1 //===- SymbolTable.cpp ----------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Symbol table is a bag of all known symbols. We put all symbols of 11 // all input files to the symbol table. The symbol table is basically 12 // a hash table with the logic to resolve symbol name conflicts using 13 // the symbol types. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "SymbolTable.h" 18 #include "Config.h" 19 #include "LinkerScript.h" 20 #include "Symbols.h" 21 #include "SyntheticSections.h" 22 #include "lld/Common/ErrorHandler.h" 23 #include "lld/Common/Memory.h" 24 #include "lld/Common/Strings.h" 25 #include "llvm/ADT/STLExtras.h" 26 27 using namespace llvm; 28 using namespace llvm::object; 29 using namespace llvm::ELF; 30 31 using namespace lld; 32 using namespace lld::elf; 33 34 SymbolTable *elf::Symtab; 35 36 static InputFile *getFirstElf() { 37 if (!ObjectFiles.empty()) 38 return ObjectFiles[0]; 39 if (!SharedFiles.empty()) 40 return SharedFiles[0]; 41 return BitcodeFiles[0]; 42 } 43 44 // All input object files must be for the same architecture 45 // (e.g. it does not make sense to link x86 object files with 46 // MIPS object files.) This function checks for that error. 47 static bool isCompatible(InputFile *F) { 48 if (!F->isElf() && !isa<BitcodeFile>(F)) 49 return true; 50 51 if (F->EKind == Config->EKind && F->EMachine == Config->EMachine) { 52 if (Config->EMachine != EM_MIPS) 53 return true; 54 if (isMipsN32Abi(F) == Config->MipsN32Abi) 55 return true; 56 } 57 58 if (!Config->Emulation.empty()) 59 error(toString(F) + " is incompatible with " + Config->Emulation); 60 else 61 error(toString(F) + " is incompatible with " + toString(getFirstElf())); 62 return false; 63 } 64 65 // Add symbols in File to the symbol table. 66 template <class ELFT> void SymbolTable::addFile(InputFile *File) { 67 if (!isCompatible(File)) 68 return; 69 70 // Binary file 71 if (auto *F = dyn_cast<BinaryFile>(File)) { 72 BinaryFiles.push_back(F); 73 F->parse(); 74 return; 75 } 76 77 // .a file 78 if (auto *F = dyn_cast<ArchiveFile>(File)) { 79 F->parse<ELFT>(); 80 return; 81 } 82 83 // Lazy object file 84 if (auto *F = dyn_cast<LazyObjFile>(File)) { 85 LazyObjFiles.push_back(F); 86 F->parse<ELFT>(); 87 return; 88 } 89 90 if (Config->Trace) 91 message(toString(File)); 92 93 // .so file 94 if (auto *F = dyn_cast<SharedFile<ELFT>>(File)) { 95 // DSOs are uniquified not by filename but by soname. 96 F->parseSoName(); 97 if (errorCount() || !SoNames.insert(F->SoName).second) 98 return; 99 SharedFiles.push_back(F); 100 F->parseRest(); 101 return; 102 } 103 104 // LLVM bitcode file 105 if (auto *F = dyn_cast<BitcodeFile>(File)) { 106 BitcodeFiles.push_back(F); 107 F->parse<ELFT>(ComdatGroups); 108 return; 109 } 110 111 // Regular object file 112 ObjectFiles.push_back(File); 113 cast<ObjFile<ELFT>>(File)->parse(ComdatGroups); 114 } 115 116 // This function is where all the optimizations of link-time 117 // optimization happens. When LTO is in use, some input files are 118 // not in native object file format but in the LLVM bitcode format. 119 // This function compiles bitcode files into a few big native files 120 // using LLVM functions and replaces bitcode symbols with the results. 121 // Because all bitcode files that the program consists of are passed 122 // to the compiler at once, it can do whole-program optimization. 123 template <class ELFT> void SymbolTable::addCombinedLTOObject() { 124 if (BitcodeFiles.empty()) 125 return; 126 127 // Compile bitcode files and replace bitcode symbols. 