1 //===- SymbolTable.cpp ----------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Symbol table is a bag of all known symbols. We put all symbols of
11 // all input files to the symbol table. The symbol table is basically
12 // a hash table with the logic to resolve symbol name conflicts using
13 // the symbol types.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "SymbolTable.h"
18 #include "Config.h"
19 #include "LinkerScript.h"
20 #include "Symbols.h"
21 #include "SyntheticSections.h"
22 #include "lld/Common/ErrorHandler.h"
23 #include "lld/Common/Memory.h"
24 #include "lld/Common/Strings.h"
25 #include "llvm/ADT/STLExtras.h"
26 
27 using namespace llvm;
28 using namespace llvm::object;
29 using namespace llvm::ELF;
30 
31 using namespace lld;
32 using namespace lld::elf;
33 
34 SymbolTable *elf::Symtab;
35 
36 static InputFile *getFirstElf() {
37   if (!ObjectFiles.empty())
38     return ObjectFiles[0];
39   if (!SharedFiles.empty())
40     return SharedFiles[0];
41   return nullptr;
42 }
43 
44 // All input object files must be for the same architecture
45 // (e.g. it does not make sense to link x86 object files with
46 // MIPS object files.) This function checks for that error.
47 static bool isCompatible(InputFile *F) {
48   if (!F->isElf() && !isa<BitcodeFile>(F))
49     return true;
50 
51   if (F->EKind == Config->EKind && F->EMachine == Config->EMachine) {
52     if (Config->EMachine != EM_MIPS)
53       return true;
54     if (isMipsN32Abi(F) == Config->MipsN32Abi)
55       return true;
56   }
57 
58   if (!Config->Emulation.empty())
59     error(toString(F) + " is incompatible with " + Config->Emulation);
60   else
61     error(toString(F) + " is incompatible with " + toString(getFirstElf()));
62   return false;
63 }
64 
65 // Add symbols in File to the symbol table.
66 template <class ELFT> void SymbolTable::addFile(InputFile *File) {
67   if (!isCompatible(File))
68     return;
69 
70   // Binary file
71   if (auto *F = dyn_cast<BinaryFile>(File)) {
72     BinaryFiles.push_back(F);
73     F->parse();
74     return;
75   }
76 
77   // .a file
78   if (auto *F = dyn_cast<ArchiveFile>(File)) {
79     F->parse<ELFT>();
80     return;
81   }
82 
83   // Lazy object file
84   if (auto *F = dyn_cast<LazyObjFile>(File)) {
85     F->parse<ELFT>();
86     return;
87   }
88 
89   if (Config->Trace)
90     message(toString(File));
91 
92   // .so file
93   if (auto *F = dyn_cast<SharedFile<ELFT>>(File)) {
94     // DSOs are uniquified not by filename but by soname.
95     F->parseSoName();
96     if (errorCount() || !SoNames.insert(F->SoName).second)
97       return;
98     SharedFiles.push_back(F);
99     F->parseRest();
100     return;
101   }
102 
103   // LLVM bitcode file
104   if (auto *F = dyn_cast<BitcodeFile>(File)) {
105     BitcodeFiles.push_back(F);
106     F->parse<ELFT>(ComdatGroups);
107     return;
108   }
109 
110   // Regular object file
111   ObjectFiles.push_back(File);
112   cast<ObjFile<ELFT>>(File)->parse(ComdatGroups);
113 }
114 
115 // This function is where all the optimizations of link-time
116 // optimization happens. When LTO is in use, some input files are
117 // not in native object file format but in the LLVM bitcode format.
118 // This function compiles bitcode files into a few big native files
119 // using LLVM functions and replaces bitcode symbols with the results.
120 // Because all bitcode files that the program consists of are passed
121 // to the compiler at once, it can do whole-program optimization.
122 template <class ELFT> void SymbolTable::addCombinedLTOObject() {
123   if (BitcodeFiles.empty())
124     return;
125 
126   // Compile bitcode files and replace bitcode symbols.
