1 //===- SymbolTable.cpp ----------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Symbol table is a bag of all known symbols. We put all symbols of
11 // all input files to the symbol table. The symbol table is basically
12 // a hash table with the logic to resolve symbol name conflicts using
13 // the symbol types.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "SymbolTable.h"
18 #include "Config.h"
19 #include "Error.h"
20 #include "LinkerScript.h"
21 #include "Memory.h"
22 #include "SymbolListFile.h"
23 #include "Symbols.h"
24 
25 using namespace llvm;
26 using namespace llvm::object;
27 using namespace llvm::ELF;
28 
29 using namespace lld;
30 using namespace lld::elf;
31 
32 // All input object files must be for the same architecture
33 // (e.g. it does not make sense to link x86 object files with
34 // MIPS object files.) This function checks for that error.
35 template <class ELFT> static bool isCompatible(InputFile *F) {
36   if (!isa<ELFFileBase<ELFT>>(F) && !isa<BitcodeFile>(F))
37     return true;
38   if (F->EKind == Config->EKind && F->EMachine == Config->EMachine) {
39     if (Config->EMachine != EM_MIPS)
40       return true;
41     if (isMipsN32Abi(F) == Config->MipsN32Abi)
42       return true;
43   }
44   StringRef A = F->getName();
45   StringRef B = Config->Emulation;
46   if (B.empty())
47     B = Config->FirstElf->getName();
48   error(A + " is incompatible with " + B);
49   return false;
50 }
51 
52 // Add symbols in File to the symbol table.
53 template <class ELFT> void SymbolTable<ELFT>::addFile(InputFile *File) {
54   if (!isCompatible<ELFT>(File))
55     return;
56 
57   // Binary file
58   if (auto *F = dyn_cast<BinaryFile>(File)) {
59     BinaryFiles.push_back(F);
60     F->parse<ELFT>();
61     return;
62   }
63 
64   // .a file
65   if (auto *F = dyn_cast<ArchiveFile>(File)) {
66     F->parse<ELFT>();
67     return;
68   }
69 
70   // Lazy object file
71   if (auto *F = dyn_cast<LazyObjectFile>(File)) {
72     F->parse<ELFT>();
73     return;
74   }
75 
76   if (Config->Trace)
77     outs() << getFilename(File) << "\n";
78 
79   // .so file
80   if (auto *F = dyn_cast<SharedFile<ELFT>>(File)) {
81     // DSOs are uniquified not by filename but by soname.
82     F->parseSoName();
83     if (HasError || !SoNames.insert(F->getSoName()).second)
84       return;
85     SharedFiles.push_back(F);
86     F->parseRest();
87     return;
88   }
89 
90   // LLVM bitcode file
91   if (auto *F = dyn_cast<BitcodeFile>(File)) {
92     BitcodeFiles.push_back(F);
93     F->parse<ELFT>(ComdatGroups);
94     return;
95   }
96 
97   // Regular object file
98   auto *F = cast<ObjectFile<ELFT>>(File);
99   ObjectFiles.push_back(F);
100   F->parse(ComdatGroups);
101 }
102 
103 // This function is where all the optimizations of link-time
104 // optimization happens. When LTO is in use, some input files are
105 // not in native object file format but in the LLVM bitcode format.
106 // This function compiles bitcode files into a few big native files
107 // using LLVM functions and replaces bitcode symbols with the results.
108 // Because all bitcode files that consist of a program are passed
109 // to the compiler at once, it can do whole-program optimization.
110 template <class ELFT> void SymbolTable<ELFT>::addCombinedLtoObject() {
111   if (BitcodeFiles.empty())
112     return;
113 
114   // Compile bitcode files and replace bitcode symbols.