128 LTO.reset(new BitcodeCompiler); 129 for (BitcodeFile *F : BitcodeFiles) 130 LTO->add(*F); 131 132 for (InputFile *File : LTO->compile()) { 133 DenseSet<CachedHashStringRef> DummyGroups; 134 auto *Obj = cast<ObjFile<ELFT>>(File); 135 Obj->parse(DummyGroups); 136 for (Symbol *Sym : Obj->getGlobalSymbols()) 137 Sym->parseSymbolVersion(); 138 ObjectFiles.push_back(File); 139 } 140 } 141 142 Defined *SymbolTable::addAbsolute(StringRef Name, uint8_t Visibility, 143 uint8_t Binding) { 144 Symbol *Sym = 145 addRegular(Name, Visibility, STT_NOTYPE, 0, 0, Binding, nullptr, nullptr); 146 return cast<Defined>(Sym); 147 } 148 149 // Set a flag for --trace-symbol so that we can print out a log message 150 // if a new symbol with the same name is inserted into the symbol table. 151 void SymbolTable::trace(StringRef Name) { 152 SymMap.insert({CachedHashStringRef(Name), -1}); 153 } 154 155 void SymbolTable::wrap(Symbol *Sym, Symbol *Real, Symbol *Wrap) { 156 // Swap symbols as instructed by -wrap. 157 int &Idx1 = Symtab->SymMap[CachedHashStringRef(Sym->getName())]; 158 int &Idx2 = Symtab->SymMap[CachedHashStringRef(Real->getName())]; 159 int &Idx3 = Symtab->SymMap[CachedHashStringRef(Wrap->getName())]; 160 161 Idx2 = Idx1; 162 Idx1 = Idx3; 163 164 // Now renaming is complete. No one refers Real symbol. We could leave 165 // Real as-is, but if Real is written to the symbol table, that may 166 // contain irrelevant values. So, we copy all values from Sym to Real. 167 StringRef S = Real->getName(); 168 memcpy(Real, Sym, sizeof(SymbolUnion)); 169 Real->setName(S); 170 } 171 172 static uint8_t getMinVisibility(uint8_t VA, uint8_t VB) { 173 if (VA == STV_DEFAULT) 174 return VB; 175 if (VB == STV_DEFAULT) 176 return VA; 177 return std::min(VA, VB); 178 } 179 180 // Find an existing symbol or create and insert a new one. 181 std::pair<Symbol *, bool> SymbolTable::insert(StringRef Name) { 182 // <name>@@<version> means the symbol is the default version. In that 183 // case <name>@@<version> will be used to resolve references to <name>. 184 // 185 // Since this is a hot path, the following string search code is 186 // optimized for speed. StringRef::find(char) is much faster than 187 // StringRef::find(StringRef). 188 size_t Pos = Name.find('@'); 189 if (Pos != StringRef::npos && Pos + 1 < Name.size() && Name[Pos + 1] == '@') 190 Name = Name.take_front(Pos); 191 192 auto P = SymMap.insert({CachedHashStringRef(Name), (int)SymVector.size()}); 193 int &SymIndex = P.first->second; 194 bool IsNew = P.second; 195 bool Traced = false; 196 197 if (SymIndex == -1) { 198 SymIndex = SymVector.size(); 199 IsNew = Traced = true; 200 } 201 202 Symbol *Sym; 203 if (IsNew) { 204 Sym = reinterpret_cast<Symbol *>(make<SymbolUnion>()); 205 Sym->Visibility = STV_DEFAULT; 206 Sym->IsUsedInRegularObj = false; 207 Sym->ExportDynamic = false; 208 Sym->CanInline = true; 209 Sym->Traced = Traced; 210 Sym->VersionId = Config->DefaultSymbolVersion; 211 SymVector.push_back(Sym); 212 } else { 213 Sym = SymVector[SymIndex]; 214 } 215 return {Sym, IsNew}; 216 } 217 218 // Find an existing symbol or create and insert a new one, then apply the given 219 // attributes. 220 std::pair<Symbol *, bool> SymbolTable::insert(StringRef Name, uint8_t Type, 221 uint8_t Visibility, 222 bool CanOmitFromDynSym, 223 InputFile *File) { 224 Symbol *S; 225 bool WasInserted; 226 std::tie(S, WasInserted) = insert(Name); 227 228 // Merge in the new symbol's visibility. 