127   LTO.reset(new BitcodeCompiler);
128   for (BitcodeFile *F : BitcodeFiles)
129     LTO->add(*F);
130 
131   for (InputFile *File : LTO->compile()) {
132     DenseSet<CachedHashStringRef> DummyGroups;
133     cast<ObjFile<ELFT>>(File)->parse(DummyGroups);
134     ObjectFiles.push_back(File);
135   }
136 }
137 
138 Defined *SymbolTable::addAbsolute(StringRef Name, uint8_t Visibility,
139                                   uint8_t Binding) {
140   Symbol *Sym =
141       addRegular(Name, Visibility, STT_NOTYPE, 0, 0, Binding, nullptr, nullptr);
142   return cast<Defined>(Sym);
143 }
144 
145 // Set a flag for --trace-symbol so that we can print out a log message
146 // if a new symbol with the same name is inserted into the symbol table.
147 void SymbolTable::trace(StringRef Name) {
148   SymMap.insert({CachedHashStringRef(Name), -1});
149 }
150 
151 // Rename SYM as __wrap_SYM. The original symbol is preserved as __real_SYM.
152 // Used to implement --wrap.
153 template <class ELFT> void SymbolTable::addSymbolWrap(StringRef Name) {
154   Symbol *Sym = find(Name);
155   if (!Sym)
156     return;
157   Symbol *Real = addUndefined<ELFT>(Saver.save("__real_" + Name));
158   Symbol *Wrap = addUndefined<ELFT>(Saver.save("__wrap_" + Name));
159   WrappedSymbols.push_back({Sym, Real, Wrap});
160 
161   // We want to tell LTO not to inline symbols to be overwritten
162   // because LTO doesn't know the final symbol contents after renaming.
163   Real->CanInline = false;
164   Sym->CanInline = false;
165 
166   // Tell LTO not to eliminate these symbols.
167   Sym->IsUsedInRegularObj = true;
168   Wrap->IsUsedInRegularObj = true;
169 }
170 
171 // Apply symbol renames created by -wrap. The renames are created
172 // before LTO in addSymbolWrap() to have a chance to inform LTO (if
173 // LTO is running) not to include these symbols in IPO. Now that the
174 // symbols are finalized, we can perform the replacement.
175 void SymbolTable::applySymbolWrap() {
176   // This function rotates 3 symbols:
177   //
178   // __real_sym becomes sym
179   // sym        becomes __wrap_sym
180   // __wrap_sym becomes __real_sym
181   //
182   // The last part is special in that we don't want to change what references to
183   // __wrap_sym point to, we just want have __real_sym in the symbol table.
184 
185   for (WrappedSymbol &W : WrappedSymbols) {
186     // First, make a copy of __real_sym.
187     Symbol *Real = nullptr;
188     if (W.Real->isDefined()) {
189       Real = reinterpret_cast<Symbol *>(make<SymbolUnion>());
190       memcpy(Real, W.Real, sizeof(SymbolUnion));
191     }
192 
193     // Replace __real_sym with sym and sym with __wrap_sym.
194     memcpy(W.Real, W.Sym, sizeof(SymbolUnion));
195     memcpy(W.Sym, W.Wrap, sizeof(SymbolUnion));
196 
197     // We now have two copies of __wrap_sym. Drop one.
198     W.Wrap->IsUsedInRegularObj = false;
199 
200     if (Real)
201       SymVector.push_back(Real);
202   }
203 }
204 
205 static uint8_t getMinVisibility(uint8_t VA, uint8_t VB) {
206   if (VA == STV_DEFAULT)
207     return VB;
208   if (VB == STV_DEFAULT)
209     return VA;
210   return std::min(VA, VB);
211 }
212 
213 // Find an existing symbol or create and insert a new one.
214 std::pair<Symbol *, bool> SymbolTable::insert(StringRef Name) {
215   // <name>@@<version> means the symbol is the default version. In that
216   // case <name>@@<version> will be used to resolve references to <name>.
217   //
218   // Since this is a hot path, the following string search code is
219   // optimized for speed. StringRef::find(char) is much faster than
220   // StringRef::find(StringRef).
221   size_t Pos = Name.find('@');
222   if (Pos != StringRef::npos && Pos + 1 < Name.size() && Name[Pos + 1] == '@')
223     Name = Name.take_front(Pos);
224 
225   auto P = SymMap.insert({CachedHashStringRef(Name), (int)SymVector.size()});
226   int &SymIndex = P.first->second;
227   bool IsNew = P.second;
228   bool Traced = false;
229 
230   if (SymIndex == -1) {
231     SymIndex = SymVector.size();
232     IsNew = Traced = true;
233   }
234 
235   Symbol *Sym;
236   if (IsNew) {
237     Sym = reinterpret_cast<Symbol *>(make<SymbolUnion>());
238     Sym->Visibility = STV_DEFAULT;
239     Sym->IsUsedInRegularObj = false;
240     Sym->ExportDynamic = false;
241     Sym->CanInline = true;
242     Sym->Traced = Traced;
243     Sym->VersionId = Config->DefaultSymbolVersion;
244     SymVector.push_back(Sym);
245   } else {
246     Sym = SymVector[SymIndex];
247   }
248   return {Sym, IsNew};
249 }
250 
251 // Find an existing symbol or create and insert a new one, then apply the given
252 // attributes.