115   Lto.reset(new BitcodeCompiler);
116   for (BitcodeFile *F : BitcodeFiles)
117     Lto->add(*F);
118 
119   for (InputFile *File : Lto->compile()) {
120     ObjectFile<ELFT> *Obj = cast<ObjectFile<ELFT>>(File);
121     DenseSet<CachedHashStringRef> DummyGroups;
122     Obj->parse(DummyGroups);
123     ObjectFiles.push_back(Obj);
124   }
125 }
126 
127 template <class ELFT>
128 DefinedRegular<ELFT> *SymbolTable<ELFT>::addAbsolute(StringRef Name,
129                                                      uint8_t Visibility) {
130   Symbol *Sym = addRegular(Name, Visibility, STT_NOTYPE, 0, 0, STB_GLOBAL,
131                            nullptr, nullptr);
132   return cast<DefinedRegular<ELFT>>(Sym->body());
133 }
134 
135 // Add Name as an "ignored" symbol. An ignored symbol is a regular
136 // linker-synthesized defined symbol, but is only defined if needed.
137 template <class ELFT>
138 DefinedRegular<ELFT> *SymbolTable<ELFT>::addIgnored(StringRef Name,
139                                                     uint8_t Visibility) {
140   SymbolBody *S = find(Name);
141   if (!S || !S->isUndefined())
142     return nullptr;
143   return addAbsolute(Name, Visibility);
144 }
145 
146 // Set a flag for --trace-symbol so that we can print out a log message
147 // if a new symbol with the same name is inserted into the symbol table.
148 template <class ELFT> void SymbolTable<ELFT>::trace(StringRef Name) {
149   Symtab.insert({CachedHashStringRef(Name), {-1, true}});
150 }
151 
152 // Rename SYM as __wrap_SYM. The original symbol is preserved as __real_SYM.
153 // Used to implement --wrap.
154 template <class ELFT> void SymbolTable<ELFT>::wrap(StringRef Name) {
155   SymbolBody *B = find(Name);
156   if (!B)
157     return;
158   Symbol *Sym = B->symbol();
159   Symbol *Real = addUndefined(Saver.save("__real_" + Name));
160   Symbol *Wrap = addUndefined(Saver.save("__wrap_" + Name));
161 
162   // We rename symbols by replacing the old symbol's SymbolBody with the new
163   // symbol's SymbolBody. This causes all SymbolBody pointers referring to the
164   // old symbol to instead refer to the new symbol.
165   memcpy(Real->Body.buffer, Sym->Body.buffer, sizeof(Sym->Body));
166   memcpy(Sym->Body.buffer, Wrap->Body.buffer, sizeof(Wrap->Body));
167 }
168 
169 static uint8_t getMinVisibility(uint8_t VA, uint8_t VB) {
170   if (VA == STV_DEFAULT)
171     return VB;
172   if (VB == STV_DEFAULT)
173     return VA;
174   return std::min(VA, VB);
175 }
176 
177 // Parses a symbol in the form of <name>@<version> or <name>@@<version>.
178 static std::pair<StringRef, uint16_t> getSymbolVersion(StringRef S) {
179   if (Config->VersionDefinitions.empty())
180     return {S, Config->DefaultSymbolVersion};
181 
182   size_t Pos = S.find('@');
183   if (Pos == 0 || Pos == StringRef::npos)
184     return {S, Config->DefaultSymbolVersion};
185 
186   StringRef Name = S.substr(0, Pos);
187   StringRef Verstr = S.substr(Pos + 1);
188   if (Verstr.empty())
189     return {S, Config->DefaultSymbolVersion};
190 
191   // '@@' in a symbol name means the default version.
192   // It is usually the most recent one.
193   bool IsDefault = (Verstr[0] == '@');
194   if (IsDefault)
195     Verstr = Verstr.substr(1);
196 
197   for (VersionDefinition &V : Config->VersionDefinitions) {
198     if (V.Name == Verstr)
199       return {Name, IsDefault ? V.Id : (V.Id | VERSYM_HIDDEN)};
200   }
201 
202   // It is an error if the specified version was not defined.
