1 //===- SymbolTable.cpp ----------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Symbol table is a bag of all known symbols. We put all symbols of
11 // all input files to the symbol table. The symbol table is basically
12 // a hash table with the logic to resolve symbol name conflicts using
13 // the symbol types.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "SymbolTable.h"
18 #include "Config.h"
19 #include "Error.h"
20 #include "LinkerScript.h"
21 #include "Strings.h"
22 #include "Symbols.h"
23 #include "llvm/Bitcode/ReaderWriter.h"
24 #include "llvm/Support/StringSaver.h"
25 
26 using namespace llvm;
27 using namespace llvm::object;
28 using namespace llvm::ELF;
29 
30 using namespace lld;
31 using namespace lld::elf;
32 
33 // All input object files must be for the same architecture
34 // (e.g. it does not make sense to link x86 object files with
35 // MIPS object files.) This function checks for that error.
36 template <class ELFT> static bool isCompatible(InputFile *F) {
37   if (!isa<ELFFileBase<ELFT>>(F) && !isa<BitcodeFile>(F))
38     return true;
39   if (F->EKind == Config->EKind && F->EMachine == Config->EMachine)
40     return true;
41   StringRef A = F->getName();
42   StringRef B = Config->Emulation;
43   if (B.empty())
44     B = Config->FirstElf->getName();
45   error(A + " is incompatible with " + B);
46   return false;
47 }
48 
49 // Add symbols in File to the symbol table.
50 template <class ELFT>
51 void SymbolTable<ELFT>::addFile(std::unique_ptr<InputFile> File) {
52   InputFile *FileP = File.get();
53   if (!isCompatible<ELFT>(FileP))
54     return;
55 
56   // .a file
57   if (auto *F = dyn_cast<ArchiveFile>(FileP)) {
58     ArchiveFiles.emplace_back(cast<ArchiveFile>(File.release()));
59     F->parse<ELFT>();
60     return;
61   }
62 
63   // Lazy object file
64   if (auto *F = dyn_cast<LazyObjectFile>(FileP)) {
65     LazyObjectFiles.emplace_back(cast<LazyObjectFile>(File.release()));
66     F->parse<ELFT>();
67     return;
68   }
69 
70   if (Config->Trace)
71     llvm::outs() << getFilename(FileP) << "\n";
72 
73   // .so file
74   if (auto *F = dyn_cast<SharedFile<ELFT>>(FileP)) {
75     // DSOs are uniquified not by filename but by soname.
76     F->parseSoName();
77     if (!SoNames.insert(F->getSoName()).second)
78       return;
79 
80     SharedFiles.emplace_back(cast<SharedFile<ELFT>>(File.release()));
81     F->parseRest();
82     return;
83   }
84 
85   // LLVM bitcode file
86   if (auto *F = dyn_cast<BitcodeFile>(FileP)) {
87     BitcodeFiles.emplace_back(cast<BitcodeFile>(File.release()));
88     F->parse<ELFT>(ComdatGroups);
89     return;
90   }
91 
92   // Regular object file
93   auto *F = cast<ObjectFile<ELFT>>(FileP);
94   ObjectFiles.emplace_back(cast<ObjectFile<ELFT>>(File.release()));
95   F->parse(ComdatGroups);
96 }
97 
98 // This function is where all the optimizations of link-time
99 // optimization happens. When LTO is in use, some input files are
100 // not in native object file format but in the LLVM bitcode format.
101 // This function compiles bitcode files into a few big native files
102 // using LLVM functions and replaces bitcode symbols with the results.
103 // Because all bitcode files that consist of a program are passed
104 // to the compiler at once, it can do whole-program optimization.
105 template <class ELFT> void SymbolTable<ELFT>::addCombinedLtoObject() {
106   if (BitcodeFiles.empty())
107     return;
108 
109   // Compile bitcode files.
110   Lto.reset(new BitcodeCompiler);
111   for (const std::unique_ptr<BitcodeFile> &F : BitcodeFiles)
112     Lto->add(*F);
113   std::vector<std::unique_ptr<InputFile>> IFs = Lto->compile();
114 
115   // Replace bitcode symbols.