253 std::pair<Symbol *, bool> SymbolTable::insert(StringRef Name, uint8_t Type,
254                                               uint8_t Visibility,
255                                               bool CanOmitFromDynSym,
256                                               InputFile *File) {
257   Symbol *S;
258   bool WasInserted;
259   std::tie(S, WasInserted) = insert(Name);
260 
261   // Merge in the new symbol's visibility.
262   S->Visibility = getMinVisibility(S->Visibility, Visibility);
263 
264   if (!CanOmitFromDynSym && (Config->Shared || Config->ExportDynamic))
265     S->ExportDynamic = true;
266 
267   if (!File || File->kind() == InputFile::ObjKind)
268     S->IsUsedInRegularObj = true;
269 
270   if (!WasInserted && S->Type != Symbol::UnknownType &&
271       ((Type == STT_TLS) != S->isTls())) {
272     error("TLS attribute mismatch: " + toString(*S) + "\n>>> defined in " +
273           toString(S->File) + "\n>>> defined in " + toString(File));
274   }
275 
276   return {S, WasInserted};
277 }
278 
279 template <class ELFT> Symbol *SymbolTable::addUndefined(StringRef Name) {
280   return addUndefined<ELFT>(Name, STB_GLOBAL, STV_DEFAULT,
281                             /*Type*/ 0,
282                             /*CanOmitFromDynSym*/ false, /*File*/ nullptr);
283 }
284 
285 static uint8_t getVisibility(uint8_t StOther) { return StOther & 3; }
286 
287 template <class ELFT>
288 Symbol *SymbolTable::addUndefined(StringRef Name, uint8_t Binding,
289                                   uint8_t StOther, uint8_t Type,
290                                   bool CanOmitFromDynSym, InputFile *File) {
291   Symbol *S;
292   bool WasInserted;
293   uint8_t Visibility = getVisibility(StOther);
294   std::tie(S, WasInserted) =
295       insert(Name, Type, Visibility, CanOmitFromDynSym, File);
296   // An undefined symbol with non default visibility must be satisfied
297   // in the same DSO.
298   if (WasInserted || (isa<SharedSymbol>(S) && Visibility != STV_DEFAULT)) {
299     replaceSymbol<Undefined>(S, File, Name, Binding, StOther, Type);
300     return S;
301   }
302   if (S->isShared() || S->isLazy() || (S->isUndefined() && Binding != STB_WEAK))
303     S->Binding = Binding;
304   if (Binding != STB_WEAK) {
305     if (auto *SS = dyn_cast<SharedSymbol>(S))
306       if (!Config->GcSections)
307         SS->getFile<ELFT>().IsNeeded = true;
308   }
309   if (auto *L = dyn_cast<Lazy>(S)) {
310     // An undefined weak will not fetch archive members. See comment on Lazy in
311     // Symbols.h for the details.
312     if (Binding == STB_WEAK)
313       L->Type = Type;
314     else if (InputFile *F = L->fetch())
315       addFile<ELFT>(F);
316   }
317   return S;
318 }
319 
320 // Using .symver foo,foo@@VER unfortunately creates two symbols: foo and
321 // foo@@VER. We want to effectively ignore foo, so give precedence to
322 // foo@@VER.
323 // FIXME: If users can transition to using
324 // .symver foo,foo@@@VER
325 // we can delete this hack.
326 static int compareVersion(Symbol *S, StringRef Name) {
327   bool A = Name.contains("@@");
328   bool B = S->getName().contains("@@");
329   if (A && !B)
330     return 1;
331   if (!A && B)
332     return -1;
333   return 0;
334 }
335 
336 // We have a new defined symbol with the specified binding. Return 1 if the new
337 // symbol should win, -1 if the new symbol should lose, or 0 if both symbols are
338 // strong defined symbols.