229 S->Visibility = getMinVisibility(S->Visibility, Visibility); 230 231 if (!CanOmitFromDynSym && (Config->Shared || Config->ExportDynamic)) 232 S->ExportDynamic = true; 233 234 if (!File || File->kind() == InputFile::ObjKind) 235 S->IsUsedInRegularObj = true; 236 237 if (!WasInserted && S->Type != Symbol::UnknownType && 238 ((Type == STT_TLS) != S->isTls())) { 239 error("TLS attribute mismatch: " + toString(*S) + "\n>>> defined in " + 240 toString(S->File) + "\n>>> defined in " + toString(File)); 241 } 242 243 return {S, WasInserted}; 244 } 245 246 template <class ELFT> Symbol *SymbolTable::addUndefined(StringRef Name) { 247 return addUndefined<ELFT>(Name, STB_GLOBAL, STV_DEFAULT, 248 /*Type*/ 0, 249 /*CanOmitFromDynSym*/ false, /*File*/ nullptr); 250 } 251 252 static uint8_t getVisibility(uint8_t StOther) { return StOther & 3; } 253 254 template <class ELFT> 255 Symbol *SymbolTable::addUndefined(StringRef Name, uint8_t Binding, 256 uint8_t StOther, uint8_t Type, 257 bool CanOmitFromDynSym, InputFile *File) { 258 Symbol *S; 259 bool WasInserted; 260 uint8_t Visibility = getVisibility(StOther); 261 std::tie(S, WasInserted) = 262 insert(Name, Type, Visibility, CanOmitFromDynSym, File); 263 264 // An undefined symbol with non default visibility must be satisfied 265 // in the same DSO. 266 if (WasInserted || (isa<SharedSymbol>(S) && Visibility != STV_DEFAULT)) { 267 replaceSymbol<Undefined>(S, File, Name, Binding, StOther, Type); 268 return S; 269 } 270 271 if (S->isShared() || S->isLazy() || (S->isUndefined() && Binding != STB_WEAK)) 272 S->Binding = Binding; 273 274 if (!Config->GcSections && Binding != STB_WEAK) 275 if (auto *SS = dyn_cast<SharedSymbol>(S)) 276 SS->getFile<ELFT>().IsNeeded = true; 277 278 if (S->isLazy()) { 279 // An undefined weak will not fetch archive members. See comment on Lazy in 280 // Symbols.h for the details. 281 if (Binding == STB_WEAK) { 282 S->Type = Type; 283 return S; 284 } 285 286 // Do extra check for --warn-backrefs. 287 // 288 // --warn-backrefs is an option to prevent an undefined reference from 289 // fetching an archive member written earlier in the command line. It can be 290 // used to keep compatibility with GNU linkers to some degree. 291 // I'll explain the feature and why you may find it useful in this comment. 292 // 293 // lld's symbol resolution semantics is more relaxed than traditional Unix 294 // linkers. For example, 295 // 296 // ld.lld foo.a bar.o 297 // 298 // succeeds even if bar.o contains an undefined symbol that has to be 299 // resolved by some object file in foo.a. Traditional Unix linkers don't 300 // allow this kind of backward reference, as they visit each file only once 301 // from left to right in the command line while resolving all undefined 302 // symbols at the moment of visiting. 303 // 304 // In the above case, since there's no undefined symbol when a linker visits 305 // foo.a, no files are pulled out from foo.a, and because the linker forgets 306 // about foo.a after visiting, it can't resolve undefined symbols in bar.o 307 // that could have been resolved otherwise. 308 // 309 // That lld accepts more relaxed form means that (besides it'd make more 310 // sense) you can accidentally write a command line or a build file that 311 // works only with lld, even if you have a plan to distribute it to wider 312 // users who may be using GNU linkers. With --warn-backrefs, you can detect 313 // a library order that doesn't work with other Unix linkers. 314 // 315 // The option is also useful to detect cyclic dependencies between static 316 // archives. Again, lld accepts 317 // 318 // ld.lld foo.a bar.a 319 // 320 // even if foo.a and bar.a depend on each other. With --warn-backrefs, it is 321 // handled as an error. 322 // 323 // Here is how the option works. We assign a group ID to each file. A file 324 // with a smaller group ID can pull out object files from an archive file 325 // with an equal or greater group ID. Otherwise, it is a reverse dependency 326 // and an error. 