116   for (auto &IF : IFs) {
117     ObjectFile<ELFT> *Obj = cast<ObjectFile<ELFT>>(IF.release());
118 
119     llvm::DenseSet<StringRef> DummyGroups;
120     Obj->parse(DummyGroups);
121     ObjectFiles.emplace_back(Obj);
122   }
123 }
124 
125 template <class ELFT>
126 DefinedRegular<ELFT> *SymbolTable<ELFT>::addAbsolute(StringRef Name,
127                                                      uint8_t Visibility) {
128   return cast<DefinedRegular<ELFT>>(
129       addRegular(Name, STB_GLOBAL, Visibility)->body());
130 }
131 
132 // Add Name as an "ignored" symbol. An ignored symbol is a regular
133 // linker-synthesized defined symbol, but is only defined if needed.
134 template <class ELFT>
135 DefinedRegular<ELFT> *SymbolTable<ELFT>::addIgnored(StringRef Name,
136                                                     uint8_t Visibility) {
137   if (!find(Name))
138     return nullptr;
139   return addAbsolute(Name, Visibility);
140 }
141 
142 // Rename SYM as __wrap_SYM. The original symbol is preserved as __real_SYM.
143 // Used to implement --wrap.
144 template <class ELFT> void SymbolTable<ELFT>::wrap(StringRef Name) {
145   SymbolBody *B = find(Name);
146   if (!B)
147     return;
148   StringSaver Saver(Alloc);
149   Symbol *Sym = B->symbol();
150   Symbol *Real = addUndefined(Saver.save("__real_" + Name));
151   Symbol *Wrap = addUndefined(Saver.save("__wrap_" + Name));
152   // We rename symbols by replacing the old symbol's SymbolBody with the new
153   // symbol's SymbolBody. This causes all SymbolBody pointers referring to the
154   // old symbol to instead refer to the new symbol.
155   memcpy(Real->Body.buffer, Sym->Body.buffer, sizeof(Sym->Body));
156   memcpy(Sym->Body.buffer, Wrap->Body.buffer, sizeof(Wrap->Body));
157 }
158 
159 static uint8_t getMinVisibility(uint8_t VA, uint8_t VB) {
160   if (VA == STV_DEFAULT)
161     return VB;
162   if (VB == STV_DEFAULT)
163     return VA;
164   return std::min(VA, VB);
165 }
166 
167 // A symbol version may be included in a symbol name as a suffix after '@'.
168 // This function parses that part and returns a version ID number.
169 static uint16_t getVersionId(Symbol *Sym, StringRef Name) {
170   size_t VersionBegin = Name.find('@');
171   if (VersionBegin == StringRef::npos)
172     return Config->VersionScriptGlobalByDefault ? VER_NDX_GLOBAL
173                                                 : VER_NDX_LOCAL;
174 
175   // If symbol name contains '@' or '@@' we can assign its version id right
176   // here. '@@' means the default version. It is usually the most recent one.
177   // VERSYM_HIDDEN flag should be set for all non-default versions.
178   StringRef Version = Name.drop_front(VersionBegin + 1);
179   bool Default = Version.startswith("@");
180   if (Default)
181     Version = Version.drop_front();
182 
183   size_t I = 2;
184   for (elf::Version &V : Config->SymbolVersions) {
185     if (V.Name == Version)
186       return Default ? I : (I | VERSYM_HIDDEN);
187     ++I;
188   }
189   error("symbol " + Name + " has undefined version " + Version);
190   return 0;
191 }
192 
193 // Find an existing symbol or create and insert a new one.
194 template <class ELFT>
195 std::pair<Symbol *, bool> SymbolTable<ELFT>::insert(StringRef Name) {
196   unsigned NumSyms = SymVector.size();
197   auto P = Symtab.insert(std::make_pair(Name, NumSyms));
198   Symbol *Sym;
199   if (P.second) {
200     Sym = new (Alloc) Symbol;
201     Sym->Binding = STB_WEAK;
202     Sym->Visibility = STV_DEFAULT;
203     Sym->IsUsedInRegularObj = false;
204     Sym->ExportDynamic = false;
205     Sym->VersionId = getVersionId(Sym, Name);
206     Sym->VersionedName =
207         Sym->VersionId != VER_NDX_LOCAL && Sym->VersionId != VER_NDX_GLOBAL;
208     SymVector.push_back(Sym);
209   } else {
210     Sym = SymVector[P.first->second];
211   }
212   return {Sym, P.second};
213 }
214 
215 // Find an existing symbol or create and insert a new one, then apply the given
216 // attributes.