339 static int compareDefined(Symbol *S, bool WasInserted, uint8_t Binding,
340                           StringRef Name) {
341   if (WasInserted)
342     return 1;
343   if (!S->isDefined())
344     return 1;
345   if (int R = compareVersion(S, Name))
346     return R;
347   if (Binding == STB_WEAK)
348     return -1;
349   if (S->isWeak())
350     return 1;
351   return 0;
352 }
353 
354 // We have a new non-common defined symbol with the specified binding. Return 1
355 // if the new symbol should win, -1 if the new symbol should lose, or 0 if there
356 // is a conflict. If the new symbol wins, also update the binding.
357 static int compareDefinedNonCommon(Symbol *S, bool WasInserted, uint8_t Binding,
358                                    bool IsAbsolute, uint64_t Value,
359                                    StringRef Name) {
360   if (int Cmp = compareDefined(S, WasInserted, Binding, Name))
361     return Cmp;
362   if (auto *R = dyn_cast<Defined>(S)) {
363     if (R->Section && isa<BssSection>(R->Section)) {
364       // Non-common symbols take precedence over common symbols.
365       if (Config->WarnCommon)
366         warn("common " + S->getName() + " is overridden");
367       return 1;
368     }
369     if (R->Section == nullptr && Binding == STB_GLOBAL && IsAbsolute &&
370         R->Value == Value)
371       return -1;
372   }
373   return 0;
374 }
375 
376 Symbol *SymbolTable::addCommon(StringRef N, uint64_t Size, uint32_t Alignment,
377                                uint8_t Binding, uint8_t StOther, uint8_t Type,
378                                InputFile &File) {
379   Symbol *S;
380   bool WasInserted;
381   std::tie(S, WasInserted) = insert(N, Type, getVisibility(StOther),
382                                     /*CanOmitFromDynSym*/ false, &File);
383   int Cmp = compareDefined(S, WasInserted, Binding, N);
384   if (Cmp > 0) {
385     auto *Bss = make<BssSection>("COMMON", Size, Alignment);
386     Bss->File = &File;
387     Bss->Live = !Config->GcSections;
388     InputSections.push_back(Bss);
389 
390     replaceSymbol<Defined>(S, &File, N, Binding, StOther, Type, 0, Size, Bss);
391   } else if (Cmp == 0) {
392     auto *D = cast<Defined>(S);
393     auto *Bss = dyn_cast_or_null<BssSection>(D->Section);
394     if (!Bss) {
395       // Non-common symbols take precedence over common symbols.
396       if (Config->WarnCommon)
397         warn("common " + S->getName() + " is overridden");
398       return S;
399     }
400 
401     if (Config->WarnCommon)
402       warn("multiple common of " + D->getName());
403 
404     Bss->Alignment = std::max(Bss->Alignment, Alignment);
405     if (Size > Bss->Size) {
406       D->File = Bss->File = &File;
407       D->Size = Bss->Size = Size;
408     }
409   }
410   return S;
411 }
412 
413 static void warnOrError(const Twine &Msg) {
414   if (Config->AllowMultipleDefinition)
415     warn(Msg);
416   else
417     error(Msg);
418 }
419 
420 static void reportDuplicate(Symbol *Sym, InputFile *NewFile) {
421   warnOrError("duplicate symbol: " + toString(*Sym) + "\n>>> defined in " +
422               toString(Sym->File) + "\n>>> defined in " + toString(NewFile));
423 }
424 
425 static void reportDuplicate(Symbol *Sym, InputFile *NewFile,
426                             InputSectionBase *ErrSec, uint64_t ErrOffset) {
427   Defined *D = cast<Defined>(Sym);
428   if (!D->Section || !ErrSec) {
429     reportDuplicate(Sym, NewFile);
430     return;
431   }
432 
433   // Construct and print an error message in the form of:
434   //
435   //   ld.lld: error: duplicate symbol: foo
436   //   >>> defined at bar.c:30
437   //   >>>            bar.o (/home/alice/src/bar.o)
438   //   >>> defined at baz.c:563
439   //   >>>            baz.o in archive libbaz.a
440   auto *Sec1 = cast<InputSectionBase>(D->Section);
441   std::string Src1 = Sec1->getSrcMsg(*Sym, D->Value);
442   std::string Obj1 = Sec1->getObjMsg(D->Value);
443   std::string Src2 = ErrSec->getSrcMsg(*Sym, ErrOffset);
444   std::string Obj2 = ErrSec->getObjMsg(ErrOffset);
445 
446   std::string Msg = "duplicate symbol: " + toString(*Sym) + "\n>>> defined at ";
