: error: duplicate symbol: foo 449 // >>> defined at bar.c:30 450 // >>> bar.o (/home/alice/src/bar.o) 451 // >>> defined at baz.c:563 452 // >>> baz.o in archive libbaz.a 453 auto *Sec1 = cast<InputSectionBase>(D->Section); 454 std::string Src1 = Sec1->getSrcMsg(*Sym, D->Value); 455 std::string Obj1 = Sec1->getObjMsg(D->Value); 456 std::string Src2 = ErrSec->getSrcMsg(*Sym, ErrOffset); 457 std::string Obj2 = ErrSec->getObjMsg(ErrOffset); 458 459 std::string Msg = "duplicate symbol: " + toString(*Sym) + "\n>>> defined at "; 460 if (!Src1.empty()) 461 Msg += Src1 + "\n>>> "; 462 Msg += Obj1 + "\n>>> defined at "; 463 if (!Src2.empty()) 464 Msg += Src2 + "\n>>> "; 465 Msg += Obj2; 466 error(Msg); 467 } 468 469 Defined *SymbolTable::addDefined(StringRef Name, uint8_t StOther, uint8_t Type, 470 uint64_t Value, uint64_t Size, uint8_t Binding, 471 SectionBase *Section, InputFile *File) { 472 Symbol *S; 473 bool WasInserted; 474 std::tie(S, WasInserted) = insert(Name, getVisibility(StOther), 475 /*CanOmitFromDynSym*/ false, File); 476 int Cmp = compareDefinedNonCommon(S, WasInserted, Binding, Section == nullptr, 477 Value, Name); 478 if (Cmp > 0) 479 replaceSymbol<Defined>(S, File, Name, Binding, StOther, Type, Value, Size, 480 Section); 481 else if (Cmp == 0) 482 reportDuplicate(S, File, dyn_cast_or_null<InputSectionBase>(Section), 483 Value); 484 return cast<Defined>(S); 485 } 486 487 template <typename ELFT> 488 void SymbolTable::addShared(StringRef Name, SharedFile<ELFT> &File, 489 const typename ELFT::Sym &Sym, uint32_t Alignment, 490 uint32_t VerdefIndex) { 491 // DSO symbols do not affect visibility in the output, so we pass STV_DEFAULT 492 // as the visibility, which will leave the visibility in the symbol table 493 // unchanged. 494 Symbol *S; 495 bool WasInserted; 496 std::tie(S, WasInserted) = insert(Name, STV_DEFAULT, 497 /*CanOmitFromDynSym*/ true, &File); 498 // Make sure we preempt DSO symbols with default visibility. 499 if (Sym.getVisibility() == STV_DEFAULT) 500 S->ExportDynamic = true; 501 502 // An undefined symbol with non default visibility must be satisfied 503 // in the same DSO. 504 auto Replace = [&](uint8_t Binding) { 505 replaceSymbol<SharedSymbol>(S, File, Name, Binding, Sym.st_other, 506 Sym.getType(), Sym.st_value, Sym.st_size, 507 Alignment, VerdefIndex); 508 }; 509 510 if (WasInserted) 511 Replace(Sym.getBinding()); 512 else if (S->Visibility == STV_DEFAULT && (S->isUndefined() || S->isLazy())) 513 Replace(S->Binding); 514 } 515 516 Symbol *SymbolTable::addBitcode(StringRef Name, uint8_t Binding, 517 uint8_t StOther, uint8_t Type, 518 bool CanOmitFromDynSym, BitcodeFile &F) { 519 Symbol *S; 520 bool WasInserted; 521 std::tie(S, WasInserted) = 522 insert(Name, getVisibility(StOther), CanOmitFromDynSym, &F); 523 int Cmp = compareDefinedNonCommon(S, WasInserted, Binding, 524 /*IsAbs*/ false, /*Value*/ 0, Name); 525 if (Cmp > 0) 526 replaceSymbol<Defined>(S, &F, Name, Binding, StOther, Type, 0, 0, nullptr); 527 else if (Cmp == 0) 528 reportDuplicate(S, &F, nullptr, 0); 529 return S; 530 } 531 532 Symbol *SymbolTable::find(StringRef Name) { 533 auto It = SymMap.find(CachedHashStringRef(Name)); 534 if (It == SymMap.end()) 535 return nullptr; 536 if (It->second == -1) 537 return nullptr; 538 return SymVector[It->second]; 539 } 540 541 template <class ELFT> 542 void SymbolTable::addLazyArchive(StringRef Name, ArchiveFile &File, 543 const object::Archive::Symbol Sym) { 544 Symbol *S; 545 bool WasInserted; 546 std::tie(S, WasInserted) = insertName(Name); 547 if (WasInserted) { 548 replaceSymbol<LazyArchive>(S, File, STT_NOTYPE, Sym); 549 return; 550 } 551 if (!S->isUndefined()) 552 return; 553 554 // An undefined weak will not fetch archive members. See comment on Lazy in 555 // Symbols.h for the details. 