327 // 328 // A file outside --{start,end}-group gets a fresh ID when instantiated. All 329 // files within the same --{start,end}-group get the same group ID. E.g. 330 // 331 // ld.lld A B --start-group C D --end-group E 332 // 333 // A forms group 0. B form group 1. C and D (including their member object 334 // files) form group 2. E forms group 3. I think that you can see how this 335 // group assignment rule simulates the traditional linker's semantics. 336 bool Backref = 337 Config->WarnBackrefs && File && S->File->GroupId < File->GroupId; 338 fetchLazy<ELFT>(S); 339 340 // We don't report backward references to weak symbols as they can be 341 // overridden later. 342 if (Backref && S->Binding != STB_WEAK) 343 warn("backward reference detected: " + Name + " in " + toString(File) + 344 " refers to " + toString(S->File)); 345 } 346 return S; 347 } 348 349 // Using .symver foo,foo@@VER unfortunately creates two symbols: foo and 350 // foo@@VER. We want to effectively ignore foo, so give precedence to 351 // foo@@VER. 352 // FIXME: If users can transition to using 353 // .symver foo,foo@@@VER 354 // we can delete this hack. 355 static int compareVersion(Symbol *S, StringRef Name) { 356 bool A = Name.contains("@@"); 357 bool B = S->getName().contains("@@"); 358 if (A && !B) 359 return 1; 360 if (!A && B) 361 return -1; 362 return 0; 363 } 364 365 // We have a new defined symbol with the specified binding. Return 1 if the new 366 // symbol should win, -1 if the new symbol should lose, or 0 if both symbols are 367 // strong defined symbols. 368 static int compareDefined(Symbol *S, bool WasInserted, uint8_t Binding, 369 StringRef Name) { 370 if (WasInserted) 371 return 1; 372 if (!S->isDefined()) 373 return 1; 374 if (int R = compareVersion(S, Name)) 375 return R; 376 if (Binding == STB_WEAK) 377 return -1; 378 if (S->isWeak()) 379 return 1; 380 return 0; 381 } 382 383 // We have a new non-common defined symbol with the specified binding. Return 1 384 // if the new symbol should win, -1 if the new symbol should lose, or 0 if there 385 // is a conflict. If the new symbol wins, also update the binding. 386 static int compareDefinedNonCommon(Symbol *S, bool WasInserted, uint8_t Binding, 387 bool IsAbsolute, uint64_t Value, 388 StringRef Name) { 389 if (int Cmp = compareDefined(S, WasInserted, Binding, Name)) 390 return Cmp; 391 if (auto *R = dyn_cast<Defined>(S)) { 392 if (R->Section && isa<BssSection>(R->Section)) { 393 // Non-common symbols take precedence over common symbols. 394 if (Config->WarnCommon) 395 warn("common " + S->getName() + " is overridden"); 396 return 1; 397 } 398 if (R->Section == nullptr && Binding == STB_GLOBAL && IsAbsolute && 399 R->Value == Value) 400 return -1; 401 } 402 return 0; 403 } 404 405 Symbol *SymbolTable::addCommon(StringRef N, uint64_t Size, uint32_t Alignment, 406 uint8_t Binding, uint8_t StOther, uint8_t Type, 407 InputFile &File) { 408 Symbol *S; 409 bool WasInserted; 410 std::tie(S, WasInserted) = insert(N, Type, getVisibility(StOther), 411 /*CanOmitFromDynSym*/ false, &File); 412 413 int Cmp = compareDefined(S, WasInserted, Binding, N); 414 if (Cmp < 0) 415 return S; 416 417 if (Cmp > 0) { 418 auto *Bss = make<BssSection>("COMMON", Size, Alignment); 419 Bss->File = &File; 420 Bss->Live = !Config->GcSections; 421 InputSections.push_back(Bss); 422 423 replaceSymbol<Defined>(S, &File, N, Binding, StOther, Type, 0, Size, Bss); 424 return S; 425 } 426 427 auto *D = cast<Defined>(S); 428 auto *Bss = dyn_cast_or_null<BssSection>(D->Section); 429 if (!Bss) { 430 // Non-common symbols take precedence over common symbols. 