447   if (!Src1.empty())
448     Msg += Src1 + "\n>>>            ";
449   Msg += Obj1 + "\n>>> defined at ";
450   if (!Src2.empty())
451     Msg += Src2 + "\n>>>            ";
452   Msg += Obj2;
453   warnOrError(Msg);
454 }
455 
456 Symbol *SymbolTable::addRegular(StringRef Name, uint8_t StOther, uint8_t Type,
457                                 uint64_t Value, uint64_t Size, uint8_t Binding,
458                                 SectionBase *Section, InputFile *File) {
459   Symbol *S;
460   bool WasInserted;
461   std::tie(S, WasInserted) = insert(Name, Type, getVisibility(StOther),
462                                     /*CanOmitFromDynSym*/ false, File);
463   int Cmp = compareDefinedNonCommon(S, WasInserted, Binding, Section == nullptr,
464                                     Value, Name);
465   if (Cmp > 0)
466     replaceSymbol<Defined>(S, File, Name, Binding, StOther, Type, Value, Size,
467                            Section);
468   else if (Cmp == 0)
469     reportDuplicate(S, File, dyn_cast_or_null<InputSectionBase>(Section),
470                     Value);
471   return S;
472 }
473 
474 template <typename ELFT>
475 void SymbolTable::addShared(StringRef Name, SharedFile<ELFT> &File,
476                             const typename ELFT::Sym &Sym, uint32_t Alignment,
477                             uint32_t VerdefIndex) {
478   // DSO symbols do not affect visibility in the output, so we pass STV_DEFAULT
479   // as the visibility, which will leave the visibility in the symbol table
480   // unchanged.
481   Symbol *S;
482   bool WasInserted;
483   std::tie(S, WasInserted) = insert(Name, Sym.getType(), STV_DEFAULT,
484                                     /*CanOmitFromDynSym*/ true, &File);
485   // Make sure we preempt DSO symbols with default visibility.
486   if (Sym.getVisibility() == STV_DEFAULT)
487     S->ExportDynamic = true;
488 
489   // An undefined symbol with non default visibility must be satisfied
490   // in the same DSO.
491   if (WasInserted ||
492       ((S->isUndefined() || S->isLazy()) && S->Visibility == STV_DEFAULT)) {
493     uint8_t Binding = S->Binding;
494     bool WasUndefined = S->isUndefined();
495     replaceSymbol<SharedSymbol>(S, File, Name, Sym.getBinding(), Sym.st_other,
496                                 Sym.getType(), Sym.st_value, Sym.st_size,
497                                 Alignment, VerdefIndex);
498     if (!WasInserted) {
499       S->Binding = Binding;
500       if (!S->isWeak() && !Config->GcSections && WasUndefined)
501         File.IsNeeded = true;
502     }
503   }
504 }
505 
506 Symbol *SymbolTable::addBitcode(StringRef Name, uint8_t Binding,
507                                 uint8_t StOther, uint8_t Type,
508                                 bool CanOmitFromDynSym, BitcodeFile &F) {
509   Symbol *S;
510   bool WasInserted;
511   std::tie(S, WasInserted) =
512       insert(Name, Type, getVisibility(StOther), CanOmitFromDynSym, &F);
513   int Cmp = compareDefinedNonCommon(S, WasInserted, Binding,
514                                     /*IsAbs*/ false, /*Value*/ 0, Name);
515   if (Cmp > 0)
516     replaceSymbol<Defined>(S, &F, Name, Binding, StOther, Type, 0, 0, nullptr);
517   else if (Cmp == 0)
518     reportDuplicate(S, &F);
519   return S;
520 }
521 
522 Symbol *SymbolTable::find(StringRef Name) {
523   auto It = SymMap.find(CachedHashStringRef(Name));
524   if (It == SymMap.end())
525     return nullptr;
526   if (It->second == -1)
527     return nullptr;
528   return SymVector[It->second];
529 }
530 
531 template <class ELFT>
532 void SymbolTable::addLazyArchive(StringRef Name, ArchiveFile &F,
533                                  const object::Archive::Symbol Sym) {
534   Symbol *S;
535   bool WasInserted;
536   std::tie(S, WasInserted) = insert(Name);
537   if (WasInserted) {
538     replaceSymbol<LazyArchive>(S, F, Sym, Symbol::UnknownType);
539     return;
540   }
541   if (!S->isUndefined())
542     return;
543 
544   // An undefined weak will not fetch archive members. See comment on Lazy in
545   // Symbols.h for the details.