556 if (S->isWeak()) { 557 replaceSymbol<LazyArchive>(S, File, S->Type, Sym); 558 S->Binding = STB_WEAK; 559 return; 560 } 561 562 if (InputFile *F = File.fetch(Sym)) 563 addFile<ELFT>(F); 564 } 565 566 template <class ELFT> 567 void SymbolTable::addLazyObject(StringRef Name, LazyObjFile &File) { 568 Symbol *S; 569 bool WasInserted; 570 std::tie(S, WasInserted) = insertName(Name); 571 if (WasInserted) { 572 replaceSymbol<LazyObject>(S, File, STT_NOTYPE, Name); 573 return; 574 } 575 if (!S->isUndefined()) 576 return; 577 578 // An undefined weak will not fetch archive members. See comment on Lazy in 579 // Symbols.h for the details. 580 if (S->isWeak()) { 581 replaceSymbol<LazyObject>(S, File, S->Type, Name); 582 S->Binding = STB_WEAK; 583 return; 584 } 585 586 if (InputFile *F = File.fetch()) 587 addFile<ELFT>(F); 588 } 589 590 template <class ELFT> void SymbolTable::fetchLazy(Symbol *Sym) { 591 if (auto *S = dyn_cast<LazyArchive>(Sym)) { 592 if (InputFile *File = S->fetch()) 593 addFile<ELFT>(File); 594 return; 595 } 596 597 auto *S = cast<LazyObject>(Sym); 598 if (InputFile *File = cast<LazyObjFile>(S->File)->fetch()) 599 addFile<ELFT>(File); 600 } 601 602 // Initialize DemangledSyms with a map from demangled symbols to symbol 603 // objects. Used to handle "extern C++" directive in version scripts. 604 // 605 // The map will contain all demangled symbols. That can be very large, 606 // and in LLD we generally want to avoid do anything for each symbol. 607 // Then, why are we doing this? Here's why. 608 // 609 // Users can use "extern C++ {}" directive to match against demangled 610 // C++ symbols. For example, you can write a pattern such as 611 // "llvm::*::foo(int, ?)". Obviously, there's no way to handle this 612 // other than trying to match a pattern against all demangled symbols. 613 // So, if "extern C++" feature is used, we need to demangle all known 614 // symbols. 615 StringMap<std::vector<Symbol *>> &SymbolTable::getDemangledSyms() { 616 if (!DemangledSyms) { 617 DemangledSyms.emplace(); 618 for (Symbol *Sym : SymVector) { 619 if (!Sym->isDefined()) 620 continue; 621 if (Optional<std::string> S = demangleItanium(Sym->getName())) 622 (*DemangledSyms)[*S].push_back(Sym); 623 else 624 (*DemangledSyms)[Sym->getName()].push_back(Sym); 625 } 626 } 627 return *DemangledSyms; 628 } 629 630 std::vector<Symbol *> SymbolTable::findByVersion(SymbolVersion Ver) { 631 if (Ver.IsExternCpp) 632 return getDemangledSyms().lookup(Ver.Name); 633 if (Symbol *B = find(Ver.Name)) 634 if (B->isDefined()) 635 return {B}; 636 return {}; 637 } 638 639 std::vector<Symbol *> SymbolTable::findAllByVersion(SymbolVersion Ver) { 640 std::vector<Symbol *> Res; 641 StringMatcher M(Ver.Name); 642 643 if (Ver.IsExternCpp) { 644 for (auto &P : getDemangledSyms()) 645 if (M.match(P.first())) 646 Res.insert(Res.end(), P.second.begin(), P.second.end()); 647 return Res; 648 } 649 650 for (Symbol *Sym : SymVector) 651 if (Sym->isDefined() && M.match(Sym->getName())) 652 Res.push_back(Sym); 653 return Res; 654 } 655 656 // If there's only one anonymous version definition in a version 657 // script file, the script does not actually define any symbol version, 658 // but just specifies symbols visibilities. 