431 if (Config->WarnCommon) 432 warn("common " + S->getName() + " is overridden"); 433 return S; 434 } 435 436 if (Config->WarnCommon) 437 warn("multiple common of " + D->getName()); 438 439 Bss->Alignment = std::max(Bss->Alignment, Alignment); 440 if (Size > Bss->Size) { 441 D->File = Bss->File = &File; 442 D->Size = Bss->Size = Size; 443 } 444 return S; 445 } 446 447 static void reportDuplicate(Symbol *Sym, InputFile *NewFile) { 448 if (!Config->AllowMultipleDefinition) 449 error("duplicate symbol: " + toString(*Sym) + "\n>>> defined in " + 450 toString(Sym->File) + "\n>>> defined in " + toString(NewFile)); 451 } 452 453 static void reportDuplicate(Symbol *Sym, InputFile *NewFile, 454 InputSectionBase *ErrSec, uint64_t ErrOffset) { 455 if (Config->AllowMultipleDefinition) 456 return; 457 458 Defined *D = cast<Defined>(Sym); 459 if (!D->Section || !ErrSec) { 460 reportDuplicate(Sym, NewFile); 461 return; 462 } 463 464 // Construct and print an error message in the form of: 465 // 466 // ld.lld: error: duplicate symbol: foo 467 // >>> defined at bar.c:30 468 // >>> bar.o (/home/alice/src/bar.o) 469 // >>> defined at baz.c:563 470 // >>> baz.o in archive libbaz.a 471 auto *Sec1 = cast<InputSectionBase>(D->Section); 472 std::string Src1 = Sec1->getSrcMsg(*Sym, D->Value); 473 std::string Obj1 = Sec1->getObjMsg(D->Value); 474 std::string Src2 = ErrSec->getSrcMsg(*Sym, ErrOffset); 475 std::string Obj2 = ErrSec->getObjMsg(ErrOffset); 476 477 std::string Msg = "duplicate symbol: " + toString(*Sym) + "\n>>> defined at "; 478 if (!Src1.empty()) 479 Msg += Src1 + "\n>>> "; 480 Msg += Obj1 + "\n>>> defined at "; 481 if (!Src2.empty()) 482 Msg += Src2 + "\n>>> "; 483 Msg += Obj2; 484 error(Msg); 485 } 486 487 Symbol *SymbolTable::addRegular(StringRef Name, uint8_t StOther, uint8_t Type, 488 uint64_t Value, uint64_t Size, uint8_t Binding, 489 SectionBase *Section, InputFile *File) { 490 Symbol *S; 491 bool WasInserted; 492 std::tie(S, WasInserted) = insert(Name, Type, getVisibility(StOther), 493 /*CanOmitFromDynSym*/ false, File); 494 int Cmp = compareDefinedNonCommon(S, WasInserted, Binding, Section == nullptr, 495 Value, Name); 496 if (Cmp > 0) 497 replaceSymbol<Defined>(S, File, Name, Binding, StOther, Type, Value, Size, 498 Section); 499 else if (Cmp == 0) 500 reportDuplicate(S, File, dyn_cast_or_null<InputSectionBase>(Section), 501 Value); 502 return S; 503 } 504 505 template <typename ELFT> 506 void SymbolTable::addShared(StringRef Name, SharedFile<ELFT> &File, 507 const typename ELFT::Sym &Sym, uint32_t Alignment, 508 uint32_t VerdefIndex) { 509 // DSO symbols do not affect visibility in the output, so we pass STV_DEFAULT 510 // as the visibility, which will leave the visibility in the symbol table 511 // unchanged. 512 Symbol *S; 513 bool WasInserted; 514 std::tie(S, WasInserted) = insert(Name, Sym.getType(), STV_DEFAULT, 515 /*CanOmitFromDynSym*/ true, &File); 516 // Make sure we preempt DSO symbols with default visibility. 517 if (Sym.getVisibility() == STV_DEFAULT) 518 S->ExportDynamic = true; 519 520 // An undefined symbol with non default visibility must be satisfied 521 // in the same DSO. 522 if (WasInserted || 523 ((S->isUndefined() || S->isLazy()) && S->Visibility == STV_DEFAULT)) { 524 uint8_t Binding = S->Binding; 525 bool WasUndefined = S->isUndefined(); 526 replaceSymbol<SharedSymbol>(S, File, Name, Sym.getBinding(), Sym.st_other, 527 Sym.getType(), Sym.st_value, Sym.st_size, 528 Alignment, VerdefIndex); 529 if (!WasInserted) { 530 S->Binding = Binding; 531 if (!S->isWeak() && !Config->GcSections && WasUndefined) 532 File.IsNeeded = true; 533 } 534 } 535 } 536 537 Symbol *SymbolTable::addBitcode(StringRef Name, uint8_t Binding, 538 uint8_t StOther, uint8_t Type, 539 bool CanOmitFromDynSym, BitcodeFile &F) { 540 Symbol *S; 541 bool WasInserted; 542 std::tie(S, WasInserted) = 543 insert(Name, Type, getVisibility(StOther), CanOmitFromDynSym, &F); 