546   if (S->isWeak()) {
547     replaceSymbol<LazyArchive>(S, F, Sym, S->Type);
548     S->Binding = STB_WEAK;
549     return;
550   }
551   std::pair<MemoryBufferRef, uint64_t> MBInfo = F.getMember(&Sym);
552   if (!MBInfo.first.getBuffer().empty())
553     addFile<ELFT>(createObjectFile(MBInfo.first, F.getName(), MBInfo.second));
554 }
555 
556 template <class ELFT>
557 void SymbolTable::addLazyObject(StringRef Name, LazyObjFile &Obj) {
558   Symbol *S;
559   bool WasInserted;
560   std::tie(S, WasInserted) = insert(Name);
561   if (WasInserted) {
562     replaceSymbol<LazyObject>(S, Obj, Name, Symbol::UnknownType);
563     return;
564   }
565   if (!S->isUndefined())
566     return;
567 
568   // See comment for addLazyArchive above.
569   if (S->isWeak()) {
570     replaceSymbol<LazyObject>(S, Obj, Name, S->Type);
571     S->Binding = STB_WEAK;
572     return;
573   }
574   if (InputFile *F = Obj.fetch())
575     addFile<ELFT>(F);
576 }
577 
578 // If we already saw this symbol, force loading its file.
579 template <class ELFT> void SymbolTable::fetchIfLazy(StringRef Name) {
580   if (Symbol *B = find(Name)) {
581     // Mark the symbol not to be eliminated by LTO
582     // even if it is a bitcode symbol.
583     B->IsUsedInRegularObj = true;
584     if (auto *L = dyn_cast<Lazy>(B))
585       if (InputFile *File = L->fetch())
586         addFile<ELFT>(File);
587   }
588 }
589 
590 // Initialize DemangledSyms with a map from demangled symbols to symbol
591 // objects. Used to handle "extern C++" directive in version scripts.
592 //
593 // The map will contain all demangled symbols. That can be very large,
594 // and in LLD we generally want to avoid do anything for each symbol.
595 // Then, why are we doing this? Here's why.
596 //
597 // Users can use "extern C++ {}" directive to match against demangled
598 // C++ symbols. For example, you can write a pattern such as
599 // "llvm::*::foo(int, ?)". Obviously, there's no way to handle this
600 // other than trying to match a pattern against all demangled symbols.
601 // So, if "extern C++" feature is used, we need to demangle all known
602 // symbols.
603 StringMap<std::vector<Symbol *>> &SymbolTable::getDemangledSyms() {
604   if (!DemangledSyms) {
605     DemangledSyms.emplace();
606     for (Symbol *Sym : SymVector) {
607       if (!Sym->isDefined())
608         continue;
609       if (Optional<std::string> S = demangleItanium(Sym->getName()))
610         (*DemangledSyms)[*S].push_back(Sym);
611       else
612         (*DemangledSyms)[Sym->getName()].push_back(Sym);
613     }
614   }
615   return *DemangledSyms;
616 }
617 
618 std::vector<Symbol *> SymbolTable::findByVersion(SymbolVersion Ver) {
619   if (Ver.IsExternCpp)
620     return getDemangledSyms().lookup(Ver.Name);
621   if (Symbol *B = find(Ver.Name))
622     if (B->isDefined())
623       return {B};
624   return {};
625 }
626 
627 std::vector<Symbol *> SymbolTable::findAllByVersion(SymbolVersion Ver) {
628   std::vector<Symbol *> Res;
629   StringMatcher M(Ver.Name);
630 
631   if (Ver.IsExternCpp) {
632     for (auto &P : getDemangledSyms())
633       if (M.match(P.first()))
634         Res.insert(Res.end(), P.second.begin(), P.second.end());
635     return Res;
636   }
637 
638   for (Symbol *Sym : SymVector)
639     if (Sym->isDefined() && M.match(Sym->getName()))
640       Res.push_back(Sym);
641   return Res;
642 }
643 
644 // If there's only one anonymous version definition in a version
645 // script file, the script does not actually define any symbol version,
646 // but just specifies symbols visibilities.