217 template <class ELFT>
218 std::pair<Symbol *, bool>
219 SymbolTable<ELFT>::insert(StringRef Name, uint8_t Type, uint8_t Visibility,
220                           bool CanOmitFromDynSym, bool IsUsedInRegularObj,
221                           InputFile *File) {
222   Symbol *S;
223   bool WasInserted;
224   std::tie(S, WasInserted) = insert(Name);
225 
226   // Merge in the new symbol's visibility.
227   S->Visibility = getMinVisibility(S->Visibility, Visibility);
228   if (!CanOmitFromDynSym && (Config->Shared || Config->ExportDynamic))
229     S->ExportDynamic = true;
230   if (IsUsedInRegularObj)
231     S->IsUsedInRegularObj = true;
232   if (!WasInserted && S->body()->Type != SymbolBody::UnknownType &&
233       ((Type == STT_TLS) != S->body()->isTls()))
234     error("TLS attribute mismatch for symbol: " +
235           conflictMsg(S->body(), File));
236 
237   return {S, WasInserted};
238 }
239 
240 // Construct a string in the form of "Sym in File1 and File2".
241 // Used to construct an error message.
242 template <typename ELFT>
243 std::string SymbolTable<ELFT>::conflictMsg(SymbolBody *Existing,
244                                            InputFile *NewFile) {
245   StringRef Sym = Existing->getName();
246   return demangle(Sym) + " in " + getFilename(Existing->getSourceFile<ELFT>()) +
247          " and " + getFilename(NewFile);
248 }
249 
250 template <class ELFT> Symbol *SymbolTable<ELFT>::addUndefined(StringRef Name) {
251   return addUndefined(Name, STB_GLOBAL, STV_DEFAULT, /*Type*/ 0,
252                       /*CanOmitFromDynSym*/ false, /*File*/ nullptr);
253 }
254 
255 template <class ELFT>
256 Symbol *SymbolTable<ELFT>::addUndefined(StringRef Name, uint8_t Binding,
257                                         uint8_t StOther, uint8_t Type,
258                                         bool CanOmitFromDynSym,
259                                         InputFile *File) {
260   Symbol *S;
261   bool WasInserted;
262   std::tie(S, WasInserted) =
263       insert(Name, Type, StOther & 3, CanOmitFromDynSym,
264              /*IsUsedInRegularObj*/ !File || !isa<BitcodeFile>(File), File);
265   if (WasInserted) {
266     S->Binding = Binding;
267     replaceBody<Undefined>(S, Name, StOther, Type);
268     cast<Undefined>(S->body())->File = File;
269     return S;
270   }
271   if (Binding != STB_WEAK) {
272     if (S->body()->isShared() || S->body()->isLazy())
273       S->Binding = Binding;
274     if (auto *SS = dyn_cast<SharedSymbol<ELFT>>(S->body()))
275       SS->File->IsUsed = true;
276   }
277   if (auto *L = dyn_cast<Lazy>(S->body())) {
278     // An undefined weak will not fetch archive members, but we have to remember
279     // its type. See also comment in addLazyArchive.
280     if (S->isWeak())
281       L->Type = Type;
282     else if (auto F = L->getFile())
283       addFile(std::move(F));
284   }
285   return S;
286 }
287 
288 // We have a new defined symbol with the specified binding. Return 1 if the new
289 // symbol should win, -1 if the new symbol should lose, or 0 if both symbols are
290 // strong defined symbols.
291 static int compareDefined(Symbol *S, bool WasInserted, uint8_t Binding) {
292   if (WasInserted)
293     return 1;
294   SymbolBody *Body = S->body();
295   if (Body->isLazy() || Body->isUndefined() || Body->isShared())
296     return 1;
297   if (Binding == STB_WEAK)
298     return -1;
299   if (S->isWeak())
300     return 1;
301   return 0;
302 }
303 
304 // We have a new non-common defined symbol with the specified binding. Return 1
305 // if the new symbol should win, -1 if the new symbol should lose, or 0 if there
306 // is a conflict. If the new symbol wins, also update the binding.
307 static int compareDefinedNonCommon(Symbol *S, bool WasInserted, uint8_t Binding) {
308   if (int Cmp = compareDefined(S, WasInserted, Binding)) {
309     if (Cmp > 0)
310       S->Binding = Binding;
311     return Cmp;
312   }
313   if (isa<DefinedCommon>(S->body())) {
314     // Non-common symbols take precedence over common symbols.