659 void SymbolTable::handleAnonymousVersion() { 660 for (SymbolVersion &Ver : Config->VersionScriptGlobals) 661 assignExactVersion(Ver, VER_NDX_GLOBAL, "global"); 662 for (SymbolVersion &Ver : Config->VersionScriptGlobals) 663 assignWildcardVersion(Ver, VER_NDX_GLOBAL); 664 for (SymbolVersion &Ver : Config->VersionScriptLocals) 665 assignExactVersion(Ver, VER_NDX_LOCAL, "local"); 666 for (SymbolVersion &Ver : Config->VersionScriptLocals) 667 assignWildcardVersion(Ver, VER_NDX_LOCAL); 668 } 669 670 // Handles -dynamic-list. 671 void SymbolTable::handleDynamicList() { 672 for (SymbolVersion &Ver : Config->DynamicList) { 673 std::vector<Symbol *> Syms; 674 if (Ver.HasWildcard) 675 Syms = findAllByVersion(Ver); 676 else 677 Syms = findByVersion(Ver); 678 679 for (Symbol *B : Syms) { 680 if (!Config->Shared) 681 B->ExportDynamic = true; 682 else if (B->includeInDynsym()) 683 B->IsPreemptible = true; 684 } 685 } 686 } 687 688 // Set symbol versions to symbols. This function handles patterns 689 // containing no wildcard characters. 690 void SymbolTable::assignExactVersion(SymbolVersion Ver, uint16_t VersionId, 691 StringRef VersionName) { 692 if (Ver.HasWildcard) 693 return; 694 695 // Get a list of symbols which we need to assign the version to. 696 std::vector<Symbol *> Syms = findByVersion(Ver); 697 if (Syms.empty()) { 698 if (!Config->UndefinedVersion) 699 error("version script assignment of '" + VersionName + "' to symbol '" + 700 Ver.Name + "' failed: symbol not defined"); 701 return; 702 } 703 704 // Assign the version. 705 for (Symbol *Sym : Syms) { 706 // Skip symbols containing version info because symbol versions 707 // specified by symbol names take precedence over version scripts. 708 // See parseSymbolVersion(). 709 if (Sym->getName().contains('@')) 710 continue; 711 712 if (Sym->VersionId != Config->DefaultSymbolVersion && 713 Sym->VersionId != VersionId) 714 error("duplicate symbol '" + Ver.Name + "' in version script"); 715 Sym->VersionId = VersionId; 716 } 717 } 718 719 void SymbolTable::assignWildcardVersion(SymbolVersion Ver, uint16_t VersionId) { 720 if (!Ver.HasWildcard) 721 return; 722 723 // Exact matching takes precendence over fuzzy matching, 724 // so we set a version to a symbol only if no version has been assigned 725 // to the symbol. This behavior is compatible with GNU. 726 for (Symbol *B : findAllByVersion(Ver)) 727 if (B->VersionId == Config->DefaultSymbolVersion) 728 B->VersionId = VersionId; 729 } 730 731 // This function processes version scripts by updating VersionId 732 // member of symbols. 733 void SymbolTable::scanVersionScript() { 734 // Handle edge cases first. 735 handleAnonymousVersion(); 736 handleDynamicList(); 737 738 // Now we have version definitions, so we need to set version ids to symbols. 739 // Each version definition has a glob pattern, and all symbols that match 740 // with the pattern get that version. 741 742 // First, we assign versions to exact matching symbols, 743 // i.e. version definitions not containing any glob meta-characters. 