647 void SymbolTable::handleAnonymousVersion() {
648   for (SymbolVersion &Ver : Config->VersionScriptGlobals)
649     assignExactVersion(Ver, VER_NDX_GLOBAL, "global");
650   for (SymbolVersion &Ver : Config->VersionScriptGlobals)
651     assignWildcardVersion(Ver, VER_NDX_GLOBAL);
652   for (SymbolVersion &Ver : Config->VersionScriptLocals)
653     assignExactVersion(Ver, VER_NDX_LOCAL, "local");
654   for (SymbolVersion &Ver : Config->VersionScriptLocals)
655     assignWildcardVersion(Ver, VER_NDX_LOCAL);
656 }
657 
658 // Handles -dynamic-list.
659 void SymbolTable::handleDynamicList() {
660   for (SymbolVersion &Ver : Config->DynamicList) {
661     std::vector<Symbol *> Syms;
662     if (Ver.HasWildcard)
663       Syms = findAllByVersion(Ver);
664     else
665       Syms = findByVersion(Ver);
666 
667     for (Symbol *B : Syms) {
668       if (!Config->Shared)
669         B->ExportDynamic = true;
670       else if (B->includeInDynsym())
671         B->IsPreemptible = true;
672     }
673   }
674 }
675 
676 // Set symbol versions to symbols. This function handles patterns
677 // containing no wildcard characters.
678 void SymbolTable::assignExactVersion(SymbolVersion Ver, uint16_t VersionId,
679                                      StringRef VersionName) {
680   if (Ver.HasWildcard)
681     return;
682 
683   // Get a list of symbols which we need to assign the version to.
684   std::vector<Symbol *> Syms = findByVersion(Ver);
685   if (Syms.empty()) {
686     if (!Config->UndefinedVersion)
687       error("version script assignment of '" + VersionName + "' to symbol '" +
688             Ver.Name + "' failed: symbol not defined");
689     return;
690   }
691 
692   // Assign the version.
693   for (Symbol *Sym : Syms) {
694     // Skip symbols containing version info because symbol versions
695     // specified by symbol names take precedence over version scripts.
696     // See parseSymbolVersion().
697     if (Sym->getName().contains('@'))
698       continue;
699 
700     if (Sym->VersionId != Config->DefaultSymbolVersion &&
701         Sym->VersionId != VersionId)
702       error("duplicate symbol '" + Ver.Name + "' in version script");
703     Sym->VersionId = VersionId;
704   }
705 }
706 
707 void SymbolTable::assignWildcardVersion(SymbolVersion Ver, uint16_t VersionId) {
708   if (!Ver.HasWildcard)
709     return;
710 
711   // Exact matching takes precendence over fuzzy matching,
712   // so we set a version to a symbol only if no version has been assigned
713   // to the symbol. This behavior is compatible with GNU.
714   for (Symbol *B : findAllByVersion(Ver))
715     if (B->VersionId == Config->DefaultSymbolVersion)
716       B->VersionId = VersionId;
717 }
718 
719 // This function processes version scripts by updating VersionId
720 // member of symbols.
721 void SymbolTable::scanVersionScript() {
722   // Handle edge cases first.
723   handleAnonymousVersion();
724   handleDynamicList();
725 
726   // Now we have version definitions, so we need to set version ids to symbols.
727   // Each version definition has a glob pattern, and all symbols that match
728   // with the pattern get that version.
729 
730   // First, we assign versions to exact matching symbols,
731   // i.e. version definitions not containing any glob meta-characters.
732   for (VersionDefinition &V : Config->VersionDefinitions)
733     for (SymbolVersion &Ver : V.Globals)
734       assignExactVersion(Ver, V.Id, V.Name);
735 
736   // Next, we assign versions to fuzzy matching symbols,
737   // i.e. version definitions containing glob meta-characters.
738   // Note that because the last match takes precedence over previous matches,
739   // we iterate over the definitions in the reverse order.
740   for (VersionDefinition &V : llvm::reverse(Config->VersionDefinitions))
741     for (SymbolVersion &Ver : V.Globals)
742       assignWildcardVersion(Ver, V.Id);
743 
744   // Symbol themselves might know their versions because symbols
745   // can contain versions in the form of <name>@<version>.
746   // Let them parse and update their names to exclude version suffix.