315     if (Config->WarnCommon)
316       warning("common " + S->body()->getName() + " is overridden");
317     return 1;
318   }
319   return 0;
320 }
321 
322 template <class ELFT>
323 Symbol *SymbolTable<ELFT>::addCommon(StringRef N, uint64_t Size,
324                                      uint64_t Alignment, uint8_t Binding,
325                                      uint8_t StOther, uint8_t Type,
326                                      InputFile *File) {
327   Symbol *S;
328   bool WasInserted;
329   std::tie(S, WasInserted) =
330       insert(N, Type, StOther & 3, /*CanOmitFromDynSym*/ false,
331              /*IsUsedInRegularObj*/ true, File);
332   int Cmp = compareDefined(S, WasInserted, Binding);
333   if (Cmp > 0) {
334     S->Binding = Binding;
335     replaceBody<DefinedCommon>(S, N, Size, Alignment, StOther, Type);
336   } else if (Cmp == 0) {
337     auto *C = dyn_cast<DefinedCommon>(S->body());
338     if (!C) {
339       // Non-common symbols take precedence over common symbols.
340       if (Config->WarnCommon)
341         warning("common " + S->body()->getName() + " is overridden");
342       return S;
343     }
344 
345     if (Config->WarnCommon)
346       warning("multiple common of " + S->body()->getName());
347 
348     C->Size = std::max(C->Size, Size);
349     C->Alignment = std::max(C->Alignment, Alignment);
350   }
351   return S;
352 }
353 
354 template <class ELFT>
355 void SymbolTable<ELFT>::reportDuplicate(SymbolBody *Existing,
356                                         InputFile *NewFile) {
357   std::string Msg = "duplicate symbol: " + conflictMsg(Existing, NewFile);
358   if (Config->AllowMultipleDefinition)
359     warning(Msg);
360   else
361     error(Msg);
362 }
363 
364 template <typename ELFT>
365 Symbol *SymbolTable<ELFT>::addRegular(StringRef Name, const Elf_Sym &Sym,
366                                       InputSectionBase<ELFT> *Section) {
367   Symbol *S;
368   bool WasInserted;
369   std::tie(S, WasInserted) =
370       insert(Name, Sym.getType(), Sym.getVisibility(),
371              /*CanOmitFromDynSym*/ false, /*IsUsedInRegularObj*/ true,
372              Section ? Section->getFile() : nullptr);
373   int Cmp = compareDefinedNonCommon(S, WasInserted, Sym.getBinding());
374   if (Cmp > 0)
375     replaceBody<DefinedRegular<ELFT>>(S, Name, Sym, Section);
376   else if (Cmp == 0)
377     reportDuplicate(S->body(), Section->getFile());
378   return S;
379 }
380 
381 template <typename ELFT>
382 Symbol *SymbolTable<ELFT>::addRegular(StringRef Name, uint8_t Binding,
383                                       uint8_t StOther) {
384   Symbol *S;
385   bool WasInserted;
386   std::tie(S, WasInserted) =
387       insert(Name, STT_NOTYPE, StOther & 3, /*CanOmitFromDynSym*/ false,
388              /*IsUsedInRegularObj*/ true, nullptr);
389   int Cmp = compareDefinedNonCommon(S, WasInserted, Binding);
390   if (Cmp > 0)
391     replaceBody<DefinedRegular<ELFT>>(S, Name, StOther);
392   else if (Cmp == 0)
393     reportDuplicate(S->body(), nullptr);
394   return S;
395 }
396 
397 template <typename ELFT>
398 Symbol *SymbolTable<ELFT>::addSynthetic(StringRef N,
399                                         OutputSectionBase<ELFT> *Section,
400                                         uintX_t Value) {
401   Symbol *S;
402   bool WasInserted;
403   std::tie(S, WasInserted) =
404       insert(N, STT_NOTYPE, STV_HIDDEN, /*CanOmitFromDynSym*/ false,
405              /*IsUsedInRegularObj*/ true, nullptr);
406   int Cmp = compareDefinedNonCommon(S, WasInserted, STB_GLOBAL);
407   if (Cmp > 0)
408     replaceBody<DefinedSynthetic<ELFT>>(S, N, Value, Section);
409   else if (Cmp == 0)
410     reportDuplicate(S->body(), nullptr);
411   return S;
412 }
413 
414 template <typename ELFT>
415 void SymbolTable<ELFT>::addShared(SharedFile<ELFT> *F, StringRef Name,
416                                   const Elf_Sym &Sym,
417                                   const typename ELFT::Verdef *Verdef) {
418   // DSO symbols do not affect visibility in the output, so we pass STV_DEFAULT
419   // as the visibility, which will leave the visibility in the symbol table
420   // unchanged.