203   error("symbol " + S + " has undefined version " + Verstr);
204   return {S, Config->DefaultSymbolVersion};
205 }
206 
207 // Find an existing symbol or create and insert a new one.
208 template <class ELFT>
209 std::pair<Symbol *, bool> SymbolTable<ELFT>::insert(StringRef &Name) {
210   auto P = Symtab.insert(
211       {CachedHashStringRef(Name), SymIndex((int)SymVector.size(), false)});
212   SymIndex &V = P.first->second;
213   bool IsNew = P.second;
214 
215   if (V.Idx == -1) {
216     IsNew = true;
217     V = SymIndex((int)SymVector.size(), true);
218   }
219 
220   Symbol *Sym;
221   if (IsNew) {
222     Sym = new (BAlloc) Symbol;
223     Sym->Binding = STB_WEAK;
224     Sym->Visibility = STV_DEFAULT;
225     Sym->IsUsedInRegularObj = false;
226     Sym->ExportDynamic = false;
227     Sym->Traced = V.Traced;
228     std::tie(Name, Sym->VersionId) = getSymbolVersion(Name);
229     SymVector.push_back(Sym);
230   } else {
231     Sym = SymVector[V.Idx];
232   }
233   return {Sym, IsNew};
234 }
235 
236 // Construct a string in the form of "Sym in File1 and File2".
237 // Used to construct an error message.
238 static std::string conflictMsg(SymbolBody *Existing, InputFile *NewFile) {
239   return "'" + maybeDemangle(Existing->getName()) + "' in " +
240          getFilename(Existing->File) + " and " + getFilename(NewFile);
241 }
242 
243 // Find an existing symbol or create and insert a new one, then apply the given
244 // attributes.
245 template <class ELFT>
246 std::pair<Symbol *, bool>
247 SymbolTable<ELFT>::insert(StringRef &Name, uint8_t Type, uint8_t Visibility,
248                           bool CanOmitFromDynSym, InputFile *File) {
249   bool IsUsedInRegularObj = !File || File->kind() == InputFile::ObjectKind;
250   Symbol *S;
251   bool WasInserted;
252   std::tie(S, WasInserted) = insert(Name);
253 
254   // Merge in the new symbol's visibility.
255   S->Visibility = getMinVisibility(S->Visibility, Visibility);
256   if (!CanOmitFromDynSym && (Config->Shared || Config->ExportDynamic))
257     S->ExportDynamic = true;
258   if (IsUsedInRegularObj)
259     S->IsUsedInRegularObj = true;
260   if (!WasInserted && S->body()->Type != SymbolBody::UnknownType &&
261       ((Type == STT_TLS) != S->body()->isTls()))
262     error("TLS attribute mismatch for symbol " + conflictMsg(S->body(), File));
263 
264   return {S, WasInserted};
265 }
266 
267 template <class ELFT> Symbol *SymbolTable<ELFT>::addUndefined(StringRef Name) {
268   return addUndefined(Name, STB_GLOBAL, STV_DEFAULT, /*Type*/ 0,
269                       /*CanOmitFromDynSym*/ false, /*File*/ nullptr);
270 }
271 
272 template <class ELFT>
273 Symbol *SymbolTable<ELFT>::addUndefined(StringRef Name, uint8_t Binding,
274                                         uint8_t StOther, uint8_t Type,
275                                         bool CanOmitFromDynSym,
276                                         InputFile *File) {
277   Symbol *S;
278   bool WasInserted;
279   std::tie(S, WasInserted) =
280       insert(Name, Type, StOther & 3, CanOmitFromDynSym, File);
281   if (WasInserted) {
282     S->Binding = Binding;
283     replaceBody<Undefined>(S, Name, StOther, Type, File);
284     return S;
285   }
286   if (Binding != STB_WEAK) {
287     if (S->body()->isShared() || S->body()->isLazy())
288       S->Binding = Binding;
289     if (auto *SS = dyn_cast<SharedSymbol<ELFT>>(S->body()))
290       SS->file()->IsUsed = true;
291   }
292   if (auto *L = dyn_cast<Lazy>(S->body())) {
293     // An undefined weak will not fetch archive members, but we have to remember
294     // its type. See also comment in addLazyArchive.