544 int Cmp = compareDefinedNonCommon(S, WasInserted, Binding, 545 /*IsAbs*/ false, /*Value*/ 0, Name); 546 if (Cmp > 0) 547 replaceSymbol<Defined>(S, &F, Name, Binding, StOther, Type, 0, 0, nullptr); 548 else if (Cmp == 0) 549 reportDuplicate(S, &F); 550 return S; 551 } 552 553 Symbol *SymbolTable::find(StringRef Name) { 554 auto It = SymMap.find(CachedHashStringRef(Name)); 555 if (It == SymMap.end()) 556 return nullptr; 557 if (It->second == -1) 558 return nullptr; 559 return SymVector[It->second]; 560 } 561 562 // This is used to handle lazy symbols. May replace existent 563 // symbol with lazy version or request to Fetch it. 564 template <class ELFT, typename LazyT, typename... ArgT> 565 static void replaceOrFetchLazy(StringRef Name, InputFile &File, 566 llvm::function_ref<InputFile *()> Fetch, 567 ArgT &&... Arg) { 568 Symbol *S; 569 bool WasInserted; 570 std::tie(S, WasInserted) = Symtab->insert(Name); 571 if (WasInserted) { 572 replaceSymbol<LazyT>(S, File, Symbol::UnknownType, 573 std::forward<ArgT>(Arg)...); 574 return; 575 } 576 if (!S->isUndefined()) 577 return; 578 579 // An undefined weak will not fetch archive members. See comment on Lazy in 580 // Symbols.h for the details. 581 if (S->isWeak()) { 582 replaceSymbol<LazyT>(S, File, S->Type, std::forward<ArgT>(Arg)...); 583 S->Binding = STB_WEAK; 584 return; 585 } 586 587 if (InputFile *F = Fetch()) 588 Symtab->addFile<ELFT>(F); 589 } 590 591 template <class ELFT> 592 void SymbolTable::addLazyArchive(StringRef Name, ArchiveFile &F, 593 const object::Archive::Symbol Sym) { 594 replaceOrFetchLazy<ELFT, LazyArchive>(Name, F, [&]() { return F.fetch(Sym); }, 595 Sym); 596 } 597 598 template <class ELFT> 599 void SymbolTable::addLazyObject(StringRef Name, LazyObjFile &Obj) { 600 replaceOrFetchLazy<ELFT, LazyObject>(Name, Obj, [&]() { return Obj.fetch(); }, 601 Name); 602 } 603 604 template <class ELFT> void SymbolTable::fetchLazy(Symbol *Sym) { 605 if (auto *S = dyn_cast<LazyArchive>(Sym)) { 606 if (InputFile *File = S->fetch()) 607 addFile<ELFT>(File); 608 return; 609 } 610 611 auto *S = cast<LazyObject>(Sym); 612 if (InputFile *File = cast<LazyObjFile>(S->File)->fetch()) 613 addFile<ELFT>(File); 614 } 615 616 // Initialize DemangledSyms with a map from demangled symbols to symbol 617 // objects. Used to handle "extern C++" directive in version scripts. 618 // 619 // The map will contain all demangled symbols. That can be very large, 620 // and in LLD we generally want to avoid do anything for each symbol. 621 // Then, why are we doing this? Here's why. 622 // 623 // Users can use "extern C++ {}" directive to match against demangled 624 // C++ symbols. For example, you can write a pattern such as 625 // "llvm::*::foo(int, ?)". Obviously, there's no way to handle this 626 // other than trying to match a pattern against all demangled symbols. 627 // So, if "extern C++" feature is used, we need to demangle all known 628 // symbols. 629 StringMap<std::vector<Symbol *>> &SymbolTable::getDemangledSyms() { 630 if (!DemangledSyms) { 631 DemangledSyms.emplace(); 632 for (Symbol *Sym : SymVector) { 633 if (!Sym->isDefined()) 634 continue; 635 if (Optional<std::string> S = demangleItanium(Sym->getName())) 636 (*DemangledSyms)[*S].push_back(Sym); 637 else 638 (*DemangledSyms)[Sym->getName()].push_back(Sym); 639 } 640 } 641 return *DemangledSyms; 642 } 643 644 std::vector<Symbol *> SymbolTable::findByVersion(SymbolVersion Ver) { 645 if (Ver.IsExternCpp) 646 return getDemangledSyms().lookup(Ver.Name); 647 if (Symbol *B = find(Ver.Name)) 648 if (B->isDefined()) 649 return {B}; 650 return {}; 651 } 652 653 std::vector<Symbol *> SymbolTable::findAllByVersion(SymbolVersion Ver) { 