421   Symbol *S;
422   bool WasInserted;
423   std::tie(S, WasInserted) =
424       insert(Name, Sym.getType(), STV_DEFAULT, /*CanOmitFromDynSym*/ true,
425              /*IsUsedInRegularObj*/ false, F);
426   // Make sure we preempt DSO symbols with default visibility.
427   if (Sym.getVisibility() == STV_DEFAULT)
428     S->ExportDynamic = true;
429   if (WasInserted || isa<Undefined>(S->body())) {
430     replaceBody<SharedSymbol<ELFT>>(S, F, Name, Sym, Verdef);
431     if (!S->isWeak())
432       F->IsUsed = true;
433   }
434 }
435 
436 template <class ELFT>
437 Symbol *SymbolTable<ELFT>::addBitcode(StringRef Name, bool IsWeak,
438                                       uint8_t StOther, uint8_t Type,
439                                       bool CanOmitFromDynSym, BitcodeFile *F) {
440   Symbol *S;
441   bool WasInserted;
442   std::tie(S, WasInserted) = insert(Name, Type, StOther & 3, CanOmitFromDynSym,
443                                     /*IsUsedInRegularObj*/ false, F);
444   int Cmp =
445       compareDefinedNonCommon(S, WasInserted, IsWeak ? STB_WEAK : STB_GLOBAL);
446   if (Cmp > 0)
447     replaceBody<DefinedBitcode>(S, Name, StOther, Type, F);
448   else if (Cmp == 0)
449     reportDuplicate(S->body(), F);
450   return S;
451 }
452 
453 template <class ELFT> SymbolBody *SymbolTable<ELFT>::find(StringRef Name) {
454   auto It = Symtab.find(Name);
455   if (It == Symtab.end())
456     return nullptr;
457   return SymVector[It->second]->body();
458 }
459 
460 // Returns a list of defined symbols that match with a given glob pattern.
461 template <class ELFT>
462 std::vector<SymbolBody *> SymbolTable<ELFT>::findAll(StringRef Pattern) {
463   // Fast-path. Fallback to find() if Pattern doesn't contain any wildcard
464   // characters.
465   if (Pattern.find_first_of("?*") == StringRef::npos) {
466     if (SymbolBody *B = find(Pattern))
467       if (!B->isUndefined())
468         return {B};
469     return {};
470   }
471 
472   std::vector<SymbolBody *> Res;
473   for (auto &It : Symtab) {
474     StringRef Name = It.first.Val;
475     SymbolBody *B = SymVector[It.second]->body();
476     if (!B->isUndefined() && globMatch(Pattern, Name))
477       Res.push_back(B);
478   }
479   return Res;
480 }
481 
482 template <class ELFT>
483 void SymbolTable<ELFT>::addLazyArchive(
484     ArchiveFile *F, const llvm::object::Archive::Symbol Sym) {
485   Symbol *S;
486   bool WasInserted;
487   std::tie(S, WasInserted) = insert(Sym.getName());
488   if (WasInserted) {
489     replaceBody<LazyArchive>(S, *F, Sym, SymbolBody::UnknownType);
490     return;
491   }
492   if (!S->body()->isUndefined())
493     return;
494 
495   // Weak undefined symbols should not fetch members from archives. If we were
496   // to keep old symbol we would not know that an archive member was available
497   // if a strong undefined symbol shows up afterwards in the link. If a strong
498   // undefined symbol never shows up, this lazy symbol will get to the end of
499   // the link and must be treated as the weak undefined one. We already marked
500   // this symbol as used when we added it to the symbol table, but we also need
501   // to preserve its type. FIXME: Move the Type field to Symbol.
502   if (S->isWeak()) {
503     replaceBody<LazyArchive>(S, *F, Sym, S->body()->Type);
504     return;
505   }
506   MemoryBufferRef MBRef = F->getMember(&Sym);
507   if (!MBRef.getBuffer().empty())
508     addFile(createObjectFile(MBRef, F->getName()));
509 }
510 
511 template <class ELFT>
512 void SymbolTable<ELFT>::addLazyObject(StringRef Name, LazyObjectFile &Obj) {
513   Symbol *S;
514   bool WasInserted;
515   std::tie(S, WasInserted) = insert(Name);
516   if (WasInserted) {
517     replaceBody<LazyObject>(S, Name, Obj, SymbolBody::UnknownType);
518     return;
519   }
520   if (!S->body()->isUndefined())
521     return;
522 
523   // See comment for addLazyArchive above.