295     if (S->isWeak())
296       L->Type = Type;
297     else if (InputFile *F = L->fetch())
298       addFile(F);
299   }
300   return S;
301 }
302 
303 // We have a new defined symbol with the specified binding. Return 1 if the new
304 // symbol should win, -1 if the new symbol should lose, or 0 if both symbols are
305 // strong defined symbols.
306 static int compareDefined(Symbol *S, bool WasInserted, uint8_t Binding) {
307   if (WasInserted)
308     return 1;
309   SymbolBody *Body = S->body();
310   if (Body->isLazy() || Body->isUndefined() || Body->isShared())
311     return 1;
312   if (Binding == STB_WEAK)
313     return -1;
314   if (S->isWeak())
315     return 1;
316   return 0;
317 }
318 
319 // We have a new non-common defined symbol with the specified binding. Return 1
320 // if the new symbol should win, -1 if the new symbol should lose, or 0 if there
321 // is a conflict. If the new symbol wins, also update the binding.
322 static int compareDefinedNonCommon(Symbol *S, bool WasInserted,
323                                    uint8_t Binding) {
324   if (int Cmp = compareDefined(S, WasInserted, Binding)) {
325     if (Cmp > 0)
326       S->Binding = Binding;
327     return Cmp;
328   }
329   if (isa<DefinedCommon>(S->body())) {
330     // Non-common symbols take precedence over common symbols.
331     if (Config->WarnCommon)
332       warn("common " + S->body()->getName() + " is overridden");
333     return 1;
334   }
335   return 0;
336 }
337 
338 template <class ELFT>
339 Symbol *SymbolTable<ELFT>::addCommon(StringRef N, uint64_t Size,
340                                      uint64_t Alignment, uint8_t Binding,
341                                      uint8_t StOther, uint8_t Type,
342                                      InputFile *File) {
343   Symbol *S;
344   bool WasInserted;
345   std::tie(S, WasInserted) =
346       insert(N, Type, StOther & 3, /*CanOmitFromDynSym*/ false, File);
347   int Cmp = compareDefined(S, WasInserted, Binding);
348   if (Cmp > 0) {
349     S->Binding = Binding;
350     replaceBody<DefinedCommon>(S, N, Size, Alignment, StOther, Type, File);
351   } else if (Cmp == 0) {
352     auto *C = dyn_cast<DefinedCommon>(S->body());
353     if (!C) {
354       // Non-common symbols take precedence over common symbols.
355       if (Config->WarnCommon)
356         warn("common " + S->body()->getName() + " is overridden");
357       return S;
358     }
359 
360     if (Config->WarnCommon)
361       warn("multiple common of " + S->body()->getName());
362 
363     Alignment = C->Alignment = std::max(C->Alignment, Alignment);
364     if (Size > C->Size)
365       replaceBody<DefinedCommon>(S, N, Size, Alignment, StOther, Type, File);
366   }
367   return S;
368 }
369 
370 static void print(const Twine &Msg) {
371   if (Config->AllowMultipleDefinition)
372     warn(Msg);
373   else
374     error(Msg);
375 }
376 
377 static void reportDuplicate(SymbolBody *Existing, InputFile *NewFile) {
378   print("duplicate symbol " + conflictMsg(Existing, NewFile));
379 }
380 
381 template <class ELFT>
382 static void reportDuplicate(SymbolBody *Existing,
383                             InputSectionBase<ELFT> *ErrSec,