654 std::vector<Symbol *> Res; 655 StringMatcher M(Ver.Name); 656 657 if (Ver.IsExternCpp) { 658 for (auto &P : getDemangledSyms()) 659 if (M.match(P.first())) 660 Res.insert(Res.end(), P.second.begin(), P.second.end()); 661 return Res; 662 } 663 664 for (Symbol *Sym : SymVector) 665 if (Sym->isDefined() && M.match(Sym->getName())) 666 Res.push_back(Sym); 667 return Res; 668 } 669 670 // If there's only one anonymous version definition in a version 671 // script file, the script does not actually define any symbol version, 672 // but just specifies symbols visibilities. 673 void SymbolTable::handleAnonymousVersion() { 674 for (SymbolVersion &Ver : Config->VersionScriptGlobals) 675 assignExactVersion(Ver, VER_NDX_GLOBAL, "global"); 676 for (SymbolVersion &Ver : Config->VersionScriptGlobals) 677 assignWildcardVersion(Ver, VER_NDX_GLOBAL); 678 for (SymbolVersion &Ver : Config->VersionScriptLocals) 679 assignExactVersion(Ver, VER_NDX_LOCAL, "local"); 680 for (SymbolVersion &Ver : Config->VersionScriptLocals) 681 assignWildcardVersion(Ver, VER_NDX_LOCAL); 682 } 683 684 // Handles -dynamic-list. 685 void SymbolTable::handleDynamicList() { 686 for (SymbolVersion &Ver : Config->DynamicList) { 687 std::vector<Symbol *> Syms; 688 if (Ver.HasWildcard) 689 Syms = findAllByVersion(Ver); 690 else 691 Syms = findByVersion(Ver); 692 693 for (Symbol *B : Syms) { 694 if (!Config->Shared) 695 B->ExportDynamic = true; 696 else if (B->includeInDynsym()) 697 B->IsPreemptible = true; 698 } 699 } 700 } 701 702 // Set symbol versions to symbols. This function handles patterns 703 // containing no wildcard characters. 704 void SymbolTable::assignExactVersion(SymbolVersion Ver, uint16_t VersionId, 705 StringRef VersionName) { 706 if (Ver.HasWildcard) 707 return; 708 709 // Get a list of symbols which we need to assign the version to. 710 std::vector<Symbol *> Syms = findByVersion(Ver); 711 if (Syms.empty()) { 712 if (!Config->UndefinedVersion) 713 error("version script assignment of '" + VersionName + "' to symbol '" + 714 Ver.Name + "' failed: symbol not defined"); 715 return; 716 } 717 718 // Assign the version. 719 for (Symbol *Sym : Syms) { 720 // Skip symbols containing version info because symbol versions 721 // specified by symbol names take precedence over version scripts. 722 // See parseSymbolVersion(). 723 if (Sym->getName().contains('@')) 724 continue; 725 726 if (Sym->VersionId != Config->DefaultSymbolVersion && 727 Sym->VersionId != VersionId) 728 error("duplicate symbol '" + Ver.Name + "' in version script"); 729 Sym->VersionId = VersionId; 730 } 731 } 732 733 void SymbolTable::assignWildcardVersion(SymbolVersion Ver, uint16_t VersionId) { 734 if (!Ver.HasWildcard) 735 return; 736 737 // Exact matching takes precendence over fuzzy matching, 738 // so we set a version to a symbol only if no version has been assigned 739 // to the symbol. This behavior is compatible with GNU. 740 for (Symbol *B : findAllByVersion(Ver)) 741 if (B->VersionId == Config->DefaultSymbolVersion) 742 B->VersionId = VersionId; 743 } 744 745 // This function processes version scripts by updating VersionId 746 // member of symbols. 747 void SymbolTable::scanVersionScript() { 748 // Handle edge cases first. 749 handleAnonymousVersion(); 750 handleDynamicList(); 751 752 // Now we have version definitions, so we need to set version ids to symbols. 753 // Each version definition has a glob pattern, and all symbols that match 754 // with the pattern get that version. 755 756 // First, we assign versions to exact matching symbols, 757 // i.e. version definitions not containing any glob meta-characters. 