524   if (S->isWeak()) {
525     replaceBody<LazyObject>(S, Name, Obj, S->body()->Type);
526   } else {
527     MemoryBufferRef MBRef = Obj.getBuffer();
528     if (!MBRef.getBuffer().empty())
529       addFile(createObjectFile(MBRef));
530   }
531 }
532 
533 // Process undefined (-u) flags by loading lazy symbols named by those flags.
534 template <class ELFT> void SymbolTable<ELFT>::scanUndefinedFlags() {
535   for (StringRef S : Config->Undefined)
536     if (auto *L = dyn_cast_or_null<Lazy>(find(S)))
537       if (std::unique_ptr<InputFile> File = L->getFile())
538         addFile(std::move(File));
539 }
540 
541 // This function takes care of the case in which shared libraries depend on
542 // the user program (not the other way, which is usual). Shared libraries
543 // may have undefined symbols, expecting that the user program provides
544 // the definitions for them. An example is BSD's __progname symbol.
545 // We need to put such symbols to the main program's .dynsym so that
546 // shared libraries can find them.
547 // Except this, we ignore undefined symbols in DSOs.
548 template <class ELFT> void SymbolTable<ELFT>::scanShlibUndefined() {
549   for (std::unique_ptr<SharedFile<ELFT>> &File : SharedFiles)
550     for (StringRef U : File->getUndefinedSymbols())
551       if (SymbolBody *Sym = find(U))
552         if (Sym->isDefined())
553           Sym->symbol()->ExportDynamic = true;
554 }
555 
556 // This function process the dynamic list option by marking all the symbols
557 // to be exported in the dynamic table.
558 template <class ELFT> void SymbolTable<ELFT>::scanDynamicList() {
559   for (StringRef S : Config->DynamicList)
560     if (SymbolBody *B = find(S))
561       B->symbol()->ExportDynamic = true;
562 }
563 
564 // This function processes the --version-script option by marking all global
565 // symbols with the VersionScriptGlobal flag, which acts as a filter on the
566 // dynamic symbol table.
567 template <class ELFT> void SymbolTable<ELFT>::scanVersionScript() {
568   // If version script does not contain versions declarations,
569   // we just should mark global symbols.
570   if (!Config->VersionScriptGlobals.empty()) {
571     for (StringRef S : Config->VersionScriptGlobals)
572       if (SymbolBody *B = find(S))
573         B->symbol()->VersionId = VER_NDX_GLOBAL;
574     return;
575   }
576 
577   // If we have symbols version declarations, we should
578   // assign version references for each symbol.
579   size_t I = 2;
580   for (Version &V : Config->SymbolVersions) {
581     for (StringRef Name : V.Globals) {
582       std::vector<SymbolBody *> Syms = findAll(Name);
583       if (Syms.empty()) {
584         if (Config->NoUndefinedVersion)
585           error("version script assignment of " + V.Name + " to symbol " +
586                 Name + " failed: symbol not defined");
587         continue;
588       }
589 
590       for (SymbolBody *B : Syms) {
591         if (B->symbol()->VersionId != VER_NDX_GLOBAL &&
592             B->symbol()->VersionId != VER_NDX_LOCAL)
593           warning("duplicate symbol " + Name + " in version script");
594         B->symbol()->VersionId = I;
595       }
596     }
597     ++I;
598   }
599 }
600 
601 // Print the module names which define the notified
602 // symbols provided through -y or --trace-symbol option.
603 template <class ELFT> void SymbolTable<ELFT>::traceDefined() {
604   for (const auto &Symbol : Config->TraceSymbol)
605     if (SymbolBody *B = find(Symbol.getKey()))
606       if (B->isDefined() || B->isCommon())
607         if (InputFile *File = B->getSourceFile<ELFT>())
608           outs() << getFilename(File) << ": definition of "
609                  << B->getName() << "\n";
610 }
611 
612 template class elf::SymbolTable<ELF32LE>;
613 template class elf::SymbolTable<ELF32BE>;
614 template class elf::SymbolTable<ELF64LE>;
615 template class elf::SymbolTable<ELF64BE>;
616