384                             typename ELFT::uint ErrOffset) {
385   DefinedRegular<ELFT> *D = dyn_cast<DefinedRegular<ELFT>>(Existing);
386   if (!D || !D->Section || !ErrSec) {
387     reportDuplicate(Existing, ErrSec ? ErrSec->getFile() : nullptr);
388     return;
389   }
390 
391   std::string OldLoc = getLocation(*D->Section, D->Value);
392   std::string NewLoc = getLocation(*ErrSec, ErrOffset);
393 
394   print(NewLoc + ": duplicate symbol '" + maybeDemangle(Existing->getName()) +
395         "'");
396   print(OldLoc + ": previous definition was here");
397 }
398 
399 template <typename ELFT>
400 Symbol *SymbolTable<ELFT>::addRegular(StringRef Name, const Elf_Sym &Sym,
401                                       InputSectionBase<ELFT> *Section,
402                                       InputFile *File) {
403   return addRegular(Name, Sym.st_other, Sym.getType(), Sym.st_value,
404                     Sym.st_size, Sym.getBinding(), Section, File);
405 }
406 
407 template <typename ELFT>
408 Symbol *SymbolTable<ELFT>::addRegular(StringRef Name, uint8_t StOther,
409                                       uint8_t Type, uintX_t Value, uintX_t Size,
410                                       uint8_t Binding,
411                                       InputSectionBase<ELFT> *Section,
412                                       InputFile *File) {
413   Symbol *S;
414   bool WasInserted;
415   std::tie(S, WasInserted) = insert(Name, Type, StOther & 3,
416                                     /*CanOmitFromDynSym*/ false, File);
417   int Cmp = compareDefinedNonCommon(S, WasInserted, Binding);
418   if (Cmp > 0)
419     replaceBody<DefinedRegular<ELFT>>(S, Name, StOther, Type, Value, Size,
420                                       Section, File);
421   else if (Cmp == 0)
422     reportDuplicate(S->body(), Section, Value);
423   return S;
424 }
425 
426 template <typename ELFT>
427 Symbol *SymbolTable<ELFT>::addSynthetic(StringRef N,
428                                         const OutputSectionBase *Section,
429                                         uintX_t Value, uint8_t StOther) {
430   Symbol *S;
431   bool WasInserted;
432   std::tie(S, WasInserted) = insert(N, STT_NOTYPE, /*Visibility*/ StOther & 0x3,
433                                     /*CanOmitFromDynSym*/ false, nullptr);
434   int Cmp = compareDefinedNonCommon(S, WasInserted, STB_GLOBAL);
435   if (Cmp > 0)
436     replaceBody<DefinedSynthetic<ELFT>>(S, N, Value, Section);
437   else if (Cmp == 0)
438     reportDuplicate(S->body(), nullptr);
439   return S;
440 }
441 
442 template <typename ELFT>
443 void SymbolTable<ELFT>::addShared(SharedFile<ELFT> *F, StringRef Name,
444                                   const Elf_Sym &Sym,
445                                   const typename ELFT::Verdef *Verdef) {
446   // DSO symbols do not affect visibility in the output, so we pass STV_DEFAULT
447   // as the visibility, which will leave the visibility in the symbol table
448   // unchanged.
449   Symbol *S;
450   bool WasInserted;
451   std::tie(S, WasInserted) =
452       insert(Name, Sym.getType(), STV_DEFAULT, /*CanOmitFromDynSym*/ true, F);
453   // Make sure we preempt DSO symbols with default visibility.