747   for (Symbol *Sym : SymVector)
748     Sym->parseSymbolVersion();
749 }
750 
751 template void SymbolTable::addFile<ELF32LE>(InputFile *);
752 template void SymbolTable::addFile<ELF32BE>(InputFile *);
753 template void SymbolTable::addFile<ELF64LE>(InputFile *);
754 template void SymbolTable::addFile<ELF64BE>(InputFile *);
755 
756 template void SymbolTable::addSymbolWrap<ELF32LE>(StringRef);
757 template void SymbolTable::addSymbolWrap<ELF32BE>(StringRef);
758 template void SymbolTable::addSymbolWrap<ELF64LE>(StringRef);
759 template void SymbolTable::addSymbolWrap<ELF64BE>(StringRef);
760 
761 template Symbol *SymbolTable::addUndefined<ELF32LE>(StringRef);
762 template Symbol *SymbolTable::addUndefined<ELF32BE>(StringRef);
763 template Symbol *SymbolTable::addUndefined<ELF64LE>(StringRef);
764 template Symbol *SymbolTable::addUndefined<ELF64BE>(StringRef);
765 
766 template Symbol *SymbolTable::addUndefined<ELF32LE>(StringRef, uint8_t, uint8_t,
767                                                     uint8_t, bool, InputFile *);
768 template Symbol *SymbolTable::addUndefined<ELF32BE>(StringRef, uint8_t, uint8_t,
769                                                     uint8_t, bool, InputFile *);
770 template Symbol *SymbolTable::addUndefined<ELF64LE>(StringRef, uint8_t, uint8_t,
771                                                     uint8_t, bool, InputFile *);
772 template Symbol *SymbolTable::addUndefined<ELF64BE>(StringRef, uint8_t, uint8_t,
773                                                     uint8_t, bool, InputFile *);
774 
775 template void SymbolTable::addCombinedLTOObject<ELF32LE>();
776 template void SymbolTable::addCombinedLTOObject<ELF32BE>();
777 template void SymbolTable::addCombinedLTOObject<ELF64LE>();
778 template void SymbolTable::addCombinedLTOObject<ELF64BE>();
779 
780 template void
781 SymbolTable::addLazyArchive<ELF32LE>(StringRef, ArchiveFile &,
782                                      const object::Archive::Symbol);
783 template void
784 SymbolTable::addLazyArchive<ELF32BE>(StringRef, ArchiveFile &,
785                                      const object::Archive::Symbol);
786 template void
787 SymbolTable::addLazyArchive<ELF64LE>(StringRef, ArchiveFile &,
788                                      const object::Archive::Symbol);
789 template void
790 SymbolTable::addLazyArchive<ELF64BE>(StringRef, ArchiveFile &,
791                                      const object::Archive::Symbol);
792 
793 template void SymbolTable::addLazyObject<ELF32LE>(StringRef, LazyObjFile &);
794 template void SymbolTable::addLazyObject<ELF32BE>(StringRef, LazyObjFile &);
795 template void SymbolTable::addLazyObject<ELF64LE>(StringRef, LazyObjFile &);
796 template void SymbolTable::addLazyObject<ELF64BE>(StringRef, LazyObjFile &);
797 
798 template void SymbolTable::addShared<ELF32LE>(StringRef, SharedFile<ELF32LE> &,
799                                               const typename ELF32LE::Sym &,
800                                               uint32_t Alignment, uint32_t);
801 template void SymbolTable::addShared<ELF32BE>(StringRef, SharedFile<ELF32BE> &,
802                                               const typename ELF32BE::Sym &,
803                                               uint32_t Alignment, uint32_t);
804 template void SymbolTable::addShared<ELF64LE>(StringRef, SharedFile<ELF64LE> &,
805                                               const typename ELF64LE::Sym &,
806                                               uint32_t Alignment, uint32_t);
807 template void SymbolTable::addShared<ELF64BE>(StringRef, SharedFile<ELF64BE> &,
808                                               const typename ELF64BE::Sym &,
809                                               uint32_t Alignment, uint32_t);
810 
811 template void SymbolTable::fetchIfLazy<ELF32LE>(StringRef);
812 template void SymbolTable::fetchIfLazy<ELF32BE>(StringRef);
813 template void SymbolTable::fetchIfLazy<ELF64LE>(StringRef);
814 template void SymbolTable::fetchIfLazy<ELF64BE>(StringRef);
815