758 for (VersionDefinition &V : Config->VersionDefinitions) 759 for (SymbolVersion &Ver : V.Globals) 760 assignExactVersion(Ver, V.Id, V.Name); 761 762 // Next, we assign versions to fuzzy matching symbols, 763 // i.e. version definitions containing glob meta-characters. 764 // Note that because the last match takes precedence over previous matches, 765 // we iterate over the definitions in the reverse order. 766 for (VersionDefinition &V : llvm::reverse(Config->VersionDefinitions)) 767 for (SymbolVersion &Ver : V.Globals) 768 assignWildcardVersion(Ver, V.Id); 769 770 // Symbol themselves might know their versions because symbols 771 // can contain versions in the form of <name>@<version>. 772 // Let them parse and update their names to exclude version suffix. 773 for (Symbol *Sym : SymVector) 774 Sym->parseSymbolVersion(); 775 } 776 777 template void SymbolTable::addFile<ELF32LE>(InputFile *); 778 template void SymbolTable::addFile<ELF32BE>(InputFile *); 779 template void SymbolTable::addFile<ELF64LE>(InputFile *); 780 template void SymbolTable::addFile<ELF64BE>(InputFile *); 781 782 template Symbol *SymbolTable::addUndefined<ELF32LE>(StringRef); 783 template Symbol *SymbolTable::addUndefined<ELF32BE>(StringRef); 784 template Symbol *SymbolTable::addUndefined<ELF64LE>(StringRef); 785 template Symbol *SymbolTable::addUndefined<ELF64BE>(StringRef); 786 787 template Symbol *SymbolTable::addUndefined<ELF32LE>(StringRef, uint8_t, uint8_t, 788 uint8_t, bool, InputFile *); 789 template Symbol *SymbolTable::addUndefined<ELF32BE>(StringRef, uint8_t, uint8_t, 790 uint8_t, bool, InputFile *); 791 template Symbol *SymbolTable::addUndefined<ELF64LE>(StringRef, uint8_t, uint8_t, 792 uint8_t, bool, InputFile *); 793 template Symbol *SymbolTable::addUndefined<ELF64BE>(StringRef, uint8_t, uint8_t, 794 uint8_t, bool, InputFile *); 795 796 template void SymbolTable::addCombinedLTOObject<ELF32LE>(); 797 template void SymbolTable::addCombinedLTOObject<ELF32BE>(); 798 template void SymbolTable::addCombinedLTOObject<ELF64LE>(); 799 template void SymbolTable::addCombinedLTOObject<ELF64BE>(); 800 801 template void 802 SymbolTable::addLazyArchive<ELF32LE>(StringRef, ArchiveFile &, 803 const object::Archive::Symbol); 804 template void 805 SymbolTable::addLazyArchive<ELF32BE>(StringRef, ArchiveFile &, 806 const object::Archive::Symbol); 807 template void 808 SymbolTable::addLazyArchive<ELF64LE>(StringRef, ArchiveFile &, 809 const object::Archive::Symbol); 810 template void 811 SymbolTable::addLazyArchive<ELF64BE>(StringRef, ArchiveFile &, 812 const object::Archive::Symbol); 813 814 template void SymbolTable::addLazyObject<ELF32LE>(StringRef, LazyObjFile &); 815 template void SymbolTable::addLazyObject<ELF32BE>(StringRef, LazyObjFile &); 816 template void SymbolTable::addLazyObject<ELF64LE>(StringRef, LazyObjFile &); 817 template void SymbolTable::addLazyObject<ELF64BE>(StringRef, LazyObjFile &); 818 819 template void SymbolTable::fetchLazy<ELF32LE>(Symbol *); 820 template void SymbolTable::fetchLazy<ELF32BE>(Symbol *); 821 template void SymbolTable::fetchLazy<ELF64LE>(Symbol *); 822 template void SymbolTable::fetchLazy<ELF64BE>(Symbol *); 823 824 template void SymbolTable::addShared<ELF32LE>(StringRef, SharedFile<ELF32LE> &, 825 const typename ELF32LE::Sym &, 826 uint32_t Alignment, uint32_t); 827 template void SymbolTable::addShared<ELF32BE>(StringRef, SharedFile<ELF32BE> &, 828 const typename ELF32BE::Sym &, 829 uint32_t Alignment, uint32_t); 830 template void SymbolTable::addShared<ELF64LE>(StringRef, SharedFile<ELF64LE> &, 831 const typename ELF64LE::Sym &, 832 uint32_t Alignment, uint32_t); 833 template void SymbolTable::addShared<ELF64BE>(StringRef, SharedFile<ELF64BE> &, 834 const typename ELF64BE::Sym &, 835 uint32_t Alignment, uint32_t); 836