454   if (Sym.getVisibility() == STV_DEFAULT)
455     S->ExportDynamic = true;
456   if (WasInserted || isa<Undefined>(S->body())) {
457     replaceBody<SharedSymbol<ELFT>>(S, F, Name, Sym, Verdef);
458     if (!S->isWeak())
459       F->IsUsed = true;
460   }
461 }
462 
463 template <class ELFT>
464 Symbol *SymbolTable<ELFT>::addBitcode(StringRef Name, uint8_t Binding,
465                                       uint8_t StOther, uint8_t Type,
466                                       bool CanOmitFromDynSym, BitcodeFile *F) {
467   Symbol *S;
468   bool WasInserted;
469   std::tie(S, WasInserted) =
470       insert(Name, Type, StOther & 3, CanOmitFromDynSym, F);
471   int Cmp = compareDefinedNonCommon(S, WasInserted, Binding);
472   if (Cmp > 0)
473     replaceBody<DefinedRegular<ELFT>>(S, Name, StOther, Type, F);
474   else if (Cmp == 0)
475     reportDuplicate(S->body(), F);
476   return S;
477 }
478 
479 template <class ELFT> SymbolBody *SymbolTable<ELFT>::find(StringRef Name) {
480   auto It = Symtab.find(CachedHashStringRef(Name));
481   if (It == Symtab.end())
482     return nullptr;
483   SymIndex V = It->second;
484   if (V.Idx == -1)
485     return nullptr;
486   return SymVector[V.Idx]->body();
487 }
488 
489 // Returns a list of defined symbols that match with a given pattern.
490 template <class ELFT>
491 std::vector<SymbolBody *> SymbolTable<ELFT>::findAll(const StringMatcher &M) {
492   std::vector<SymbolBody *> Res;
493   for (Symbol *Sym : SymVector) {
494     SymbolBody *B = Sym->body();
495     StringRef Name = B->getName();
496     if (!B->isUndefined() && M.match(Name))
497       Res.push_back(B);
498   }
499   return Res;
500 }
501 
502 template <class ELFT>
503 void SymbolTable<ELFT>::addLazyArchive(ArchiveFile *F,
504                                        const object::Archive::Symbol Sym) {
505   Symbol *S;
506   bool WasInserted;
507   StringRef Name = Sym.getName();
508   std::tie(S, WasInserted) = insert(Name);
509   if (WasInserted) {
510     replaceBody<LazyArchive>(S, *F, Sym, SymbolBody::UnknownType);
511     return;
512   }
513   if (!S->body()->isUndefined())
514     return;
515 
516   // Weak undefined symbols should not fetch members from archives. If we were
517   // to keep old symbol we would not know that an archive member was available
518   // if a strong undefined symbol shows up afterwards in the link. If a strong
519   // undefined symbol never shows up, this lazy symbol will get to the end of
520   // the link and must be treated as the weak undefined one. We already marked
521   // this symbol as used when we added it to the symbol table, but we also need
522   // to preserve its type. FIXME: Move the Type field to Symbol.
523   if (S->isWeak()) {
524     replaceBody<LazyArchive>(S, *F, Sym, S->body()->Type);
525     return;
526   }
527   std::pair<MemoryBufferRef, uint64_t> MBInfo = F->getMember(&Sym);
528   if (!MBInfo.first.getBuffer().empty())
529     addFile(createObjectFile(MBInfo.first, F->getName(), MBInfo.second));
530 }
531 
532 template <class ELFT>
533 void SymbolTable<ELFT>::addLazyObject(StringRef Name, LazyObjectFile &Obj) {
534   Symbol *S;
535   bool WasInserted;
536   std::tie(S, WasInserted) = insert(Name);
537   if (WasInserted) {
538     replaceBody<LazyObject>(S, Name, Obj, SymbolBody::UnknownType);
539     return;
540   }
541   if (!S->body()->isUndefined())
542     return;
543 
544   // See comment for addLazyArchive above.
545   if (S->isWeak()) {
546     replaceBody<LazyObject>(S, Name, Obj, S->body()->Type);
547   } else {
548     MemoryBufferRef MBRef = Obj.getBuffer();
549     if (!MBRef.getBuffer().empty())
550       addFile(createObjectFile(MBRef));
551   }
552 }
553 
554 // Process undefined (-u) flags by loading lazy symbols named by those flags.
555 template <class ELFT> void SymbolTable<ELFT>::scanUndefinedFlags() {
556   for (StringRef S : Config->Undefined)
557     if (auto *L = dyn_cast_or_null<Lazy>(find(S)))
558       if (InputFile *File = L->fetch())
559         addFile(File);
560 }
561 
562 // This function takes care of the case in which shared libraries depend on
563 // the user program (not the other way, which is usual). Shared libraries
564 // may have undefined symbols, expecting that the user program provides
565 // the definitions for them. An example is BSD's __progname symbol.