744 for (VersionDefinition &V : Config->VersionDefinitions) 745 for (SymbolVersion &Ver : V.Globals) 746 assignExactVersion(Ver, V.Id, V.Name); 747 748 // Next, we assign versions to fuzzy matching symbols, 749 // i.e. version definitions containing glob meta-characters. 750 // Note that because the last match takes precedence over previous matches, 751 // we iterate over the definitions in the reverse order. 752 for (VersionDefinition &V : llvm::reverse(Config->VersionDefinitions)) 753 for (SymbolVersion &Ver : V.Globals) 754 assignWildcardVersion(Ver, V.Id); 755 756 // Symbol themselves might know their versions because symbols 757 // can contain versions in the form of <name>@<version>. 758 // Let them parse and update their names to exclude version suffix. 759 for (Symbol *Sym : SymVector) 760 Sym->parseSymbolVersion(); 761 } 762 763 template void SymbolTable::addFile<ELF32LE>(InputFile *); 764 template void SymbolTable::addFile<ELF32BE>(InputFile *); 765 template void SymbolTable::addFile<ELF64LE>(InputFile *); 766 template void SymbolTable::addFile<ELF64BE>(InputFile *); 767 768 template Symbol *SymbolTable::addUndefined<ELF32LE>(StringRef, uint8_t, uint8_t, 769 uint8_t, bool, InputFile *); 770 template Symbol *SymbolTable::addUndefined<ELF32BE>(StringRef, uint8_t, uint8_t, 771 uint8_t, bool, InputFile *); 772 template Symbol *SymbolTable::addUndefined<ELF64LE>(StringRef, uint8_t, uint8_t, 773 uint8_t, bool, InputFile *); 774 template Symbol *SymbolTable::addUndefined<ELF64BE>(StringRef, uint8_t, uint8_t, 775 uint8_t, bool, InputFile *); 776 777 template void SymbolTable::addCombinedLTOObject<ELF32LE>(); 778 template void SymbolTable::addCombinedLTOObject<ELF32BE>(); 779 template void SymbolTable::addCombinedLTOObject<ELF64LE>(); 780 template void SymbolTable::addCombinedLTOObject<ELF64BE>(); 781 782 template void 783 SymbolTable::addLazyArchive<ELF32LE>(StringRef, ArchiveFile &, 784 const object::Archive::Symbol); 785 template void 786 SymbolTable::addLazyArchive<ELF32BE>(StringRef, ArchiveFile &, 787 const object::Archive::Symbol); 788 template void 789 SymbolTable::addLazyArchive<ELF64LE>(StringRef, ArchiveFile &, 790 const object::Archive::Symbol); 791 template void 792 SymbolTable::addLazyArchive<ELF64BE>(StringRef, ArchiveFile &, 793 const object::Archive::Symbol); 794 795 template void SymbolTable::addLazyObject<ELF32LE>(StringRef, LazyObjFile &); 796 template void SymbolTable::addLazyObject<ELF32BE>(StringRef, LazyObjFile &); 797 template void SymbolTable::addLazyObject<ELF64LE>(StringRef, LazyObjFile &); 798 template void SymbolTable::addLazyObject<ELF64BE>(StringRef, LazyObjFile &); 799 800 template void SymbolTable::fetchLazy<ELF32LE>(Symbol *); 801 template void SymbolTable::fetchLazy<ELF32BE>(Symbol *); 802 template void SymbolTable::fetchLazy<ELF64LE>(Symbol *); 803 template void SymbolTable::fetchLazy<ELF64BE>(Symbol *); 804 805 template void SymbolTable::addShared<ELF32LE>(StringRef, SharedFile<ELF32LE> &, 806 const typename ELF32LE::Sym &, 807 uint32_t Alignment, uint32_t); 808 template void SymbolTable::addShared<ELF32BE>(StringRef, SharedFile<ELF32BE> &, 809 const typename ELF32BE::Sym &, 810 uint32_t Alignment, uint32_t); 811 template void SymbolTable::addShared<ELF64LE>(StringRef, SharedFile<ELF64LE> &, 812 const typename ELF64LE::Sym &, 813 uint32_t Alignment, uint32_t); 814 template void SymbolTable::addShared<ELF64BE>(StringRef, SharedFile<ELF64BE> &, 815 const typename ELF64BE::Sym &, 816 uint32_t Alignment, uint32_t); 817