566 // We need to put such symbols to the main program's .dynsym so that
567 // shared libraries can find them.
568 // Except this, we ignore undefined symbols in DSOs.
569 template <class ELFT> void SymbolTable<ELFT>::scanShlibUndefined() {
570   for (SharedFile<ELFT> *File : SharedFiles)
571     for (StringRef U : File->getUndefinedSymbols())
572       if (SymbolBody *Sym = find(U))
573         if (Sym->isDefined())
574           Sym->symbol()->ExportDynamic = true;
575 }
576 
577 // This function processes --export-dynamic-symbol and --dynamic-list.
578 template <class ELFT> void SymbolTable<ELFT>::scanDynamicList() {
579   for (StringRef S : Config->DynamicList)
580     if (SymbolBody *B = find(S))
581       B->symbol()->ExportDynamic = true;
582 }
583 
584 // A helper function to set a version to a symbol.
585 // Essentially, assigning two different versions to the same symbol is an error.
586 static void setVersionId(SymbolBody *Body, StringRef VersionName,
587                          StringRef Name, uint16_t Version) {
588   if (!Body || Body->isUndefined()) {
589     if (Config->NoUndefinedVersion)
590       error("version script assignment of '" + VersionName + "' to symbol " +
591             Name + " failed: symbol not defined");
592     return;
593   }
594 
595   Symbol *Sym = Body->symbol();
596   if (Sym->VersionId != Config->DefaultSymbolVersion)
597     warn("duplicate symbol " + Name + " in version script");
598   Sym->VersionId = Version;
599 }
600 
601 // Initialize DemangledSyms with a map from demangled symbols to symbol
602 // objects. Used to handle "extern C++" directive in version scripts.
603 //
604 // The map will contain all demangled symbols. That can be very large,
605 // and in LLD we generally want to avoid do anything for each symbol.
606 // Then, why are we doing this? Here's why.
607 //
608 // Users can use "extern C++ {}" directive to match against demangled
609 // C++ symbols. For example, you can write a pattern such as
610 // "llvm::*::foo(int, ?)". Obviously, there's no way to handle this
611 // other than trying to match a pattern against all demangled symbols.
612 // So, if "extern C++" feature is used, we need to demangle all known
613 // symbols.
614 template <class ELFT>
615 void SymbolTable<ELFT>::initDemangledSyms() {
616   if (DemangledSyms)
617     return;
618   DemangledSyms.emplace();
619 
620   for (Symbol *Sym : SymVector) {
621     SymbolBody *B = Sym->body();
622     (*DemangledSyms)[demangle(B->getName())].push_back(B);
623   }
624 }
625 
626 template <class ELFT>
627 ArrayRef<SymbolBody *> SymbolTable<ELFT>::findDemangled(StringRef Name) {
628   initDemangledSyms();
629   auto I = DemangledSyms->find(Name);
630   if (I != DemangledSyms->end())
631     return I->second;
632   return {};
633 }
634 
635 template <class ELFT>
636 std::vector<SymbolBody *>
637 SymbolTable<ELFT>::findAllDemangled(const StringMatcher &M) {
638   initDemangledSyms();
639   std::vector<SymbolBody *> Res;
640   for (auto &P : *DemangledSyms)
641     if (M.match(P.first()))
642       for (SymbolBody *Body : P.second)
643         if (!Body->isUndefined())
644           Res.push_back(Body);
645   return Res;
646 }
647 
648 // If there's only one anonymous version definition in a version
649 // script file, the script does not actually define any symbol version,
650 // but just specifies symbols visibilities. We assume that the script was
651 // in the form of { global: foo; bar; local *; }. So, local is default.
652 // In this function, we make specified symbols global.
653 template <class ELFT> void SymbolTable<ELFT>::handleAnonymousVersion() {
654   std::vector<StringRef> Patterns;
655   for (SymbolVersion &Ver : Config->VersionScriptGlobals) {
656     if (hasWildcard(Ver.Name)) {
657       Patterns.push_back(Ver.Name);
658       continue;
659     }
660     if (SymbolBody *B = find(Ver.Name))
661       B->symbol()->VersionId = VER_NDX_GLOBAL;
662   }
663   if (Patterns.empty())
664     return;
665   StringMatcher M(Patterns);
666   std::vector<SymbolBody *> Syms = findAll(M);
667   for (SymbolBody *B : Syms)
668     B->symbol()->VersionId = VER_NDX_GLOBAL;
669 }
670 
671 template <class ELFT>
672 void SymbolTable<ELFT>::assignWildcardVersion(SymbolVersion Ver,
673                                               size_t VersionId) {
674   if (!Ver.HasWildcards)
675     return;
676   StringMatcher M({Ver.Name});
677   std::vector<SymbolBody *> Syms =
678       Ver.IsExternCpp ? findAllDemangled(M) : findAll(M);
679 
680   // Exact matching takes precendence over fuzzy matching,
681   // so we set a version to a symbol only if no version has been assigned
682   // to the symbol. This behavior is compatible with GNU.
683   for (SymbolBody *B : Syms)
684     if (B->symbol()->VersionId == Config->DefaultSymbolVersion)
685       B->symbol()->VersionId = VersionId;
686 }
687 
688 // This function processes version scripts by updating VersionId
689 // member of symbols.
690 template <class ELFT> void SymbolTable<ELFT>::scanVersionScript() {
691   // Handle edge cases first.
692   if (!Config->VersionScriptGlobals.empty()) {
693     handleAnonymousVersion();
694     return;
695   }
696 
697   if (Config->VersionDefinitions.empty())
698     return;
699 
700   // Now we have version definitions, so we need to set version ids to symbols.
701   // Each version definition has a glob pattern, and all symbols that match
702   // with the pattern get that version.
703 
704   auto assignVersion = [&](SymbolVersion &Ver, size_t Version,
705                            StringRef VerName) {
706     if (Ver.HasWildcards)
707       return;
708 
709     if (Ver.IsExternCpp) {
710       for (SymbolBody *B : findDemangled(Ver.Name))
711         setVersionId(B, VerName, Ver.Name, Version);
712       return;
713     }
714     setVersionId(find(Ver.Name), VerName, Ver.Name, Version);
715   };
716 
717   // First, we assign versions to exact matching symbols,
718   // i.e. version definitions not containing any glob meta-characters.
719   for (VersionDefinition &V : Config->VersionDefinitions) {
720     for (SymbolVersion Sym : V.Globals)
721       assignVersion(Sym, V.Id, V.Name);
722     for (SymbolVersion Sym : V.Locals)
723       assignVersion(Sym, VER_NDX_LOCAL, "local");
724   }
725 
726   // Next, we assign versions to fuzzy matching symbols,
727   // i.e. version definitions containing glob meta-characters.
728   // Note that because the last match takes precedence over previous matches,
729   // we iterate over the definitions in the reverse order.
730   for (size_t I = Config->VersionDefinitions.size() - 1; I != (size_t)-1; --I) {
731     VersionDefinition &V = Config->VersionDefinitions[I];
732     for (SymbolVersion &Ver : V.Locals)
733       assignWildcardVersion(Ver, VER_NDX_LOCAL);
734     for (SymbolVersion &Ver : V.Globals)
735       assignWildcardVersion(Ver, V.Id);
736   }
737 }
738 
739 template class elf::SymbolTable<ELF32LE>;
740 template class elf::SymbolTable<ELF32BE>;
741 template class elf::SymbolTable<ELF64LE>;
742 template class elf::SymbolTable<ELF64BE>;
743